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1 Introduction

Lie algebras over fields of characteristic 0 or p > 3 were recently classified, but

over field of characteristic 2 or 3 there are only partial results up to now. The

main result on this matter was obtained by S. Skryabin [Sk]. He proved that any

finite dimensional simple Lie algebra over a field of characteristic 2 has toroidal

rank ≥ 2.

By definition a Lie algebra over a field of characteristic 2 is a 2-algebra if

there exists a map L → L, x → x[2] such that (x + x[2])[2] = x[2] + x[4], x ∈ L,

(x+ y)[2] = x[2] + y[2] + [x, y], ∀x, y ∈ L.

Recall that the toroidal rank t(L) of a Lie 2-algebra without center L over

a field k of characteristic 2 is the maximal dimension of an abelian subalgebra

with basis {t1, ..., tn} such that t
[2]
i = ti, i = 1, ..., n, where n = t(L).

The next step in the classification of such Lie algebras was done in [GP] where

the simple Lie 2-algebras of finite dimension over a field k of characteristic 2 and
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toroidal rank 2 were classified. The toroidal rank 3 case is much more difficult.

For this case the following is still an open problem.

Problem. Classify the simple Lie algebras (or 2-algebras) over a field k

of characteristic 2 and toroidal rank 3 which contains a Cartan subalgebra of

dimension 3.

This Problem is easier than the classification of the simple Lie algebras over

a field k of toroidal rank 3, but far away from being trivial. The main obstacle

is the lack of examples.

In the first part of this work we construct an example of a simple Lie algebra of

dimension 31 and of toroidal rank 3. We expect that this example will be useful

for the construction of other simple Lie algebra of toroidal rank 3 containing a

CSA of dimension 3. In the last section a serie of new simple Lie algebras over

k was constructed.

2 A First Example

We first recall the construction of a simple Lie 2-algebra L of dimension 31 which

was made in [GP]. A basis of L has two partsW e V such that |W | = 15, |V | = 16

and

W = {e1, e2, e3, e4, f1, f2, f3, f4; t, h, m12,m24,m
3
2,m

3
1,m

4
2} (1)

V = {σ|σ ⊆ I = (1234)}. (2)

The multiplication of these basis elements are given by the following formulae:

[t, h] = 0, [x, h] = 0, [x, t] = x, for x ∈ {e1, e2, e3, e4, f1, f2, f3, f4},

[x, t] = [x, h] = 0, for x ∈ T = {m12,m24,m
3
2,m

3
1,m

4
2}, [T, T ] = 0,

[y, h] = y, [y, t] = |y|y, for y ∈ V,

[ei, ej] = 0, [ei, fj] = δijh, ∀ (ij) 6= (32), [e3, f2] = m12,
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[fi, fj] = 0, ∀ (ij) 6= (12), [f1, f2] = m3
2.

The products [T, V ] e [T,W ] are given by

[fi,m
j
i ] = fj, if i < j, [fi,mij] = ej, [ej,m

j
i ] = ei, if i < j,

[σ,mj
i ] = (σ ∪ j) \ i, for i ∈ σ, j 6∈ σ,

[σ,mij] = σ \ (ij), for (ij) ⊆ σ

and the other products [T, V ], [T,W ] are equal to zero.

Besides we have

[∅, f1] = 1, [∅, f2] = 2, [∅, f3] = 3, [∅, f4] = 4

[1, f1] = 0, [1, f2] = 12, [1, f3] = 13, [1, f4] = 14,

[2, f1] = 12, [2, f2] = 0, [2, f3] = 23, [2, f4] = 24,

[3, f1] = 13, [3, f2] = 23, [3, f3] = 0, [3, f4] = 34,

[4, f1] = 14, [4, f2] = 24, [4, f3] = 34, [4, f4] = 0,

[12, f1] = 0, [12, f2] = 3, [12, f3] = 123, [12, f4] = 124,

[13, f1] = 0, [13, f2] = 123, [13, f3] = 0, [13, f4] = 134,

[14, f1] = 0, [14, f2] = 124, [14, f3] = 134, [14, f4] = 0,

[23, f1] = 123, [23, f2] = 0, [23, f3] = 0, [23, f4] = 234,

[24, f1] = 124, [24, f2] = 0, [24, f3] = 234, [24, f4] = 0,

[34, f1] = 134, [34, f2] = 234, [34, f3] = 0, [34, f4] = 0,

[123, f1] = 0, [123, f2] = 0, [123, f3] = 0, [123, f4] = I,

[124, f1] = 0, [124, f2] = 34, [124, f3] = I, [124, f4] = 0,

[134, f1] = 0, [134, f2] = I, [134, f3] = 0, [134, f4] = 0,

[234, f1] = I, [234, f2] = 0, [234, f3] = 0, [234, f4] = 0

[I, f1] = 0, [I, f2] = 0, [I, f3] = 0, [I, f4] = 0.

[σ, ei] = σ \ i, for i ∈ σ; [σ, ei] = 0, for i 6∈ σ.
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π · ψ =



fi, π ∩ ψ = i, π ∪ ψ = I;

ei, π ∩ ψ = ∅, π ∪ ψ = I \ i;

h+ |π|t, π ∩ ψ = ∅, π ∪ ψ = I.

[12, 24] = m12, [I, 12] = m3
2, [12, 124] = e2,

[2, 124] = m12, [123, 124] = m3
2,

and the other products are [σ, µ] = 0, for σ, µ ⊆ I.

It is easy to see that dimL = 31 and dimL2 = 28. Now we define a 2-

operation on the algebra L given by

f
[2]
2 = m3

1, (12)[2] = m24, (124)[2] = m4
2, t

[2] = t, h[2] = h,

and a[2] = 0 for all other a ∈ V ∩W .

The algebra L has a subalgebra K with a basis {t, h,m12,m24,m
4
2,m

3
2,m

3
1}.

This Cartan subalgebra is not toroidal and has toroidal rank 2. On the other

hand, the algebra L has another Cartan subalgebra H with basis {x, y = x[2], z =

x[4]}, where x = t + m3
1 + (12) + (124). It is an easy calculation to prove that

z[2] = x[8] = z + x. We note that H ∩ L2 = 0, whence L = H ⊕ L2.

Let F be the splitting field of the polynomial p(s) = s7 + s3 + 1 over F2, the

field of two elements. It is clear that |F | = 27. Denote by Λ = {λ1, ..., λ7} the set

of all roots of p(s). Then Λ ∪ {0} is an additive group isomorphic to Z3
2.

The first goal is to find a Cartan decomposition of the algebra L in relation

to the subalgebra H. For this we consider the adjoint action of x on L and

calculate the eigenspaces Ai = {v ∈ L/ [v, x] = λi v }. The table below shows
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the action of x on the basis elements.

v [v, x] v [v, x]

e1 e1 + (2) + (24) (2) (2) + m12

e2 e2 + (1) + (14) (3) (3) + e4 + t + h

e3 e1 + e3 (4) (4) + e3

e4 e4 + (12) (12) (23) + e2

f1 f1 + f3 (13) f1

f2 f2 + (3) + (34) (14) (34)

f3 f3 + (123) + (1234) (23) f2

f4 f4 + (124) (24) m12

h (12) + (124) (34) t + f4

t (124) (123) (123) + m3
2

m3
2 (13) + (134) (124) (234) + (124) + e2

m12 ∅ + (4) (134) (134) + f1

∅ e3 (234) (234) + f2

(1) (1) + (3) (1234) m3
2

If v = αi ei +
4∑

j=1

βj fj + θ h + ε t + η m3
2 + δ m12 +

∑
σ⊆{1,2,3,4}

dσ σ is a

generic element of L then, for each λi ∈ F , the eigenspace Ai has the following
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basis (here λ = λi ):

ωi
1 = λ2(λ+ 1)e1 + λ2(λ+ 1)2e3 +m12 + λ−1∅+ λ2(2) + (λ+ 1)−1(4)

+ λ(λ+ 1)(24),

ωi
2 = λ2(λ+ 1)2f1 + λ2(λ+ 1)f3 +m3

2 + λ−1(13) + λ2(123) + (λ+ 1)−1(134)

+ λ(λ+ 1)(1234), (3)

ωi
3 = λ2(λ+ 1)2e2 + λ(λ+ 1)−1e4 + λ(λ+ 1)2f2 + t+ h+ λ2(λ+ 1)(1)

+ λ(3) + ((λ+ 1)λ)−1(12) + λ(λ+ 1)2(14) + (λ+ 1)3λ(23),

ωi
4 = (λ+ 1)λ3e2 + λ3f2 + λ(λ+ 1)−1f4 + t+ λ3(1) + (λ+ 1)λ2(14)

+ λ(34) + (λ+ 1)−2(124) + (λ+ 1)λ3(234).

Theorem 2.1. The algebra L described above has the following Cartan decom-

position

L = H ⊕
7∑

i=1

⊕Ai,

where Ai = {v ∈ L|[v, x] = λiv} has a basis {ωi
1, ω

i
2, ω

i
3, ω

i
4} given by (3).Moreover,

if λi + λj = λk, then the basis elements multiply as follows

[ωi
1, ω

j
2] = λ2

iλ
2
jλ

3
k(λk + 1)ωk

3 +
λi(λi + 1)λj(λj + 1)

λ2
k(λk + 1)

ωk
4 ∈ F (ωk

3 , ω
k
4),

[ωi
1, ω

j
3] = λi(λi + 1)λj(λj + 1)2λk(λk + 1)ωk

1 ∈ F (ωk
1),

[ωi
1, ω

j
4] = λ2

iλ
3
jλ

2
k ω

k
1 ∈ F (ωk

1),

[ωi
2, ω

j
3] = λi(λi + 1)2λj(λj + 1)λk(λk + 1)ωk

2 ∈ F (ωk
2),

[ωi
2, ω

j
4] = λ2

iλ
3
jλ

2
k ω

k
2 ∈ F (ωk

2),

[ωi
3, ω

j
4] =

λiλ
3
jλ3

k(λk+1)

λi+1
ωk

3 +
λiλ

6
j(λj + 1)3

(λi + 1)(λk + 1)
ωk

4 ∈ F (ωk
3 , ω

k
4),

[ωi
1, ω

j
1] = [ωi

2, ω
j
2] = 0,

[ωi
3, ω

j
3] = λ2

k(λk+1)2λ3
i (λi+1)2ωk

3 +
(λi + 1)[(λj + 1)3 + λ2

iλ
2
k]

λiλ3
k

ωk
4 ∈ F (ωk

3 , ω
k
4),

[ωi
4, ω

j
4] = λ3

iλ
3
jλk ω

k
4 ∈ F (ωk

4).

Proof: Note that [Ai, Ai] = 0, as the nilradical of H is zero because H has

toroidal rank 3. The proof goes through easy but lengthy calculations with the
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basis elements, verifying that the identities listed above hold.

Note that the basis {ωi
1, ω

i
2, ω

i
3, ω

i
4} of each subspace Ai is not defined over the

field Z2, but over F . By Theorem 13 [J] (p. 192) the Cartan subalgebra H has a

toroidal basis {t1, t2, t3}, that is, t
[2]
i = ti, for i = 1, 2, 3. Hence, for each v ∈ Ai,

we have [v, tj] = a v, where a ∈ Z2 and it does not depend on v, only on i e j.

To find such a Z2-basis is not and easy task.

It is also easy to prove that

(ωi
1)

[2] = (ωi
2)

[2] = 0, [ωi
1, ω

j
2]

[2], (ωi
3)

[2], (ωi
4)

[2] ∈ H,

hence A
[2]
i ⊆ H and A

[2]
i = ϕi(Ai) where ϕi : Ai −→ H is such that y 7−→ y[2]

and ker ϕi =< ωi
1, ω

i
2 > , hence dimϕi(Ai) = 2.

From now on we use the following notation: dα
α+β = [ωα

1 , ω
β
2 ] . Note that

dα
α+β = dβ

α+β and consider the algebra

S =< dα
α+β /α, β ∈ {λi | i = 1, . . . , 7} >

where the generators satisfy the following relations

[dβ
α, d

α
λ ] =

 dα
α+λ if λ 6∈ {α, β, α+ β}

0 if λ ∈ {α, β, α+ β}

and if {α, β, λ} and {α, τ, λ} are linearly independent sets, then

[dβ
α, d

τ
λ] =

 dβ
α+λ if τ = β or β = λ

dβ+α
α+λ if τ = α+ β or τ = α+ β + λ .

Proposition 2.1. The algebra S described above is a simple Lie algebra defined

over a field of two elements.

Note that S is not a new simple Lie algebra, it is a special Lie algebra of

Cartan type.
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3 A more generic construction

On the construction of the algebra made in the first section, a pattern was iden-

tified which motivated a construction of a more generic algebras as we describe

in this section.

Let Fn be the finite field of 2n elements and U = F 3
n . Define a ”determinant

form”(anti-symmetric and trilinear) ( ) : U ∧ U ∧ U −→ F2 by a ∧ b ∧ c 7−→

det(a, b, c).

Let V and W be vector spaces over k with bases B = {a | a ∈ U∗} and B =

{a | a ∈ U∗}, respectively, where U∗ = U \ {0}. Note that dim V = dim W =

23n − 1. Let An be the algebra generated by the transformations of V ⊕ W

defined on the basis B∪B by v db
a = (a∧ b∧v) (v+a) v db

a = (a∧ b∧v) v + a .

Lemma 3.1. For a, b, c, g ∈ B, with a+ c 6= 0, there exists s ∈ B such that

[db
a, d

g
c ] = ds

a+c = db
a d

g
c + dg

c d
b
a (4)

Proof: For all y ∈ B, we have on one hand

(y db
a) d

g
c + (y dg

c) d
b
a = (y ∧ a ∧ b) (y + a) dg

c + (y ∧ c ∧ g) (y + c) db
a

= (y ∧ a ∧ b) ((y + a) ∧ c ∧ g) (y + a+ c)

+ (y ∧ c ∧ g) ((y + c) ∧ a ∧ b) (y + a+ c)

= [(y ∧ a ∧ b) (a ∧ c ∧ g) + (y ∧ c ∧ g) (c ∧ a ∧ b)] (y + a+ c).

On the other hand, y ds
a+c = (y ∧ (a + c) ∧ s) (y + a + c) . Note that both

scalars (operators) in front of the vector (y + a + c) are linear on y and a + c

belongs to both kernels and the images of the other basis vectors are the same.

Besides note that s is not unique as s+ a+ c also satisfies (4).

Corollary 3.1. The algebra Sn of transformations < db
a | a, b ∈ B > is a simple

Lie algebra over k of dimension 2(23n − 1).
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Consider Ln = V ⊕A⊕W and define the operations [a, b] = da
a+b = [a, b]

for all a, b ∈ B, a, b ∈ B, v ∈ V, w ∈ W . Moreover, V 2 = W 2 = 0, that is,

[v1, v2] = 0 and [w1, w2] = 0, for all vi ∈ V, wi ∈ W .

Lemma 3.2. For the algebra A and the vector spaces V and W described above,

we have

[V, W ] · A = [V · A, W ] + [V, W · A] . (5)

Proof: To prove (5) we will show that

[[v, db
a], w] + [[db

a, w], v] + [[w, v], db
a] = 0. (6)

The left hand side of (6) is equal to (v∧a∧ b)[v+a, w] + (a∧ b∧w)[a+w, v] +

[dv
v+w, d

b
a] which applied to a vector u ∈ V gives us (below X = u+ v+ a+w )

(v ∧ a ∧ b)u dw
v+a+w + (a ∧ b ∧ w)u dv

a+w+v + (u dv
v+w) db

a + (u db
a) d

v
v+w =

(v ∧ a ∧ b) (u ∧ (v + a+ w) ∧ w)X + (a ∧ b ∧ w) (u ∧ (a+ w + v) ∧ v)X +

(u ∧ (v + w) ∧ v) (u+ v + w) db
a + (u ∧ a ∧ b) (u+ a) dv

v+w =

(v ∧ a ∧ b) (u ∧ (v + a) ∧ w)X + (a ∧ b ∧ w) (u ∧ (a+ w) ∧ v)X +

(u ∧ w ∧ v) ((u+ v + w) ∧ a ∧ b)X + (u ∧ a ∧ b) ((u+ a) ∧ w ∧ v)X

Now using linearity and anti-symmetry we can reduce the coefficient of X to

(v ∧ a ∧ b) (u ∧ a ∧ w)︸ ︷︷ ︸
(i)

+ (a ∧ b ∧ w) (u ∧ a ∧ v)︸ ︷︷ ︸
(ii)

+ (u ∧ a ∧ b) (a ∧ w ∧ v)︸ ︷︷ ︸
(iii)

. (7)

Now if v ∈< a, b > then (7) is equal to zero, so we can suppose that v 6∈< a, b >

and in this case (v ∧ a ∧ b) = 1 . Hence we need to prove that

(u ∧ a ∧ w) = (a ∧ b ∧ w) (u ∧ a ∧ v) + (u ∧ a ∧ b) (a ∧ w ∧ v). (8)

Note that both sides of (8) are linear on w , therefore, as {a, v, b} is a basis of

V it is enough to prove (8) for this basis, what is trivial.

As a corollary of this lemma we get:
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Theorem 3.1. The algebra Ln together with the operations described above is a

simple Lie algebra of dimension 4(23n − 1), with a basis given by the union of the

bases of V, W and An . The toroidal rank of Ln is 3n and L1 is isomorphic

to the Lie algebra of dimension 28 from the beginning of this paper.

Referências

[GM] Grishkov, A.N.,Guerreiro M. Simple classical Lie algebras in cha-

racteristic 2 and their gradations,I. International J. of Algebra and Game

Theory,

[GP] Grishkov, A.N.,Premet A. Lie algebras in characteristic 2 . , (to ap-

pear).

[J] Jacobson, N., Lie Algebras. Interscience Publishers, 1962.

[Pr] Premet A., Lie algebras without strong degeneration, Mat. Sb., V. 171

(1986),140-153.

[PS] Premet A., Strade H.Classifications of the finite dimensional simple Lie

algebras in prime characteristics.(submitted)

[Sk] Skryabin S., Toral rank one simple Lie algebras in low characteristics,

J.Algebra, V. 200 (1998), 650-700.

10


