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Abstract. A popular model for gene regulatory networks is the Boolean
network model. In this paper, we propose an algorithm to perform an
analysis of gene regulatory interactions using the Boolean network model
and time-series data. Actually, the Boolean network is restricted in the
sense that only a subset of all possible Boolean functions are considered.
We explore some mathematical properties of the restricted Boolean net-
works in order to avoid the full search approach. We applied the proposed
algorithm in a case study of the budding yeast cell cycle network using
an artificial dataset. The results show that some interactions can be
fully or, at least, partially determined under the Boolean model conside-
red. We have shown that this analysis can be used as the first step for
gene relationships detection with a high flexibility to include biological
knowledge. What we envisage with our method is a model that points
out which connections should be checked in the wet lab and consequently
facilitate some biological experiments.

1 Introduction

Some of the goals of Systems Biology is to study the various cellular mechanisms
and components. In many cases, these mechanisms are complex, where some of
the interactions between the proteins are still unknown. To represent these inter-
actions it is common to use gene regulatory networks (GRN). There are several
models of GRN, from discrete to continuous models. The simplest discrete model
was introduced by Kauffman [1] and its known as Boolean network model. Later,
this model was modified to express uncertainty giving rise to the probabilistic

Boolean network model [2, 3]. Friedman introduced Bayesian networks [4] as a
probabilistic tool for the identification of regulatory data and showed that they
can reproduce certain known regulatory relationships. Among the continuous
models we can cite the ordinary differential equations model which was sug-
gested several decades ago [5]. For a more detailed review about models of gene
regulatory networks see [6].

Models of gene regulatory networks help us to study biological phenomena
(e.g. cell cycle) and diseases (e.g. cancer). Therefore, unreaveling such networks,
or at least some of its connections, is an important problem to address. The
ability to uncover the mechanisms of GRN has been possible due to develop-
ments in high-throughput technologies, allowing scientists to perform analysis
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on the DNA and RNA levels. The most common type of data generated by these
technologies are gene expression data (microarray).

The biological systems are notoriously complex. Determining how the pieces
of this puzzle come together to create living systems is a hard challenge known as
reverse engineering, which is the process of elucidating the structure of a system
by reasoning backwards from observations of its behavior [7]. GRN in many
cases cannot be unraveled precisely, however, because of measurement noise and
the limited number of data sets compared with the number of genes that are
involved.

The most common approach to reverse engineering GRN is to use gene ex-
pression data. Some algorithms use additional information from heterogeneous
data sources, e.g. genome sequence and protein-DNA interaction data, to as-
sist the inference process. Hecker et al. [8] presents a good review about GRN
inference and data integration.

Usually, an inference algorithm aims to construct one single network which
is believed to be the real network. The issue is that the inverse problem is ill-
posed, meaning that several networks could explain (or generate) the data set
given as the input for the algorithm. The problem becomes more complicated if
we take into account the noise that may be present in the data and the small
amount of samples. For this reason, our approach aims to analyze the network in
a statistical manner. Our algorithm creates several networks that could explain
the data. By analyzing the similarities among these networks, we will propose a
confidence measure of the regulatory relationship between the genes.

In this paper, we present an algorithm based on Boolean networks and time-
series gene expression. Actually, the Boolean networks are called restricted in
the sense that not all Boolean functions are allowed in the model. Restricting
the network reduces the search space, which can be significant given that the
inverse problem is very complex. The time-series data allow us to observe part of
the dynamics of the system. These observations are used to infer the regulatory
relationships between the genes.

A challenge always presented in any gene regulatory model is its usefulness. It
would be interesting if a model could help biological experiments in understand-
ing gene interactions. The model here presented is capable of inferring some of
these connections from time-series data of gene expressions, and this inference
process is helped by all a priori knowledge available. What we envisage with
our method is a model that points out which connections should be determined
in the wet lab that would constrain as many other connections as possible and
consequently could facilitate some biological experiments.

The paper is organized as follows. In the next section we present the restricted
Boolean network model. The algorithm for the statistical analysis is presented
in Sect. 3. A budding yeast cell-cycle model from which the artificial data are
obtained is described in Sect. 4. In Sect. 5 and 6 we show and discuss our results
and we conclude the work in Sect. 7.



Analysis of Gene Interactions 3

2 Restricted Boolean Network Model

A Boolean network (BN) is defined by a set X = {x1, x2, . . . , xn} of n Boolean
variables and a set F = {f1, f2, . . . , fn} of n Boolean functions. In the case of
GRN the variables are called genes. Obviously, each gene xi, i = 1, . . . , n, can
assume only two possible values: 0 (OFF) or 1 (ON). The value of the gene xi

at time t + 1 is determined by genes xj1(i), xj2(i), . . . , xjki
(i) at time t through a

Boolean function fi : {0, 1}ki → {0, 1}. Given that, there are ki genes assigned to
gene xi, and the mapping jk : {1, . . . , n} → {1, . . . , n}, k = 1, . . . , ki determines
the “wiring” of xi [9]. This way,

xi(t + 1) = fi(xj1(i)(t), xj2(i)(t), . . . , xjki
(i)(t)) . (1)

We assume that all genes are updated synchronously by the functions in F

assigned to them and this process is repeated. The artificial synchrony simpli-
fies computation while preserving the qualitative, generic properties of global
network dynamics [11, 10]. A state of the network at time t is a binary vec-
tor s(t) = (x1(t), . . . , xn(t)). Therefore, the number of states is 2n, labeled by
s0, s1, . . . , s2n

−1. The dynamics of the network is represented by the transition
between states. This model is deterministic given that there is a single Boolean
function to regulate each gene. Because of the finite number of states and the
deterministic behavior, some of the states may be visited cyclically. These states
form what is known by the attractor of the BN. The states outside the attractor
are called transient states. The transient states together with the corresponding
attractor states forms the basin of attraction of that attractor.

In the case of restricted Boolean networks, the regulatory relationships is
represented by a matrix An×n using the following convention: aij = 1 for a
positive regulation from gene xj to gene xi; aij = −1 for a negative regulation
from xj to xi; For the remaining cases aij = 0. The Boolean function fi is defined
according to the matrix A and the values of the genes xj , j = 1, . . . , n, at time
t:

xi(t + 1) =































1, if
∑

j

aijxj(t) > 0

0, if
∑

j

aijxj(t) < 0

xi(t), if
∑

j

aijxj(t) = 0 .

(2)

We call the summation
∑

j aijxj(t) the input of xi at time t. Besides the re-
gulatory relationships of the matrix A, each gene can have a self-degradation
behavior. A gene xi with self-degradation is set to 0 whenever its input is null.
Observe that not all Boolean functions can be represented using (2) and that
is why the Boolean network is called “restricted”. In Sect. 4, we will present
a budding yeast cell-cycle model proposed by Li et al. [14] which is based on
restricted Boolean networks. This model will be used to perform the statistical
analysis algorithm.
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Example: Let us show a small example of a restricted Boolean network contain-
ing only four genes. Fig. 1 shows the regulatory relationship between the four
genes. An arrow is a positive regulation; a line with a bar at the end is a negative
regulation; the dotted loop on x2 indicates that this gene has a self-degradation
behavior.

Fig. 1: Small example containing four genes.

Given the regulatory relationships in Fig. 1, the corresponding regulation
matrix is presented below:

A =









x1 x2 x3 x4

x1 0 0 0 −1
x2 0 0 0 0
x3 1 −1 0 0
x4 0 0 1 0









. (3)

Applying the Boolean function given by (2) for every possible state, we can
construct a state transition diagram, shown in Fig. 2. As we can see, there are
three attractors: 0000, 0001 and 0011; the remaining states are transient states.
The attractor 0011 has the largest basin of attraction (we consider the number
of states as the size of the basin of attraction).

3 Gene Interaction Analysis Algorithm

The algorithm was designed under the assumption that the gene expression
data were generated by a biological system which can be modeled as a restricted
Boolean network. Let S = {S(1), S(2), . . . , S(m)} be a set of m time-series gene
expression profiles, where S(i) ∈ {0, 1}n for i = 1, . . . ,m. The algorithm aims to
analyze networks that produce the sequence

S(1) → S(2) → · · · → S(m) . (4)

When the network produces the time-series data we say that the network is
consistent with the data. Naturally, there may exist several consistent networks
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Fig. 2: State transition diagram of the restricted Boolean network shown in Fig. 1.

for a single sequence. That is, the inverse problem is a “one-to-many” or ill-posed
problem, and this is very difficult to handle.

One näıve way to solve this ill-posed problem is to find all possible networks
by a full search algorithm. In fact, Lau et al. [12] proposed a “smart” full search
algorithm to enumerate all possible networks. Here, in this paper, we explore
some mathematical properties of the restricted Boolean networks in order to
avoid this full search approach.

The algorithm uses an encoding to represent the interaction between a pair
of genes. Table 1 shows the code and its respective subset of possible interac-
tions where −1, 0 and 1 stand for inhibition, no relationship and activation,
respectively. At the beginning of the process, the relationships between genes
are unknown and they are represented by a matrix An×n filled with the code
5. This means that any edge (activation or repression) or none can occur (the
regulatory relationship is undetermined). As the process runs, the entries of the
matrix can change to −2, 2 or 3 (partially determined relation). In addition, if
an entry of the matrix is completely determined we can set its value to −1, 0 or
1. At the end of the process the entries of A can hold undetermined, partially
determined or determined values. The undetermined and partially determined
entries can lead to several matrices that represent a consistent network.

3.1 The Three Steps of the Algorithm

The algorithm aims to uncover the hidden relationships between the genes
through the information provided by the time-series sequence, which can be
seen as a state transition sequence of the corresponding BN. The algorithm con-
sists in three main steps applied cyclically. Next, we will explain the concepts
used in each step.
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Table 1: Encoding table used in the algorithm.

Code Subset

−1 {−1}

0 {0}

1 {1}

−2 {−1, 0}

2 {0, 1}

3 {−1, 1}

5 {−1, 0, 1}

Step one The first step of the algorithm analyzes the sample in triplets, S(t−1),
S(t) and S(t + 1). An important point to notice here is that if two consecutive
states S(t − 1) and S(t) differ only in one single gene xk, then any gene xi

that had its value changed from S(t) to S(t + 1) is directly regulated by xk.
To illustrate this situation, consider the time-series data (Table 2) extracted
from the example given in Sect. 2. Looking at the time points S(1) and S(2) we
observe that only x2 had its value changed (from 1 to 0). Now, looking at S(2)
and S(3) we can see that x3 was turned to 1. Following the restricted Boolean
network model, this change was caused, necessarily, by the gene x2. In fact, x2

inhibits x3 at time t = 1 and it is self degraded at time t = 2, allowing x1 to
activate x3 at time t = 3. Using this approach, we state the following proposition
(Proposition 1).

Table 2: Time-series data taken from Fig. 2.

t x1(t) x2(t) x3(t) x4(t)

1 1 1 0 0

2 1 0 0 0

3 1 0 1 0

4 1 0 1 1

5 0 0 1 1

Proposition 1 Let S(t − 1), S(t) and S(t + 1) be three consecutive states ac-

cording to the restricted Boolean network model. If S(t− 1) and S(t) differ by a

single gene xk, then for each gene xi such that xi(t) 6= xi(t + 1) we have that xk

regulates xi directly, that is, aik 6= 0.

Proof. Suppose that S(t− 1) and S(t) differ by a single gene xk, and that there
is at least one gene xi such that xi(t) 6= xi(t + 1). As xi(t) 6= xi(t + 1), the
summations

∑

j aijxj(t− 1) and
∑

j aijxj(t) have different signs. Given that xk

is the only gene possessing different values in S(t − 1) and S(t), this difference
signal must have been caused by xk. Therefore, aik 6= 0.
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The type of the regulatory relationship (activation or inhibition) uncovered
using Proposition 1 depends on the values of xk and xi. Table 3 lists all possible
combinations of values for xk (time t − 1 and t) and xi (time t and t + 1). We
call these relationships as required, since they must be present in the network in
order to maintain the consistency with the time-series data.

Table 3: All possible combinations of values for xk and xi.

xk(t − 1) xk(t) xi(t) xi(t + 1) type

0 1 0 1 activation

0 1 1 0 inhibition

1 0 0 1 inhibition

1 0 1 0 activation

The approach used in Proposition 1 can be extended when S(t − 1) and
S(t) differ in more than one gene. For example, let us say that two genes, xk1

and xk2
, are the genes differently expressed from S(t − 1) to S(t). If xi had its

value changed from S(t) to S(t + 1) there are some regulation hypotheses that
we must take into account. Analyzing xk1

and xk2
individually, we can use the

Table 3 to generate two hypotheses and, these two hypotheses must be combined
to generate a third hypothesis. For instance, we can infer that xk1

activates xi

and xk2
inhibits xi, not in the same network. Given that, a third network would

consider both hypotheses simultaneously. This way, the number of hypotheses
grows in a combinatorial manner.

Step Two The second step of the algorithm takes into account two consecutive
states, S(t) and S(t+1). There is one important observation here: only the active
genes at time t can possibly regulate genes at time t+1. This fact becomes clear
when we look at (2). The active genes can give us an insight of which genes are
regulating other gene, although the type of the regulatory relationship can not
be determined. However, the input given by the summation in (2) can help us to
determine the regulatory relationships. For example, if we observe that a gene
xi changes its value from 0 (at time t) to 1 (at time t + 1), we can deduce that
the input for gene xi is positive at time t and only the active genes at time t are
responsible for this positive input. Following this logic, the algorithm generates
all possible combinations of regulatory relationships using the active genes such
that the input of gene xi at time t is coherent to the values of xi at time t + 1.

To exemplify, consider the data in Table 2 where t = 3. At this time, there are
two active genes, x1 and x3. These genes are the only ones that can contribute
to the sign of the input for each gene. If we look at the gene x4 we observe that
its value turned from 0 to 1. According to (2), the input must be positive in

this case, that is,
∑4

j=1 a4jxj(3) > 0. Given that, we must have a41 + a43 > 0.
Therefore, neither a41 or a43 can take the value −1, only 1 or 0 (not both). The
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same logic can be applied to all genes and then, the information extracted using
this approach can support the inference procedure.

Step Three The third step analyzes any two pairs of consecutive states in the
time-series data. Let t1 and t2 be two time points in the time-series data:

S(1) → · · · → S(t1) → S(t1 + 1) → · · · → S(t2) → S(t2 + 1) → · · · → S(m) .

(5)
Now, let us suppose that S(t1) and S(t2) are very similar. Hence, the difference
between S(t1 + 1) and S(t2 + 1) must be caused by the differentially expressed
genes of their predecessors. For instance, let us suppose that S(t1) and S(t2)
differ in one single gene:

S(t1) =









1
0
1
0









, S(t2) =









1
0
1
1









. (6)

And the succession occurs as stated:








1
0
1
0









−→









0
0
0
0









, . . . ,









1
0
1
1









−→









1
1
1
1









. (7)

Therefore, the huge difference between S(t1 + 1) and S(t2 + 1) in this case must
be caused by the change on x4. In this step, the algorithm checks how each gene
changed in the two pairs of consecutive states.

In our example, let us concentrate on gene x1. It was inhibited in the first
pair and had no change in the second pair. Let I be the total input originated in
the genes with similar expression in S(t1) and S(t2), M be the input generated
by x4 in S(t1), and M̄ be the input generated by x4 in S(t2). Therefore, to
explain the changes of x1 in the two pairs, we must have:

{

I + M < 0 and

I + M̄ ≥ 0 .
(8)

If aij represents the influence of gene xj over xi, we can calculate I, M and M̄

as follows:

I =
(

a11 a12 a13

)

·





1
0
1



 = a11 + a13 , (9)

M = a14 · 0 = 0 and (10)

M̄ = a14 · 1 = a14 . (11)
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Henceforth,

{

I + M < 0

I + M̄ ≥ 0
=⇒

{

a11 + a13 + 0 < 0

a11 + a13 + a14 ≥ 0
=⇒

{

a14 > 0 . (12)

This result implies that the entry a14 of the matrix must have the code 1.
If S(t1) and S(t2) differ in more than one gene, we can still generate hypothe-

ses of regulation. In fact, this step tries to construct a system of inequalities with
the inputs of each gene for every combination of two consecutive pairs.

3.2 Analysis of Gene Interactions

The three steps of the algorithm are performed cyclically until no additional
information can be included in the matrix A. At this point, the entries of A are
filled with the regulatory hypotheses generated by the algorithm. Some of the
entries represent the undetermined or partially determined relationships between
genes.

We can think of A as a root of a tree where the leaves are the matrices that
can be generated from the root by determining a value for each partially de-
termined/undetermined entry. Perhaps, this value determination can be guided
by biological knowledge. In Fig. 3 we show an example using four genes as pre-
sented in Sect. 2. There are two partially determined entries in the root (marked
with bold face numbers) that can be determined one at a time, generating four
possible matrices in the second level of the tree. After determining an entry, the
three steps of the algorithm are performed again as previously and the overall
process is repeated until a completed determined matrix (a leaf of the tree) is
obtained. Some of the leaves are consistent matrices, that is, they represent a
network consistent with the data.









0 0 0 −2

0 0 0 0
3 −1 0 0
0 0 1 0

















0 0 0 −1
0 0 0 0
3 −1 0 0
0 0 1 0

















0 0 0 −1
0 0 0 0

−1 −1 0 0
0 0 1 0

















0 0 0 −1
0 0 0 0
1 −1 0 0
0 0 1 0

















0 0 0 0
0 0 0 0
3 −1 0 0
0 0 1 0

















0 0 0 0
0 0 0 0

−1 −1 0 0
0 0 1 0

















0 0 0 0
0 0 0 0
1 −1 0 0
0 0 1 0









Fig. 3: The root of the tree and the possible matrices generated from the root.

In order to analyze the gene interactions, since there may be a combinatorial
explosion in generating the matrices, we randomly generate some of them (a
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sampling process) and consider the consistent ones to perform the analysis. In
the worst case, this algorithm has exponential running time. However, it does not
generates all the 3n2

possible matrices. In the next section, we present a Boolean
model of the budding yeast cell cycle that was used to generate artificial data
to apply the algorithm and, in Sect. 5, we show the results.

4 Budding Yeast Cell Cycle Model

The cell-cycle process consists of four phases: G1 (in which the cell grows and,
under appropriate conditions, commits to division), S (in which the DNA is
synthesized and chromosomes replicated), G2 (a“gap” between S and M), and
M (in which chromosomes are separated and the cell is divided in two). After
the M phase, the cell returns to the G1 phase, waiting for appropriate conditions
for another round of division. We call this G1 phase as stationary G1. There are
≈ 800 genes involved in the cell-cycle process of the budding yeast [13]. However,
the number of key regulators that are responsible for the control and regulation
of this complex process is much smaller [14].

The budding yeast cell-cycle model proposed by Li et al. [14] is based on a
network of eleven regulators, as shown in Fig. 4. The meaning of the edges are
the same as in Fig. 1. The eleven genes x1, . . . , x11 are Cln3, MBF, SBF, Cln1,
Cdh1, Swi5, Cdc20, Clb5, Sic1, Clb1, and Mcm1, respectively. The “cell-size”
node was introduced just to indicate a checkpoint to start the cell-cycle process.

Fig. 4: The cell cycle network of the budding yeast.

Considering the restricted Boolean network model presented in Sect. 2, Li et
al. [14] studied the dynamics of the network. They found that there are seven
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attractors, shown in Table 4. In this table, each row represents an attractor
where the first column indicates the size of the basin of attraction. There is one
big basin composed by 1,764 or ≈ 86% of states. According to Li et al. [14], the
corresponding attractor is the biological G1 stationary state.

Table 4: The seven attractors of the cell-cycle network.

Basin size Cln3 MBF SBF Cln1 Cdh1 Swi5 Cdc20 Clb5 Sic1 Clb1 Mcm1
1,764 0 0 0 0 1 0 0 0 1 0 0
151 0 0 1 1 0 0 0 0 0 0 0
109 0 1 0 0 1 0 0 0 1 0 0
9 0 0 0 0 0 0 0 0 1 0 0
7 0 1 0 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0

Biologically, the cell-cycle sequence starts when the cell commits to division
by activating Cln3. To simulate the cell cycle, they started the process by “excit-
ing” the G1 stationary state with the cell size signal, that is, inducing the gene
Cln3 to an active state. Applying (2) to simulate the process it was observed
that the system goes back to the G1 stationary state. The temporal evolution
of the states, presented in Table 5, follows the cell-cycle sequence, going from
excited G1 state (Start) to the S phase, the G2 phase, the M phase, and finally
to the stationary G1 state. This is the biological trajectory or pathway of the
cell-cycle network.

Table 5: Temporal evolution of states for the cell-cycle network.

Time Cln3 MBF SBF Cln1 Cdh1 Swi5 Cdc20 Clb5 Sic1 Clb1 Mcm1 Phase
1 1 0 0 0 1 0 0 0 1 0 0 Start
2 0 1 1 0 1 0 0 0 1 0 0 G1

3 0 1 1 1 1 0 0 0 1 0 0 G1

4 0 1 1 1 0 0 0 0 0 0 0 G1

5 0 1 1 1 0 0 0 1 0 0 0 S
6 0 1 1 1 0 0 0 1 0 1 1 G2

7 0 0 0 1 0 0 1 1 0 1 1 M
8 0 0 0 0 0 1 1 0 0 1 1 M
9 0 0 0 0 0 1 1 0 1 1 1 M
10 0 0 0 0 0 1 1 0 1 0 1 M
11 0 0 0 0 1 1 1 0 1 0 0 M
12 0 0 0 0 1 1 0 0 1 0 0 G1

13 0 0 0 0 1 0 0 0 1 0 0 Stationary G1

The states presented in Table 5 are used as the time-series data to perform
the statistical analysis. The results are shown in the next section.

5 Results

The application of the algorithm presented in Sect. 3 creates a collection of con-
sistent networks totally inferred from the time-series data of the yeast cell cycle.
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If we calculate the frequency of the connections, we are capable of assigning
probabilities to each gene relationship. In Fig. 5 and 6 we show the frequency
of different types of inward connections to each gene from all other genes. Evi-
dently, the determined connections will appear with frequency 100% in all the
networks; while the partially determined connections will have, at least, one gene
relationship (activation, no connection or inhibition) with frequency 0%.
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Fig. 5: Frequency of the relationships in the consistent networks. The statistics of in-
ward connections to each gene from all other genes were created by the consecutively
application of the three steps of the described algorithm and by a random determi-
nation of one connection. The determined connections exhibits only one color (black,
white or gray), and the partially determined connections exhibit two colors. 100 net-
works were used for the statistical analysis. The results for the remaining genes are
shown in Fig. 6.

From the frequencies shown in Fig. 5 and 6, we can see that the algorithm
was capable of identifying 11 determined connections and 13 partially determined
connections. The results are shown in Fig. 7. Note that, in this figure, the arrows
do not indicate activation necessarily.
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Fig. 6: Results for the genes Swi5, Cdc20, Clb5, Sic1, Clb1 and Mcm1.

6 Discussion

By looking at Fig. 5 and 6, it is interesting to note that, in some cases, the
statistics of the networks were capable of almost excluding one possibility of
relationship - as shown in Swi5 → Cln3, SBF → Clb5, MBF → Mcm1, and others
- transforming some connections from undetermined into partially determined
connections. These results show that the cell cycle pathway constrains some
connections, therefore restricting the whole network [12].

We can attribute this phenomenon to the high dependency that the deter-
mination of a network connection has on other connections. The three steps of
the presented algorithm perform a search over the space of possibilities of the
influence of a set of genes over a single gene. If one of these influences is a priori

determined (or known), this result can bias other connections. For example, let
us suppose that genes A and B have to produce a positive output over a gene
C, according to some restriction imposed by the time-series data. If we already
know that gene A has no relationship to gene C, gene B must have a positive
relationship to gene C.
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Fig. 7: The determined (bold arrows) and partially determined connections (light solid
arrows) inferred by the consecutive application of the three steps of the algorithm.

Therefore, this high dependency on the determination of a connection over
the network makes the use of Fig. 5 and 6 very restricted. If we simply use a
relationship with a high weight to be our “best guess” on the connection between
two genes, this choice can constrain other relationships, leading the system to a
more or less determined state, or even creating a network that is not consistent
with the data.

We can say that Fig. 5 and 6 represent a good approximation of a “greedy”
heuristic for finding one network. It can be done in the following way. Firstly,
calculate the frequency of the connections of a set of consistent networks. Sec-
ondly, choose the most determined connection to be fixed with the relationship
that has the greater weight. Thirdly, recalculate the set of networks and return
to step one.

Another fact to be pointed out is the importance of the inferred partially
determined connections. Although these connections can not be directly used to
construct a network like the determined connections, it can guide some biolo-
gical experiments, since a partially deterministic connection states that at least
one type of relationship between two genes is not possible. We could use the
frequencies generated in Fig. 5 and 6 to attribute a strength of connection to the
relationship of a partially determined connection, e.g., the interference of Clb1
on SBF can be stated as 80% (or a probability of 0.8) of being an inhibition.

A closer look into the statistics raises also an interesting question: the network
chosen by the nature would not be easily detectable? Or even better: would not
the collected data be enough to constrain Fig. 5 and 6 into nature’s choice? We
could answer this question by pointing out a piece of information that makes a
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huge difference between our model and nature’s choice: the chemical interactions
between proteins. Evidently, some of the connections considered on many steps
of the algorithm here presented can not exist due to chemical incompatibilities.
In some sense, nature has more information to constrain its network than we do.

7 Conclusion and Future Research

This paper proposes an algorithm to perform analyses for discovering gene reg-
ulatory interactions from time-series data under the Boolean network model. In
fact, the inference of gene regulatory networks is a one-to-many inverse problem
in the sense that there may exist several networks consistent with the dataset.
In order to analyze the gene interactions, we have generated several networks
and considered only the consistent ones. We have applied our methodology to
an artificial dataset that had been generated by a Boolean network that models
the budding yeast cell cycle [14]. By this application, we have shown that this
analysis of gene interactions could be a first step for gene relationships detection
with a high flexibility to include biological knowledge.

A challenge always presented in any gene regulatory model is its usefulness.
It would be very interesting if a model could help biological experiments in
understanding gene interactions. The model here presented is capable of inferring
some of these connections from time-series data of gene expressions, and this
inference process is helped by all a priori knowledge available.

Hence, an interesting feature to be added to our method would be the ability
to indicate which connection should be verified in the wet lab to help determine
others. As stated in the last section, the network connections are very dependent
of each other, and the determination of one connection could constrain the whole
network. What we envisage with our method is a model that points out which
connections should be determined in the wet lab that in turn would constrain
as many other connections as possible and consequently could facilitate some
biological experiments. We are investigating the possibility to put our algorithm
in the context of a constraint solving problem (CSP) [15]. There are CSP solver
techniques that may help us to analyze the gene interactions as we did in this
paper.

However, there are other characteristics to be sought that could constrain
the network towards nature’s choice. One feature not explored in this paper
is the dynamical aspects of the network. There are indications, as stated by
Kauffman [10], that nature would prefer networks with a small quantity of at-
tractors - the gene pattern expression that leads the system to itself- and large
basins of attraction - the set of gene pattern expressions that leads the system
to one attractor. The network constructed by Li et al. [14] has these characteris-
tics. Therefore, a connection statistics calculated only from networks with a few
number of attractors - or other dynamical characteristic - could create a well
established result.

Concluding, we think that the model here presented is a remarkable first step
of the construction of a system to infer gene interactions. Our intention now is
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to test this procedure with another artificial data and, perhaps, biological data
also; and to implement some topics presented in this section. We understand that
any inference procedure can not have success if it does not contain biological and
computational expertise, therefore the future steps of this research have to be
centered on the difficulties of a wet lab, or its limitations.
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