MAC2166 - Introducao a Computacao

Prof. Dr. Helder Oliveira

* Operadores Aritméticos de Atribuigio +=,-=*= /= %=.

* Funcgédo de conversdo tloat(), que converte de str para float.
* Diferenca entre / e // e como % se comporta com float.

* Execucio condicional encadeada if-elif-else.

Operadores Aritméticos de Atribuigio

x=x%*5
/= x/=5 x=x/5
%= X %=5 X=X%5
+= X+=5 X=x+5
-= X-=5 X=x-5

Condicional encadeada

~ comandoX
comandoX - if condigao1 :
| # bloco de comandos.

] |
L Falso comandoA1

! | comandoA2
ooma?doA1 True ndicio False | elif condicao?2 :
e # bloco de comandos.
| comandoB1
comandoB1 | | comandoC1 | comandoB2
! .~ else:
comandoB2 | | comandoC2 | # bloco de comandos.

. comandoC1
comandoC2
~_comandoY

comandoY

Exercicio

* Dados dois Intelros x e y, indicar se eles sdo 1guais ou qual é o maior
entre eles.

if x € y =]
print("x € menor do que y.") if x <y :
else: print("x & menor do que y.")
if x > y elif x > y :
print("x & maior do que y.") print("x & maior do que y.")
else: alse:

print("x e y sdo iguais.™) print("x e v sao iguais.")

Expressdes Logicas

* Expressoes 16gicas sdo aquelas que realizam uma operagdo logica e
retornam verdadeiro ou falso (como as expressdes relacionais).

* Os operadores l6gicos sdo:

* and: operador E.

* or: operador OU.
* not: operador NAO.

Operador Légico and

® <expressidol> and <expressdo2>: retorna verdadeiro quando ambas as
expressoes sdo verdadeiras.

® Sua tabela verdade é:

<expressaol> <expressao2>

True True True
True FFalse False
False True False

False False False

a=>5

b =10

print((a > 0) and (b == 0))
False

print((a > 0) and (b != 0))
True

D G b O

Operador Logico or

® <expressidol> or <expressio2>: retorna verdadeiro quando pelo menos
uma das expressdes é verdadeira.

® Sua tabela verdade é:

<expressaol> <expressao2>

True True True
True False True
False True True

False False False

a=>

b= 10

print((a > 0) or (b == 0))
True

print((a != 5) or (b == 0))
False

O v R D

Operador Légico not

® not <expressio>: retorna verdadeiro quando a expressdo é falsa e
vice-versa.

® Sua tabela verdade é:

True False
False True
<expressao> resultado

la=>5
2b =10
3print(not(a < b))
4# False
sprint(not(a == b))
6# True

Operadores logicos

[T e

Fal Fal Fal Fal

alse alse alse alse False True
False True False True e False
True False False True

True True True True

Expressdes Equivalentes

® not(a == b) é equivalente a (a !=b)

® not(a > b) é equivalente a (a <= b)

® not(a < b) é equivalente a (a >=b)

* O que serd impresso pelo codigo a seguir?

a = True

b = False

print(not(a or b))

False

print(not(a and b))

True

print(not(a) and not(b))
False

print(not(a) or not(b))
True

Precedéncia de Operadores

Nivel Categoria Operadores
7(alto) exponenciacao k3%

6 multiplicacao * /.]/,%

5 adicao +,-

4 relacional ==l=<=,>=><
3 l6gico not

2 l6gico and

1(baixo) | légico or

Equivaléncias: and

If exp2:
comando1

If exp1 and exp2:
> comando

Equivaléncias: or

comando if exp1 or exp2:

elif exp2: comando
comando1

Exemplo: maior de 3

®* Encontrar a variavel de maior valor entre trés variaveis inteiras a, b e
¢ com valores distintos.

if a > b:
if a > c: if a » b and a » c :
. print("a & o maior" print("a é o maior"
else:)
print("c € o maior” elif h_} E“.) W
else: print("b € o maior
if b }.c;:{“b) o else-
rin 2 0O Mmalor = - "
lee: print("c & o maior"

print("c € o maior"

Algebra Booleana: Propriedades Bésicas

Propriedades Comutativas

Aand B=Band A

AorB=BorA

Propriedades Distributivas

Aand (B or C) = (Aand B) or (Aand C)

Aor(BandC)=(AorB)and (AorC)

Propriedades Associativas

(AorB)orC=Aor (BorC)

(Aand B) and C =Aand (B and C)

Propriedades Idempotentes

Aand A=A

AorA=A

Dupla Negacéao

notnotA=A

Elementos Absorventes

Aor True = True

A and False = False

Elementos Neutros

Aor False = A

Aand True = A

Leis de De Morgan

not (A or B) = (not A) and (not B)

not (A and B) = (not A) or (not B)

Algebra Booleana: Exemplo

* Considere a expressio:
(x < 3)or (y ==0)

* Podemos aplicar a dupla negagdo sem alterar seu resultado:
not not ((x < 3) or (y == 0))

* Podemos agora trocar o operador or pelo operador and, aplicando a
"Leis de De Morgan™:

not (not (x < 8) and not (y == 0))

® Trocando os operadores relacionais negados por operadores
relacionais complementares:

not (x >= 3 and y = 0)

Exercicio

* Escreva um programa que determina a data cronologicamente maior
entre duas datas fornecidas pelo usuario. Cada data deve ser fornecida
por trés valores inteiros onde o primeiro representa um dia, o segundo
um mes e o terceiro um ano.

Exercicio

Sem o uso de operadores l6gicos Com uso de operadores l6gicos

Primeira data.

dl = int(input("Dia: "))
ml = int(input("Més: ")) # Primeira data.
al = int(input("Ano: ")) dl = int(input("Dia: "))
Segunda data. ml = int(input("Més: "))
d2 = int(input("Dia: ")) al = int(input("Ano: "))
m2 = int(input("Més: ")) # Segunda data.
a2 = int(input("Ano: ")) d2 = int(input("Dia: "))
m2 = int(input("Més: "))
if al » a2: a2 = int(input("Ano: "))
print("Datal & maior!™)
elif al == a2: if al»a2 or (al==a2 and ml>m2) or (al==a2 and ml==m2 and d1>d2):
if ml > m2: print("Datal & maior!")
print("Datal & maior!") elif al==a2 and ml==m2 and dl==d2:
elif ml == m2: print("Datas s3o iguais!"™)
if d1 > d2: else:
print("Datal & maior!") print("Data2 & maior!")
elif dl == d2:
print("Datas sao iguais!")
else:
print("Data2 & maior!")
else:
print("Data2 & maior!")
else:

print("Data2 & maior!™)

Exercicio

* Segundo a propriedade distributiva da algebra booleana temos:
* exprl and (expr2 or expr3) = (exprl and expr2) or (exprl and expr3)

* Logo, uma outra solugdo pode ser obtida colocando a condigéo
al==a2 em evidéncia:

Primeira data.

dl = int(input("Dia: "
ml = int(input("Més: "
al = int(input("Ano: "

Segunda data.

T o™ Pt T gt St
S St Mt Htt® Mt Mt

d2 = int(input("Dia: "
m2 = int(input("Més: "
a2 = int(input("Ano: "

if al>a2 or (al==a2 and (m1>m2 or (ml==m2 and d1>d2))):
print{"Datal & maior!")

elif al==a2?2 and ml==m2 and dl==d2:
print{"Datas sdo iguais!"™)

else:
print("Data2 & maior!")

Exercicio

® Peca uma palavra ao usuario e verifique se ela tem mais de 5 letras ou
se contém a letra 'a’.

palavra = input("Digite uma palavra: ")

print(len(palavra) > 5 or 'a' in palavra)

Exercicio

®* Dados um numero inteiro n>0 e as notas de n alunos, determinar
quantos ficaram de recuperacdo. Um aluno estd de recuperacio se sua
nota final for maior ou 1igual a 3 e menor do que 5.

Exercicio

®* Dados um numero inteiro n>0 e as notas de n alunos, determinar
quantos ficaram de recuperacdo. Um aluno estd de recuperacio se sua
nota final for maior ou 1igual a 3 e menor do que 5.

n = int(input("Digite n: "))
rec = @
i=1
while i <= n:
nota = float(input("Digite uma nota: "))
if 3.8 <= nota and nota < 5.9:
rec = rec + 1
i=1+1

print{rec,"alunos ficaram de recuperacaoc")

Exercicio

®* Uma segunda solugéo sem usar operadores 16gicos:

n = int{input("Digite n: ™))
rec = @
i=1
while 1 <= n:
nota = fleoat(input("Digite uma nota: "))
if nota >= 3.08:
if nota < 5.6:

rec = rec + 1
i1 =1+ 1

print({rec."alunos ficaram de recuperacao™)

Exercicio

* O Python ainda permite uma terceira solugdo, na qual o intervalo
numérico ¢ especificado de modo mais similar a nossa linguagem,
usando operadores de comparacdo de forma encadeada:

n = int(input("Digite n: "))

rec = @

i=1

while i <= n:
nota = float(input("Digite uma nota: "))
if 3.0 <= nota < 5.0:

rec = rec + 1
1=1+1

print{rec,"alunos ficaram de recuperacao")

And

* Do ponto de vista grafico, usando a notagdo de conjuntos de
intervalos na reta dos reais, temos:

3.0 <= nota

O 1 2 3 4 5 6 7 8 9 10 Observe que graficamente o operador légico
"and" possui o efeito de intersec¢ao dos conjuntos.

>
o 1 2 3 4 5 6 7 8 9 10
3.0 <= nota and nota < 5.0
@D+ >

1
| L
c 1 2 3 4 5 6 7 8 9 10

Exercicio

* Dados nimeros inteiros n, 1 e], todos maiores do que zero, imprimir
em ordem crescente 0s n primeiros naturais que sdo multiplos de 1 ou
de j e ou de ambos. Por exemplo, para n=6, 1=2 e]=3 a saida deverd

SEr:

Exercicio

* Testa os nimeros 0O, 1, 2, ... verificando e imprimindo quais sio
multiplos de 1 ou J, até que n multiplos sejam 1mpressos.

dados de entrada
print("Calculo dos n primeiros miltiplos de i1 ou de ")

n = int{input("Digite n: ™))
i = int(input("Digite i: "))
3 = int(input("Digite j: "))

cont = @ #conta quantos miltiplos foram impressos.
cm = 8 #candidato a multiplo.
while cont < n:

if cm%1i == 0 or cm¥%j ==
print(cm)
cont += 1

cm += 1

Exercicio

®* Mais elaborada. Faz menos iteracdes que a anterior. A cada iteracéo
imprime um mualtiplo de 1 ou J.

dados de entrada
print("Cilculo dos n primeiros miltiplos de i ou de ")
n = int{input("Digite n: "))

i = int{input("Digite 1i:
J = int(input("Digite j:

"))
"))

multi = 8 # multiplos de 1
multy = 8 # multiplos de j
cont = & # conta quantos maltiplo foram impressos

while cont < n:

if multi < multjy:
print(multi)
multi += 1

elif multj < multi:
print(multj)
multj += j

else: # multi == multj
print(multj)
multi += i
multj += j

