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This report
1
 from the ICME12 Survey Team 4 examines issues in the transition from secondary 

school to university mathematics with a particular focus on mathematical concepts and aspects of 

mathematical thinking. It comprises a survey of the recent research related to: calculus and analysis; 

the algebra of generalised arithmetic and abstract algebra; linear algebra; reasoning, 

argumentation and proof; and modelling, applications and applied mathematics. This revealed a 

multi-faceted web of cognitive, curricular and pedagogical issues both within and across the 

mathematical topics above. In we conducted an international survey of those engaged in teaching in 

university mathematics departments. Specifically, we aimed to elicit perspectives on: what topics are 

taught, and how, in the early parts of university-level mathematical studies; whether the transition 

should be smooth; student preparedness for university mathematics studies; and, what university 

departments do to assist those with limited preparedness. We present a summary of the survey results 

from 79 respondents from 21 countries. 
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BACKGROUND 

Changing mathematics curricula and their emphases, lower numbers of student enrolments in 
undergraduate mathematics programmes (Barton & Sheryn, 2009; and- 
http://www.mathunion.org/icmi/other-activities/pipeline-project/) and changes due to an 
enlarged tertiary entrant profile (Hoyles, Newman, & Noss, 2001; Hockman, 2005), have 
provoked some international concern about the mathematical ability of students entering 
university (PCAST, 2012; Smith, 2004) and the traumatic effect of the transition on some of 
them (Engelbrecht, 2010). Decreasing levels of mathematical competency have been reported 
with regard to essential technical facility, analytical powers, and perceptions of the place of 
precision and proof in mathematics (Gill, O’Donoghue, Faulkner & Hannigan, 2010; 
Hourigan & O’Donoghue, 2007; Kajander & Lovric, 2005; Luk, 2005; Selden, 2005). The 
shifting profile of students who take service mathematics courses has produced a consequent 
decline in mathematical standards (Gill, O’Donoghue, Faulkner & Hannigan, 2010; Jennings, 
2009). However, not all studies agree on the extent of the problem (Engelbrecht & Harding, 

                                                
1 A longer version of this report is available from 
http://faculty.math.tsinghua.edu.cn/~jxie/papers/icme2012_ST4.pdf or  
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2008; Engelbrecht, Harding & Potgieter, 2005) and James, Montelle and Williams (2008) 
found that standards had been maintained.  

This situation has to be put in the context of the report of the President’s Council of Advisors 
on Science and Technology (PCAST) (2012). This states that in the USA alone there is a need 
to produce, over the next decade, around 1 million more college graduates in Science, 
Technology, Engineering, and Mathematics (STEM) fields than currently expected and 
recommends funding around 200 experiments at an average level of $500,000 each to address 
mathematics preparation issues. This emphasises the importance of addressing these 
transition issues. 

The Survey Team 4 brief was restricted to a consideration of the role of mathematical 
thinking and concepts related to transition and we found relatively few papers in the recent 
literature dealing directly with this. Hence we also reviewed literature analysing the learning 
of mathematics on one or both sides of the transition boundary. To achieve this we formed the, 
somewhat arbitrary, division of this mathematics into: calculus and analysis; the algebra of 
generalised arithmetic and abstract algebra; linear algebra; reasoning, argumentation and 
proof; and modelling, applications and applied mathematics, and report findings related to 
each of these fields. We were aware that other fields such as geometry and statistics and 
probability probably should have been included, but were not able to do so.  

THE SURVEY  

We considered it important to obtain data on transition from university mathematics 
departments. We wanted to know what topics are taught and how, if the faculty think the 
transition should be smooth, or not, their opinions on whether their students are well prepared 
mathematically, and what university departments do to assist those who are not. Hence, we 
constructed an anonymous questionnaire on transition using an Adobe Acrobat pdf form and 
sent it internationally by email to members of mathematics departments. The 79 responses 
from 21 countries were collected electronically. The sample comprised 56 males and 23 
females with a mean of 21.9 years of academic teaching. Of these 45 were at the level of 
associate professor, reader or full professor, and 30 were assistant professors, lecturers or 
senior lecturers. There were 5 or more responses from each of South Africa, USA, New 
Zealand and Brazil. 

Clearly the experience for beginning university students varies considerably depending on the 
country and the university that they attend. For example, while the majority teaches 
pre-calculus (53, 67.1%), calculus (76, 96.2%) and linear algebra (49, 62%) in their first year, 
minorities teach complex analysis (1), topology (3), group theory (1), real analysis (5), 
number theory (9), graph theory (12), logic (15), set theory (17) and geometry (18), among 
other topics. Further, in response to ‘Is the approach in first year mathematics at your 
university: Symbolic, Procedural; Axiomatic, Formal; Either, depending on the course.’ 21 
(26.6%) answered that their departments introduce symbolic and procedural approaches in 
first year mathematics courses, while 6 replied that their departments adapt axiomatic formal 
approaches. Most of the respondents (50, 63.3%) replied that their approach depended on the 
course. 
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When asked ‘Do you think students have any problems in moving from school to university 
mathematics?’ 72 (91.1%) responded “Yes” and 6 responded “No”. One third of those who 
answered “Yes” described these problems as coming from a lack of preparation in high 
school, supported by comments such as “They don't have a sufficiently good grasp of the 
expected school-mathematics skills that they need.” Further, two thirds of those who 
answered “Yes” described the problems as arising from the differences between high school 
classes and university (including more than 50% of the respondents from those sending at 
least 5 responses), such as differences in class size and work load, with many specifically 
citing the conceptual nature of university mathematics as being different from the procedural 
nature of high school mathematics. Comments here included “university is much more 
theoretical” and “Move from procedural to formal and rigourous [sic], introduction to proof, 
importance of definitions and conditions of theorems/rules/statements/formulas.” There is 
also a need to “…deal with misconceptions which students developed in secondary 
school…We also have to review secondary school concepts and procedures from an adequate 
mathematical point of view.”  Other responses cited: students’ weak algebra skills (12.5%); 
that university classes are harder (5%); personal difficulties in adjusting (10%); poor 
placement (3%); and, poor teaching at university (1%). 

Looking at specific mathematical knowledge, we enquired ‘How would you rate first year 
students’ mathematical understanding of each of the following on entry to university?’ With a 
maximum score of 5 for high, the mean scores of the responses were algebra or generalised 
arithmetic (3.0), functions (2.8), real numbers (2.7), differentiation (2.5), complex numbers 
(1.9), definitions (1.9), vectors (1.9), sequences and series (1.9), Riemann integration (1.8), 
matrix algebra (1.7), limits (1.7) and proof (1.6). The mathematicians were specifically asked 
whether students were well prepared for calculus study. Those whose students did not study 
calculus at school rated their students’ preparation for calculus at 2.1 out of 5. Those whose 
students did, rated secondary school calculus as preparation to study calculus at university at 
2.4, and as preparation to study analysis at university at 1.5. These results suggest that there is 
some room for improvement in school preparation for university study of calculus and 
analysis. 

Taken all together, these responses indicate that university academics do perceive both some 
inadequacies in students’ knowledge and difficulties in transition. 

Since there has been some literature (e,g., Clark & Lovric, 2009) indicating that, rather than 
being ‘smooth’, the transition to university should require some measure of struggle by 
students, we asked ‘Do you think the transition from secondary to university education in 
mathematics should be smooth?’ Here, 54 (68.4%) responded “Yes” and 22 (27.8%) 
responded “No”. Of those who responded “No”, many of the comments were similar to the 
following, expressing the belief that change is a necessary part of the transition: “Not 
necessarily smooth, because it is for most students a huge change to become more 
independent as learners.” and “To learn mathematics is sometimes hard.” Those who 
answered yes were then asked ‘what could be done to make the transition from secondary to 
university education in mathematics smoother?’ The majority of responses mentioned 
changes that could be made at the high school level, such as: encourage students to think 
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independently and abstractly; change the secondary courses; have better trained secondary 
teachers; and, have less focus in secondary school on standardised tests and procedures. A 
few mentioned changes that could be made at the university, such as: better placement of 
students in classes; increasing the communication between secondary and tertiary teachers; 
and, addressing student expectations at each level. This lack of communication between the 
two sectors was also highlighted as a major area requiring attention by the two-year study led 
by Thomas (Hong, Kerr, Klymchuk, McHardy, Murphy, Spencer, & Thomas, 2009). 

Since one would expect that, seeing students with difficulties in transition, universities might 
respond in an appropriate manner, we asked ‘Does your department periodically change the 
typical content of your first year programme?’ 33 (41.8%) responded “Yes” and 44 (55.7%) 
responded “No”. The responses to the question ‘How does your department decide on 
appropriate content for the first year mathematics programme for students?’ by those who 
answered yes to the previous question showed that departments change the content of the first 
year programme based on the decision of committees either on university level or on 
department level. Some respondents said that they change the course based on a decision by 
an individual member of faculty who diagnoses students’ need and background to change the 
course content for the first year students. 15 of the 35 responded that their universities try to 
integrate student, industry, and national needs into first year mathematics courses. The 
follow-up question ‘How has the content of your first year mathematics courses changed in 
the last 5 years?’ showed that 35 had changed their courses in the last 5 years, but 10 of these 
said that the change was not significant. 17 out of the 35 respondents reported that their 
departments changed the first year mathematics courses by removing complex topics, or by 
introducing practical mathematical topics. In some of the courses, students were encouraged 
to use tools for calculation and visualisation. However, there were also 6 departments that 
increased the complexity and the rigour of their first year mathematics courses. 

The survey considered the notion of proof in several questions. In response to ‘How 
important do you think definitions are in first year mathematics?’ 52 (65.8%) replied that 
definitions are important in first year mathematics, while 15 presented their responses as 
neutral. Only 8 respondents replied that definitions are not important in first year mathematics. 
Responses to the question ‘Do you have a course that explicitly teaches methods of proof 
construction?’ were evenly split with 49.4% answering each of “Yes” and “No”. Of those 
who responded “Yes”, 15 (38.4%) replied that they teach methods of proof construction 
during the first year, 23 (58.9%) during the second year and 5 (12.8%) in either third or fourth 
year. While some had separate courses (e.g. proof method and logic course) for teaching 
methods of proofs, many departments teach methods of proofs traditionally, by introducing 
examples of proof and exercises in mathematics class. Some respondents replied that they 
teach methods of proof construction in interactive contexts, citing having the course taught as 
a seminar, with students constructing proofs, presenting them to the class, and 
discussing/critiquing them in small size class. One respondent used the modified Moore 
method in interactive lecture. Looking at some specific methods of introducing students to 
proof construction was the question ‘How useful do you think that a course that includes 
assistance with the following would be for students?’ Four possibilities were listed, with 
mean levels of agreement out of 5 (high) being: Learning how to read a proof, 3.7; Working 
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on counterexamples, 3.8; Building conjectures, 3.7; Constructing definitions, 3.6. These 
responses appear to show a good level of agreement with employing the suggested 
approaches as components of a course on proof construction. It may be that these are ideas 
that the 49.4% of universities that currently do not have a course explicitly teaching proof 
construction could consider implementing as a way to assist transition.  

Mathematical modelling in universities was another topic our survey addressed. In response 
to the questions “Does your university have a mathematical course/activity dedicated to 
mathematical modeling and applications?” and “Are mathematical modelling and 
applications contents/activities integrated into other mathematical courses?”, 44 replied that 
their departments offer dedicated courses for modelling, while 41 said they integrate teaching 
of modelling into mathematics courses such as calculus, differential equations, statistics, etc 
and 7 answered that their university does not offer mathematics courses for mathematical 
modelling and applications. Among the reasons given for choosing dedicated courses were 
that: the majority of all mathematics students will end up doing something other than 
mathematics so applications are far more important to them than are detailed theoretical 
developments; most of the mathematics teaching is service teaching for non-majoring 
students so it is appropriate to provide a course of modelling and applications that is relevant 
to the needs of the target audience; and if modelling is treated as an add-on then students do 
not learn the methods of mathematical modeling. Those who chose integrated courses did so 
because: for modeling, students need to be equipped with a wide array of mathematical 
techniques and solid knowledge base. Hence it is appropriate for earlier level mathematics 
courses to contain some theory, proofs, concepts and skills, as well as applications. 

Considering what happens in upper secondary schools, 26 (33%) reported that secondary 
schools in their location have mathematical modelling and applications integrated into other 
mathematical courses, with only 4 having dedicated courses. 44 (56%) said that there were no 
such modelling courses in their area. When asked for their opinion on how modelling should 
be taught in schools, most of the answers stated that it should be integrated into other 
mathematical courses. The main reasons presented for this were: the many facets of 
mathematics; topics too specialised to form dedicated courses; to allow cross flow of ideas, 
avoid compartmentalization; and students need to see the connection between theory and 
practice, build meaning, appropriate knowledge. The question ‘What do you see as the key 
differences between the teaching and learning of modelling and applications in secondary 
schools and university, if any?’ was answered by 33 (42%) of respondents. The key 
differences pointed out by those answering this question were: at school, modelling is poor, 
too basic and mechanical, often close implementation of simple statistics tests; students have 
less understanding of application areas; university students are more independent; they have 
bigger range of mathematical tools, more techniques; they are concerned with rigour and 
proof. Asked ‘What are the key difficulties for student transition from secondary school to 
university in the field of mathematical modelling and applications, if any?’ the 35 (44%) 
university respondents cited: lack of knowledge (mathematical theory, others subjects such as 
physics, chemistry, biology, ecology); difficulties in formulating precise mathematical 
problems/interpreting word problems/understanding processes, representations, use of 
parameters; poor mathematical skills, lack of logical thinking; no experience from secondary 
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schools; and lack of support. One message for transition is to construct more realistic 
modeling applications for students to study in schools. 

In order to investigate how universities respond to assist students with transition problems we 
enquired “Do you have any academic support structures to assist students in the transition 
from school to university? (e.g., workshops, bridging courses, mentoring, etc).”, and 56 (71%) 
replied ‘Yes’ and 22 ‘No’. Of those saying yes, 34% have a bridging course, 25% some form 
of tutoring arrangement, while 23% mentioned mentoring, with one describing it as a 
“Personal academic mentoring program throughout degree for all mathematics students” and 
another saying “We tried a mentoring system once, but there was almost no uptake by 
students.” Other support structures mentioned included ‘study skills courses’, ‘maths clinics’, 
‘support workshops’, ‘pre-course’, ‘remedial mathematics unit’, and a ‘Mathematics 
Learning Service (centrally situated), consulting & assignment help room (School of Maths). 
The MLS has a drop-in help room, and runs a series of seminars on Maths skills. These are 
also available to students on the web.’ Others talked of small group peer study, assisted study 
sessions, individual consultations, daily help sessions, orientation programmes and remedial 
courses. There is some evidence that bridging courses can assist in transition (Varsavsky, 
2010), by addressing skill deficiencies in basic mathematical topics (Tempelaar, Rienties, 
Giesbers & Schim van der Loeff, 2012) and building student confidence (Carmichael & 
Taylor, 2005). Other successful transition courses (e.g., Leviatan, 2008; Oates, Paterson, 
Reilly & Statham, 2005) have introduced students to the mathematical “culture” and its 
typical activities (generalizations, deductions, definitions, proofs, etc.), as well as central 
concepts and tools, or comprise a first year programme of tutor training and collaborative 
tutorials. While most universities have such courses it appears that establishment of one by 
those who do not would assist students with transition. 

Overall the survey confirmed that students do have some problems in transition and these are 
sometimes related to a mathematical preparation that could be improved. However, there are 
also a number of areas that universities could address to assist students, such as adjusting the 
content of first year courses, and instituting a course on proving and proof (where this doesn’t 
exist) and constructing a bridging course. 

LITERATURE REVIEW 

Theoretical Perspectives in the transition literature 

A number of different lenses have been used to analyse the mathematical transition from 
school to university. Some have been summarised well elsewhere (see e.g., Winsløw, 2010) 
but we preface our discussion with a brief list of the major theoretical perspectives we found 
in the transition-related literature. One theory that is in common use is the Anthropological 
Theory of Didactics (ATD) based on the ideas of Chevallard (1985), with its concept of a 
praxeology comprising task, technique, technology, theory. ATD focuses on analysis of the 
organisation of praxeologies relative to institutions and the diachronic development of 
didactic systems. A second common perpective is the Theory of Didactical Situations (TDS) 
of Brousseau (1997), which employs didactical situations in which the teacher orchestrates 
elements of the didactical milieu under the constraints of a dynamic didactical contract. Other 
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research uses the action-process-object-schema (APOS) framework of Dubinsky (e.g. 
Dubinsky & McDonald, 2001) for studying learning. This describes how a process may be 
constructed from actions by reflective abstraction, and subsequently an object is formed by 
encapsulation of the process. Other authors find the Three Worlds of Mathematics (TWM) 
framework of Tall (2008) useful. This describes thinking and learning as taking place in three 
worlds: the embodied; the symbolic; and the formal. In the embodied world we build mental 
conceptions using visual and physical attributes of concepts, along with enactive sensual 
experiences. The symbolic world is where the symbolic representations of concepts are acted 
upon, or manipulated, and the formal world is where properties of objects are formalized as 
axioms, and learning comprises the building and proving of theorems by logical deduction 
from these axioms. We use the acronyms above to refer to each of these frameworks in the 
text below. 

Calculus and Analysis 

A number of studies have focused on the problems of transition from calculus to analysis, 
considering real numbers (Bergé, 2008, 2010; Ghedamsi, 2008; Mamona-Downs, 2010), 
functions (Dias, Artigue, Jahn & Campos, 2008; Vandebrouk, 2010), limits (Bloch et al. 2006; 
Bloch & Ghedamsi, 2004, 2010), continuity (Artigue, 2008) and open and closed sets 
(Bridoux, 2010) and sequences and series (González-Martin, 2009; Gyöngyösi, Solovej & 
Winsløw, 2011). From these some key areas giving rise to epistemological and mathematical 
obstacles have been identified.  

Functions: Students have a limited understanding of the concept of function (Junior, 2006) 
and need to be able to switch between local and global perspectives (Artigue, 2009; Rogalski, 
2008; Vandebrouck, 2010, 2011). Using a TWM lens suggests a need to reconceptualise the 
concept of function in terms of its multiple registers and process-object duality. The formal 
axiomatic world of university mathematics requires students to adopt a local perspective on 
functions, whereas only pointwise (functions considered as a correspondence between two 
sets of numbers) and global points of view (representations are tables of variation) are 
constructed at secondary school (Vandebrouck, 2011). An ATD-based study of the transition 
from concrete to abstract perspectives in real analysis by Winsløw (2008) suggests that in 
secondary schools the focus is on practical-theoretical blocks of concrete analysis, while at 
university level the focus is on more complex praxeologies of concrete analysis and on 
abstract analysis. He considers two kinds of transitions in the student’s mathematical activity: 
from activity mainly centred on practical blocks to that of working with more comprehensive 
and structured mathematical organisations; and to tasks with theoretical objects. Since the 
second kind of transition presupposes the first an incomplete achievement of the first 
transition produces an obstacle for the second one by making the tasks to be worked on 
inaccessible. 

Limits: Students need to work with limits, especially of infinite sequences or series. Two 
obstacles regarding the concept of infinite sum are the intuitive and natural idea that the sum 
of infinity of terms should also be infinite, and the conception that an infinite process must go 
through each step, one after the other and without stopping, which leads to the potential 
infinity concept (González-Martin, 2009; González-Martín, Nardi, & Biza, 2011). According 
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to Oehrtman (2009), students’ reasoning about limit concepts appears to be influenced by 
metaphorical application of experiential conceptual domains, including collapse, 
approximation, proximity, infinity as number and physical limitation metaphors. However, 
only physical limitation metaphors were consistently detrimental to students’ understanding. 
One approach to building thinking about limits, suggested by Mamona-Downs (2010), is the 
set-oriented characterization of convergence behaviour of sequences of that supports the 
metaphor of ‘arbitrary closeness’ to a point. Employing a TDS framework Ghedamsi (2008) 
developed two situations that allowed students to connect productively the intuitive, 
perceptual and formal dimensions of the limit concept. Two approximation methods were 
used as experimental situations: the construction of the better rational approximation of  
and, if possible, its generalisation to other irrationals; and the cosine fixed point, which gives 
access to real numbers that we cannot make explicit and consequently requires the 
implementation of formal procedures. 

Institutional factors; An aspect of transition highlighted by the ATD is that praxeologies exist 
in relation to institutions. Employing the affordances of ATD, Praslon (2000) showed that by 
the end of high school in France a substantial institutional relationship with the concept of 
derivative is already established. Hence, for this concept, he claims that the secondary-tertiary 
transition is not about intuitive and proceptual perspectives moving towards formal 
perspectives, as TWM might suggest, but is more complex, involving an accumulation of 
micro-breaches and changes in balance according several dimensions (tool/object dimensions, 
particular/general objects, autonomy given in the solving process, role of proofs, etc). 
Building on this work Bloch and Ghedamsi (2004) identified nine factors contributing to a 
discontinuity between high school and university in analysis and Bosch, Fonseca and Gascón 
(2004) show the existence of strong discontinuities in the praxeological organization between 
high school and university, and build specific tools for qualifying and quantifying these. Also 
employing an institutional approach, Dias, Artigue, Jahn and Campos (2008) conducted a 
comparative ATD study of the secondary-tertiary transition in Brazil and France, using the 
concept of function as a filter. They conclude that although contextual influences tend to 
remain invisible there is a need for those inside a given educational system to become aware 
of them in order to envisage productive collaborative work and evolution of the system. One 
crucial aspect of the institution studied by Smida and Ghedamsi (2006) is the teaching 
practice of the lecturers. They distinguish two kinds of teaching projects leading to two 
different models of teaching practices: those where axiomatic, structures and formalism are 
the discourse that justify and generate the expected knowledge and know-how; and projects 
where the intent is to enrol in a constructivist setting. Further they highlight three groups of 
lecturers: those with a logico-theoretical profile, who do not take into account cognitive 
demands; those with a logico-constructivist profile, who have some cognitive concern; and 
those who take into account cognitive demands. 

Other areas: One TDS-based research project examined a succession of situations for 
introducing the notions of interior and closure of a set and open and closed set (Bridoux, 
2010), using meta-mathematical discourse and graphical representations to assist students to 
develop an intuitive insight that allowed the teacher to characterise them in a formal language. 

2
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Another examined the notion of completeness (Bergé, 2008, 2010), analysing whether 
students have an operational or conceptual view, or if it is taken for granted. The conclusion 
was that many students have a weak understanding that does not include ideas such as: R is 
the set that contains all the suprema of its bounded above subsets; Cauchy sequences come 
from the necessity of characterizing the kind of sequences that ‘must’ converge; and 
completeness is related to the issue whether a limit is guaranteed to lie in R. 

Some possible ways to assist the calculus-analysis transition have also been considered. For 
example, Gyöngyösi, Solovej and Winsløw (2011) report an experiment using Maple 
CAS-based work to ease the transition from calculus to real analysis. Using a combination of 
theoretical frameworks to study transition they conclude that the use of instruments changes 
the kinds of mathematics students do, and those with an overall lower performance also 
commit more errors when using instrumented techniques. A similar use of graphing 
calculator technology in consideration of the Fundamental Theorem of Calculus by Scucuglia 
(2006) made it possible for the students to become gradually engaged in deductive 
mathematical discussions based on results obtained from experiments. In addition, Biehler, 
Fischer, Hochmuth and Wassong (2011) propose that blending traditional course attendance 
with systematic e-learning study can facilitate the bridging of school and university 
mathematics.  

Abstract Algebra 

Understanding the constructs, principles, and eventually axioms, of the algebra of generalised 
arithmetic could be a way to assist students in the transition to study of more general algebraic 
structures. With a focus on students’ work on solving a parametric system of simultaneous 
equations and the difficulties they experience with working with variables, parameters and 
unknowns, Stadler (2011) describes students’ experience of the transition from school to 
university mathematics as an often perplexing re-visiting of content and ways of working that 
seems simultaneously both familiar and novel. Using a perspective that is discursive and 
enculturative, largely based on Sfard’s commognition, the study showed that constructs of 
number, symbolic literals, operators, the ‘=’ symbol itself, and the formal equivalence 
relation, as well as the principles of arithmetic, all contribute to building a deep understanding 
of equation. This agrees with the observations of Godfrey and Thomas (2008), who, using the 
TWM framework, provided evidence that many students have a surface structure view of 
equation and fail to integrate the properties of the object with that surface structure. For 
example, an embodied input-output, procedural, or operational, view of equation persists for 
approximately 25% of secondary school students, even when they reach university level, and 
equivalence is not well understood by school students. 

Students’ encounter with abstract algebra at university marks a significant point in the 
transition to advanced mathematical formalism and abstraction. Topics such as group theory 
are characterised by deeper levels of insight and sophistication (Barbeau, 1995) and ask of 
students a commitment to what is often a fast-paced first encounter in lectures (Clark et al., 
1997). As Hazzan (1999) notes, students’ difficulty with abstract algebra can be attributed to 
the novelty of dealing with concepts that are introduced abstractly, defined and presented by 
their properties, along with an examination of what facts can be determined from these 
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properties alone. The role of verbalisation in this process, as a semantic mediator between 
symbolic and visual mathematical expression, may require a level of verbalisation skills that 
Nardi (2011) notes is often lacking in first year undergraduates.  

Studies that focus on the student experience in their first encounters with key concepts in 
abstract algebra describe a number of difficulties. One identified by Hart (1994) is an 
over-reliance upon concrete examples of groups leading to a lack of skills in proof production. 
Another is the prerequisite of students’ understanding of the process-object duality of 
mathematical concepts to understand Group Theory (Asiala et al., 1994), with cosets, 
normality and isomorphism identified as stumbling blocks in the early stages.  

One method employed to assist students with these is to reduce group theory’s high levels of 
abstraction (Hazzan, 1999, 2001), for example, by asking students to construct the operation 
table for low order groups. This follows the principles of Burn (1996, 1998) who 
recommended reversing the order of presentation, using examples and applications to 
stimulate the discovery of definitions and theorems through permutation and symmetry. This 
idea was implemented by Larsen (2009) in the form of a series of tasks exploring the 
symmetries of an equilateral triangle, constructing multiplication tables for groups of low 
order and culminating in negotiating preliminary understandings of group structure, the order 
of a group and isomorphism. 

In an analysis of student responses to introductory Group Theory problem sheets, Nardi (2000) 
identified students’: difficulties with the static and operational duality within the concept of 
order of an element as well as the semantic abbreviation contained in |�|; often problematic 
use of ‘times’ and ‘powers of’ in association with the group operation; ambivalent use of 
geometric images as part of meaning bestowing processes with regard to the notion of coset; 
and problematic conceptualisation of multi-level abstractions embedded in the concept of 
isomorphism. The duality underlying the concept of group and its binary operation, were also 
discussed by Iannone and Nardi (2002), who offered evidence of students’ tendency to: 
consider a group as a special kind of set, often ignoring the binary operation that is 
fundamental to its entity; consider the group axioms as properties of the group elements rather 
than the binary operation; and omit checking axioms that they perceive as obvious, such as 
associativity. In addition, research by Ioannou, (see Ioannou & Nardi, 2008, 2009; 2010; 
Ioannou & Iannone, 2011) considers students’ first encounter with abstract algebra, focusing 
on the Subgroup Test, symmetries of a cube, equivalence relations, and employing the 
notions of kernel and image in the First Isomorphism Theorem. Provisional conclusions are 
that students’ overall problematic experience of the transition to abstract algebra is 
characterised by the strong interplay between strictly conceptual matters, affective issues and 
those germane to the wider study skills and coping strategies that students arrive at university 
with.  

Linear Algebra 

A sizeable amount of research in linear algebra has documented students’ transition 
difficulties, particularly as these relate to students’ intuitive or geometric ways of reasoning 
and the formal mathematics of linear algebra (Dogan-Dunlap, 2010; Gueudet-Chartier, 2004; 
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Harel, 1990). Related to this work, Hillel (2000) constructed a theoretical framework for 
understanding student reasoning in linear algebra, identifying geometric, algebraic, and 
abstract modes of description, with the limited opportunities for generalisation in the first two 
a potential obstacle for understanding the abstract mode. According to Dorier, Robert, 
Robinet and Rogalski (2000a) difficulties with formal, abstract aspects of linear algebra arise 
from a strong emphasis on algebraic concepts in linear algebra that leaves little room for set 
theory and elementary logic. The approach of Dorier, Robert, Robinet, and Rogalski (2000b) 
and Rogalski (2000) to dealing with these problems involves teaching linear algebra as a long 
term strategy, having students revisit problems in a variety of different settings—geometric, 
algebraic, and formal.  

The relationship between linear algebra and geometry were at the core of the ten years of 
research by Gueudet (Gueudet, 2004, 2008) that identified specific views on students’ 
difficulties, in the secondary-tertiary transition in linear algebra, resulting from different 
theoretical perspectives. The epistemological view leads to a focus on linear algebra as an 
axiomatic theory, which is very abstract for the students. Focusing on reasoning modes leads 
her to identify the need, in linear algebra, for various forms of flexibility, in particular 
flexibility between dimensions. Also working at the geometry-formalism boundary Portnoy, 
Grundmeier and Graham (2006) demonstrated that pre-service teachers who had been 
utilizing transformations as processes that transformed geometric objects into other 
geometric objects had difficulty writing proofs involving linear transformations. Although 
understanding of transformation contributed to understanding of the concept in general, they 
may not have developed the necessary object understanding for writing correct proofs. 
Britton and Henderson (2009) demonstrated students’ difficulty in moving between a formal 
understanding of subspace and the algebraic mode in which a problem on closure was stated. 
These authors argue that such difficulties stem from an insufficient understanding of the 
various symbols used in the questions and in the formal definition of subspace. 

Employing a framework using APOS theory in conjunction with TWM, Stewart and Thomas 
(2007, 2009, 2010, and Thomas & Stewart, 2011) analysed student understanding of various 
concepts in linear algebra, including linear independence and dependence, eigenvectors, span 
and basis.  The authors found that generally students do not think of these concepts from an 
embodied standpoint, but instead rely upon a symbolic, process-oriented matrix manipulation 
way of reasoning. However, employing a course that introduced students to embodied, 
geometric representations in linear algebra along with the formal and the symbolic appeared 
to enrich student understanding of the concepts and allowed them to bridge between them 
more effectively than with just symbolic processes. An emphasis on working with symbolic 
expressions, losing sight of the mathematical objects that the symbols represent, can give rise 
to the formalism obstacle (Corriveau, 2009), since a new algebra requires students to accept 
delegation of parts of the control of validity and meaning to this algebra, leading to a loss of 
control and meaning. 

Employing computers in attempts to address students’ difficulties in bridging the many 
representational forms and the variety of concepts present in linear algebra goes back to the 
work of Sierpinska, Dreyfus, and Hillel (1999) and more recently Berry, Lapp and Nyman 
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(2008) and Dogan-Dunlap and Hall (2004) have used this approach. Sierpinska, Dreyfus and 
Hillel (1999) found that the use of computer environment tasks enabled students to develop a 
dynamic understanding of transformation, but hindered their ability to understand 
transformation as relating a general vector to its image under the transformation and that 
students made determinations about a transformation’s linearity based upon a single example. 
Recently, Meel and Hern (2005) found that using interactive applets helped students 
recognise misinterpretation or mis-generalization through examination of additional 
examples.  

Another aspect that has been investigated is students’ intuitive thinking in linear algebra. 
Working with Models and Modeling (Lesh & Doerr, 2003) and APOS frameworks Possani, 
Trigueros, Preciado, and Lozano (2010) leveraged students’ intuitive ways of thinking. They 
did this by utilising a genetic composition of linear independence and dependence and 
systems of equations in order to aid in the creation of a task sequence that presented students 
with a problem to mathematise and then use to understand linear independence and 
dependence. Student use of different modes of representation in making sense of the formal 
notion of subspace was analysed by Wawro, Sweeney, and Rabin (2011), and their results 
suggest that in generating explanations for the definition, students rely on their intuitive 
understandings of subspace, which can be problematic but can also be very powerful in 
developing a more comprehensive understanding of subspace.  

Some research teams have been spearheading innovations in the teaching and learning of 
linear algebra. Cooley, Martin, Vidakovic, and Loch (2007) developed a linear algebra course 
that combines the teaching of linear algebra with learning about APOS theory. By focusing 
on a theory for how mathematical knowledge is generated, students were made aware of their 
own thought processes and could then enrich their understanding of linear algebra 
accordingly. In the United States, another group of researchers has used a design research 
approach (Kelly, Lesh, & Baek, 2008), simultaneously creating instructional sequences and 
examining students’ reasoning about key concepts such as eigenvectors and eigenvalues, 
linear independence, linear dependence, span, and linear transformation (Henderson, 
Rasmussen, Zandieh, Wawro, & Sweeney, 2010; Larson, Zandieh, & Rasmussen, 2008; 
Sweeney, 2011). They argue that knowledge of student thinking prior to formal instruction is 
essential for developing thoughtful teaching that builds on and extends student thinking. In a 
study on tasks for developing student reasoning they report (Wawro, Zandieh, Sweeney, 
Larson, & Rasmussen, 2011) student reasoning during reinvention of the concepts of span 
and linear independence, guided by an innovative instructional sequence beginning with 
vector equations rather than systems of equations. This successfully leveraged students’ 
intuitive imagery of vectors as movement to develop formal definitions. This challenges the 
view that students’ intuitive ways of reasoning are an obstacle to induction into formal 
mathematics. 

Logic and Proof 

Some well-recognised differences in the transition to university mathematics include the 
requirement for: abstraction and logical deductive reasoning (Engelbrecht, 2010); rigour 
(Leviatan, 2008); a context of mathematical theory (De Vleeschouwer, 2010); and proof. A 
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number of French researchers (e.g. Durand-Guerrier, 2003; Deloustal-Jorrand, 2004; 
Rogalski & Rogalski, 2004) have pointed out the importance of taking in account 
quantification matters in order to analyse difficulties related to implication, and more 
generally mathematical reasoning. An example highlighted by Chellougui (2009) working 
with new university students involved didactic phenomena related to the alternation of the 
two types of quantifiers and difficulties in mobilizing the definition of the objects and the 
structures, illustrating a major problem in the conceptualisation process. Durand-Guerrier and 
Arsac (2005) highlight the fact that a major challenge for learners is to develop 
simultaneously mathematical knowledge and logical skills, which are closely intertwined. A 
semantic and dialogic perspective introduced by Barrier (2009) highlights the importance of 
moving back and forth between syntax and semantics in the proving process in advanced 
mathematics (e.g. Blossier, Barrier & Durand-Guerrier, 2009). Such research suggests a need 
to develop programmes allowing new university students to master the logical competencies 
required for the learning of advanced mathematics, possibly similar to second language 
learning (Durand-Guerrier & Njomgang Ngansop, 2011). 

A previous ICME survey report on proof (Mariotti et al., 2004) raised a number of questions 
that relate to transition issues and suggested that a key difference between school and 
university is that schools focus on argumentation while universities consider deductive proof. 
However, while many of their ideas have been taken up by researchers there appear to have 
been few studies directly addressing proof as an issue of transition (at the time of writing the 
book Proof and Proving in Mathematics Education: The 19

th
 ICMI study–Hanna & de 

Villiers, 2012, was still in press). In spite of this the research conducted points out some key 
differences between approaches to proof in school and in university and makes suggestions 
for pedagogical approaches that might assist in the transition. These aspects are considered 
here. 

One recommendation for pedagogical change that would have implications for transition is 
the need for more explicit teaching of proof, both in school and university (Balacheff, 2008; 
Hanna & de Villiers, 2008; Hemmi, 2008), with some (e.g., Stylianides & Stylianides, 2007; 
Hanna & Barbeau, 2008) arguing for it to be made a central topic in both institutions. One 
possible introduction to proof in schools, suggested by Harel (2008) and Palla, Potari and 
Spyrou (2011) involves proof by mathematical induction. However, this topic should not be 
considered too quickly. Rather a slower approach, stressing and valuing both ways of 
understanding and ways of thinking that the DNR framework describes (Harel, 2008), and 
distinguishing between proof schemes and proofs, is necessary for understanding. According 
to Solomon (2006), enabling students to access academic proof processes in the transition 
from pre-university to undergraduate mathematics is a question of understanding and 
building on students’ own pre-existing epistemological resources in order to foster an 
epistemic fluency that will allow them to recognise, and engage in, the process of creating and 
validating mathematical knowledge. 

A number of potential difficulties in any attempt to place proving and proof more prominently 
in the transition years have been identified. These include the role of definitions, and the 
problem of student met-befores (Tall & Mejia-Ramos, 2006). A desire to use definitions as 
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the basis of deductive reasoning in schools is likely to meet serious problems, since, 
according to Harel (2008), this form of reasoning is generally not available to school students. 
A study by Hemmi (2008) agrees that students have difficulties understanding the role of 
definitions in proofs. She advocates a style of teaching that uses the principle of transparency, 
making the difference between empirical evidence and deductive argument visible to students. 
In addition, the cognitive influence of student met-befores can be strong, with Cartiglia et al. 
(2004) showing that the most recent met-before for university students, namely a formal 
approach, had a strong influence on their reasoning. A further difficulty, highlighted by 
Iannone and Inglis (2011), was a range of weaknesses in beginning university mathematics 
students’ ability to produce a deductive argument, even when they were aware they should do 
so. Another obstacle could be the form of teaching in schools, where mostly argumentation 
skills are advanced with little or no deductive reasoning. A potential way forward here, 
proposed by Inglis, Mejia-Ramos, and Simpson (2007), is the use of the full Toulmin 
argumentation scheme, including its modal qualifier and rebuttal, since then it would not be 
necessary for teaching to go straight to the use of formal deductive warrants. 

One pedagogical strategy to address the teaching of proving researchers propose is student 
construction and justification of conjectures. This approach highlights the use of open 
problems that ask for a conjecture, and appears to be an effective way to introduce the 
learning of proof. Pedemonte (2007, 2008) also discusses the relationship between 
argumentation and proof in terms of the construct of structural distance, moving from 
abductive, or plausible, argumentation to a deductive proof, arguing for an abductive step in 
the structurant argumentation in order to assist transition by decreasing the gap between the 
arithmetic field in argumentation and the algebraic field in proof. The approach by 
Kondratieva (2011) uses the idea of an interconnecting problem to get students to construct 
and justify conjectures. Conjecture production may also have a role during production of 
indirect proofs (Antonini & Mariotti, 2008), such as by contradiction and contraposition. 
Using a Cognitive Unity approach (Garuti, Boero, Lemut & Mariotti, 1996), Antonini and 
Mariotti (2008) show that the production of indirect argumentation can hide some significant 
cognitive processes that may be activated and then bridged by conjecture production.  

Some researchers propose the idea of pivotal, bridging or counter examples could assist 
students with proof ideas (Stylianides & Stylianides, 2007; Zazkis & Chernoff, 2008). One 
potential benefit of a counterexample is to produce cognitive conflict in the student, and a 
pivotal example is designed to create a turning point in the learner’s cognitive perception. 
Counterexamples can also foster deductive reasoning, since we make deductions by building 
models and looking for counterexamples. For Zazkis and Chernoff (2008) a counterexample 
is a mathematical concept, while a pivotal example is a pedagogical concept, and pivotal 
examples should be within, but pushing the boundaries of, the set of examples students have 
experienced. The role of examples also arose in research by Weber and Mejia-Ramos (2011) 
on reading proofs, and suggests, based on a consideration of proof reading by mathematicians, 
that students might be taught how to use examples to increase their conviction in, or 
understanding of, a proof. In order to know what skills to teach students, Alcock and Inglis 
(2008, 2009) maintain identifying the different strategies of proof construction among experts, 
will grow knowledge of what skills to teach students, and how they can be employed. They 
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suggest there is a need for large-scale studies to investigate undergraduate proof production, 
and an extension of this to include upper secondary school could be beneficial for transition. 

Mathematical Modelling and Applications 

Mathematical modelling and applications continues to be a central theme in mathematics 
education (Blum et al., 2002), with a growing research literature and several international 
conferences/events dedicated to its teaching and learning. The primary focus of much 
research is on practice activities. However, it appears that no literature exists explicitly 
discussing these topics with a focus on the ‘transition’ from the secondary to the university 
levels. One reason might be that there have been no roadmaps to sustained implementation of 
modelling education at all levels. The role of applications and mathematical modelling in 
everyday teaching practice is somewhat marginal for all levels of education and could be 
better integrated into all levels of mathematics education.   

There is recent literature partially relevant to the secondary-tertiary transition issue and this is 
briefly considered here. One crucial duality, mentioned by Niss et al. (2007), is the difference 
between ‘applications and modelling for the learning of mathematics’ and ‘learning 
mathematics for applications and modelling’. This duality is seldom made explicit in lower 
secondary school, and instead both orientations are simultaneously insisted on. However, at 
upper secondary or tertiary level the duality is often a significant one.  

The close relationship between modelling and problem solving is taken up by a number of 
authors. For example, English and Sriraman (2010) suggest that mathematical modelling is a 
powerful option for advancing the development of problem solving in the curriculum. 
However, according to Petocz et al. (2007), there are distinct advantages to using real world 
tasks in problem solving in order to model the way mathematicians work. One difficulty 
described by Ärlebäck and Frejd (2010) is that upper secondary students have little 
experience working with real situations and modelling problems, making the incorporation of 
real problems from industry problematic. One possible solution is closer collaboration, with 
representatives from industry working directly with classroom teachers. A second possible 
difficulty (Gainsburg, 2008) is that teachers tend not to make many real-world connections in 
teaching. One possible solution to this, suggested by the German experience, is to bring 
together combinations of students, teachers and mathematicians to work on modelling 
problems (Kaiser & Schwarz, 2006). Occasionally the opportunity is created through a 
“modelling week” (Göttlich, 2010; Heilio, 2010; Kaland et al., 2010), where small groups of 
school or tertiary students work intensely for a week, in a supported environment, on selected, 
authentic modelling problems. Other proposals to assist teachers include a scheme for 
modelling tasks that provides an overview of their different features, thus offering guidance 
in task design and selection processes for specific aims and predefined objectives and target 
groups (Maaß, 2010) and the integration of mathematical modelling into pre-service teacher 
education (Bracke, 2010).  

Some differences between problem solving at school and university are identified by Perrenet 
and Taconis (2009), who investigated changes in mathematical problem-solving beliefs and 
behaviour of mathematics students during the years after entering university. Significant 
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shifts in the growth of attention to metacognitive aspects in problem-solving or the growth of 
the belief that problem-solving is not only routine but has many productive aspects were 
explained by the change to authentic mathematics problems at university compared to 
secondary school mathematics problems.  

There is some agreement that there is a need to target curriculum changes in the upper 
secondary school to include more modelling activities, although recognising that high-stakes 
assessment at the upper secondary-tertiary interface is an unresolved problem in any 
implementation (Stillman, 2007). Other possible initiatives for embedding modeling in the 
curriculum suggested by Stillman and Ng (2010) are: a system-wide focus emphasising an 
applications and modelling approach to teaching and assessing all mathematics subjects in the 
last two years of pre-tertiary schooling; and interdisciplinary project work from upper 
primary through secondary school, with mathematics as the anchor subject. Another initiative 
presented by Maaß and Mischo (2011) is the framework and methods of the project 
STRATUM (Strategies for Teaching Understanding in and through Modelling), whose aim is 
to design and evaluate teaching units for supporting the development of modelling 
competencies in low-achieving students at the German Hauptschule. Also, in the USA, 
Leavitt and Ahn (2010) have provided a teacher’s guide to implementation strategies for 
Model Eliciting Activities (MEAs), which are becoming more popular in secondary schools. 
Another arena that might prove helpful to students making the secondary-tertiary transition in 
mathematical modelling and applications is entry to contests in mathematical modelling and 
applications (Xie, 2010). 

Conclusion 

The literature review presented here reveals a multi-faceted web of cognitive, curricular and 
pedagogical issues, some spanning across mathematical topics and some intrinsic to certain 
topics – and certainly exhibiting variation across the institutional contexts of the many 
countries our survey focused on. For example, most of the research we reviewed discusses the 
students’ limited cognitive preparedness for the requirements of university-level formal 
mathematical thinking (whether this concerns the abstraction, for example, within Abstract 
Algebra courses or the formalism of Analysis). Within other areas, such as discrete 
mathematics, much of the research we reviewed highlighted that students may arrive at 
university with little or no awareness of certain mathematical fields. 

The literature review presented in this report, or the longer version1, is certainly not 
exhaustive. However we believe it is reasonable to claim that the bulk of research on 
transition is in a few areas (e.g. calculus, proof) and that there is little research in other areas 
(e.g. discrete mathematics). While this might simply reflect curricular emphases in the 
various countries that our survey focused on, it also indicates directions that future research 
may need to pursue. Furthermore across the preceding sections a pattern seems to emerge 
with regard to how, not merely what, students experience in their first encounters with 
advanced mathematical topics, whether at school or at university. Fundamental to addressing 
issues of transition seems also to be the coordination and dialogue across educational levels – 
here mostly secondary and tertiary – and our survey revealed that at the moment this appears 
largely absent. 
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