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1 ABSTRACT

By analogy with the definition of group with triality we introduce Lie algebra
with triality as Lie algebra L wich admits the group of automorphisms S3 =
{σ, ρ|σ2 = ρ3 = 1, σρσ = ρ2} such that for any x ∈ L we have (xσ − x) +
(xσ − x)ρ + (xσ − x)ρ2 = 0. We describe the structure of finite dimensional
Lie algebra with triality over a field of characteristic 0 and give applications
of Lie algebras with triality to the theory of Malcev algebras.
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2 Introduction.

Glauberman [12], [13] noted that the multiplication group G(M) of a given
Moufang loop M admits a certain dihedral group S3 of automorphisms, with
|S3| = 6. For fixed generators σ, ρ ∈ S3 with σ2 = ρ3 = 1, σρσ = ρ2, the
following equation holds for any x in G(M) :

(xσx−1)(xσx−1)ρ(xσx−1)ρ
2

= 1. (1)

S.Doro [3] called groups with such automorphisms groups with triality, since
the most striking example is D4(q) with its graph automorphisms.

In this paper we introduce the notion of a Lie algebra with triality such
that the simple Lie algebra of type D4 is a Lie algebra with triality and a
Lie algebra that corresponds to an algebraic or Lie group with triality is
a Lie algebra with triality. By definition, a Lie algebra L over a field of
characteristic 6= 2, 3 is a Lie algebra with triality if L admits the dihedral
group S3 of automorphisms such that the following analog of (1) holds for
any x in L :

(xσ − x) + (xσ − x)ρ + (xσ − x)ρ2 = 0. (2)

The Lie algebras with this property first appeared in [24] where a connection
of those algebras with Malcev algebras was described. For any Lie algebra L
we can construct the following Lie algebra with triality T (L) = L1⊕L2⊕L3,
where Li is an isomorphic copy of L with fixed isomorphism l→ li, l ∈ L, i =
1, 2, 3. The algebra T (L) admits the following action of S3 :

lσ1 = l2, l
σ
2 = l1, l

σ
3 = l3, l

ρ
1 = l2, l

ρ
2 = l3, l

ρ
3 = l1.

It is clear that T (L) with this S3-action is a Lie algebra with triality. We
call a Lie algebra with triality A standard if it is isomorphic to either some
algebra with triality of type T (L) or its invariant subalgebra. One of the
main results of this paper is the following Theorem

Theorem 1 Let L be a perfect finite dimensional Lie algebra with triality
over an algebraicly closed field of characteristic 0. Then L is an extension
of a Lie algebra with triality of type D4 and a standard Lie algebra with
triality.

For more exact formulation see Theorem 5.
In the third section we prove that for a Lie algebra with triality L the

condition (2) is equivalent to the condition L = L0 ⊕ L2 where L0 = {x ∈
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L|xλ = x, ∀λ ∈ S3} and L2 is a sum of irreducible 2-dimensional S3-modules.
We call this decomposition an S3-decomposition. Hence the notion of Lie
algebra with triality is a particular case of the following general definition.

Definition 1 Let S be a finite group, {Λ1, ...,Λm} be a set of non-isomorphic
absolutly irreducible S-modules, and assume Λ = Λ1⊕ ...⊕Λm. An algebra A
is called a Λ-algebra if S ⊆ AutA and the S-module A has a decomposition
A = A1 ⊕ ... ⊕ An such that each S-module Ai is isomorphic to one of the
S-modules in {Λ1, ...,Λm}.

In the second section of this paper we develop a method of studying the Λ-
algebras belonging to a given variety N . The main idea is the following: we
fix a finite group S, a set of irreducible S-modules {Λ1, ...,Λm}, and a variety
N . For any Λ-algebra A one can construct an algebra HΛ(A) = HomS(Λ, A)
(see Proposition 2 for a detailed definition) which has the following grad-
ing HΛ(A) =

∑m
i=1⊕HomS(Λi, A). We denote by NΛ the category of all

Λ-algebras from N and by HΛ(N ) the category of corresponding graded
algebras HΛ(N ) = {HΛ(A)|A ∈ NΛ}. These categories NΛ and HΛ(N ) are
isomorphic but the advantage of HΛ(N ) is that it admits a structure of
graded variety.

In the third section we apply the method of studying the Λ-algebras
defined in the second section to the theory of Lie algebras with triality. The
main result of the third section is the construction of a functor Ψ from the
category L of Lie algebra with triality to the category T of graded algebras
and a functor Ψ0 from the category T to the categoryM of Malcev algebras
(see (14) for definition of Malcev algebra). These functors allow us to obtain
the main results of the theory of finite dimensional Malcev algebras over a
field of characteristic 0 as corollaries of the corresponding well known results
on finite dimensional Lie algebras (see Theorems 1 and 2).

In the fourth section we apply the correspondence between Lie algebra
with triality and Malcev algebras to the theory of Lie algebra with trial-
ity. We introduce a notion of T -centre of Lie algebra with triality which is
an analogue of the notion of Lie centre in the theory of Malcev algebras.
Observe that the T -centre of a given Lie algebra with triality is an invari-
ant ideal and it is a trivial algebra with triality. In Theorem 4 we prove
that every perfect finite dimensional Lie algebra with triality over a field
of characteristic 0 without T -centre is a Lie algebra with triality of type
D4. In the last part of this section we apply deep results of the theory of
infinite dimensional Malcev algebras obtained by V. Filippov [4]-[11] to the
theory of Lie algebra with triality. In particular, we prove that every simple

4



(non necessarily finite dimensional) Lie algebra with triality over a field of
characteristic 6= 2, 3 is a Lie algebra with triality of type D4.

All spaces and algebras are considered over a fixed field k of characteristic
6= 2, 3. Further, k{X} = kX denotes the k−space with a basis X.

3 Graduate variety

In this section we prove some results about graduate varieties and give their
applications to Lie algebras.

We fix a set 4 and call any space V with a fixed 4-grading: V =∑
α∈4⊕Vα 4-space (resp. 4-algebra, 4-module). We can consider the 4-

space V as an algebra with unary operations {α|α ∈ 4} such that for a ∈ V
(a)α = aα if a =

∑
β∈4 aβ. Let A =

∑
α∈4⊕Aα be a 4-algebra. Then a

4-identity for the 4-algebra A is a (non-associative) polynomial f(x, y, ...)
in signature (+, ·, α ∈ 4) such that f(a, b, ...) = 0, for all elements a, b, ... ∈
A. For example, f(x, y) = (xαyβ)γ + (x2

τ )γ . Let V =
∑
α∈4⊕Vα,W =∑

β∈4⊕Wβ be given 4-spaces. We define the contraction of the 4-spaces
as follows:

V2W =
∑
α∈4
⊕(Vα ⊗Wα).

Thus V2W is a 4-space too.
If A and B are two 4-algebras then we define the contraction of 4-

algebras A and B as a 4-space A2B with the following multiplication rule:

(aα ⊗ bα) · (aβ ⊗ bβ) =
∑
γ∈4

cγ ⊗ dγ ,

where aαaβ =
∑
γ∈4 cγ , bαbβ =

∑
γ∈4 dγ .

Definition 2 A set N of algebras over k is called a 4-variety if N is the
set of all 4-algebras over k which satisfy a given set of 4-identities.

For a given set X of 4-algebras or 4-identities we denote by {X} the
minimal 4-variety that contains X or satisfies all identities from X.

If N and M are two 4-varieties then we define a contraction operation
by

N2M = {A2B|A ∈ N , B ∈M},
and a division operation by

N/M = {A| ∀B ∈M, A2B ∈ N and A satisfies
all identities of M of the type (aαbβ)γ = 0}.
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It is obvious that (N/M)2M⊂ N .
Between these two operations (contraction and division) there is some

difference. If we have a set X of 4-polynomials such that N={X} and
a 4-algebra A such that M ={A} then finding a set Z such that N2M
={Z} may be non-trivial. On the other hand there is a simple algorithm for
constructing a set of 4-identities Z such that N/M ={Z}. First we have
to take the absolutely free 4-algebra F = F (x1, ...), where {xi} are the
homogeneous free generators of F . Let B = {ai|i = 1, ...} be a homogeneous
basis of the 4-algebra A. For any 4-identity f(xα1 , ..., xαn) of the set X
and any subset T = {ai1 , ..., ain} of B such that ai ∈ Aαi we construct the
following set of 4-identities: G(f, T ) = {g1(xα, ...), ..., gm(xα, ...)}, where
f(xα1 ⊗ ai1 , ..., xαn ⊗ ain) =

∑m
j=1 gj ⊗ akj

and kj 6= ki, if j 6= i.

Proposition 1 If N and M are 4-varieties such that N={X}, M ={A}
and B = {ai|i = 1, ...} is a homogeneous basis of the 4-algebra A then

N/M = {M2, G(f, T ) | f ∈ X,T ⊂ B},

where M2 is the set of identities of the variety M of the type (xαxβ)γ = 0.

Proof. If C ∈ N/M then D = C2A ∈ N and, by definition, C satisfies
all identities from G(f, T ) for f ∈ X. Conversely, if we have a 4-algebra
C which satisfies all identities from G(f, T ) for f ∈ X then the 4-algebra
C2A satisfies the identity f. Hence C2A ∈ N . 2

We note that if N is some variety (not necessarily graded) then, by
definition, a Z2-graded algebra A is a N -superalgebra if the algebra A2G ∈
N , where G is a Grassmannian algebra. That is the Z2-variety N2 of N -
superalgebras is N/G, where G = {G}. It is well known that there is an
easy algorithm to construct the graded identities of the N -superalgebras if
we know the identities of the variety N .

Fix a finite group S such that char(k) = p is not a divisor of |S| and some
set of absolutly irreducible non-isomorphic S-modules Λ(S) = {Λ1, ...,Λm}.
We denote Λ = Λ1 ⊕ ... ⊕ Λm and say that an S-module V is of type Λ if
V = V1 ⊕ ... ⊕ Vn, V1, ..., Vn ∈ Λ(S) and of type Λ if Vi /∈ Λ(S), i = 1, ...n.
It is clear that for any S-module V we have V = VΛ ⊕ VΛ, where VΛ is the
submodule in V of type Λ and VΛ is one of type Λ. We write V ⊗Λ W for
(V ⊗W )Λ.

Suppose that the set Λ(S) has the following property: for every i, j, k ∈
{1, ...,m} dimHomS(Λi ⊗Λ Λj ,Λk) < 2 then there exists an embedding

φij : Λi ⊗Λ Λj → Λ. (3)
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It is clear that Λ = Λij ⊕ Λij where Λij = φij(Λi ⊗Λ Λj). We define

ψij : Λ→ Λi ⊗Λ Λj

by ψij(Λij) = 0 and ψij(φij(v)) = v, v ∈ Λi ⊗Λ Λj . Here and above we
identify v⊗w (for v ∈ V,w ∈W ) with its image in V ⊗Λ W. The module Λ
has the following structure of algebra

v · w = φ(v ⊗ w) = φij(v ⊗ w), v ∈ Λi, w ∈ Λj . (4)

On the other hand, Λ has the following co-algebraic structure:

φ?(v) =
∑
ij

ψij(v). (5)

Definition 3 An algebra A is called an algebra of type Λ if S ⊆ AutkA and
A is an S-module of type Λ.

We denote by NΛ the category of all algebras of type Λ from a given variety
N . If 4 = {1, ...,m} then all algebras of NΛ are 4-algebras and morphisms
of the category NΛ preserve this graduation. In general the category NΛ is
not a 4-variety. This means that set of 4-identities X such that NΛ = {X}
there is no. But there exists a natural isomorphism (as categories!) between
NΛ and some 4-variety.

Proposition 2 Let N be a variety and N4 be the 4-variety of all 4-
algebras from N . Then the map Ψ : N4/{Λ} → NΛ defined by Ψ(C) = C2Λ
is an isomorphism between the categories N4/{Λ} and NΛ.

Proof. It is clear that Ψ is a functor from N4/{Λ} into NΛ. To finish
the proof of the Proposition, it is enough to construct the inverse functor
Φ : NΛ → N4/{Λ}. For any A ∈ NΛ, we define Φ(A) = HomS(Λ, A) and
for ξ, τ ∈ HomS(Λ, A) we define ξ ? τ ∈ HomS(Λ, A) so, that the following
diagram is commutative

Λ
φ?

−→ Λ⊗Λ Λyξ ? τ yξ ⊗ τ
A

m←− A⊗Λ A

(6)

Herem : A⊗ΛA→ A is the multiplication in A and φ? is the comultiplication
in Λ.
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We need to prove that for A ∈ NΛ we have Ψ(Φ(A)) ' A. Define a linear
map π : Ψ(Φ(A)) → A as follows π(ξi ⊗ vi) = ξi(vi) if ξi ⊗ vi ∈ Ψ(Φ(A)) =
Φ(A)2Λ = HomS(Λ, A)2Λ, ξi ∈ HomS(Λi, A), vi ∈ Λi. As A is an algebra
of type Λ it is clear that Im(π) = A. Let A =

∑m
j=1⊕Aj where Aj is a sum

of S-modules of type Λj . Hence

dimkHomS(Λj , A) = dimkHomS(Λj , Aj) =

dimkAj/dimkΛj = kj .

Therefor

dimkΨ(Φ(A)) = dimkHomS(Λ, A)2Λ =
∑m
j=1 dimk(HomS(Λj , A)⊗ Λj) =∑m

j=1 kjdimkΛj =
∑m
j=1 dimkAj = dimkA.

Hence ker(π) = 0 and π is a linear isomorphism of linear spaces. We next
prove that π is an isomorphism of algebras. Choose ξi ∈ HomS(Λi, A), ξj ∈
HomS(Λj , A), vi ∈ Λi, vj ∈ Λj and suppose that ξi ? ξj =

∑m
s=1 λs, vi · vj =∑m

s=1ws, where λs ∈ HomS(Λs, A), ws ∈ Λs, s = 1, ...,m.
By definition, we have

(ξi ⊗ vi) · (ξj ⊗ vj) =
m∑
s=1

λs ⊗ ws,

hence
π(ξi ⊗ vi) · π(ξj ⊗ vj) = ξi(vi)ξj(vj). (7)

On the other hand, π((ξi⊗vi) · (ξj⊗vj)) = π(
∑m
s=1 λs⊗ws) =

∑m
s=1 λs(ws).

From (6) we have (ξi ?ξj)(vi ·vj) = ξi(ui) · ξj(uj) if φ?(vi ·vj) =
∑
p,q up⊗uq,

but from (5) we get

φ?(vi · vj) = φ?(φ(vi ⊗ vj)) = vi ⊗ vj + rij ,

where rij ∈
∑

(p,q) 6=(i,j) Λp ⊗Λ Λq. Hence

π((ξi ⊗ vi) · (ξj ⊗ vj)) = (ξi ? ξj)(vi · vj) = ξi(vi)ξj(vj).

From this and (7) we have that π is a homomorphism. 2

Note. It is clear that all constructions and Propositions above are true if
we substitute a finite group S by an algebra S such that all finite dimensional
S-modules are semisimple. For example, instead of a finite group S we can
take any finite dimensional semisimple Lie, Malcev or Jordan algebra.
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Example 1 Let S be a 3-dimensional simple Lie algebra with a basis {e, h, f}
and multiplication law eh = 2e, ef = h, fh = −2f. We fix an S-module
Λ = S ⊕ V, as above, where V has a basis {v1, v−1} with S-action v1e =
v−1f = 0, v1f = v−1, v−1e = −v1, v1h = v1, v−1h = v−1. Then Λ has a struc-
ture of algebra of type Λ such that S is a subalgebra, V is an S-submodule
with the action as above and

vx = −xv,∀x ∈ S, v ∈ V,

v2
1 = e, v1v−1 = v−1v1 = h, v2

−1 = f.

Note that Λ has a Z2-graduation Λ = Λ0 ⊕ Λ1, where Λ0 = S and Λ1 = V
and this algebra is a Lie superalgebra osp(1, 2).

The following Proposition is an easy corollary of the Propositions 1 and 2.

Proposition 3 A Lie algebra L is an algebra of type Λ = S ⊕ V if and
only if L = H(L)2Λ, where H(L) ∈ L/{Λ} = Gr and Gr is a Z2-variety of
Grassmannian algebras.

Example 2 Let S be the 3-dimensional simple Lie algebra as in Example 1
and Γ = S⊕W be an S-module such that W is the unique irreducible Malcev
S-module with a basis {w2, w−2} and with S-action w−2e = w2f = 0, w2e =
−2w2, w−2f = 2w2, w2h = 2w2, w−2h = −2w−2. Then Γ has a structure of
algebra of type Γ such that S is a subalgebra, W is an S-submodule with the
action as above and

vx = −xv,∀x ∈ S, v ∈W,

w2
2 = f, w2w−2 = w−2w2 = h,w2

−2 = e.

Note that Γ has a Z2-graduation Γ = Γ0 ⊕ Γ1, where Γ0 = S and Γ1 = W.

The following analogue of Proposition 3 was proved in [16].

Proposition 4 A Malcev algebra M is an algebra of type Γ = S ⊕W if
and only if M = H(M)2Γ, where H(M) ∈ M/{Λ} = NG and NG is a
Z2-variety with the following Z2-identities

an = na, xy = −yx,

(an)m = a(nm),

(xy)z + (yz)x+ (zx)y = 0,

(8)

where a ∈ H(M)0, x, y, z ∈ H(M)1, n,m ∈ H(M).
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4 Lie algebra with triality.

In this section we will consider the central example of application of Propo-
sitions 1 and 2. Recall that an algebra A is an algebra with triality if
this algebra admits a nontrivial action of the group S3 = {σ, ρ |σ2 = ρ3 =
1, σρσ = ρ−1} by automorphisms such that for every x ∈ A we have (2). In
what follows, fix a set 4 = {0, 2} and genarators σ, ρ of S3.

Lemma 1 Let A be an algebra over a field of characteristic p 6= 2, 3 and
S3 ⊆ AutkA. Then A is a algebra with triality if and only if A = A0 ⊕ A2,
where A0 = AS3 = {a ∈ A | ag = a,∀g ∈ S3} and A2 =

∑
⊕Vi, Vi is an

irreducible two dimensional S3-module.

Proof. Let V be S3-module with standard basis {v, w} such that

vσ = w,wσ = v, vρ = w,wρ = −v − w.

Then V is the unique irreducible 2-dimensional S3-module. Let A = A0⊕A2

and x ∈ A. Then there exist irreducible S3-modules V1 and V2 with standard
bases xv, xw and yv, yw, respectively, such that x = x0 + xv + yw, where
x0 ∈ A0. Then xσ − x = xw − xv − (yw − yv) = zw − zv, where zw =
xw − yw, zv = xv − yv. Hence

(xσ−x)+(xσ−x)ρ+(xσ−x)ρ2 = zw−zv−zv−zw−zw+2zv+2zw = 0.
Conversely, let A be a algebra with triality and let x ∈ A be such that

xσ = −x, xρ = x. Then from (2) we have
0 = (xσ − x) + (xσ − x)ρ + (xσ − x)ρ2 = −6x.
Hence x = 0. 2

Fix a 4-graded algebra Λ = Λ0 ⊕ Λ2, where Λ2 = V is the irreducible
S3-module with standard basis {v, w} as above, Λ0 = ka and

a2 = a, av = va = v, aw = wa = w,

v2 = (v + 2a)/3, w2 = (w + 2a)/3, vw = wv = −(v + w + a)/3. (9)

Λ is a algebra with triality with this S3-action.
It is clear that an algebra A is a algebra with triality if and only if it is an

algebra of type Λ = Λ0 ⊕Λ2. For any Lie algebra with triality A = A0 ⊕A2

we denote N(A) = AnnA0A2 and K(A) = A2 ⊕ (A2
2)0/N(A) ∩ (A2

2)0. It is
clear that N(A) is an ideal of A and N(A/N(A)) = 0. We call a Lie algebra
with triality A normal if N(A) = 0 and A0 = (A2

2)0. It is obvious that A is
normal if and only if A = K(A).

We give some examples of Lie algebra with triality.
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Example 3 Let L be a Lie algebra and L1, L2, L3 be Lie algebras isomorphic
to L. As in the introduction A = T (L) = L1 ⊕ L2 ⊕ L3 has the structure of
Lie algebra with triality. In this case

A0 = {l1 + l2 + l3|l ∈ L},

A2 = {a1 + b2 + c3|a, b, c ∈ L, a+ b+ c = 0},

N(A) = {l1 + l2 + l3|l ∈ Z(L) = AnnLL}.

Observe that A is normal if and only if Z(L) = 0 and L2 = L.

Definition 4 A Lie algebra with triality P is called trivial if there exists a
Lie algebra L such that K(P ) ' K(B) where B is an invariant subalgebra
of T (L).

To describe the set of invariant subalgebras of T (L) we need the following
definition.

Definition 5 Let L be a Lie algebra. Then a pair of subalgebras (A,B) of
L is compatible if B2 ⊆ A and AB ⊆ B.

For any compatible pair (A,B) of subalgebras in a Lie algebra L we con-
struct an invariant subalgebra T (A,B) ⊆ T (L). By definition, T (A,B) =
T (A,B)0 ⊕ T (A,B)2 where

T (A,B)0 = {l1 + l2 + l3 | l ∈ A},

and
T (A,B)2 = {a1 + b2 + c3|a, b, c ∈ B, a+ b+ c = 0}.

Proposition 5 Let L be a Lie algebra and T (L) be the corresponding stan-
dard Lie algebra with triality. Then for every invariant subalgebra P in
T (L) there exists a unique compatible pair (A,B) of subalgebras in L such
that P = T (A,B)

Proof. Let P = P0⊕P2 be the S3-decomposition of P. We denote A = {l ∈
L | l1 + l2 + l3 ∈ P0} and B = {l ∈ L | l1 − l2 ∈ P2}. It is obvious that A is a
subalgebra of L and AB ⊆ B. Let l, r ∈ B. We have

(l1 − l2)(r1 − r2) = (lr)1 + (lr)2 =

2[(lr)1 + (lr)2 + (lr)3]/3 + [(le)1 + (lr)2 − 2(lr)3]/3 ∈ P.
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Hence lr ∈ A ∩B and (A,B) is a compatible pair.2
As a corollary of this Proposition we construct examples of trivial Lie

algebra with triality P and Q such that P and Q/N(Q) are standard Lie
algebra with triality but P/N(P ) and Q are not standard. Recall that a
Lie algebra with triality is standard if it is an invariant subalgebra of a Lie
algebra with triality of type T (L).

Example 4 Let L = slp(k) be a Lie algebra of matrices with trace zero
over a field of characteristic p > 3. Then the centre Z(L) of L is the unique
proper ideal of L and Z(L) = ke. We define P = T (L) and Q = P/I where
I = k(e1 − e2)⊕ k(e1 − e3). If Q is a standard Lie algebra with triality then
by Proposition 5 there exists a compatible pair (A,B) of some Lie algebra
R such that Q = T (A,B). If C = A ∩ B 6= 0 then Q has an invariant ideal
J = T (C) and dimkZ(J) = 3dimkZ(C). On the other hand, Q has only two
non-zero invariant ideals k(e1 +e2 +e3) and Q, which have one dimensional
centre. This is a contradiction.

Hence A∩B = 0 and AB = 0. Then Q2 = {αl1+βl2+γl3 | l ∈ B,α, β, γ ∈
k, α + β + γ = 0} is an invariant ideal, which is a contradiction. Thus we
proved that Q is not a standard Lie algebra with triality. It is obvious that
Q/N(Q) = T (L/Z(L)) is a standard Lie algebra with triality.

Analogously we can prove that P/N(P ) is not a standard Lie algebra
with triality.

Example 5 Let L be a split simple finite dimensional Lie algebra of type
D4. In [17] the following basis of L over a field of characteristic 6= 2 was
constructed

B = {ei, hi, fi, i = 1, ..., 4; µ|µ ⊆ I4 = (1234)}

with the following multiplication law for the basis elements

ei · fi = hi, ei · hi = 2ei, hi · fi = 2fi,

ei · ϕ = ϕ ∪ i, i ∈ I4 \ ϕ;

ϕ · fi = ϕ \ i, i ∈ ϕ;

ϕ · hi = ϕ, i ∈ ϕ;

ϕ · hi = −ϕ , i ∈ I4 \ ϕ;
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ϕ · ψ =


(−1)|ψ|+1ei, ϕ ∩ ψ = i, ϕ ∪ ψ = I4;

(−1)|ψ|fi, ϕ ∩ ψ = ∅, ϕ ∪ ψ = I4 \ i;

(−1)|ψ|(
∑
i∈ψ hi −

∑
j∈ϕ hj)/2, ϕ ∩ ψ = ∅, ϕ ∪ ψ = I4.

Here |σ| is the number of elements of σ ⊆ {1, 2, 3, 4}.
The natural action of S3 on I4 = {1, 2, 3, 4} such that 1σ = 2, 1ρ =

2, 2ρ = 3, 3ρ = 1, 4λ = 4, ∀λ ∈ S3 can be extended to the set {µ|µ ⊆
I4}. We can extend this S3-action to B so, that xλi = xλ(i), λ ∈ S3, i ∈
I4, x ∈ {e, f, h}. It is easy to see that each element of S3 acts on L as an
automorphism. We introduce an order on B0 = B \ {h1, ..., h4} such that
b > 0 if and only if b ∈ {e1, ..., e4} or b ∈ {µ|µ ⊆ I4, 4 ∈ µ}. If we identify
B0 with the set of roots of L then B+ = {b ∈ B0|b > 0} is the set of the
positive roots and {4, e1, e2, e3} is the set of an simple roots. Since ei ·ej = 0
and ei · 4 = {i4}, i 6= 4 the corresponding Dynkin diagram is of type D4 and
S3 acts as diagram automorphisms. Applying Lemma 1 it is easy to prove
that L is an algebra with triality.

By Proposition 2 we have.

Proposition 6 An algebra A (not neassarily Lie) is an algebra with triality
if and only if there exists a 4-graded algebra M = M0 ⊕ M2, such that
M2

0 ⊂M0, M0M2 ⊂M2, M2M0 ⊂M2, A = M2Λ and S3 acts on the first
term of the product.

By Proposition 1, the set of all 4-graded algebras M = M0 ⊕M2 such
that M2

0 ⊂ M0, M0M2 ⊂ M2, M2M0 ⊂ M2 and M2Λ is a Lie algebra,
forms a 4-graded variety T .

Proposition 7 A 4-graded algebra M = M0 ⊕M2 ∈ T if and only if M
satisfies the following 4-graded identities:

(ab)2 = (xa)0 = (ax)0 = 0,

m2 = 0, (10)

(mn)ia = (ma · n)i + (m · na)i, i = 0, 2, (11)

6(xy)0z = ((xy)2z)2 + ((zy)2x)2 + ((xz)2y)2, (12)

((xy)2z)0 + ((zx)2y)0 + ((yz)2x)0 = 0, (13)

where n,m ∈ M,a ∈ M0, x, y, z ∈ M2 and n = (n)0 + (n)2, for (n)0 ∈
M0, (n)2 ∈M2.
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Proof. Let C ∈ T ; then C = C0 ⊕ C2 and C2Λ = C0 ⊗ Λ0 ⊕ C2 ⊗ Λ2 is a
Lie algebra. Then for any x, y, z ∈ C2 and b, c ∈ C0 we have

[[c⊗ a, x⊗ v], y ⊗ w] + [[x⊗ v, y ⊗ w], c⊗ a] + [[y ⊗ w, c⊗ a], x⊗ v] = 0.

From this and (9) we have

[cx⊗ v, y ⊗ w]− [(xy)0 ⊗ a, c⊗ a]/3− [(xy)2 ⊗ (v + w), c⊗ a]+

[yc⊗ w, x⊗ v] = −(((cx)y)0 ⊗ a)/3− (((cx)y)2 ⊗ (v + w))/3−

((xy)0c⊗ a)/3− ((xy)2c⊗ (v + w))/3− (((yc)x)0 ⊗ a)/3−

(((yc)x)2 ⊗ (v + w))/3 = 0.

Hence
(xy)0c+ ((cx)y)0 + ((yc)x)0 = 0,

and
(xy)2c+ ((cx)y)2 + ((yc)x)2 = 0.

Analogously, from

[[z ⊗ w, x⊗ v], y ⊗ v] + [[x⊗ v, y ⊗ v], z ⊗ w] + [[y ⊗ v, z ⊗ w], x⊗ v] = 0

and (9), we have

−{((xy)2z)0 + ((yz)2x)0 + ((zx)2y)0 ⊗ a}/9+

{2(xy)0z/3− ((xy)2z)2/9 + ((yz)2x)2/9 + ((zx)2y)2/9} ⊗ w+

{−((xy)2z)2/9− (yz)0x/3− (zx)0y/3} ⊗ v = 0.

Then the 4-identities (12) and (13) hold. Note that we have one more
identity

((xy)2z)2 = 3(yz)0x/3− 3(zx)0y.

But this identity is equivalent to (12).
It is easy to see that the same calculations prove that an algebra C2Λ

is a Lie algebra if C satisfies the 4-identities (10-13). 2

We denote by L = L(k) the category of Lie algebra with triality over a
field k and byM =M(k) the category of Malcev algebras over k. From the
Propositions 2 and 6 we have functors Ψ : L → T and Φ = Ψ−1 : T → L,
where by definition, Φ(A) = A2Λ.

The following Lemma gives a new proof of Theorem 1 [24].
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Lemma 2 If M = M0⊕M2 ∈ T then the space M2 with the product x?y =
(xy)2 is a Malcev algebra.

Proof. Recall that an anti-commutative algebra A is a Malcev algebra if it
satisfies the identity

((xy)z)x+ ((yz)x)x+ ((zx)x)y = (xz)(yx). (14)

Multiplying (13) by 6x and applying (12) we obtain:

6((xy)2z)0x+ 6((yz)2x)0x+ 6((zx)2y)0x =

(((xy)2z)2x)2 + ((xz)2(xy)2)2 + (((xy)2z)2x)2+

2(((yz)2x)2x)2 + (((zx)2y)2x)2 + (((zx)2x)2y)2+

((xy)2(zx)2)2 =

((x ? y) ? z) ? x+ 2((y ? z) ? x) ? x+ ((x ? y) ? x) ? z+

((z ? x) ? y) ? x+ 2(x ? y) ? (z ? x) + ((z ? x) ? x) ? y = 0.

(15)

Note that, in general, an anticommutative algebra with identity (15) is not
a Malcev algebra. Thus we need some more identities.

By (12) we have

3(xy)0x = ((xy)2x)2, 3(xy)0y = ((xy)2y)2. (16)

Now from (11) and (16) we can obtain

3(xy)0(xy)2 = 3(((xy)0x)y)2+ 3(x · (xy)0y) =

((((xy)2x)2)y)2+ (x · ((xy)2y)2)2.
(17)

On the other hand, (12) yields

6(xy)0(xy)2 = (((xy)2y)2x)2 + ((x · (xy)2)2y)2.

By this and (17) we have

3((x ? y) ? y) ? x = 3((x ? y) ? x) ? y. (18)

Let J(x, y, z) = (x ? y) ? z + (y ? z) ? x+ (z ? x) ? y. Then (15) and (18) can
be rewritten as

2J(x, y, z) ? x+ J(x ? y, x, z) + J(z ? x, x, y) = 0, (19)
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J(x ? y, x, y) = 0. (20)

By the linearization of (20) we have

J(x ? y, x, z) + J(x ? z, x, y) = 0.

Then by (19) one obtains

J(x, y, z) ? x = J(x ? z, x, y). (21)

But the identities (14) and (21) are equivalent. Note that identities (19)
and (20) follow from (21). 2

Using Lemma 2 we define a functor Ψ0 : T →M. If M = M0⊕M2 ∈ T
let Ψ0(M) = (M2, ?). We denote by F the functor Ψ0 ◦ Ψ : L → M. Note
that this functor was constructed in another way by Mikheev [24].

Now we construct the left inverse functor G :M→ L of F . For this we
define a functor Φ0 :M→ T so, that, for M2 ∈M, Φ0(M2) = Inder(M2)⊕
M2. Here Inder(M2) is the Lie algebra of the inner derivations of M2:

Inder(M2) = {D(x, y) = L[x,y] + [Lx, Ly]‖x, y ∈M2, Lx : y → xy}.

The multiplication law · in Φ0(M2) is defined by the standard action of
Inder(M2) on M2 and the following formula:

x · y = D(x, y)/6 + [x, y]. (22)

Proposition 8 Φ0 is a functor from M into T .

Proof. By definition, if M2 ∈ M, then the algebra M = Φ0(M2) =
Inder(M2) ⊕ M2 = M0 ⊕ M2 has a 4-gradation with the following 4-
identities: (ab)2 = (xa)0 = 0 for a, b ∈ M0, x ∈ M2. Hence it is enough
to prove that M satisfies the 4-identities (10)-(13). The 4-identities (10),
(11) and (12) hold in M by definition. The identity (13) can be rewritten
in the form:

D([x, y], z) +D([y, z], x) +D([z, x], y) = 0, x, y, z ∈M2,

or

[x, y, z, t] + [[t, z], [x, y]] + [x, y, t, z] + [z, x, y, t] + [[t, y], [z, x]]+

[z, x, t, y] + [y, z, x, t] + [[t, x], [y, z]] + [y, z, t, x] = 0.
(23)

But (23) is a consequence of the complete linearization of the identities (14)
and (20). 2

Finalty, we define G = Φ◦Φ0. It is clear that F(G(M2)) = M2 if M2 ∈M
but, in general, G(F(L)) 6= L, for L ∈ L.
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Proposition 9 Let L ∈ L. Then G(F(L)) = L if and only if L is normal.

Proof. Let L be a normal Lie algebra with triality. Then L = M2Λ where
M = M0 ⊕ M2 ∈ T . As L is normal we have that AnnM0M2 = 0 and
M0 = (M2

2 )0. From (12), we have that for x, y ∈ M2 the operator L(xy)0 :
M2 → M2 is equal to the inner derivation D(x, y)/6. As M0 = (M2

2 )0, we
have a homomorphism π : M0 → Inder(M2), π(

∑
(xiyi)0) =

∑
D(xi, yi). It

is clear that ker(π) = AnnM0M2 = 0. Hence M = Φ0(M2) and G(F(L)) =
G(M2) = L.

The converse is obvious. 2

Note that in general the variety T does not lie in L. However we have
the following Proposition.

Proposition 10 Let P be a Lie algebra with triality over a field k of char-
acteristic either 0 or a prime p > 5. Let M = Ψ(P ) ∈ T and M2 = Ψ0(M) ∈
M(k). Then the following conditions are equivalent:

(i) The Malcev algebra M2 is a Lie algebra;
(ii) P is a trivial Lie algebra with triality;
(iii) M is a Lie algebra.

Proof. Let M0⊕M2 ∈ T then M is a Lie algebra if and only if for every
x, y, z ∈M2 we have

xy · z + yz · x+ zx · y = ((xy)2z)2 + ((yz)2x)2 + ((zx)2y)2+

(xy)0z + (yz)0x+ (zx)0y = 0.
(24)

Multiplying (24) by 6 and applying (12) we can obtain:

6((xy)2z)2 + 6((yz)2x)2 + 6(((zx)2y)2) + ((xy)2z)2+

((zy)2x)2 + ((xz)2y)2 + ((yz)2x)2 + ((xz)2y)2+

((yx)2z)2 + ((zx)2y)2 + ((yx)2z)2 + ((zy)2x)2 =

5((xy)2z)2 + 5((yz)2x)2 + 5(((zx)2y)2) = 0.

(25)

Since the field k has characteristic 0 or a prime p > 5, we have that M is a
Lie algebra if and only if M2 is a Lie algebra.

Now suppose thatM andM2 are Lie algebras. We need to prove that P is
a trivial Lie algebra with triality. We can suppose that K(P ) = P. It is clear
that ((M2

2 )2,M2) is a compatible pair of M2. Let A be the corresponding
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invariant subalgebra of T (M2). Then K(A) ' G(M2) ' K(P ). Hence P is a
trivial Lie algebra with triality. 2

As a consequence of equality (25) we have

Corollary 1 Let k be a field of characteristic 5 and P be a Lie algebra with
triality over k. Then Ψ(P ) is a Lie algebra and F(P ) is a Lie algebra if and
only if P is a trivial Lie algebra with triality.

Let k be a field of characteristic 0 or p > 3 that contains an element ξ 6= 1
such that ξ3 = 1. Then for any Lie algebra over k and ρ ∈ AutkL, ρ3 = 1, we
have a Z3−gradation of L : L = L1⊕L0⊕L−1 where Li = {a ∈ L|aρ = ξia}.
We will say that ρ admits triality if there exists an involution σ ∈ AutkL
such that σρσ = ρ2 and aσ = a, ∀a ∈ L0. We note that in this case L is
a Lie algebra with triality with respect to action of S3 = {ρ, σ}. Note that
in this case Lσ1 = L−1, L

σ
−1 = L1. Indeed, if x ∈ L1 then xσρ = xσρσσ =

xρ
2σ = ξ2xσ. By Proposition 7 we can write L = M2Λ, for some M ∈ T .

Then L0 = M0 ⊗ Λ0, L1 = M2 ⊗ k(v − ξw), L−1 = M2 ⊗ k(v − ξ2w). It is
clear that L1 and L−1 as L0−modules are isomorphic.

Suppose that we have an automorphism of order 3 ρ of L such that
L1 and L−1 as L0−modules are isomorphic. Let us fix an L0−isomorphism
τ : L1 → L−1. In this case the k−vector space L1 has two algebra structures:
(L1, ◦) and (L1, •), where, by definition, for x, y ∈ L1 : x ◦ y = [x, y]τ ,
x • y = [xτ , yτ ].

Lemma 3 In notations above ρ admits triality if and only if there exists an
L0−isomorphism τ : L1 → L−1 such that x◦y = x•y, [x, xτ ] = 0, ∀x, y ∈ L1.

Proof. Suppose that ρ admits triality and σ is a corresponding involution.
Then L = M2Λ, Li = M ⊗ k(v − ξiw), i = 1, 2, and σ : L1 → L−1, σ(m ⊗
(v − ξw)) = −ξm⊗ (v − ξ2w), is an L0−isomorphism. For x, y ∈ L1 we get
x ◦ y = [x, y]σ = [xσ, yσ] = x • y. It is clear that for x = m⊗ (v − ξw) ∈ L1

we get [x, xσ] = 0 since m2 = 0.
Let ρ, τ satisfy the hypothesis of Lemma. We define an involution σ

of L by the following: xσ = x, x ∈ L0, x
σ = xτ , (xτ )σ = x, x ∈ L1. We

have, since τ is L0−isomorphism, [x, a]σ = [x, a]τ = [xτ , a] = [xσ, aσ],∀a ∈
L0, x ∈ L1. Analogously, [x, a]σ = [xσ, aσ],∀x ∈ L−1, a ∈ L0. For x, y ∈ L1

we have [(x + y), (x + y)τ ] = [x, yτ ] + [y, xτ ] = [x, yσ] + [y, xσ] = 0. Hence
[x, yτ ]σ = [x, yτ ] = [xτ , y] = [xσ, y] and we proved that σ is an automorphism
of L. It is easy to see that a group generated by σ, ρ is the group S3 and L
is a Lie algebra with triality. 2
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Corollary 2 Let L be a Lie algebra with triality over a field k as above.
Then F(L) ' (L1, ◦).

Proof. Let L = M2Λ. Then for x = m⊗ (v− ξw), y = n⊗ (v− ξw) by (9)
we have:

x◦y = [x, y]σ = (mn)0⊗(v−ξw)20+(mn)2⊗(v−ξw)22 = (ξ−1)(mn)2/3⊗(v−ξw),

hence x ◦ y = (ξ − 1)(mn)2/3⊗ (v − ξw) and φ : F(L) = M → L1, φ(m) =
(ξ − 1)m/3⊗ (v − ξw) is an isomorphism. 2

Example 6 Let L be a split simple Lie algebra of type D4 over a fild k
such that 1 6= ξ ∈ k, ξ3 = 1, and ρ1 be an automorphism of L of order
3 which admits triality (see Example 5). The group AutL contains exactly
two conjugate classes of order 3: {ρ1} and {ρ2} (see ([20]), Chapter 8).
We prove that ρ2 does not admit triality. We denote ρ2 = ρ. Using ([20],
Chapter 8) we can write the bases of the spaces L0, L1 and L−1.

L0 = {ξ · 1 + 2 + ξ2 · 3, ξ · 234 + 134 + ξ2 · 124, e1 + e2 + e3,
f1 + f2 + f3, h4, h1 + h2 + h3,
ξ2 · 12 + 13 + ξ · 23, ξ2 · 34 + 24 + ξ · 14},

L1 = {4, 14 + 24 + 34, ξ · f1 + f2 + ξ2 · f3,
1234, 124 + 134 + 234, ξ2 · 1 + 2 + ξ · 3,
f4, ξ · h1 + h2 + ξ2 · h3, ξ · e1 + e2 + ξ2 · e3,

ξ · 12 + 13 + ξ2 · 23, },

L−1 = {123, 12 + 13 + 23, ξ2 · f1 + f2 + ξ · f3,
∅, 1 + 2 + 3, ξ2 · 14 + 24 + ξ · 34,
e4, ξ2 · h1 + h2 + ξ · h3, ξ2 · e1 + e2 + ξ · e3,

ξ2 · 234 + 134 + ξ · 124, }.

It is easy to see that L0 is a split simple Lie algebra of type A2 and P is
a Borel subalgebra with a basis: {ξ · 1 + 2 + ξ2 · 3, e1 + e2 + e3, h4, h1 + h2 +
h3, ξ

2 · 12 + 13 + ξ · 23}. Moreover, L1 and L−1) are L0−modules with the
highest weights f4 and (123). But [f4, h4] = −2f4 and [123, h4] = −(123).
Hence L0−modules L1 and L−1 are not isomorphic. By Lemma 2 ρ does
not admit triality.
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Let P = P0 ⊕ P2 be a trivial Lie algebra with triality. We say that P
admits a lifting if there exists a Lie algebra L and an invariant subalgebra
Q in T (L) such that P/N(P ) ' Q/N(Q). By definition, a Lie algebra A ∈
T admits a lifting if Φ(A) admits a lifting. Let A = Ψ(P ) = A0 ⊕ A2

and N(P ) = AnnA0A2 = 0. Since P is trival we have that A is a Lie
algebra and A0 acts on the Lie algebra A2 by derivations. Hence we have
homomorphisms φ : A0 → Der(A2), ψ : A2 → Inn(A2) with kerφ = 0, and
kerψ = C = {x ∈ A2 | (xy)2 = 0, ∀y ∈ A2}. Let G = φ(A0) + ψ(A2) and
Q = G/ψ(A2). Then we have the following short exact sequence

0→ ψ(A2)
i−→G j−→Q→ 0. (26)

Fix a section s : Q→ G. Then for x, y ∈ Q

[s(x), s(y)] = s([x, y]) + g(x, y), (27)

where g(x, y) ∈ i(ψ(A2)). Since J(s(x), s(y), s(z)) = 0, for every x, y, z ∈ Q
we have by (27)

g([x, y], z) + g(x, y)s(z) + g([x, y], z)+

g(x, y)s(z) + g([x, y], z) + g(x, y)s(z) = 0.
(28)

Let t : ψ(A2) → A2 be an arbitrary section. Then we can define g(x, y) =
t(g(x, y)) ∈ A2 for x, y ∈ Q. By (28) we have that

f(x, y, z) = g([x, y], z) + g(x, y)s(z) + g([y, z], x)+

g(y, z)s(x) + g([z, x], y) + g(z, x)s(y) ∈ C.

Note that since G acts on A2, the product A2s(Q) is well defined and C is
a Q-module.

Proposition 11 Let Z3(Q,C) and B3(Q,C) be the groups of 3-cocycles and
3-coboundaries. Then with the above notation we have

(i) f ∈ Z3(Q,C),
(ii) f ∈ B3(Q,C) if and only if P admits lifting.

Proof. From the standard theory of extensions with non-Abelian kernel
[18],[23] we have that f ∈ Z3(Q,C) and f ∈ B3(Q,C) if and only if the
short exact sequence (26) may be lifted to the following short exact sequence

0→ A2
i−→G j−→Q→ 0. (29)
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Suppose that f ∈ B3(Q,C) and we have the sequence (29). Then (G, i(A2))
is a compatible pair of G and for the corresponding invariant subalgebra
B ⊆ T (G) we have B/N(B) ' P/N(P ). Conversely, if P admits a lifting
then there exists a Lie algebra G and an invariant subalgebra B ⊆ T (G)
such that B/N(B) ' P/N(P ). Hence holds for G (29). 2

Denote by AutLL the group of L-automorphisms of L. In other words,
AutLL = {g ∈ Autk(L)|[g, S3] = 1}.

For any Malcev algebra M and an ideal I < M we define an ideal
GM (I) < G(M) as follows GM (I) = Inder(M, I) ⊕ I, where Inder(M, I) =
{D(x, y) = L[x,y]+[Lx, Ly]‖x ∈M,y ∈ I}. It is clear that GM (I) is a solvable
ideal if and only if I is a solvable ideal.

Theorem 2 Let k be a field of characteristic 0 or p > 3, L be a finite
dimensional algebra in L(k), and M2 = F(L) ∈M(k).

Then
(i) M2 is semisimple (solvable) if and only if L is semisimple (solvable).
(ii) M2 is simple if and only if L has no invariant ideals.
(iii) Autk(M2) ' AutLL.
(iv) Let G2 be the solvable radical of M2. Then there exists a semisimple

subalgebra P2 such that M2 = P2⊕G2 if and only if there exists an invariant
semisimple subalgebra P in L such that L = P ⊕G, where G is the solvable
radical of L.

Moreover, for every two semisimple subalgebras P2 and Q2 such that
M2 = P2 ⊕ G2 = Q2 ⊕ G2, there exists φ ∈ Autk(M2) such that P φ2 = Q2

if and only if for every two semisimple invariant subalgebras P and Q such
that L = P ⊕G = Q⊕G there exists ψ ∈ AutLL such that Pψ = Q.

(v) Let M2 be solvable and N2 be the nilpotent radical of M2. Then there
exists a torus T2 such that M2 = T2 ⊕ N2 if and only if there exists an
invariant torus T in L such that L = T ⊕ N, where N is the nilpotent
radical of L.

Moreover, for every two tori T2 and Q2 such that M2 = T2⊕N2 = Q2⊕N2

there exists φ ∈ Autk(M2) such that T φ2 = Q2 if and only if for every two
invariant tori T and Q such that L = T⊕N = Q⊕N there exists ψ ∈ AutLL
such that Tψ = Q.

Proof. (i) LetM be a solvable Malcev algebra. Then Inder(M) is a solvable
Lie algebra. Hence the Lie algebra with triality L = G(M) is solvable too.
If a Malcev algebra M has a solvable ideal I then GM (I) is a solvable ideal
in L. It follows from this that the Malcev algebra M is semisimple if L is
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semisimple. If J is a solvable ideal of L then P =
∑
g∈S3

Jg is a solvable
invariant ideal of L and F(P ) is a solvable ideal of M. If F(P ) = 0 then
P ⊆ L0 and hence P ⊆ AnnL0L2 = 0.

The other items of this Theorem are simple consequences of the defini-
tions. 2

As a Corollary we can obtain the following Theorem.

Theorem 3 Let M be a Malcev algebra over an algebraicly closed field k of
characteristic 0.

Then
(i) M is semisimple if and only if M is a direct sum of Lie simple algebras

and Malcev simple algebras of dimension 7.
(ii) Let G be the solvable radical of M. Then there exists a semisimple

subalgebra P such that M = P ⊕G.
Moreover, for every two semisimple subalgebras P and Q such that M =

P ⊕G = Q⊕G there exists φ ∈ Autk(M) such that P φ = Q.
(iii) Let M be solvable. Then there exists a solvable almost algebraic

Malcev algebra R such that M is a subalgebra of R. If R is an arbitrary
almost algebraic solvable Malcev algebra and N is the nilpotent radical of R
then there exists a torus T such that R = T ⊕N.

Moreover, for every two tori T and Q such that R = T ⊕ N = Q ⊕ N
there exists φ ∈ Autk(R) such that T φ = Q.

Proof. (i) Let M be a semisimple Malcev algebra and A = G(M) be the
corresponding Lie algebra with triality. By Theorem 2, A is semisimple and
A = A1⊕...⊕An. It is clear that for g ∈ S3, we have Agi = Ag(i). Hence every
invariant minimal ideal J of A has the form J = Ai ⊕ Aj ⊕ Ak or J = Ai.
In the first case we have the Lie algebra with triality from Example 3. That
is, that the corresponding ideal in M is a Lie direct summand. We prove
that in the second case Ai is the simple Lie algebra of type D4 and S3 is the
group of diagram automorphisms. Note that if λ ∈ S3 with λ3 = 1, then
λ is not an inner automorphism. Indeed, if λ were an inner automorphism
then there would exist a Cartan subalgebra H in Ai such that hλ = h for
h ∈ H. But Ai would be a Lie algebra with triality hence hg = h, for all
g ∈ S3 and h ∈ H. Let Ai =

∑
α⊕Aα be the Cartan decomposition of Ai

with A0 = H. Then Aα = keα, α 6= 0, and egα = β(g)eα, β(g) ∈ k, g ∈ S3. It
follows from this that S3 would be commutative, a contradiction. However
the group of outer automorphisms Out(Ai) = Aut(Ai)/InAut(Ai) is the
group of diagram automorphisms [19] and the unique simple Lie algebra
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with non-commutative group of outer automorphisms is an algebra of type
D4. In this case the corresponding Malcev algebra has dimension 7 (see
Examples 5 and 6).

To prove item (ii) we need the following Lemma.

Lemma 4 [26] Let S be a finite group of automorphisms of a finite di-
mensional Lie algebra L and |S| 6= 0 (mod(char(k))), where char(k) is the
characteristic of the underlying field k.

(i) If L has a Levi factor then L has an S-invariant Levi factor.
(ii) If L is a complete solvable Lie algebra, then there exists an S-

invariant torus T such that L = T ⊕ N, where N is the nilpotent radical
of L.

Proof. Let P be a Levi factor of L. Then P ' L/G where G is the radical of
L. Since G is S-invariant, S acts on P. Fix an embedding φ : P → L. Define
ψ(p) =

∑
g∈S φ(pg)g

−1
. It is not difficult to prove that ψ is an embedding

and ψ(P ) is an invariant Levi factor.
Item (ii) of Lemma 3 can be proved in the same way. 2

Now item (ii) of Theorem 2 is a corollary of Lemma 3 and Taft’s Theorem
(see [27], Theorem 4).

Let A be a solvable finite dimensional Lie algebra with triality and Ã
be the completion of A. It is clear that S acts on Ã and we prove that
Ã is an algebra with triality. Denote by N and Ñ the nil-radicals of A
and Ã respectively and note that N and Ñ are S-invariant. Hence, by the
construction of the completion we have an S-isomorphism

A/N ' Ã/Ñ . (30)

It follows from Lemma 3 that Ã has an S-invariant torus T such that Ã =
T ⊕ Ñ and it follows from (30) that the S-module T is of type Λ. From
the construction of Ã we have that for any x ∈ Ñ there exists t ∈ T such
that t − x ∈ A. Hence Ñ and Ã are S-modules of type Λ. It is clear that
the Malcev algebra G(Ã) is almost algebraic and contains M. Moreover,
G(Ã) = G(T )⊕ G(Ñ). 2

Note that this Theorem contains the main results of the following papers:
[1],[2],[14],[15],[22],[25].

As last application of the functors F and G to the theory of Malcev
algebras we prove that every Malcev algebra over a field of characteristic
p > 3 may be embedded in a Malcev p-algebra. Note that the usual definition
of Lie p-algebra (see, for example, [19]) may be applied to a binary Lie
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algebra since for the definition we need only a fact that any two generated
subalgebra is a Lie algebra.

Proposition 12 Let M be a Malcev algebra and P be a Lie algebra with
triality over a field k of characteristic p > 3. Then there exists a Malcev
p-algebra Mp and a Lie trial-p-algebra Pp such that M is an ideal of Mp and
P is an invariant ideal of Pp. Moreover, M2 ⊆Mp and P 2 ⊆ Pp.

Proof. The above statement for Malcev algebras is a consequence of the
analogous statement for Lie algebras with triality and we have to prove
only the Lie part of this Proposition. Let U(P ) be the universal enveloping
algebra of P, and Q be the p-closure of P in U(P ). In other words Q is
the minimal p-subalgebra of Lie algebra U(P )(−) that contains P . Q has
a basis v1, ..., vn where vi ∈ P or vi = xp

m
, x ∈ P. It is clear that every

automorphism φ of P has extension φ1 ∈ AutkQ. Hence S3 acts on Q, via:
(xp

m
)φ = (xφ)p

m
. Thus we have to prove that the S3-module Q/P has no

one dimensional antisymmetric submodules. If kb were an one dimensional
S3-module, then kbp and kb would be isomorphic S3-modules. If kx⊕ky were
two dimensional irreducible S3-module and xp, yp are linearly independent
then kxp ⊕ kyp would be an irreducible S3-module too. Suppose that yp =
αxp and xσ = y, yρ = −x − y. Then α = ±1. On the other hand (yp)ρ =
−xp − yp = (αxp)ρ = αyp. Since the characteristic of the field k is not 3, it
follows that xp = yp = 0. Now we can take every invariant ideal I in Q such
that I ∪ P = 0 and put Pp = Q/I. 2

Corollary 3 Let M be a Malcev algebra over a field of characteristic p > 3.
Then M satisfies the following identity

(xy.z)tp + (yz.tp)x+ (ztp.x)y − (xtp.y)z = xz.ytp,

where xtp denotes xRpt .

5 Applications of the functors G and F to the the-
ory of Lie algebra with triality

In this section we prove that in some sense every Lie algebra with triality
has an invariant ideal which is a trivial algebra with triality (see Definition
4) and its factor algebra is an algebra with triality of type D4 (see Example
4).
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An algebra A is perfect if A2 = A. Every finite dimensional Lie algebra
A has a unique perfect ideal Aω such that A/Aω is a solvable algebra. It is
clear that Aω = ∩iA(i).

Definition 6 Let A = A0⊕A2 be a Lie algebra with triality and let T (A)1 =
{x ∈ A2 | xσ = x, ∀y ∈ A2 : ((xy)2y)2 − ((xyσ)2yσ)2 − (x(yyσ)2)2 = 0}.
Then the space T (A) = T (A)0 ⊕ T (A)2, where T (A)2 = T (A)1 ⊕ T (A)ρ1,
T (A)0 = (T (A)2A)0, is called the T-centre of A.

This definition seems to be absolutely artificial, but below we prove that it
is analogous to the notion of Lie centre in the theory of Malcev algebras.
Recall that the Lie centre of a Malcev algebra M is the space L(M) = {n ∈
M | J(n, x, y) = 0,∀x, y ∈M}.

Proposition 13 Let A be a Lie algebra with triality and T (A) be the T-
centre of A. Then F(T (A)) is the Lie centre of the Malcev algebra F(A).
Moreover, T (A) is an invariant ideal of A wich is trivial as Lie algebra with
triality.

Proof. Let A = A0 ⊕ M ⊗ (kv ⊕ kw). Then for x ∈ T1(A) and y ∈
M ⊗ (kv ⊕ kw) we have x = n⊗ (v + w), y = p⊗ v + q ⊗ w and

((xy)2y)2 − ((xyσ)2yσ)2 − (x(yyσ)2)2 =

(np · p⊗ (v + w)− np · q ⊗ w − nq · p⊗ v + nq · q ⊗ (v + w))/9+

(−nq · q ⊗ (v + w) + nq · p⊗ w + np · q ⊗ v − np · p⊗ (v + w))/9+

(n(pq)⊗ w + n(qp)⊗ v)/9 =

{((np)q + (pq)n+ (qn)p)⊗ (v − w)}/9 = 0.

Hence n ∈ L(M). Since L(M) is an ideal of M then T (A) = GM (L(M)) is
an invariant ideal of A. 2

As a Corollary of Propositions 10 and 13 we have

Corollary 4 Let A be a normal Lie algebra with triality. Then A is trivial
if and only if T (A) = A.

Recall that we denote by NG the Z2-variety defined by Z2-identities (8).
In [16] we proved the following Theorem.
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Theorem 4 Let Γ be the algebra of Example 2. Then the Lie centre of a
perfect finite dimensional Malcev algebra M over an algebraically closed field
of characteristic 0 is zero if and only if M ' B2Γ, where B = B0⊕B1 ∈ NG
and B0 = B2

1 .

Let B be a free algebra of the Z2-variety NG with odd generators
{x1, x2, ...}. Then B = B0 ⊕ B1 and B0 = B2

1 . In [16] we proved the fol-
lowing Lemma.

Lemma 5 The algebra B0 is a commutative associative algebra with gener-
ators {aij = −aji | 1 ≤ i < j} and relations

aijakp + ajkaip + akiajp = 0. (31)

Moreover, the proper words form a basis of B where, by definition, a
word w = ai1j1ai2j2 · ... · aimjm ∈ B0 is proper if

1) i1 ≤ i2 ≤ ... ≤ im ≤ j = min{jn | 1 ≤ n ≤ m};

2) If ia < ib < ic then ja < jb < jc does not hold.

A word w = ai1j1ai2j2 · ... · aimjmxk ∈ B1 is proper if
1) i1 ≤ i2 ≤ ... ≤ im ≤ j = min{jn | 1 ≤ n ≤ m};

2) If k < im and ia < ib < ic then ja < jb < jc does not hold;

3) If im ≤ k, then k ≤ jm and
i1 ≤ i2 ≤ ... ≤ im ≤ jp ≤ ... ≤ j1, k < jp+1 ≤ ... ≤ jm,
where ip+1 = ... = im = k and ip < k, p ≤ m.

Corollary 5 If w, v ∈ B0 are proper words then the words wa1n, vx1 and
vx2 are proper words too if w = ai1j1ai2j2 · ... · aimjm and max{jp | 1 ≤ p ≤
m} ≤ n.

Lemma 6 With the above notations we have
1. Every word on the generators {aij = −aji | 1 ≤ i < j} is not a divisor

of zero in B0.
2. The generators x1 and x2 are linearly independent over B0.

Proof. 1. It is enough to prove that any generator aij is not a divisor of zero
in B0. If aij were a divisor of zero in B0 then aij would be a divisor of zero in
some subalgebra Cn of B with finite generators {aij = −aji | 1 ≤ i < j ≤ n}.
Let v ∈ Cn and vaij = 0. Suppose that aij = a1,n. We can order the set of
proper words, for instance, lexicographically. By Lemma 5, it follows that,
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for arbitrary proper words w1 > w2, we have that w1a1n and w2a1n are
proper words too. Moreover, w1a1n > w2a1n. If w is the maximal proper
subword in v then, from va1n = 0, we have that wa1n = 0, a contradiction.
To finish the proof it is enough to note that any two arbitrary elements aij
and apq are conjugate in Aut(B0). Indeed, we have in the algebra B : aij =
xixj . As the elements {x1, x2, ...} are a set of free generators of B then for
any matrix P = (αij) there exists φ ∈ Aut(B) such that φ(xi) =

∑
j αijxj .

It is clear that Bφ
0 = B0 and some automorphism of this type conjugates

the elements aij and apq.
2. Suppose that vx1 + wx2 = 0, for some v, w ∈ B0. Using Lemma 5 as

above, we can obtain from this that v1x1 +w1x2 = 0, for some proper words
v1 and w1. But this is impossible, since v1x1 and w1x2 are proper different
words, by Corollary 4. 2

Denote by R the k-algebra with generators {aij , a−1
ij | 1 ≤ i < j} and

relations (31), and denote by T ∈ GN the algebra which corresponds to
the simple 7-dimensional Malcev algebra. We have from [16], that T =
T0 ⊕ T1, T0 = ke, T1 = kx⊕ ky, e2 = e, ex = x, ey = y, xy = e.

Lemma 7 With the above notations,

R⊗B0 B ' R⊗k T.

Proof. Define a morphism ψ : R⊗k T → R⊗B0 B by the formula

ψ(αe+ βx+ γy) = α+ βx1 + γa−1
12 x2,

where α, β, γ ∈ R. By Lemma 5, it follows that kerψ = 0. By (31), for i > 2,
we have xi = x1a2ia

−1
12 + x2a1ia

−1
12 . Hence Imψ = R⊗B0 B. 2

Since (R⊗k T )2Γ ' R⊗k (T2Γ) and (R⊗B0 B)2Γ ' R⊗B0 (B2Γ), by
Lemma 6, we have

R⊗B0 (B2Γ) ' R⊗k (T2Γ). (32)

Now we can prove the main result of this section.

Theorem 5 Let A be a finite dimensional perfect Lie algebra with triality
over an algebraically closed field k of characteristic 0.

Then, with the above notations, we have
1. L(A/L(A)) = 0.
2. There exists an S-invariant B0-subalgebra F in the Lie algebra with

triality R ⊗k D4 such that A is a homomorphic image of F if L(A) = 0.
Moreover, F does not depend on A.
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Proof. Let M2 = F(A) be the corresponding Malcev algebra. Since A is
perfect, M2 is perfect too. By Lemma 5 [16], it follows that L(M2/L(M2)) =
0; hence L(A/L(A)) = 0.

Suppose that L(A) = L(M2) = 0. Then by Proposition 1 [16] one gets
that M2 is a homomorphic image of B2Γ. By (32) we have that B2Γ is a
B0-subalgebra of R⊗k (T2Γ). But this Malcev algebra corresponds to a Lie
algebra of the type D4 over R (see Example 5.) 2

Let M be the free Malcev algebra with a countable set of free generators.
Then F = G(M) is a free Lie algebra with triality in the following sense.
For every normal Lie algebra with triality L = L0 ⊕ L2 there exists an
epimorphism G(M) → L. We can construct F as follows. Let P be the
free Lie algebra with free generators {x1, y1, x2, y2, ...}. The group S3 acts
on P by the rule xσi = yi, x

ρ
i = yi, y

ρ
i = −xi − yi, i = 1, 2, ... . Then

P = P0 ⊕ P1 ⊕ P2, where P0 = {x ∈ P |xλ = x, ∀λ ∈ S3}, P1 = {x ∈
P |xσ = −x, xρ = x}, and P2 is the sum of 2-dimensional irreducible S3-
modules. We denote by I the ideal of P generated by P1. Then F = P/I.

In the series of papers [4]-[11], V. Filippov developed the deep theory
of free Malcev algebras. As a rule it is not difficult to reduce the results of
Filippov about Malcev algebras to Theorems about Lie algebra with triality.
For example, Filippov proved [9] that Z(M) = {x ∈ M |xM = 0} 6= 0.
Hence we have that Z(F ) 6= 0.

From the main result of [6] we are obtain:

Theorem 6 Let A be a simple central Lie algebra with triality over an al-
gebraicly closed field of characteristic 6= 2, 3. Then A is a finite dimensional
simple Lie algebra of type D4.

Let A be a Lie algebra with triality and V be an A-module. Then
by definition V is an A-module with triality if the extension A⊕ V is a Lie
algebra with triality, where V is an Abelian invariant ideal. It is clear that if
V is an A-module with triality then F(V ) is a Malcev module over F(A) and
conversely. There exists an example of finite dimensional nilpotent Malcev
algebra Q [11] such that Q has no exact finite dimensional Malcev modules.
Hence we have an example of finite dimensional nilpotent Lie algebra with
triality G(Q) without exact finite dimensional modules with triality.

I wish to express my gratitude to Professor A. Glass for the help in prepa-
ration of this paper and to referee for many usefull remarks that improve
the article,
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