On the toral rank of simple Lie algebra over a field of characteristic 2

Alexander Grishkov,

University of Sao Paulo, Brazil

e-mail: grishkov@ime.usp.br

1 Abstract

We give a short proof of the following result of S.Skryabin [1]: a finite dimensional Lie algebra over a field of characteristic 2 and absolute toral rank one is solvable.

2 Introduction.

In this note we give a short proof of the following theorem of S.Skryabin [1].

Theorem 1 Finite dimensional simple Lie algebra over a field of characteristic 2 has absolute toral rank at least 2.

Proof. Let F be an algebraically closed field of characteristic 2, let L be a finite dimensional simple Lie algebra over F of toral rank one, let L be a 2-envelope of \tilde{L} . Then $L = L_0 \oplus L_1$, where L_0 is a Cartan subalgebra of L, $[L_0, L_1] \subseteq L_1$ and $[L_1, L_1] \subseteq L_0$. By the definition of absolute toral rank, L_0 contains a unique toroidal element $h = h^{[2]}$. We denote

$$\mathcal{N} = \{ a \in L | \exists n : a^{[2^n]} = 0 \}, \ \mathcal{T} = \{ t \in L | t^{[2]} = t \neq 0 \}.$$

We need the following simple result.

Lemma 1 Let $n \in \mathcal{N}$, $t, s \in \mathcal{T}$. For any $a \in L$, if a + [a, n] = 0 then a = 0. If [t, s] = 0 then t = s. Note that $L_1 \subseteq \mathcal{N}$. Indeed, if $a \in L_1$, then $a^{[2]} \in L_0$ and if $a^{[2]}$ is not nil then $a^{[2]} = h + n$, where n is a nil element. In this case $[a, a^{[2]}] = a + [a, n] = 0$, hence a = 0 by Lemma 1.

If $H = [L_1, L_1]$ then $\tilde{L} = H \oplus L_1$ and H is not a nil-subalgebra. Indeed, if H is a nil subalgebra then by the Jacobson-Engel theorem [2] \tilde{L} is nilpotent since all elements of L_1 are nil. Then $h \in H$.

Let N be a maximal nil-ideal of L_0 and $N_0 = Fh \oplus N$. If $L_0 = N_0$, then for some $a, b \in L_1$ we have $[a, b] = h + n, n \in N$, since $h \in [L_1, L_1]$. As N is a nil-ideal of L_0 we can suppose that $[[a, N], b], [[b, N], a] \in N$. Hence

 $[a^{[2]}, b^{[2]}] = [[[a, b], b], a] = h + n + [[b, n], a] = h + m, m \in N.$

On the other hand $a^{[2]}, b^{[2]} \in N$ as we proved above. Hence, $[a^{[2]}, b^{[2]}] \in N$, it is proved that $L_0 \neq N_0$. Let $F\bar{e}$ be an ideal of the factor-algebra L_0/N_0 and e be some preimage of \bar{e} . It is clear that $e^{[2]} \in N_0$. For some $\gamma \in k$ we have $(e + \gamma h)^{[2]} \in N$. Hence we can suppose that $e^{[2]} \in N$. Denote $L'_0 =$ $\{x \in L_0 | [x, e] \in N\}$. If $L'_0 = L_0$ then $Fe \oplus N$ is an ideal of L_0 with nilradical $Fe \oplus N$, contradicting the maximality of N. Hence $L_0 = L'_0 \oplus Ff$ for some $f \in L_0$. Let $X = \{a^{[2]} | a \in L_1\} \subseteq L_0$. Since $[L_1, L_1] = H$ and $L_0 = H + F\{x^{[2^i]}, i = 1, 2, ..., x \in H\}$, it follows that the F-space $F\{X\}$ generated by X is equal to L_0 . This means that there exists $c \in L_1$ such that $c^{[2]} \notin L'_0$, hence $[c^2, e] = \alpha h + m$, where $\alpha \in F^*, m \in N_0$. Now we can choose $a = c, b = \alpha^{-1}[c, e]$ and in this case we have

 $[a,b] = \alpha^{-1}[c, [c,e]] = \alpha^{-1}[c^{[2]}, e] = h + n, n \in N.$ Let $a^{[2^{k+1}]} = b^{[2^{s+1}]} = 0$ and define

$$x = h + a + a^{[2]} + \dots + a^{[2^k]}, \ y = h + b + b^{[2]} + \dots + b^{[2^s]}.$$

Then $x, y \in \mathcal{T}$ and if z = [x, y] then [x, z] = z, [y, z] = z. We prove that z is nil. Othewise, $z^{[2]} = p + n$, where $p \in \mathcal{T}$, [p, n] = 0 and $n \in \mathcal{N}$. We have $[z^{[2]}, x] = 0 = [p, x] + [n, x]$. Hence

[p, [p, x]] + [p, [n, x]] = [p, x] + [[p, n], x] + [n, [p, x]] = [p, x] + [n, [p, x]].

But *n* is nil, hence [p, x] = 0 by Lemma 1. But in this case $[z^{[2]}, z] = [x + n, z] = z + [n, z] = 0$, hence z = 0, by Lemma 1, since *n* is nil. Hence 0 = z = [x, y] and x = y by Lemma 1, a contradiction.

Then $z^{[2^{r+1}]} = 0$ for some r. Denote $u = x + y + z + z^{[2]} + ... + z^{[2^r]}$. It is easy to see that $u^{[2]} = u$. We have [u, x] = [y, x] + z = 0, hence u = x or u = 0, by Lemma 1. If $u \neq 0$, then u = x, and we can prove analogously that u = y = x, a contradiction. Hence u = 0.

Let $V = L_1 N$ be an N-submodule of L_1 . Then $P = V \oplus L_0$ is a proper 2-subalgebra of L. We can suppose that $a \notin V$. Indeed, if $a \in V$ and $c \notin V.c \in L_1$, then for $\gamma \in k$ we have $f(\gamma) = [(a + \gamma c)^{[2]}, e] = [a^{[2]}, e] + \gamma[[a, c], e] + \gamma^2[c^{[2]}, e]$. If $f(\gamma) \in L'_0$ for all $\gamma \in k^*$ then $[a^{[2]}, e] \in L'_0$, contradiction. Then $f(\gamma) \notin L'_0$ for some $\gamma \in k^*$ and we can choose $a + \gamma c$ instead of a. But $a + \gamma c \notin V$.

Let us prove that $u \equiv (a+b)(mod(P))$. We have by definition,

$$z = a + b + [a, b^{[2]}] + [b, a^{[2]}] + \sum_{i>0} ([a, b^{[2^{i}]}] + [b, a^{[2^{i}]}] + z_0,$$
(1)

where $z_0 \in L_0$. But

$$\begin{split} [a,b] &= h+n, \, [a,b^{[2]}] = [h+n,b] = b+[b,n], \, [b,a^{[2]}] = a+[a,n], \\ &[a,b^{[4]}] = [[b,n],b^{[2]}] = [b,[n,b^{[2]}]] \in V, \end{split}$$

by induction, for i > 1,

$$[a, b^{[2^i]}] = [[n, b^{[2^{i-1}]}], b^{[2^{i-1}]}] \in V.$$

Hence, by (1), $z \in P$.

We have, $u = a + b + z + ... \equiv (a + b)(modP)$. But, if u = 0, it means that $a \equiv b(modP)$. By choice of a, b we have that b = [a, e] and $[b, e] = [a, e^{[2]}] \in V$, since $e^{[2]} \in N$. As $[a, e] = b \equiv [b, e] \equiv 0(modP)$ we have $a \equiv 0(modP)$, a contradiction.

Note that S.Skryabin [1] obtained a much deeper result. He described all simple finite dimensional Lie algebras over a field F that contain some Cartan subalgebra of toral rank 1.

The author is thankful to professor S.Skryabin for the usefull remarks.

References

- Skryabin S., Toral Rank One Simple Lie Algebras of Low Characteristics, J.Algebra, 200, 650-700 (1998)
- [2] Jacobson N., Lie Algebras, Wiley-Interscience, New York, 1962.