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Abstract

This paper proposes a method to locate and track people by combining evi-

dence from multiple cameras using the homography constraint. The proposed

method use foreground pixels from simple background subtraction to com-

pute evidence of the location of people on a reference ground plane. The

algorithm computes the amount of support that basically corresponds to the

“foreground mass” above each pixel. Therefore, pixels that correspond to

ground points have more support. The support is normalized to compensate

for perspective effects and accumulated on the reference plane for all camera

views. The detection of people on the reference plane becomes a search for

regions of local maxima in the accumulator. Many false positives are filtered

by checking the visibility consistency of the detected candidates against all

camera views. The remaining candidates are tracked using Kalman filters

and appearance models. Experimental results using challenging data from

PETS’06 show good performance of the method in the presence of severe

occlusion. Ground truth data also confirms the robustness of the method.
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and monitoring, homography constraint
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1. Introduction1

This paper presents a multiple camera solution to the problem of tracking2

people in crowds. Multiple camera views can be used to recover 3D structure3

information and solve occlusion in crowded environments. Recently, several4

works have suggested a simpler approach that can be used with a network of5

sparse uncalibrated cameras based on the homography constraint (1; 2; 3; 4;6

5). The homography constraint establishes that multiple projections of the7

principal axis of an elongated object using a homography from each camera8

view q to the ground or reference plane Π intersect at the position of the9

object in the reference plane (“ground position” of the object).10

Kim and Davis (4) use the homography constraint within a particle filter-11

ing framework for people tracking. First, a set of particles that correspond12

to ground positions is draw from the filter dynamics. Each particle is associ-13

ated with an appearance model (6) to perform people segmentation in each14

camera view. Once foreground pixels are segmented and classified into sin-15

gle objects (persons), the principal-axis of each person is computed and the16

homography constraint is used to compute their locations. The main draw-17

back of the system is its requirement that individuals must initially appear18

as isolated foreground blobs to proper modeling.19

To detect multiple people using multiple camera views Hu et al. (3) use20

the homography constraint for pairs of cameras. By projecting the principal21

axis of a person from camera view q to p, the likelihood between two axes22

from these different views is computed comparing their intersection with23

a predicted ground position. To compute this point the authors combine24
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single view foreground segmentation with Kalman Filter based tracking. The25

likelihood is used to drive the axis correspondence process. The system relies26

on individual segmentation, so inter-object occlusion can degrade the axis27

location performance.28

Eshel and Moses (1) use the homography constraint in several planes par-29

allel to the ground plane, searching for heads in the higher planes. All camera30

views are mapped using homographies to a reference plane and intensity cor-31

relation is used to detected candidate heads. A nearest neighbor approach32

is applied to find correspondences along time, producing tracks. In a further33

step, tracks are combined in individual trajectories by the use of six different34

measurements to evaluate track overlap, distance, and direction. According35

to authors, people dressing in similar colors are a main source of false pos-36

itives, a natural drawback from the correlation approach. The cameras are37

placed at high elevations and the authors report that the performance of the38

system deteriorates considerably when less than five cameras are used.39

Fleuret et al. (2) use a probabilistic framework to perform simultaneous40

detection and tracking. Their model is a combination of a simple motion41

model with an appearance model. The appearance model is composed of an42

RGB color density and a ground plane occupancy map. In the occupancy43

map, the ground plane is partitioned into a regular grid and the probability44

of occupancy of each grid cell is estimated using results from background45

subtraction. This occupancy model is a conditional distribution between46

the foreground and the occupied cells configuration. The Viterbi algorithm47

is used to find the most likely trajectory for each individual and a greedy48

heuristic is applied to optimize one trajectory after other. For reliable detec-49
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tion and location, each person must be seen as an individual blob in at least50

one view.51

Previous methods for single person segmentation are affected by two main52

problems. First, partial and total occlusion are common in crowed scenes53

such as the one in Figure 2b. In places such as airport halls or train stations,54

people frequently walk in small groups most of the time, causing occlusion55

in all camera views. Second, when color models are used for segmentation,56

people dressed with similar colors become another source of problems (3).57

The main contribution of this paper is the definition of a novel algo-58

rithm based on the homography constraint that does not rely on single view59

segmentation of the subjects or previous tracking information. Instead of60

a segment-then-locate approach, we propose a locate-then-segment approach,61

integrating available information of all cameras before any detection decision.62

This paper extends our previous work presented in (5) in several ways. First63

the people detection method was made more robust to false positives with64

the introduction of a new filtering algorithm. This paper also introduces a65

multiple person tracking algorithm based on Kalman filters and appearance66

models, and more extensive experimental results are presented using ground67

truth tracking data.68

Because the system does not require previous object segmentation for69

people detection, our work has some similarities with the very recent work of70

Khan and Shah (7). Their work use the homography constraint to fuse fore-71

ground likelihood information from multiple views to resolve occlusions and72

localize people on a reference scene plane. Similar to Eshel and Moses (1),73

Khan and Shah (7) also rely on multiple planes parallel to the ground to im-74
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prove the robustness of the method. Detection and tracking are performed75

simultaneously by graph cuts segmentation of tracks in the space-time occu-76

pancy likelihood data.77

In our method, multiple view perspective geometry and the homography78

constraint are applied to collect evidence of people presence from each camera79

view. Our method elegantly integrates the information of all parallel planes80

by projecting the foreground directly on the reference plane and accumu-81

lating the evidence from multiple cameras. Occlusion and people detection82

are solved simultaneously and instantly at each time using the accumulated83

evidence from all cameras. We have tested the method using very challeng-84

ing data from PETS’06 with good results. The next section describes the85

method in detail. Experimental results are presented in Section 3. Section 486

concludes the paper.87

2. Multiple person detection and tracking88

Figure 1 shows a block diagram of our proposed multiple person detection89

and tracking system. Each static camera q feeds a background subtraction90

module. The background color distribution for each pixel is modeled us-91

ing mixture of Gaussians. The segmented foreground is used to compute92

evidence of people presence for each pixel on the reference image Π (floor93

plane). Our algorithm computes the amount of support that basically cor-94

responds to the “foreground mass” above each pixel. Therefore, pixels that95

correspond to ground points have more support. Perspective is carefully96

considered to accurately detect objects near and far away from the cameras.97

The support computed from each camera view is transformed to the ground98
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Figure 1: Block diagram of the multiple person detection and tracking system.

plane using the appropriate homography. The ground plane accumulates the99

evidence from all views. People detection is performed by locating regions of100

local maxima in the ground plane accumulator. Once people candidates are101

detected, appearance models are computed for each candidate. We have de-102

veloped an efficient algorithm to match the detected candidates with tracked103

objects. Each tracked object is represented by its appearance model and104

an associated Kalman filter. Trackers that are assigned to candidates dur-105

ing the matching process are updated. Observations that do not match any106

tracker are potential new targets, and trackers that do not receive a match107

are considered lost.108

2.1. Background subtraction109

The color distribution for each background pixel in time is modeled as110

a mixture of Gaussian distributions (8). This Gaussians mixture approach111

is able to deal with multiple modes on the background color distribution112

probability.113

A pixel x presents color f(x), represented in rgI space (normalized red,114
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normalized green and light intensity). Normalized color is less sensitive (com-115

pared to RGB space) to small changes in illumination caused by shadows (9).116

The color distribution of a pixel is modeled by K Gaussians. The k-117

th Gaussian presents mean vector µk = 〈µr
k, µ

g
k, µ

I
k〉, a diagonal covariance118

matrix Σk and a weight wk, that correspond to the probability that the pixel119

has a subclass k. An expectation-maximization (EM) algorithm combined to120

an agglomerative clustering strategy (10) is applied to estimate K and the121

mixture parameters of each color distribution. Because the training set is122

not free from moving objects, the background distribution is represented by123

the Gaussians whose weight wk is greater than a threshold Tw.124

Each pixel xi is compared against all subclasses in the background mix-125

ture model. The pixel is classified as foreground if126

|fc(xi)− µc
k| > Tb · σ

c
k (1)

for all channels c = r, g, I, where Tb is a decision boundary threshold.127

Shadows are a common source of artifacts. We use an additional test,128

based on Wang and Suter (9) work, to perform shadow removal. Let f I(·)129

denotes the intensity of a pixel in f . If xi chromaticity fits the pixel r and g130

models and131

Tshadow ≤
fI(xi)

µI
k

≤ 1.0,

where Tshadow is a threshold, then xi will be classified as background. The132

idea is that a background pixel will present just a fraction of its expected133

intensity value within shadow regions.134
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2.2. Support computation135

Let Π be the ground or reference plane, xq be a foreground pixel of camera136

q corresponding to the projection of the point X ∈ Π, and let the pixel137

relation y above x be true iff the foreground pixel y lies on the half line138

defined by the ray x + ~up, and false otherwise, where ~up is a unit vector139

pointing to the up direction.140

Just for illustration purposes, consider a single person scenario repre-141

sented by a line segment L. Let Xi ∈ Π be the bottom end of L, lq the142

projection of L for camera q, and x
q
i the projection of Xi ∈ lq. Then all143

pixels x
q
j ∈ lq such that i 6= j, are above x

q
i . We define support S(xq

i ) as the144

number of foreground pixels above x
q
i .145

Notice that S(xq
i ) can be computed for any x

q
i regardless of a true cor-146

respondence between x
q
i and a ground point in Π because only the above147

relation is used. The vanishing point in the vertical direction can be used to148

compute the true ~up direction for every pixel xq. For a blob corresponding149

to the segmentation of a person using the background subtraction algorithm,150

the support of every pixel x
q
i within the blob can be computed and back-151

projected onto the ground plane. Regions on the ground plane with large152

local support values are good candidates for the location of a person.153

2.2.1. Perspective normalization154

Due to perspective, simple pixel counting to compute S(xq
i ) is not accu-155

rate. Figure 2 (b) shows six vertical bars of different lengths. All of them156

correspond to the same height h of the person standing at xq
r but at different157

locations x
q
i . Therefore, in order to use support to compute object locations,158

the support values must be normalized to compensate for perspective effects.159
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Figure 2: (a) Perspective transformation for two cameras p and q with projection centers

C
p and C

q and vanishing points v
p and v

q. (b) Perspective correction and height filtering.

The bright areas correspond to segmented foreground. The vertical bars correspond to

the height of the person standing at x
q
r seen at different locations x

q

i .

Using an object of known height hr as reference, seen by every camera q at160

xq
r, we pre-compute a normalization factor η(xq

i ), for all x
q
i , that corresponds161

to the inverse of the height hr when the reference object is placed at the162

ground position corresponding to x
q
i .163

For any camera q, let xq
r be the position of the reference object with height164

hr. Let x̂q
r be the projection of xq

r onto a parallel plane hr units far from Π,165

as shown in Figure 3. Let d(i, j) denote the distance in pixels between any166

two points (i, j) and assume that d(xq
r, x̂

q
r) is known (the reference height).167

Then the height d(xq
i , x̂

q
i ) of the object when placed at x

q
i can be estimated168

using the cross-ratio invariance property of projective geometry (11).169

Criminisi et al. (11) applied the cross-ratio to find the relation170

hr

hq

= 1−
d(x̂q

r, c
q
r) d(xq

r,v
q)

d(xq
r, c

q
r) d(x̂q

r,vq)
(2)

between the reference height hr and the camera height hq (the distance from171

the camera center to the reference plane Π) when the reference object is172
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Figure 3: Distances for the computation of the perspective normalization factor for the

reference position x
q
r and an arbitrary position x

q

i . l is the ground plane vanishing line

(horizon seen by camera q) and v
q is the vertical vanishing point.

located at xq
r. The points cq

r and c
q
i are the projections of xq

r and x
q
i onto the173

ground plane vanishing line l, as seen in Figure 3.174

A similar equation can be computed when the reference object is placed175

at x
q
i176

hr

hq

= 1−
d(x̂q

i , c
q
i ) d(xq

i ,v
q)

d(xq
i , c

q
i ) d(x̂q

i ,v
q)

. (3)

Now consider α(xq
i ) = d(xq

i ,v
q) and β(xq

i ) = d(xq
i , c

q
i ). Then terms on x̂

q
i177

can be rewritten as178

d(x̂q
i ,v

q) = α(xq
i )− η(xq

i ) (4)
179

d(x̂q
i , c

q
i ) = β(xq

i )− η(xq
i ). (5)
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Defining180

γ =
d(x̂q

r, c
q
r) d(xq

r,v
q)

d(xq
r, c

q
r) d(x̂q

r,vq)
, (6)

and using the equality between (2) and (3), it results that:181

η(xq
i ) =

α(xq
i )β(xq

i )(1− γ)

α(xq
i )− β(xq

i )γ
. (7)

The value of η(xq
i ) is pre-computed for each x

q
i and used as a perspective182

normalization factor for the computation of support.183

2.2.2. Bounded support computation184

Because objects occlude each other, blobs segmented using background185

subtraction might be composed of several objects. Large elongated blobs186

produce large number of false positives due to false high support values.187

By limiting object heights within an appropriated range [hmin, hmax], the188

maximum normalized support value is also bounded and the number of false189

positive candidates is minimized. Small objects with low support values can190

also be filtered using hmin.191

Thus a candidate object for tracking cannot present support below the192

minimum height hmin or above a maximum hmax. Figure 2 (b) illustrates193

the idea. Bright areas mark the foreground segmented from camera q. The194

vertical bar directions are defined by the ground points x
q
i and the vanishing195

point vq. The bar lengths in pixels correspond to hmax. The support of196

x
q
i is the amount of foreground pixels along its corresponding bar. Observe197

that the point x
q
1 does not present any support and that x

q
2 , x

q
3, x

q
4 and198

x
q
5 present similar support values. Observe that the line of 3 people under199

occlusion would cause unrealistically high support values in a large region.200
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The bounded normalized support Sq(x
q
i ) can be computed efficiently for201

all pixels of a line defined by x
q
i and vq (i.e., a line orthogonal to the ground202

plane Π) as follows.203

Let s = 〈xq
1, ...,x

q
n〉 be the line segment obtained by constraining the line204

by the image frame, as seen in Figure 4. Algorithm 1 computes the support205

by counting the number of foreground pixels projecting onto x
q
i and using the206

perspective normalization factor η(xq
i ) to get the support value in reference207

units. The maximum support is constrained to filter out objects extending208

beyond hmax.209

As an example to better understand the algorithm, consider that at lo-210

cation x
q
280 there are 240 foreground pixels above, i.e., F [280] = 240, as seen211

in Figure 4. According to the pre-computed values of η(xq
280) and hmax, the212

tallest allowed object at location x
q
280 would cover up to 120 pixels and reach213

pixel x
q
160 (see line 9 of the algorithm). Since F [160] = 140 (there are 140214

foreground pixels above x
q
160), there are 100 foreground pixels between x

q
280215

and x
q
160. This number, normalized by η(xq

280) and bounded, is the support216

due to the evidence at x
q
280.217

Background segmentation errors affect the correct computation of an ob-218

ject’s support. For example, when people are dressed using colors similar to219

the background color distribution, parts of their bodies are misdetected. The220

foreground pixel counting used in Lines 4–8 address this issue and does not221

constrain support computation to perfect background classification.222

Figure 5 shows support results for three different cameras. The figure223

shows support peaks near people’s feet, as expected. Some false foreground224

detection seen in the top row images are caused by shadows, that produce225
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Algorithm 1 Algorithm to compute the support Sq(x
q
i ) for all points x

q
i in

segment s.

1: procedure Support(s = 〈xq
1, ...,x

q
n〉, hmin, hmax, η)

2: F [0]← 0

3: for i← 1, n do

4: if x
q
i is Foreground then

5: F [i]← F [i− 1] + 1

6: else

7: F [i]← F [i− 1]

8: end if

9: j ← i− hmax · η[xq
i ]

10: if j > 0 then

11: h← (F [i]− F [j])/η[xq
i ]

12: else

13: h← F [i]/η[xq
i ]

14: end if

15: if h ≥ hmin then

16: Sq(x
q
i )← h

17: else

18: Sq(x
q
i )← 0

19: end if

20: end for

21: return Sq

22: end procedure

13



v
q

x
q

n

x
q

1

F[280]=240 x
q

280

F[160]=140 x
q

160

100
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There must be 100 foreground pixels between x160 and x280.
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high support values in regions of the ground plane. Although shadow artifacts226

can become an issue in single view processing, multiple view integration is227

able to minimize this problem.228

2.3. Integration of multiple camera views229

In the absence of occlusions, the support information computed from a230

single camera provides sufficient evidence to locate people on the ground231

plane, though a certain number of false detections and misses might occur.232

The detection algorithm can be made a lot more robust by combining the233

evidence from all cameras that see a particular ground region.234

For example, in Figure 2 (b), a false ground point x
q
3 has high support235

but it is unlikely that the same occurs in another camera. In fact, a pair236

of occluding objects seen in camera q might show as occluding objects for a237

different camera p iff the objects are along the baseline of the two cameras.238

The homography matrix Hq maps ground points x
q
i in image plane q to239

ground points Xi of the ground plane Π according to:240

xi = Hqx
q
i . (8)

Using a set of points on the image plane and a set of corresponding points241

in Π, Hq can be estimated by a direct linear transformation algorithm (12).242

Let Sq(x
q
i ) be the support computed at point x

q
i for camera q. All support243

data from Q cameras can be integrated on Π by244

A(xi) =

Q∑

q=1

Sq(H
−1

q xi). (9)

where A is the accumulator image (Figure 6). Objects can be located by245

segmenting regions of A that present large support values.246
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Foreground Support (camera plane)

(a) (b)

Figure 5: (a) input images for the support algorithm. (b) Observe that the support peaks

at the ground positions of each person.

A threshold TS is used to select points Xi ∈ Π presenting good support247

values. The threshold parameter at Xi ∈ Π takes into consideration hmin and248

the number of cameras able to see that location. Points of local maxima are249

computed by a mean-shift procedure. Mean-shift blurring process (13) moves250

data points in the gradient direction of a smoothed version of the original251

function. Applied to A, the process integrates the support information within252

a neighborhood of Xi.253

Let G be the set of found local maxima points. Points Xi ∈ G cor-254
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respond to real people locations and some false-positives. Main sources of255

false-positives are severe occlusion in all views and people aligned in the256

baseline of a pair of cameras. The idea to filter the false-positives is to select257

a subset of G that, under total occlusion relations, is able to “explain” the258

occurrence of the remaining points.259

Points in G are labeled Unselected and inserted in a priority queue260

ordered by A(Xi). We pop the queue, marking the current point Xi as Se-261

lected. Then we visit all the points Xj that are occluded by Xi. If Xj is262

Unselected and it is occluded by a Selected point in all views, it will263

be labeled Covered and removed from the queue. We repeat this proce-264

dure until no more Unselected points are available. Selected points are265

returned as people location candidates and will be further used as measure-266

ments by the tracking module. This procedure ensures that the removed267

false-positives are fully justified as spurious interactions from evidences of268

people in other locations.269

2.4. Object Tracking270

Our system tracks multiple objects simultaneously using one Kalman Fil-271

ter per object. A tracked object (person) is represented by a multi-view ap-272

pearance model. The model consists of two RGB color histograms for each273

camera view, corresponding to the top an bottom parts of the object (shirt274

and pants). Each model also keeps a foreground and occlusion mask for each275

camera. The color histograms, foreground, and occlusion masks are updated276

at every frame.277

Before updating the tracker at every new frame t, appearance models278

for the detected target candidates (called the observation appearance mod-279
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Support (floor plane π)
From Camera 1 From Camera 2

From Camera 3 Accumulated support A(xi)

Figure 6: Multi-view integration for 3 cameras. Homographies are used to warp support

from the original camera view to the floor plane Π. The accumulated support A(xi) peaks

on true object positions.

els) are build using the list of candidate positions computed as described280

in previously. A bounding box for each camera view is computed from the281

position and estimated height (support) of the candidate object. The RGB282

color histograms, foreground, and occlusion masks are computed using such283

bounding boxes.284

To efficiently determine the assignment of observations to targets all pos-285

sible assignments we have developed the following greedy algorithm.286

First candidate positions zi are paired with all trackers Tj that expects287

the tracked object to be at a vicinity of zi. All such pairs are inserted288

in a priority queue according to the probability p(zi|xj , σj), where zi is the289

observation position on the ground plane and xj and σj are respectively the290

state and covariance matrix of the Kalman Filter Tj .291
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Next the first pair of the queue is popped and their appearance models292

are used to test if the observation actually matches the tracked object. An293

observation matches an object iff there is good similarity between their color294

models. Color similarity is computed using histogram intersection. In case295

the tracker is updated using the matched observation, the object appearance296

model is also updated using the observation appearance model and a learn-297

ing factor alpha as follows. Let Hq,t[b] be the histogram value for bin b in298

the a color model of camera q at frame t and let Ho be the corresponding299

observation model. Then300

Hq,t+1[b] = (1− α)Hq,t[b] + αHo
q,t+1[b] (10)

Observation zi that are matched are marked as Used, so no other tracker301

will be updated using zi. The process continues until the queue is empty.302

The greedy algorithm might not assign all observations to all trackers. Ob-303

servations that are not assigned to a tracker correspond to potential new304

objects so a new tracker is created. Each tracker Tj keeps a counter to reg-305

ister the number of successful assignments, and a flag. Upon creation new306

trackers receive a New flag and their appearance models initialized to the307

observation appearance models.308

After the counter registers a large enough number of assignments, the309

tracker flag is updated to On. At this moment, the tracker is assumed to310

be following a real subject. If a tracker is not assigned to any observation,311

its flags is updated to Lost. A Lost tracker is updated using the Kalman312

prediction and its covariance matrix is increased to enhance the chances313

of the tracker to find a match in the next frame. A tracker that keeps a314

Lost flag for a long time is finished and removed from the list of trackers.315
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Trackers presenting the On flag have priority on the assignment queue and316

Lost trackers have priority over New ones.317

3. Results318

The system was tested using the S7 dataset from the PETS 2006 Bench-319

mark Data (14). This dataset presents video recorded at Victoria Station in320

London, UK. Video from three cameras was used, demonstrating that just321

a few cameras are enough to produce good detection and tracking results.322

We used half of S7 frame sequence in our tests (the last 1500 frames of the323

original 3000 sequence - about 1 minute of video). The sequence presents324

22 individuals walking in a hall. About 1/3 of the hall area is covered by325

three cameras. The baseline of the two cameras that cover the remaining326

area crosses the entire hall, creating severe occlusion situations.327

Image points were manually selected to compute the vanishing points of328

each camera and the appropriate homography matrix to the ground plane329

Π. The height of a person was used to define the reference height unit. The330

allowed height range was set to [0.6, 1.1] units (that is 60% to 110% of the331

reference man’s height). An unit flat kernel of width 19 pixels was applied332

in the mean-shift local maxima detection procedure (1 pixel ∼ 2 cm in the333

reference ground plane image). Trajectories from the tracking module shorter334

than 50 frames (about 2 s) are considered false-positives and removed.335

3.1. Object Detection336

Figures 7 and 8 show results for two situations presenting occlusion cases.337

The first row displays the floor plane square texture pattern and the detected338

object positions. These points are classified as people’s ground points and339
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Frame 1721, Floor Plane

Camera 1 Camera 2 Camera 3

Figure 7: Local maxima corresponds to location of people on the reference ground plane

(marked with dots). The homographies Hq are used to map the people’s ground points

back to each camera view.

are shown as red dots in the next row. Homographies are used to map the340

ground points back to each camera view.341

The subjects of interest are the people visible on the floor plane diagram342

in the first row of Figure 7. Frame 3300 in Figure 8 shows an example of343

occlusion under three views. The proposed system is able to detect each344

individual successfully.345

3.2. Tracking346

Ground-truth was manually created to evaluate tracking results. The347

position of each individual was manually annotated for 150 frames, 10 frames348

apart for the 1500 frames of the S7 PETS sequence. Consistent labeling was349
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Frame 3300, Floor Plane

Camera 1 Camera 2 Camera 3

Figure 8: Another example from PETS’06 dataset. Frame 3300 presents occlusion in all

camera views but the system could accurately find the right people location.
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PETS 2006 S07

Number of Trajectories 22

Found tracks 30

Trajectory Recall 100.00%

Trajectory Precision 96.67%

Tracks per Trajectory 1.3182

Table 1: Tracks found by the tracking procedure compared to ground truth people trajec-

tories.

associated to each person. Table 1 summarizes the results. All 22 subjects350

were successfully associated to one or more tracks produced by the system.351

Only one of the tracks does not match any subject. Ideally, one tracker352

should be associated to one person for the whole sequence. The proposed353

system produced an average of 1.32 tracks per trajectory, which corresponds354

to few errors during tracking. There was only one track exchange amongst all355

trackers for the whole sequence that took place between two near individuals,356

seen only by 2 cameras, in occlusion and aligned to the cameras baseline.357

Figure 9 shows the root mean square deviation between the estimated358

trajectories and the ground truth positions for each subject. The largest359

deviation was about 50 cm and its associated to a running man in the video360

sequence (subject 14). Figure 10 displays the estimated and ground truth361

trajectory for subject 19. This subject crosses the entire hall and is occluded362

by other people several times.363
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Figure 9: Root mean square deviation for PETS 2006 S07 sequence.

Figure 10: Trajectory for subject 19. The subject was occluded several times along the

trajectory. There are foreground misdetection at some points, caused by color similarity

between his clothes and the background. The baseline between cameras 1 and 3 is marked

as a dashed gray line.
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4. Conclusions364

novel method to locate people on the ground plane using multiple cam-365

era views was presented. The main advantage of the method is that it does366

not require initial people segmentation or tracking. The robustness of the367

method is due to the accumulation of support from all cameras. The support368

of a candidate object location is defined as the amount of foreground pix-369

els above that location. Therefore, pixels that correspond to ground points370

have more support. The support is normalized to compensate for perspec-371

tive effects and accumulated on the reference plane for all camera views.The372

detection of people on the reference plane becomes a search for regions of373

local maxima in the accumulator. The paper also introduces a filtering algo-374

rithm that eliminates many false positives by checking the consistency of the375

location against the remaining objects for all camera views. The remaining376

candidates are tracked using Kalman filters and appearance models. Chal-377

lenging sequences from PETS’2006 were used to test the system and show its378

robustness to severe occlusion situations using just 3 sparse cameras. Ground379

truth data also confirms the tracking accuracy of the method.380

Future work includes further experimentation in other crowded scenarios381

and trajectory analysis for event detection.382
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