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1 Introduction

Lie algebras over fields of characteristic 0 or p > 3 were recently classified, but
over field of characteristic 2 or 3 there are only partial results up to now. The
main result on this matter was obtained by S. Skryabin [Sk]. He proved that any
finite dimensional simple Lie algebra over a field of characteristic 2 has toroidal
rank > 2.

By definition a Lie algebra over a field of characteristic 2 is a 2-algebra if
there exists a map L — L,  — 2 such that (z + 212)2 = 208 4 2l 2 € L,
(z+y) = 2@ + ¢y 4 [2,y], Vo,y € L.

Recall that the toroidal rank ¢(L) of a Lie 2-algebra without center L over
a field k of characteristic 2 is the maximal dimension of an abelian subalgebra
with basis {t1,...,t,} such that t?] =t;,i=1,...,n, where n =t(L).

The next step in the classification of such Lie algebras was done in [GP] where

the simple Lie 2-algebras of finite dimension over a field £ of characteristic 2 and
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toroidal rank 2 were classified. The toroidal rank 3 case is much more difficult.

For this case the following is still an open problem.

Problem. Classify the simple Lie algebras (or 2-algebras) over a field k
of characteristic 2 and toroidal rank 3 which contains a Cartan subalgebra of

dimension 3.

This Problem is easier than the classification of the simple Lie algebras over
a field k of toroidal rank 3, but far away from being trivial. The main obstacle

is the lack of examples.

In the first part of this work we construct an example of a simple Lie algebra of
dimension 31 and of toroidal rank 3. We expect that this example will be useful
for the construction of other simple Lie algebra of toroidal rank 3 containing a
CSA of dimension 3. In the last section a serie of new simple Lie algebras over

k was constructed.

2 A First Example

We first recall the construction of a simple Lie 2-algebra L of dimension 31 which
was made in [GP]. A basis of L has two parts W e V' such that |W| = 15, |V| = 16

and

- {617627637647f17f27f37f4; t7 h7 m127m247m:237m:1))7mg} (1)

V = {o|lo CI=(1234)}. (2)
The multiplication of these basis elements are given by the following formulae:
t,h] =0, [z,h] =0, [z,t] =z, for x € {e1, €2, €3, €4, f1, f2, f5, fa},
[z,t] = [x,h] =0, for & € T = {myy, may, m3, m}, ms}, [T,T] =0,
v, bl =y, [y, 1] = [yly, fory €V,
lei,ej] = 0, [ei, fi] = dizh, V (15) # (32), les, fo] = maz,
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[fz;f]] = 07

The products [T, V] e

V(ij) # (12), [f1, fo] = m

[T, W] are given by

fio i1 <4, [fiymy) = e, [ej,m]] = e, ifi < j,

o, ml] = (0 Uj) \i, fori € o, j &0,

[0, my5] = o\ (i), for (ij) C o

and the other products [T, V], [T, W] are equal to zero.

Besides we have

0, f1] =1, [0, f2] =2, [0, f3] =3, [0, fa] =
[, f1] =0, L f]=12, [L,fs] =13, [1,fd=
2, 1] =12,  [2, /o] =0, 2, fs] =23, [2,fu] =24,
3, /1] =13,  [3,f]=23,  [3,f3] =0, [3, fa] = 34,
4, 1] =14, [ p]=24 [4f5]=34, [4fu] =0,
(12, f1] =0, (12, f5] = 3, (12, f3] = 123, [12, f4] = 124,
(13, f1] =0, (13, fo] =123, [13, f5] =0, (13, f4] = 134,
(14, f1] =0, (14, fo] = 124, [14, f3] = 134, [14, f4] =
23, f1] = 123, [23, f2] =0, (23, f3] =0, 23, f4] = 234,
24, f1] =124, [24, f3] = 0, (24, f3] =234, [24, f4] =
134, f1] = 134, [34, fo] =234, [34, f3] =0, 134, f4] =0,
(123, f1] =0, [123,fo] =0, [123,f3] =0, [123, f4] =1,
(124, f1] =0, [124, fo] =34, [124, f3] =1, [124, f4,] =0,
(134, f1] =0, [134,fs] =1, [134,f3] =0, [134,f,] =0,
234, f1] =1, [234,fs] =0, [234,f3] =0, [234, f4] 0
[, fi] =0, [, f2] =0, [, fs] =0, [, fa] =

0,6 = 0\ i, fori € o: [o,e:] =0, fori & 0.



;

fia Wﬂ¢:Z7WU¢:[a

=S e, TNY =0, TUY =T\i

\ h+|rlt, 7Ny =0, Uy =1.
[12,24] = mus, [1,12] = m3, [12,124] = es,

[2,124] = mys, [123,124] = m3,

and the other products are [o, u] =0, for o, p C I.

It is easy to see that dimL = 31 and dim L? = 28. Now we define a 2-

operation on the algebra L given by
T =m?, (12)2 = my,, (124)% = mi, ¢ =, & = p,

and al? = 0 for all other a € VN W,

The algebra L has a subalgebra K with a basis {t, h, mi2, Moy, m3, m3, m3}.
This Cartan subalgebra is not toroidal and has toroidal rank 2. On the other
hand, the algebra L has another Cartan subalgebra H with basis {z,y = 2@ 2=
oM} where x = t + m? + (12) + (124). It is an easy calculation to prove that
2Pl = 2B = 2 + 2. We note that H N L?> =0, whence L = H @ L.

Let F be the splitting field of the polynomial p(s) = s” + s3 + 1 over Fy, the
field of two elements. It is clear that |F| = 27. Denote by A = {\y, ..., A\;} the set
of all roots of p(s). Then A U {0} is an additive group isomorphic to Zj.

The first goal is to find a Cartan decomposition of the algebra L in relation
to the subalgebra H. For this we consider the adjoint action of x on L and

calculate the eigenspaces A; = {v € L/[v,z] = A\ v}. The table below shows



the action of x on the basis elements.

v [v, 2] v [v, ]

e |er +(2) + (24) (2) | (2) 4 ma

e |ex + (1) + (14) B) |B)+es+t+h
es |er + e3 (4) (4) + es3

es |es + (12) (12) | (23) + e

fi [+ fs (13) | A

fo [ o+ (3)+ (34) (14) | (34)

f3 | fa + (123) + (1234) || (23) | f

fo | fo+ (124) (24) | ma2

h (12) + (124) (34) t+ fa

t (124) (123) | (123) + m3

m3 | (13) + (134) (124) | (234) + (124) + e
mys | O + (4) (134) | (134) + f1

0 |es (234) | (234) + f,

1) [ 1)+ () (1234) | m3

4
va:aiei+Zﬁjfj+9h+et+nm§+5m12+ Z dyo is a
Jj=1 0C{1,2,3,4}
generic element of L then, for each \; € F',| the eigenspace A; has the following



basis (here A = \; ):

= NA+De + A+ 1% +mpp+ A0+ N2+ (A +1)7'(4)

+ AN+ 1)(24),

= NOA+12A+NA+1)f5+ms+ AH(13) + A%(123) + (A +1)71(134)
+ A+ 1)(1234), (3)
= NPA+D%e+ MM+ D) tes F AN+ D2 f +t+ R+ XN+ 1)(1)

+ AB) + (A +DA)TH12) + AN+ 1)(14) + (A + 1)*A(23),

= A+ DNea+ X+ AA+ D)7 o+t +23(1) + (A + 1)A%(14)

+ A(34) + (A +1)72(124) + (A + 1)A\3(234).

Theorem 2.1. The algebra L described above has the following Cartan decom-

position

7
L=H&) @4,

=1

where A; = {v € L|[v,x] = \jv} has a basis {w},ws,wi, wi} given by (3). Moreover,

if \i +Xj = Ai, then the basis elements multiply as follows

AN+ DN +1) P
F
0w+ 1) wy € F(wy, wy),

Wi, wi] = XN+ DA + 12N + 1) wh € F(wh),

(Wi, wi] = AfA?Az()\kjL 1)wh +

wi,wi] = AN wh € F(wh),
wi, wi] = AN+ 12 + DA + 1) wh € F(wh),

Wi wil = NXINL Wi € F(wh),

6 3
i MR HD g Aidj (A + 1) k ko ok
, = — e F ) )
[w3 w4] Ai+1 Ws (/\z + 1)(/\k + 1) Wy (WB w4)
[wi,wj] - [W%7wj] = 0,

XA D[N +1)3 + A2)\2
i+ DI +1)° + A k]wkeF(w§7w§>7

b ) = MDDk + " :
i

[wi,wil = MAAwi € F(wf).

Proof: Note that [A;, A;] = 0, as the nilradical of H is zero because H has

toroidal rank 3. The proof goes through easy but lengthy calculations with the
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basis elements, verifying that the identities listed above hold.

Note that the basis {wi, w}, wi, wi} of each subspace A; is not defined over the
field Zs, but over F'. By Theorem 13 [J] (p. 192) the Cartan subalgebra H has a
toroidal basis {t1,t,t3}, that is, t?] =t;, for i = 1,2,3. Hence, for each v € A;,
we have [v,t;] = av, where a € Z, and it does not depend on v, only on i e j.

To find such a Z,-basis is not and easy task.

It is also easy to prove that
(Wl = (W) = 0, Wi, wl]®, (W) (W2 e,

hence A?] C H and A?] = ;(A;) where ¢; : A; — H is such that y —s yl%
and ker p; =< wi, wh >, hence dim p;(A;) = 2.
)]

From now on we use the following notation: d,; = [wf, w;]. Note that

doys = di +p and consider the algebra

S =<dy g/, B €{Nli=1...,7} >
where the generators satisfy the following relations

doyy EAE{a, 8,0+ 5}
0 if A € {o, B, a+ (}

[, d3] =

and if {«, 5,\} and {a,7,\} are linearly independent sets, then

d,
3, a5 =4 o7
dgif\" fr=a+0or tT=a+06+A\.

ifr=p0or B=2A

Proposition 2.1. The algebra S described above is a simple Lie algebra defined

over a field of two elements.

Note that S is not a new simple Lie algebra, it is a special Lie algebra of

Cartan type.



3 A more generic construction

On the construction of the algebra made in the first section, a pattern was iden-
tified which motivated a construction of a more generic algebras as we describe

in this section.

Let F, be the finite field of 2" elements and U = F?> . Define a ”determinant
form” (anti-symmetric and trilinear) ( ) : UAUAU — F, by aANbAc+—
det(a, b, c).

Let V and W be vector spaces over k with bases B = {a|a € U*} and B =
{a|a € U*}, respectively, where U* = U \ {0}. Note that dim V' = dim W =
23" — 1. Let A, be the algebra generated by the transformations of V & W

defined on the basis BUB by vd’, = (aAbAv) (v+a) Td° = (aADAT)V T a.
Lemma 3.1. For a, b, ¢, g € B, with a+ c # 0, there exists s € B such that
(e, d?) = diy. = dod? + did, (4)

Proof: For all y € B, we have on one hand

(ydy)d? + (ydi)dy = (yAaAb)(y+a)d! + (yAchg)(y+co)d,
= (WAaAb)((y+a)ANeAhg)(y+a+c)
+ (YAehg)((y+c)NaAd)(y+a+c)

= [(yAanb)(aNecAg) + (yANcAg)(eANaAD)](y+a+c).

On the other hand, yd;,, = (yA(a+c)As)(y+a+c). Note that both
scalars (operators) in front of the vector (y +a + ¢) are linear on y and a + ¢
belongs to both kernels and the images of the other basis vectors are the same.

Besides note that s is not unique as s+ a + ¢ also satisfies (4).

Corollary 3.1. The algebra S, of transformations < d°|a,b € B > is a simple

Lie algebra over k of dimension 2(23" —1).



Consider L, = V& A® W and define the operations [a,b] = d2,, = [a,0]
forall a,b € B,a,b € B, veV, we W. Moreover, V? = W? = 0, that is,

[v1,v2] = 0 and [wy,ws] = 0, for all v; € V, w; € W.

Lemma 3.2. For the algebra A and the vector spaces V' and W described above,
we have

V,W]-A=[V-A W]+ [V,W-A]. (5)
Proof: To prove (5) we will show that
([v; da), w] + [[dg, w], ] + [[w, v], dg] = 0. (6)

The left hand side of (6) is equal to (vAaAb)[v+a, w] + (a ANbAw)[a+w, v] +
[d2, ., d°] which applied to a vector u € V gives us (below X = u+v+a+w)

vAaAb)udy, ., + (@aNbAw)udy,,, ., + (ud;

v+w

Y+ (udt)di,, =

v+w

vAaAb)(uN(vF+at+tw)ANw) X + (aANbDAw) (uA (a+w+v)Av) X +

v+w

(

(

(A (v+w)Av)(u+v+w)d + (uAaAb) (u+a)d,, =
(WAaAb)(uN(v+a) ANw) X + (aAbAW) (uA (a+w)Av) X +
(uAwAv)(u+v4+w)AaAb) X + (uAaAb) ((u+a) ANwAv) X

Now using linearity and anti-symmetry we can reduce the coefficient of X to

WAanb) (uharw) + (@AbAw)(uNhaAv) + (wAaAb)(@AhwAv). (T7)

-~

@) (i) (ith)

Now if v €< a, b > then (7) is equal to zero, so we can suppose that v €< a, b >

and in this case (v AaAb) = 1. Hence we need to prove that
(uNaAw) = (aANbAw)(uANaAv) + (uAaAb)(aANwAv). (8)

Note that both sides of (8) are linear on w, therefore, as {a, v, b} is a basis of

V' it is enough to prove (8) for this basis, what is trivial.

As a corollary of this lemma we get:



Theorem 3.1. The algebra L, together with the operations described above is a
simple Lie algebra of dimension 4(2°" — 1), with a basis given by the union of the
bases of V., W and A, . The toroidal rank of L, is 3n and Ly 1is isomorphic

to the Lie algebra of dimension 28 from the beginning of this paper.
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