A characterization of Lie algebras of skew-symmetric elements.

Alexander N. Grishkov*

Departamento de Matemática, Universidade de São Paulo, Caixa Postal 66281, São Paulo-SP, 05311-970, Brasil

Ivan P. Shestakov^{\dagger}

Departamento de Matemática, Universidade de São Paulo and Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia

Abstract

A characterization of Lie algebras of skew-symmetric elements of associative algebras with involution is obtained. It is proved that a Lie algebra L is isomorphic to a Lie algebra of skew-symmetric elements of an associative algebra with involution if and only if L admits an additional (Jordan) trilinear operation $\{x, y, z\}$ that satisfies the identities

where [x, y] stands for the multiplication in L.

Let (A, *) be an associative algebra with an involution *. It is well-known that the set $H(A, *) = \{a \in A \mid a^* = a\}$ of symmetric elements of A is closed with respect to the Jordan product $a \circ b = 1/2(ab+ba)$ and forms a Jordan algebra with respect to this product, while the set $K(A, *) = \{a \in A \mid a^* = -a\}$ of skew-symmetric elements of A forms a Lie algebra with respect to the commutator product [a, b] = ab - ba.

^{*}Supported by CAPES, Brazil, grant 0469/02-5.

[†]Supported by CAPES, Brazil, grant 0461/02-4.

In 1957 P.Cohn [2] gave a characterization of Jordan algebras of symmetric elements. He proved that a Jordan algebra J is isomorphic to a Jordan algebra of type H(A, *) for a certain associative algebra with involution (A, *) if and only if J admits an additional quadrilinear operation [x, y, z, t] that satisfies some identities involving the multiplication in J.

Here we prove an analogue of Cohn's result for Lie algebras of skew-symmetric elements. Namely, we prove that a Lie algebra L is isomorphic to a Lie algebra of type K(A, *) for a certain associative algebra with involution (A, *) if and only if L admits a trilinear product $\{x, y, z\}$ such that, with respect to this triple product and the original Lie multiplication [x, y], L forms a so called Lie-Jordan algebra (see [1]).

Let us recall the definition of Lie-Jordan algebra. A vector space L is called a *Lie-Jordan* algebra if L has bilinear operation [,] and trilinear operation {,,} such that the following identities hold:

$$\begin{split} \{x, y, z\} &= \{z, y, x\}, \\ [[x, y], z] &= \{x, y, z\} - \{y, x, z\}, \\ [\{x, y, z\}, t] &= \{[x, t], y, z\} + \{x, [y, t], z\} + \{x, y, [z, t]\}, \\ \{\{x, y, z\}, t, v\} &= \{\{x, t, v\}, y, z\} - \{x, \{y, v, t\}, z\} + \{x, y, \{z, t, v\}\}. \end{split}$$

It is easy to see that every Lie-Jordan algebra is a Lie algebra with respect to the operation [,] and a Jordan triple system with respect to the ternary operation $\{,,\}$. Furthermore, every associative algebra A forms a Lie-Jordan algebra A^+ with respect to the commutator product [x, y] and the *triple Jordan product* $\{x, y, z\} = xyz + zyx$. The main result of our previous paper [1] claims that every Lie-Jordan algebra is *special*, that is, isomorphic to a subalgebra of the algebra A^+ for a certain associative algebra A.

Now, if A has an involution * then evidently the space K(A, *) is closed with respect to the both commutator and triple Jordan product and hence is a subalgebra of the Lie-Jordan algebra A^+ .

We will prove that, conversely, every Lie-Jordan algebra is isomorphic to an algebra of type K(A, *).

Theorem 1 Let L be a Lie algebra over a field k of characteristic $\neq 2$. Then L is isomorphic to a Lie algebra K(A, *) for a certain associative algebra with involution (A, *) if and only if L admits a trilinear operation $\{,,\}$ such that L is a Lie-Jordan algebra.

Proof. Let L be a Lie-Jordan algebra; then an associative algebra U(L) is said to be a universal enveloping algebra for L if there exists a homomorphism $\alpha_L : L \longrightarrow U(L)^+$ such that for any associative algebra A and a homomorphism $\beta : L \longrightarrow A^+$ there exists a homomorphism π of associative algebras $\pi : U(L) \longrightarrow A$ such that $\beta = \alpha_L \circ \pi$. In other words, there is a bijection

$$Hom_{Lie-Jord}(L, A^+) \longrightarrow Hom_{\underline{Ass}}(U(L), A),$$

which is functorial on the variables L and A.

The existence of a universal enveloping algebra U(L) for a given Lie-Jordan algebra Lis obvious. It is isomorphic to the quotient algebra of the tensor algebra T(L) by the ideal I generated by all the elements

$$a \otimes b - b \otimes a - [a, b], \quad a \otimes b \otimes c + c \otimes b \otimes a - \{a, b, c\}, \ a, b, c \in L;$$

with the universal homomorphism $\alpha_L : a \longrightarrow a + I$. By [1, Theorem 1], we have ker $\alpha_L = 0$, hence we can identify L with its image $\alpha_L(L)$ and assume that L is a subalgebra of $U(L)^+$.

Define on the tensor algebra T(L) an involution * by setting $l^* = -l$ for every $l \in L$. For any $a, b, c \in L$ we have

$$(a \otimes b - b \otimes a - [a, b])^* = b^* \otimes a^* - a^* \otimes b^* - ([a, b])^* = b \otimes a - a \otimes b + [a, b]$$
$$= -(a \otimes b - b \otimes a - [a, b]) \in I;$$
$$(a \otimes b \otimes c + c \otimes b \otimes a - \{a, b, c\})^* = c^* \otimes b^* \otimes a^* + a^* \otimes b^* \otimes c^* - \{a, b, c\}^*$$
$$= -(a \otimes b \otimes c + c \otimes b \otimes a - \{a, b, c\}) \in I.$$

Hence the ideal I is invariant with respect to the involution *, and so this involution induces an involution on the quotient algebra U(L) = T(L)/I. We will denote the induced involution also by *. Let us prove that L = K(U(L), *). It is clear that $L \subseteq K(U(L), *)$. In order to prove the inverse inclusion, consider the structure of U(L). Since L generates U(L), we have

$$U(L) = L + LL + LLL + \cdots$$

For any $a, b, c \in L$ we have

$$a \otimes b \otimes c - 1/2 \left(\{a, b, c\} + [b, c] \otimes a + b \otimes [a, c] + [a, b] \otimes c \right) \in I,$$

which implies that U(L) = L + LL. Moreover, for any $a, b \in L$ we have

$$ab = a \circ b + 1/2[a, b],$$

and since $[a, b] \in L$, this yields that $U(L) = L + L \circ L$. Evidently, $L \circ L \subseteq H(U(L), *)$, so we finally have

$$K(U(L), *) = L, \quad H(U(L), *) = L \circ L.$$

This proves the theorem.

References

- A.N.Grishkov, I.P.Shestakov, Speciality of Lie-Jordan Algebras, Journal of Algebra 237, (2001) 621-636.
- [2] P. M. Cohn, Two embedding theorems for Jordan algebras, Proc. London Math. Soc. (3)
 9 (1959) 503-524.