On the toral rank of simple Lie algebra over a field of characteristic 2

Alexander Grishkov, University of Sao Paulo, Brazil
e-mail: grishkov@ime.usp.br

1 Abstract

We give a short proof of the following result of S.Skryabin [1]: a finite dimensional Lie algebra over a field of characteristic 2 and absolute toral rank one is solvable.

2 Introduction.

In this note we give a short proof of the following theorem of S.Skryabin [1].
Theorem 1 Finite dimensional simple Lie algebra over a field of characteristic 2 has absolute toral rank at least 2.

Proof. Let F be an algebraically closed field of characteristic 2 , let \tilde{L} be a finite dimensional simple Lie algebra over F of toral rank one, let L be a 2-envelope of \tilde{L}. Then $L=L_{0} \oplus L_{1}$, where L_{0} is a Cartan subalgebra of L, $\left[L_{0}, L_{1}\right] \subseteq L_{1}$ and $\left[L_{1}, L_{1}\right] \subseteq L_{0}$. By the definition of absolute toral rank, L_{0} contains a unique toroidal element $h=h^{[2]}$. We denote

$$
\mathcal{N}=\left\{a \in L \mid \exists n: a^{\left[2^{n}\right]}=0\right\}, \mathcal{T}=\left\{t \in L \mid t^{[2]}=t \neq 0\right\} .
$$

We need the following simple result.
Lemma 1 Let $n \in \mathcal{N}, t, s \in \mathcal{T}$.
For any $a \in L$, if $a+[a, n]=0$ then $a=0$. If $[t, s]=0$ then $t=s$.

Note that $L_{1} \subseteq \mathcal{N}$. Indeed, if $a \in L_{1}$, then $a^{[2]} \in L_{0}$ and if $a^{[2]}$ is not nil then $a^{[2]}=h+n$, where n is a nil element. In this case $\left[a, a^{[2]}\right]=a+[a, n]=0$, hence $a=0$ by Lemma 1 .

If $H=\left[L_{1}, L_{1}\right]$ then $\tilde{L}=H \oplus L_{1}$ and H is not a nil-subalgebra. Indeed, if H is a nil subalgebra then by the Jacobson-Engel theorem [2] \tilde{L} is nilpotent since all elements of L_{1} are nil. Then $h \in H$.

Let N be a maximal nil-ideal of L_{0} and $N_{0}=F h \oplus N$. If $L_{0}=N_{0}$, then for some $a, b \in L_{1}$ we have $[a, b]=h+n, n \in N$, since $h \in\left[L_{1}, L_{1}\right]$. As N is a nil-ideal of L_{0} we can suppose that $[[a, N], b],[[b, N], a] \in N$. Hence
$\left[a^{[2]}, b^{[2]}\right]=[[[a, b], b], a]=h+n+[[b, n], a]=h+m, m \in N$.
On the other hand $a^{[2]}, b^{[2]} \in N$ as we proved above. Hence, $\left[a^{[2]}, b^{[2]}\right] \in N$, it is proved that $L_{0} \neq N_{0}$. Let $F \bar{e}$ be an ideal of the factor-algebra L_{0} / N_{0} and e be some preimage of \bar{e}. It is clear that $e^{[2]} \in N_{0}$. For some $\gamma \in k$ we have $(e+\gamma h)^{[2]} \in N$. Hence we can suppose that $e^{[2]} \in N$. Denote $L_{0}^{\prime}=$ $\left\{x \in L_{0} \mid[x, e] \in N\right\}$. If $L_{0}^{\prime}=L_{0}$ then $F e \oplus N$ is an ideal of L_{0} with nilradical $F e \oplus N$, contradicting the maximality of N. Hence $L_{0}=L_{0}^{\prime} \oplus F f$ for some $f \in L_{0}$. Let $X=\left\{a^{[2]} \mid a \in L_{1}\right\} \subseteq L_{0}$. Since $\left[L_{1}, L_{1}\right]=H$ and $L_{0}=H+F\left\{x^{\left[2^{i}\right]}, i=1,2, \ldots, x \in H\right\}$, it follows that the F-space $F\{X\}$ generated by X is equal to L_{0}. This means that there exists $c \in L_{1}$ such that $c^{[2]} \notin L_{0}^{\prime}$, hence $\left[c^{2}, e\right]=\alpha h+m$, where $\alpha \in F^{*}, m \in N_{0}$. Now we can choose $a=c, b=\alpha^{-1}[c, e]$ and in this case we have
$[a, b]=\alpha^{-1}[c,[c, e]]=\alpha^{-1}\left[c^{[2]}, e\right]=h+n, n \in N$.
Let $a^{\left[2^{k+1}\right]}=b^{\left[2^{s+1}\right]}=0$ and define

$$
x=h+a+a^{[2]}+\ldots+a^{\left[2^{k}\right]}, y=h+b+b^{[2]}+\ldots+b^{\left[2^{s}\right]} .
$$

Then $x, y \in \mathcal{T}$ and if $z=[x, y]$ then $[x, z]=z,[y, z]=z$. We prove that z is nil. Othewise, $z^{[2]}=p+n$, where $p \in \mathcal{T},[p, n]=0$ and $n \in \mathcal{N}$. We have

$$
\left[z^{[2]}, x\right]=0=[p, x]+[n, x] \text {. Hence }
$$

$[p,[p, x]]+[p,[n, x]]=[p, x]+[[p, n], x]+[n,[p, x]]=[p, x]+[n,[p, x]]$.
But n is nil, hence $[p, x]=0$ by Lemma 1. But in this case $\left[z^{[2]}, z\right]=$ $[x+n, z]=z+[n, z]=0$, hence $z=0$, by Lemma 1 , since n is nil. Hence $0=z=[x, y]$ and $x=y$ by Lemma 1, a contradiction.

Then $z^{\left[2 r^{r+1}\right]}=0$ for some r. Denote $u=x+y+z+z^{[2]}+\ldots+z^{\left[2^{r}\right]}$. It is easy to see that $u^{[2]}=u$. We have $[u, x]=[y, x]+z=0$, hence $u=x$ or $u=0$, by Lemma 1 . If $u \neq 0$, then $u=x$, and we can prove analogously that $u=y=x$, a contradiction. Hence $u=0$.

Let $V=L_{1} N$ be an N-submodule of L_{1}. Then $P=V \oplus L_{0}$ is a proper 2-subalgebra of L. We can suppose that $a \notin V$. Indeed, if $a \in V$ and $c \notin$ $V . c \in L_{1}$, then for $\gamma \in k$ we have $f(\gamma)=\left[(a+\gamma c)^{[2]}, e\right]=\left[a^{[2]}, e\right]+\gamma[[a, c], e]+$ $\gamma^{2}\left[c^{[2]}, e\right]$. If $f(\gamma) \in L_{0}^{\prime}$ for all $\gamma \in k^{*}$ then $\left[a^{[2]}, e\right] \in L_{0}^{\prime}$, contradiction. Then $f(\gamma) \notin L_{0}^{\prime}$ for some $\gamma \in k^{*}$ and we can choose $a+\gamma c$ instead of a. But $a+\gamma c \notin V$.

Let us prove that $u \equiv(a+b)(\bmod (P))$. We have by definition,

$$
\begin{equation*}
z=a+b+\left[a, b^{[2]}\right]+\left[b, a^{[2]}\right]+\sum_{i>0}\left(\left[a, b^{\left[2^{i}\right]}\right]+\left[b, a^{\left[2^{i}\right]}\right]+z_{0},\right. \tag{1}
\end{equation*}
$$

where $z_{0} \in L_{0}$. But

$$
\begin{gathered}
{[a, b]=h+n,\left[a, b^{[2]}\right]=[h+n, b]=b+[b, n],\left[b, a^{[2]}\right]=a+[a, n],} \\
{\left[a, b^{[4]}\right]=\left[[b, n], b^{[2]}\right]=\left[b,\left[n, b^{[2]}\right]\right] \in V,}
\end{gathered}
$$

by induction, for $i>1$,

$$
\left[a, b^{\left[2^{i}\right]}\right]=\left[\left[n, b^{\left[2^{i-1}\right]}\right], b^{\left[2^{i-1}\right]}\right] \in V .
$$

Hence, by (1), $z \in P$.
We have, $u=a+b+z+\ldots \equiv(a+b)(\bmod P)$. But, if $u=0$, it means that $a \equiv b(\bmod P)$. By choice of a, b we have that $b=[a, e]$ and $[b, e]=\left[a, e^{[2]}\right] \in V$, since $e^{[2]} \in N$. As $[a, e]=b \equiv[b, e] \equiv 0(\bmod P)$ we have $a \equiv 0(\bmod P)$, a contradiction.

Note that S.Skryabin [1] obtained a much deeper result. He described all simple finite dimensional Lie algebras over a field F that contain some Cartan subalgebra of toral rank 1.

The author is thankful to professor S.Skryabin for the usefull remarks.

References

[1] Skryabin S., Toral Rank One Simple Lie Algebras of Low Characteristics, J.Algebra, 200, 650-700 (1998)
[2] Jacobson N., Lie Algebras, Wiley-Interscience, New York,1962.

