New simple Lie algebras over fields of characteristic 2

Alexandre N. Grishkov*and Marinês Guerreiro ${ }^{\dagger}$

30 de junho de 2004

1 Introduction

Lie algebras over fields of characteristic 0 or $p>3$ were recently classified, but over field of characteristic 2 or 3 there are only partial results up to now. The main result on this matter was obtained by S. Skryabin [Sk]. He proved that any finite dimensional simple Lie algebra over a field of characteristic 2 has toroidal rank ≥ 2.

By definition a Lie algebra over a field of characteristic 2 is a 2 -algebra if there exists a map $L \rightarrow L, x \rightarrow x^{[2]}$ such that $\left(x+x^{[2]}\right)^{[2]}=x^{[2]}+x^{[4]}, x \in L$, $(x+y)^{[2]}=x^{[2]}+y^{[2]}+[x, y], \forall x, y \in L$.

Recall that the toroidal rank $t(L)$ of a Lie 2-algebra without center L over a field k of characteristic 2 is the maximal dimension of an abelian subalgebra with basis $\left\{t_{1}, \ldots, t_{n}\right\}$ such that $t_{i}^{[2]}=t_{i}, i=1, \ldots, n$, where $n=t(L)$.

The next step in the classification of such Lie algebras was done in [GP] where the simple Lie 2-algebras of finite dimension over a field k of characteristic 2 and

[^0]toroidal rank 2 were classified. The toroidal rank 3 case is much more difficult. For this case the following is still an open problem.

Problem. Classify the simple Lie algebras (or 2-algebras) over a field k of characteristic 2 and toroidal rank 3 which contains a Cartan subalgebra of dimension 3.

This Problem is easier than the classification of the simple Lie algebras over a field k of toroidal rank 3 , but far away from being trivial. The main obstacle is the lack of examples.

In the first part of this work we construct an example of a simple Lie algebra of dimension 31 and of toroidal rank 3 . We expect that this example will be useful for the construction of other simple Lie algebra of toroidal rank 3 containing a CSA of dimension 3. In the last section a serie of new simple Lie algebras over k was constructed.

2 A First Example

We first recall the construction of a simple Lie 2-algebra L of dimension 31 which was made in [GP]. A basis of L has two parts W e V such that $|W|=15,|V|=16$ and

$$
\begin{align*}
W & =\left\{e_{1}, e_{2}, e_{3}, e_{4}, f_{1}, f_{2}, f_{3}, f_{4} ; t, h, m_{12}, m_{24}, m_{2}^{3}, m_{1}^{3}, m_{2}^{4}\right\} \tag{1}\\
V & =\{\sigma \mid \sigma \subseteq I=(1234)\} \tag{2}
\end{align*}
$$

The multiplication of these basis elements are given by the following formulae:

$$
\begin{gathered}
{[t, h]=0,[x, h]=0,[x, t]=x, \text { for } x \in\left\{e_{1}, e_{2}, e_{3}, e_{4}, f_{1}, f_{2}, f_{3}, f_{4}\right\},} \\
{[x, t]=[x, h]=0, \text { for } x \in T=\left\{m_{12}, m_{24}, m_{2}^{3}, m_{1}^{3}, m_{2}^{4}\right\},[T, T]=0,} \\
{[y, h]=y,[y, t]=|y| y, \text { for } y \in V,} \\
{\left[e_{i}, e_{j}\right]=0,\left[e_{i}, f_{j}\right]=\delta_{i j} h, \forall(i j) \neq(32),\left[e_{3}, f_{2}\right]=m_{12},}
\end{gathered}
$$

$$
\left[f_{i}, f_{j}\right]=0, \forall(i j) \neq(12),\left[f_{1}, f_{2}\right]=m_{2}^{3}
$$

The products $[T, V]$ e $[T, W]$ are given by

$$
\begin{gathered}
{\left[f_{i}, m_{i}^{j}\right]=f_{j}, \text { if } i<j,\left[f_{i}, m_{i j}\right]=e_{j},\left[e_{j}, m_{i}^{j}\right]=e_{i} \text {, if } i<j,} \\
{\left[\sigma, m_{i}^{j}\right]=(\sigma \cup j) \backslash i, \text { for } i \in \sigma, j \notin \sigma,} \\
{\left[\sigma, m_{i j}\right]=\sigma \backslash(i j), \text { for }(i j) \subseteq \sigma}
\end{gathered}
$$

and the other products $[T, V],[T, W]$ are equal to zero.
Besides we have

$$
\begin{array}{llll}
{\left[\emptyset, f_{1}\right]=1,} & {\left[\emptyset, f_{2}\right]=2,} & {\left[\emptyset, f_{3}\right]=3,} & {\left[\emptyset, f_{4}\right]=4} \\
{\left[1, f_{1}\right]=0,} & {\left[1, f_{2}\right]=12,} & {\left[1, f_{3}\right]=13,} & {\left[1, f_{4}\right]=14,} \\
{\left[2, f_{1}\right]=12,} & {\left[2, f_{2}\right]=0,} & {\left[2, f_{3}\right]=23,} & {\left[2, f_{4}\right]=24,} \\
{\left[3, f_{1}\right]=13,} & {\left[3, f_{2}\right]=23,} & {\left[3, f_{3}\right]=0,} & {\left[3, f_{4}\right]=34,} \\
{\left[4, f_{1}\right]=14,} & {\left[4, f_{2}\right]=24,} & {\left[4, f_{3}\right]=34,} & {\left[4, f_{4}\right]=0,} \\
{\left[12, f_{1}\right]=0,} & {\left[12, f_{2}\right]=3,} & {\left[12, f_{3}\right]=123,} & {\left[12, f_{4}\right]=124,} \\
{\left[13, f_{1}\right]=0,} & {\left[13, f_{2}\right]=123,} & {\left[13, f_{3}\right]=0,} & {\left[13, f_{4}\right]=134,} \\
{\left[14, f_{1}\right]=0,} & {\left[14, f_{2}\right]=124,} & {\left[14, f_{3}\right]=134,} & {\left[14, f_{4}\right]=0,} \\
{\left[23, f_{1}\right]=123,} & {\left[23, f_{2}\right]=0,} & {\left[23, f_{3}\right]=0,} & {\left[23, f_{4}\right]=234,} \\
{\left[24, f_{1}\right]=124,} & {\left[24, f_{2}\right]=0,} & {\left[24, f_{3}\right]=234,} & {\left[24, f_{4}\right]=0,} \\
{\left[34, f_{1}\right]=134,} & {\left[34, f_{2}\right]=234,} & {\left[34, f_{3}\right]=0,} & {\left[34, f_{4}\right]=0,} \\
{\left[123, f_{1}\right]=0,} & {\left[123, f_{2}\right]=0,} & {\left[123, f_{3}\right]=0,} & {\left[123, f_{4}\right]=I,} \\
{\left[124, f_{1}\right]=0,} & {\left[124, f_{2}\right]=34,} & {\left[124, f_{3}\right]=I,} & {\left[124, f_{4}\right]=0,} \\
{\left[134, f_{1}\right]=0,} & {\left[134, f_{2}\right]=I,} & {\left[134, f_{3}\right]=0,} & {\left[134, f_{4}\right]=0,} \\
{\left[234, f_{1}\right]=I,} & {\left[234, f_{2}\right]=0,} & {\left[234, f_{3}\right]=0,} & {\left[234, f_{4}\right]=0} \\
{\left[I, f_{1}\right]=0,} & {\left[I, f_{2}\right]=0,} & {\left[I, f_{3}\right]=0,} & {\left[I, f_{4}\right]=0 .} \\
{\left[\sigma, e_{i}\right]=\sigma \backslash i, \text { for } i \in \sigma ;} & {\left[\sigma, e_{i}\right]=0,} & \text { for } i \notin \sigma .
\end{array}
$$

$$
\begin{gathered}
\pi \cdot \psi= \begin{cases}f_{i}, & \pi \cap \psi=i, \pi \cup \psi=I ; \\
e_{i}, & \pi \cap \psi=\emptyset, \pi \cup \psi=I \backslash i ; \\
h+|\pi| t, & \pi \cap \psi=\emptyset, \pi \cup \psi=I .\end{cases} \\
{[12,24]=m_{12},[I, 12]=m_{2}^{3},[12,124]=e_{2},} \\
{[2,124]=m_{12},[123,124]=m_{2}^{3},}
\end{gathered}
$$

and the other products are $[\sigma, \mu]=0$, for $\sigma, \mu \subseteq I$.
It is easy to see that $\operatorname{dim} L=31$ and $\operatorname{dim} L^{2}=28$. Now we define a 2 operation on the algebra L given by

$$
f_{2}^{[2]}=m_{1}^{3},(12)^{[2]}=m_{24},(124)^{[2]}=m_{2}^{4}, t^{[2]}=t, h^{[2]}=h,
$$

and $a^{[2]}=0$ for all other $a \in V \cap W$.
The algebra L has a subalgebra K with a basis $\left\{t, h, m_{12}, m_{24}, m_{2}^{4}, m_{2}^{3}, m_{1}^{3}\right\}$. This Cartan subalgebra is not toroidal and has toroidal rank 2. On the other hand, the algebra L has another Cartan subalgebra H with basis $\left\{x, y=x^{[2]}, z=\right.$ $\left.x^{[4]}\right\}$, where $x=t+m_{1}^{3}+(12)+(124)$. It is an easy calculation to prove that $z^{[2]}=x^{[8]}=z+x$. We note that $H \cap L^{2}=0$, whence $L=H \oplus L^{2}$.

Let F be the splitting field of the polynomial $p(s)=s^{7}+s^{3}+1$ over F_{2}, the field of two elements. It is clear that $|F|=2^{7}$. Denote by $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{7}\right\}$ the set of all roots of $p(s)$. Then $\Lambda \cup\{0\}$ is an additive group isomorphic to \mathbf{Z}_{2}^{3}.

The first goal is to find a Cartan decomposition of the algebra L in relation to the subalgebra H. For this we consider the adjoint action of x on L and calculate the eigenspaces $A_{i}=\left\{v \in L /[v, x]=\lambda_{i} v\right\}$. The table below shows
the action of x on the basis elements.

v	$[v, x]$	v	$[v, x]$
e_{1}	$e_{1}+(2)+(24)$	(2)	$(2)+m_{12}$
e_{2}	$e_{2}+(1)+(14)$	(3)	$(3)+e_{4}+t+h$
e_{3}	$e_{1}+e_{3}$	(4)	$(4)+e_{3}$
e_{4}	$e_{4}+(12)$	(12)	$(23)+e_{2}$
f_{1}	$f_{1}+f_{3}$	(13)	f_{1}
f_{2}	$f_{2}+(3)+(34)$	(14)	(34)
f_{3}	$f_{3}+(123)+(1234)$	(23)	f_{2}
f_{4}	$f_{4}+(124)$	(24)	m_{12}
h	$(12)+(124)$	(34)	$t+f_{4}$
t	(124)	(123)	$(123)+m_{2}^{3}$
m_{2}^{3}	$(13)+(134)$	(124)	$(234)+(124)+e_{2}$
m_{12}	$\emptyset+(4)$	(134)	$(134)+f_{1}$
\emptyset	e_{3}	(234)	$(234)+f_{2}$
(1)	$(1)+(3)$	(1234)	m_{2}^{3}

If $v=\alpha_{i} e_{i}+\sum_{j=1}^{4} \beta_{j} f_{j}+\theta h+\epsilon t+\eta m_{2}^{3}+\delta m_{12}+\sum_{\sigma \subseteq\{1,2,3,4\}} d_{\sigma} \sigma$ is a generic element of L then, for each $\lambda_{i} \in F$, the eigenspace A_{i} has the following
basis (here $\lambda=\lambda_{i}$):

$$
\begin{align*}
\omega_{1}^{i} & =\lambda^{2}(\lambda+1) e_{1}+\lambda^{2}(\lambda+1)^{2} e_{3}+m_{12}+\lambda^{-1} \emptyset+\lambda^{2}(2)+(\lambda+1)^{-1}(4) \\
& +\lambda(\lambda+1)(24) \\
\omega_{2}^{i} & =\lambda^{2}(\lambda+1)^{2} f_{1}+\lambda^{2}(\lambda+1) f_{3}+m_{2}^{3}+\lambda^{-1}(13)+\lambda^{2}(123)+(\lambda+1)^{-1}(134) \\
& +\lambda(\lambda+1)(1234) \tag{3}\\
\omega_{3}^{i} & =\lambda^{2}(\lambda+1)^{2} e_{2}+\lambda(\lambda+1)^{-1} e_{4}+\lambda(\lambda+1)^{2} f_{2}+t+h+\lambda^{2}(\lambda+1)(1) \\
& +\lambda(3)+((\lambda+1) \lambda)^{-1}(12)+\lambda(\lambda+1)^{2}(14)+(\lambda+1)^{3} \lambda(23), \\
\omega_{4}^{i} & =(\lambda+1) \lambda^{3} e_{2}+\lambda^{3} f_{2}+\lambda(\lambda+1)^{-1} f_{4}+t+\lambda^{3}(1)+(\lambda+1) \lambda^{2}(14) \\
& +\lambda(34)+(\lambda+1)^{-2}(124)+(\lambda+1) \lambda^{3}(234) .
\end{align*}
$$

Theorem 2.1. The algebra L described above has the following Cartan decomposition

$$
L=H \oplus \sum_{i=1}^{7} \oplus A_{i}
$$

where $A_{i}=\left\{v \in L \mid[v, x]=\lambda_{i} v\right\}$ has a basis $\left\{\omega_{1}^{i}, \omega_{2}^{i}, \omega_{3}^{i}, \omega_{4}^{i}\right\}$ given by (3). Moreover, if $\lambda_{i}+\lambda_{j}=\lambda_{k}$, then the basis elements multiply as follows

$$
\begin{aligned}
& {\left[\omega_{1}^{i}, \omega_{2}^{j}\right]=\lambda_{i}^{2} \lambda_{j}^{2} \lambda_{k}^{3}\left(\lambda_{k}+1\right) \omega_{3}^{k}+\frac{\lambda_{i}\left(\lambda_{i}+1\right) \lambda_{j}\left(\lambda_{j}+1\right)}{\lambda_{k}^{2}\left(\lambda_{k}+1\right)} \omega_{4}^{k} \in F\left(\omega_{3}^{k}, \omega_{4}^{k}\right),} \\
& {\left[\omega_{1}^{i}, \omega_{3}^{j}\right]=\lambda_{i}\left(\lambda_{i}+1\right) \lambda_{j}\left(\lambda_{j}+1\right)^{2} \lambda_{k}\left(\lambda_{k}+1\right) \omega_{1}^{k} \in F\left(\omega_{1}^{k}\right),} \\
& {\left[\omega_{1}^{i}, \omega_{4}^{j}\right]=\lambda_{i}^{2} \lambda_{j}^{3} \lambda_{k}^{2} \omega_{1}^{k} \in F\left(\omega_{1}^{k}\right),} \\
& {\left[\omega_{2}^{i}, \omega_{3}^{j}\right]=\lambda_{i}\left(\lambda_{i}+1\right)^{2} \lambda_{j}\left(\lambda_{j}+1\right) \lambda_{k}\left(\lambda_{k}+1\right) \omega_{2}^{k} \in F\left(\omega_{2}^{k}\right),} \\
& {\left[\omega_{2}^{i}, \omega_{4}^{j}\right]=\lambda_{i}^{2} \lambda_{j}^{3} \lambda_{k}^{2} \omega_{2}^{k} \in F\left(\omega_{2}^{k}\right),} \\
& {\left[\omega_{3}^{i}, \omega_{4}^{j}\right]=\frac{\lambda_{i} \lambda_{j}^{3} \lambda_{k}^{3}\left(\lambda_{k}+1\right)}{\lambda_{i}+1} \omega_{3}^{k}+\frac{\lambda_{i} \lambda_{j}^{6}\left(\lambda_{j}+1\right)^{3}}{\left(\lambda_{i}+1\right)\left(\lambda_{k}+1\right)} \omega_{4}^{k} \in F\left(\omega_{3}^{k}, \omega_{4}^{k}\right),} \\
& {\left[\omega_{1}^{i}, \omega_{1}^{j}\right]=\left[\omega_{2}^{i}, \omega_{2}^{j}\right]=0,} \\
& {\left[\omega_{3}^{i}, \omega_{3}^{j}\right]=\lambda_{k}^{2}\left(\lambda_{k}+1\right)^{2} \lambda_{i}^{3}\left(\lambda_{i}+1\right)^{2} \omega_{3}^{k}+\frac{\left(\lambda_{i}+1\right)\left[\left(\lambda_{j}+1\right)^{3}+\lambda_{i}^{2} \lambda_{k}^{2}\right]}{\lambda_{i} \lambda_{k}^{3}} \omega_{4}^{k} \in F\left(\omega_{3}^{k}, \omega_{4}^{k}\right),} \\
& {\left[\omega_{4}^{i}, \omega_{4}^{j}\right]=\lambda_{i}^{3} \lambda_{j}^{3} \lambda_{k} \omega_{4}^{k} \in F\left(\omega_{4}^{k}\right) .}
\end{aligned}
$$

Proof: Note that $\left[A_{i}, A_{i}\right]=0$, as the nilradical of H is zero because H has toroidal rank 3. The proof goes through easy but lengthy calculations with the
basis elements, verifying that the identities listed above hold.
Note that the basis $\left\{\omega_{1}^{i}, \omega_{2}^{i}, \omega_{3}^{i}, \omega_{4}^{i}\right\}$ of each subspace A_{i} is not defined over the field \mathbf{Z}_{2}, but over F. By Theorem $13[\mathrm{~J}]$ (p. 192) the Cartan subalgebra H has a toroidal basis $\left\{t_{1}, t_{2}, t_{3}\right\}$, that is, $t_{i}^{[2]}=t_{i}$, for $i=1,2,3$. Hence, for each $v \in A_{i}$, we have $\left[v, t_{j}\right]=a v$, where $a \in \mathbf{Z}_{2}$ and it does not depend on v, only on i e j. To find such a \mathbf{Z}_{2}-basis is not and easy task.

It is also easy to prove that

$$
\left(\omega_{1}^{i}\right)^{[2]}=\left(\omega_{2}^{i}\right)^{[2]}=0, \quad\left[\omega_{1}^{i}, \omega_{2}^{j}\right]^{[2]}, \quad\left(\omega_{3}^{i}\right)^{[2]}, \quad\left(\omega_{4}^{i}\right)^{[2]} \in H,
$$

hence $A_{i}^{[2]} \subseteq H$ and $A_{i}^{[2]}=\varphi_{i}\left(A_{i}\right)$ where $\varphi_{i}: A_{i} \longrightarrow H$ is such that $y \longmapsto y^{[2]}$ and $\operatorname{ker} \varphi_{i}=<\omega_{1}^{i}, \omega_{2}^{i}>$, hence $\operatorname{dim} \varphi_{i}\left(A_{i}\right)=2$.

From now on we use the following notation: $d_{\alpha+\beta}^{\alpha}=\left[\omega_{1}^{\alpha}, \omega_{2}^{\beta}\right]$. Note that $d_{\alpha+\beta}^{\alpha}=d_{\alpha+\beta}^{\beta}$ and consider the algebra

$$
S=<d_{\alpha+\beta}^{\alpha} / \alpha, \beta \in\left\{\lambda_{i} \mid i=1, \ldots, 7\right\}>
$$

where the generators satisfy the following relations

$$
\left[d_{\alpha}^{\beta}, d_{\lambda}^{\alpha}\right]= \begin{cases}d_{\alpha+\lambda}^{\alpha} & \text { if } \lambda \notin\{\alpha, \beta, \alpha+\beta\} \\ 0 & \text { if } \lambda \in\{\alpha, \beta, \alpha+\beta\}\end{cases}
$$

and if $\{\alpha, \beta, \lambda\}$ and $\{\alpha, \tau, \lambda\}$ are linearly independent sets, then

$$
\left[d_{\alpha}^{\beta}, d_{\lambda}^{\tau}\right]= \begin{cases}d_{\alpha+\lambda}^{\beta} & \text { if } \tau=\beta \text { or } \beta=\lambda \\ d_{\alpha+\lambda}^{\beta+\alpha} & \text { if } \tau=\alpha+\beta \text { or } \tau=\alpha+\beta+\lambda\end{cases}
$$

Proposition 2.1. The algebra S described above is a simple Lie algebra defined over a field of two elements.

Note that S is not a new simple Lie algebra, it is a special Lie algebra of Cartan type.

3 A more generic construction

On the construction of the algebra made in the first section, a pattern was identified which motivated a construction of a more generic algebras as we describe in this section.

Let F_{n} be the finite field of 2^{n} elements and $U=F_{n}^{3}$. Define a "determinant form"(anti-symmetric and trilinear) () : U $U U \wedge U \longrightarrow F_{2}$ by $a \wedge b \wedge c \longmapsto$ $\operatorname{det}(a, b, c)$.

Let V and W be vector spaces over k with bases $B=\left\{a \mid a \in U^{*}\right\}$ and $\bar{B}=$ $\left\{\bar{a} \mid a \in U^{*}\right\}$, respectively, where $U^{*}=U \backslash\{0\}$. Note that $\operatorname{dim} V=\operatorname{dim} W=$ $2^{3 n}-1$. Let A_{n} be the algebra generated by the transformations of $V \oplus W$ defined on the basis $B \cup \bar{B}$ by $v d_{a}^{b}=(a \wedge b \wedge v)(v+a) \bar{v} d_{a}^{b}=(a \wedge b \wedge \bar{v}) \overline{v+a}$.

Lemma 3.1. For $a, b, c, g \in B$, with $a+c \neq 0$, there exists $s \in B$ such that

$$
\begin{equation*}
\left[d_{a}^{b}, d_{c}^{g}\right]=d_{a+c}^{s}=d_{a}^{b} d_{c}^{g}+d_{c}^{g} d_{a}^{b} \tag{4}
\end{equation*}
$$

Proof: For all $y \in B$, we have on one hand

$$
\begin{aligned}
\left(y d_{a}^{b}\right) d_{c}^{g}+\left(y d_{c}^{g}\right) d_{a}^{b} & =(y \wedge a \wedge b)(y+a) d_{c}^{g}+(y \wedge c \wedge g)(y+c) d_{a}^{b} \\
& =(y \wedge a \wedge b)((y+a) \wedge c \wedge g)(y+a+c) \\
& +(y \wedge c \wedge g)((y+c) \wedge a \wedge b)(y+a+c) \\
& =[(y \wedge a \wedge b)(a \wedge c \wedge g)+(y \wedge c \wedge g)(c \wedge a \wedge b)](y+a+c) .
\end{aligned}
$$

On the other hand, $y d_{a+c}^{s}=(y \wedge(a+c) \wedge s)(y+a+c)$. Note that both scalars (operators) in front of the vector $(y+a+c)$ are linear on y and $a+c$ belongs to both kernels and the images of the other basis vectors are the same. Besides note that s is not unique as $s+a+c$ also satisfies (4).

Corollary 3.1. The algebra S_{n} of transformations $<d_{a}^{b} \mid a, b \in B>$ is a simple Lie algebra over k of dimension $2\left(2^{3 n}-1\right)$.

Consider $L_{n}=V \oplus A \oplus W$ and define the operations $[a, \bar{b}]=d_{a+b}^{a}=[\bar{a}, b]$ for all $a, b \in B, \bar{a}, \bar{b} \in \bar{B}, v \in V, w \in W$. Moreover, $V^{2}=W^{2}=0$, that is, $\left[v_{1}, v_{2}\right]=0$ and $\left[w_{1}, w_{2}\right]=0$, for all $v_{i} \in V, w_{i} \in W$.

Lemma 3.2. For the algebra A and the vector spaces V and W described above, we have

$$
\begin{equation*}
[V, W] \cdot A=[V \cdot A, W]+[V, W \cdot A] . \tag{5}
\end{equation*}
$$

Proof: To prove (5) we will show that

$$
\begin{equation*}
\left[\left[v, d_{a}^{b}\right], w\right]+\left[\left[d_{a}^{b}, w\right], v\right]+\left[[w, v], d_{a}^{b}\right]=0 \tag{6}
\end{equation*}
$$

The left hand side of (6) is equal to $(v \wedge a \wedge b)[v+a, w]+(a \wedge b \wedge w)[a+w, v]+$ $\left[d_{v+w}^{v}, d_{a}^{b}\right]$ which applied to a vector $u \in V$ gives us (below $X=u+v+a+w$) $(v \wedge a \wedge b) u d_{v+a+w}^{w}+(a \wedge b \wedge w) u d_{a+w+v}^{v}+\left(u d_{v+w}^{v}\right) d_{a}^{b}+\left(u d_{a}^{b}\right) d_{v+w}^{v}=$ $(v \wedge a \wedge b)(u \wedge(v+a+w) \wedge w) X+(a \wedge b \wedge w)(u \wedge(a+w+v) \wedge v) X+$ $(u \wedge(v+w) \wedge v)(u+v+w) d_{a}^{b}+(u \wedge a \wedge b)(u+a) d_{v+w}^{v}=$ $(v \wedge a \wedge b)(u \wedge(v+a) \wedge w) X+(a \wedge b \wedge w)(u \wedge(a+w) \wedge v) X+$ $(u \wedge w \wedge v)((u+v+w) \wedge a \wedge b) X+(u \wedge a \wedge b)((u+a) \wedge w \wedge v) X$

Now using linearity and anti-symmetry we can reduce the coefficient of X to

$$
\begin{equation*}
\underbrace{(v \wedge a \wedge b)(u \wedge a \wedge w)}_{(i)}+\underbrace{(a \wedge b \wedge w)(u \wedge a \wedge v)}_{(i i)}+\underbrace{(u \wedge a \wedge b)(a \wedge w \wedge v)}_{(i i i)} . \tag{7}
\end{equation*}
$$

Now if $v \in\langle a, b\rangle$ then (7) is equal to zero, so we can suppose that $v \notin\langle a, b\rangle$ and in this case $(v \wedge a \wedge b)=1$. Hence we need to prove that

$$
\begin{equation*}
(u \wedge a \wedge w)=(a \wedge b \wedge w)(u \wedge a \wedge v)+(u \wedge a \wedge b)(a \wedge w \wedge v) \tag{8}
\end{equation*}
$$

Note that both sides of (8) are linear on w, therefore, as $\{a, v, b\}$ is a basis of V it is enough to prove (8) for this basis, what is trivial.

As a corollary of this lemma we get:

Theorem 3.1. The algebra L_{n} together with the operations described above is a simple Lie algebra of dimension $4\left(2^{3 n}-1\right)$, with a basis given by the union of the bases of V, W and A_{n}. The toroidal rank of L_{n} is $3 n$ and L_{1} is isomorphic to the Lie algebra of dimension 28 from the beginning of this paper.

Referências

[GM] Grishkov, A.N.,Guerreiro M. Simple classical Lie algebras in characteristic 2 and their gradations, I. International J. of Algebra and Game Theory,
[GP] Grishkov, A.N.,Premet A. Lie algebras in characteristic 2 ., (to appear).
[J] Jacobson, N., Lie Algebras. Interscience Publishers, 1962.
[Pr] Premet A., Lie algebras without strong degeneration, Mat. Sb., V. 171 (1986),140-153.
[PS] Premet A., Strade H. Classifications of the finite dimensional simple Lie algebras in prime characteristics.(submitted)
[Sk] Skryabin S., Toral rank one simple Lie algebras in low characteristics, J.Algebra, V. 200 (1998), 650-700.

[^0]: *Supported by FAPEMIG(2003).FAPESP and CNPq (Brazil)
 ${ }^{\dagger}$ Visitor professor to IME-USP supported by FAPESP - 2002.

