REPRESENTING IDEMPOTENTS AS A SUM OF TWO NILPOTENTS OF DEGREE FOUR

ALEXANDER GRISHKOV AND SAID SIDKI

Abstract

The freest minimal algebra R over the field of rational numbers where an idempotent is a sum of two nilpotents of degree 4 is presented by $\mathbb{Q}<e, b \mid e^{2}=e, a^{4}=b^{4}=0, e=a+b>$. We produce a basis for R, show that $R e R$ is its unique non-zero minimal ideal. Moreover, we provide a faithful representation of R as a 4-dimensional matrix algebra over a 3-generated, 4related ring where the image of e is a nonzero matrix with zero diagonal.

1. Introduction

The problem in ring theory of the representation of an idempotent as a sum of two nilpotent elements of respective degrees m, n was initiated in [1]. The freest corresponding minimal ring is

$$
\mathcal{Z}(m, n)=<e, a, b \mid e^{2}=e, a^{m}=0, b^{n}=0, e=a+b>
$$

and the freest corresponding minimal algebra in characteristic zero is $\mathcal{A}(m, n)=$ $\mathbb{Q} \otimes_{\mathbb{Z}} \mathcal{Z}(m, n)$. It may be assumed by symmetry that $m \leq n$.

By applying the trace function, it is easy to see that in any finite dimensional representation of $\mathcal{A}(m, n)$ over fields of characterisitic zero, the image of e is the zero linear transformation. It was shown in [1] that the same conclusion holds in any representation of $\mathcal{A}(m, n)$ as a PI algebra of characteristic zero. Furthermore, it was proven that the $\operatorname{ring} \mathcal{Z}(m, n)$ was finitely generated as a \mathbb{Z}-module for $m=2, n$ arbitrary and for $m=3, n=2,3,4,5$ and therefore, in this range of parameters, the ideal generated by e is finite.

Matrix representations of $\mathcal{A}(4,4)$ in $M_{4 \times 4}(D)$ over division rings D in characteristic 0 was undertaken by Salwa in [3]. He showed that such a matrix ring contains a nonzero idempotent E with zero diagonal if and only if D contains a copy of the first Weyl algebra. Moreover, he obtained a representation for $\mathcal{A}(3,6)$ in characteristic zero where the image of e is non-zero. Considering that $\mathcal{A}(m, n)$ maps onto $\mathcal{A}(k, l)$ whenever $m \geq k, n \geq l$, these results establish that the algebra $\mathcal{A}(m, n)$ is infinite dimensional if and only if the pair $(m, n) \geq(3,6)$ or $(4,4)$, under lexicographical ordering.

The purpose of this paper is to construct a relatively easy non-trivial representation of $\mathcal{Z}(4,4)$ and furthermore to prove that $\mathcal{A}(4,4)$ is minimal, in the sense that it has no proper non-commutative quotients.

[^0]The new representation of $\mathcal{Z}(4,4)$ has the advantage of being an elementary application of the Diamond Lemma. We prove

Theorem 1. Let T be the ring with the presentation

$$
\begin{aligned}
& <x, y, z \mid x y+y x=z, y z+z y=x \\
z x+x z & =y, x^{2}+y^{2}+z^{2}=0>
\end{aligned}
$$

Then, T has as \mathbb{Z}-basis the set

$$
\left\{x^{i} y^{j} z^{k} \mid i, j \geq 0, k=0,1\right\}
$$

Furthermore, the element

$$
E=\left(\begin{array}{llll}
0 & x & y & z \\
x & 0 & z & y \\
y & z & 0 & x \\
z & y & x & 0
\end{array}\right)
$$

of $M_{4 \times 4}(T)$ is an idempotent.
Next, we provide an explicit \mathbb{Q}-basis for the algebra $R=\mathcal{A}(4,4)$ built from one for the subalgebra $e R e$. Having this basis we are able to prove

Theorem 2. The ideal ReR generated by e is the unique minimal non-zero ideal of R.

This theorem implies that our representation of R into $M_{4 \times 4}(T)$ and that of Salwa's into $M_{4 \times 4}(D)$ are both faithful.

Our results raise the question about the ideal structure of $\mathcal{A}(m, n)$ in general and of $\mathcal{A}(3,6)$ in particular.

We thank Vladislav Kharchenko for useful discussions on the material of this paper.

2. Symmetric Matrix Representation of $\mathcal{Z}(4,4)$

We consider a generic symmetric matrix $E=\left(x_{i j}\right)$ of dimension 4 with zero diagonal such that $E^{2}=E$. The six entries of E satisfy the following sixteen equations:

$$
\begin{gathered}
x_{i j}^{2}=-x_{i k}^{2}-x_{i l}^{2}, i \neq j, k, l, \\
x_{i j}=\sum_{k \neq i, j} x_{i k} x_{k j}, i \neq j
\end{gathered}
$$

These equations imply

$$
2\left(x_{12}^{2}+x_{13}^{2}+x_{23}^{2}\right)=0,2 x_{23}^{2}=2 x_{14}^{2}, 2 x_{24}^{2}=2 x_{13}^{2}, 2 x_{34}^{2}=2 x_{12}^{2} .
$$

On assuming the partial algebra of entries of our matrix to be torsion-free and on choosing

$$
x_{23}=x_{14}, x_{24}=x_{13}, x_{34}=x_{12}
$$

the conditions reduce to the four equations

$$
\begin{gathered}
x_{12}^{2}+x_{13}^{2}+x_{23}^{2}=0, \\
x_{12}=x_{13} x_{14}+x_{14} x_{13}, \\
x_{13}=x_{12} x_{14}+x_{14} x_{12}, \\
x_{14}=x_{12} x_{13}+x_{13} x_{12} .
\end{gathered}
$$

Rename the entries as $x_{12}=x, x_{13}=y, x_{14}=z$. Then the algebra of entries of our matrix is now the ring T with the presentation

$$
\begin{aligned}
& <x, y, z \mid x y+y x=z, y z+z y=x \\
z x+x z & =y, x^{2}+y^{2}+z^{2}=0>
\end{aligned}
$$

Proposition 1. The ring T has as \mathbb{Z}-basis the set $\left\{x^{i} y^{j} z^{k} \mid i, j \geq 0, k=0,1\right\}$.
Proof. We shall apply the Diamond Lemma where the relations of S are interpreted as substitutions. The ambiguities to be resolved appear in calculating the following products $z z x, z z y, z y x$. First we compute the auxiliary equations:

$$
\begin{aligned}
(y x) x & =y-2 x z+x^{2} y,(y x) y=x-y z-x y^{2}, \\
y(y x) & =-x+2 y z+x y^{2}, y(z x)=x^{2}+2 y^{2}+x y z, \\
(z x) z & =y z+x^{3}+x y^{2},(z x) y=y^{2}-x^{2}+x y z, \\
(z y) z & =y-x z+x^{2} y+y^{3} .
\end{aligned}
$$

On using the above equations it is straightforward to check that the ambiguities are resolved.

Corollary 1. Let $A=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ x & 0 & 0 & 0 \\ y & z & 0 & 0 \\ z & y & x & 0\end{array}\right], B=\left[\begin{array}{llll}0 & x & y & z \\ 0 & 0 & z & y \\ 0 & 0 & 0 & x \\ 0 & 0 & 0 & 0\end{array}\right]$ be elements of $M_{4 \times 4}(T)$ and let $E=A+B$. Then, E is an idempotent and $A^{4}=B^{4}=0$, $A^{3}=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ x z x & 0 & 0 & 0\end{array}\right]$, where $x z x=x y-x^{2} z \neq 0$.

A direct consequence of the above is
Corollary 2. The algebra $R=\mathcal{A}(4,4)$ has infinite \mathbb{Q}-dimension.

3. A Basis for the algebra $\mathcal{A}(4,4)$

We rewrite the presentation of the algebra $R=\mathcal{A}(4,4)$ as

$$
\mathbb{Q}<e, b \mid e^{2}=e, b^{4}=(e+b)^{4}=0>
$$

It is clear that e is not a central idempotent in R. We extend our algebra by a unit, $P=R \oplus \mathbb{Q} 1$. Then $f=1-e$ is an idempotent and we have the Peirce decomposition

$$
P=e P e \oplus e P f \oplus f P e \oplus f P f
$$

Define the subalgebras $S=e R e, T=f R f$. Then,

$$
e P e=S, e P f=e R f, f P e=f R e, f P f=T
$$

The algebra R decomposes as

$$
R=\sum\left\{\mathbb{Q} b^{i} \mid i=1,2,3\right\}+\sum\left\{b^{i} S b^{j} \mid 0 \leq i, j \leq 3\right\}
$$

Thus, in any representation, R has finite \mathbb{Q}-dimension if and only if S has finite \mathbb{Q}-dimension.

The monomials w in P have the form $w=e, f$, or $g^{l} b^{i_{1}} g \ldots b^{i_{k}} g^{m}$ where $g=e, f$, $l, m \in\{0,1\}, k \geq 1$ and $1 \leq i_{1}, \ldots, i_{k} \leq 3$. Define the formal b-length of w (that is when w is seen as an element of the free semi-group generated by e, f, b) to be $|w|=0$ if $w=e$ or f and $|w|=i_{1}+\ldots+i_{k}$, otherwise. If W is a subspace of P, then W_{n} denotes the \mathbb{Q}-space generated by all elements of W represented as monomials of b-length at most n.
3.1. Computations in R. Define $x=e b e, y=e b^{2} e, z=e b^{3} e, U=\left\{x^{i}, x^{i} y x^{j} \mid i, j \geq\right.$ $0\}$ in S.

Expand the equation $(e+b)^{4}=0$ and use $b^{4}=0$ to produce

$$
\begin{gather*}
b^{3} e+e b^{3}+b^{2} e b+b e b^{2}+e b^{2} e+b^{2} e+e b^{2}+ \\
e b e b+\text { bebebeb }+2 e b e+b e+e b+e=0 . \tag{1}
\end{gather*}
$$

The multiplication $e \times(1) \times e$ produces

$$
\begin{equation*}
z \equiv-\frac{1}{2}(y x+x y) \bmod S_{2} \tag{2}
\end{equation*}
$$

$b^{3} \times(1) \times b^{3}$ produces

$$
\begin{equation*}
b^{3}(y+2 x+e) b^{3}=0 \tag{3}
\end{equation*}
$$

(1) $\times b^{3}$ produces

$$
\begin{equation*}
b^{3} e b^{3} \equiv 0 \bmod R_{5} \tag{4}
\end{equation*}
$$

$e \times(1)$ produces

$$
\begin{equation*}
e b^{3} \equiv-x b^{2}-y b+\frac{1}{2}(y x+x y) \bmod R_{2} \tag{5}
\end{equation*}
$$

(5) $\times b$ produces

$$
\begin{equation*}
y b^{2} \equiv x^{2} b^{2}+\frac{1}{2}(y x+3 x y) b-\frac{1}{2} x(y x+x y) \bmod R_{3} \tag{6}
\end{equation*}
$$

(6) $\times e$ produces

$$
\begin{equation*}
2 y^{2} \equiv x^{2} y+2 x y x+y x^{2} \bmod R_{3} \tag{7}
\end{equation*}
$$

(1) $\times e$ leads to

$$
\begin{equation*}
b^{3} e \equiv-b^{2} x-b y+\frac{1}{2}(y x+x y) \bmod R_{2} \tag{8}
\end{equation*}
$$

$b \times(8)$ leads to

$$
\begin{equation*}
b^{2} y \equiv b^{2} x^{2}+\frac{1}{2} b(3 y x+x y)-\frac{1}{2}(y x+x y) x \bmod R_{3} . \tag{9}
\end{equation*}
$$

On substituting $b^{3} e$ and $e b^{3}$ in (1) we get

$$
\begin{equation*}
b e b^{2} \equiv-b^{2} e b+b^{2} x+x b^{2}+b y+y b-(y x+x y) \bmod R_{2} . \tag{10}
\end{equation*}
$$

The multiplication $b \times(10)$ produces

$$
\begin{equation*}
b^{2} e b^{2} \equiv-\frac{1}{2}(y x+x y) b-\frac{1}{2} b(y x+x y)+2 b y b+b^{2} x b+b x b^{2} \bmod R_{3} \tag{11}
\end{equation*}
$$

(6) $\times b e$ produces

$$
\begin{equation*}
4 y x y \equiv-\left(3 x^{2} y x+3 x y x^{2}+y x^{3}+x^{3} y\right) \bmod \mathrm{S}_{4} \tag{12}
\end{equation*}
$$

We have $z^{2}=e b^{3} e b^{3} e=\left(e b^{3} e\right)^{2} \equiv(x y+y x)^{2} \equiv 0 \bmod S_{5}$ from which we derive, using (4) and (2),

$$
\begin{equation*}
y x^{2} y \equiv \frac{1}{2} x y x^{3}+\frac{1}{4} x^{4} y+\frac{1}{2} x^{2} y x^{2}+\frac{1}{4} y x^{4}+\frac{1}{2} x^{3} y x \bmod S_{5} \tag{13}
\end{equation*}
$$

3.2. A basis for the subalgebra $S=e R e$.

Proposition 2. The following congruences hold in the algebra S,

$$
\begin{aligned}
y x^{2 n-3} y & \equiv-\frac{1}{2 n} y x^{2 n-1}-\frac{1}{2 n} x^{2 n-1} y-\frac{2 n-1}{2 n(n-1)} \sum_{i=1}^{2 n-2} x^{i} y x^{2 n-i-1} \bmod S_{2 n} \\
\text { for } n & \geq 2 \\
y x^{2 n-2} y & \equiv \frac{1}{2 n} y x^{2 n}+\frac{1}{2 n} x^{2 n} y+\frac{1}{n} \sum_{i=1}^{2 n-1} x^{i} y x^{2 n-i} \bmod S_{2 n+1} \\
\text { for } n & \geq 1
\end{aligned}
$$

Proof. Congruences (7), (12) and (13) of the previous section are the first three cases of the proposition.

Suppose that for $p=0, . ., n+1$ we have established the congruences

$$
\begin{equation*}
y x^{p} y \equiv \sum_{i=0}^{p+2} \alpha(i, p) x^{i} y x^{p-i+2} \bmod S_{p+3} \tag{1}
\end{equation*}
$$

for some rational coefficients $\alpha(i, p)$ and where

$$
\alpha(0, p)=\left\{\begin{array}{l}
-\frac{1}{p+3} \text { for } p \text { odd } \\
\frac{1}{p+2} \text { for } p \text { even }
\end{array}\right.
$$

Then, it follows from (1) that

$$
\begin{align*}
\left(y x^{n}\right) y^{2} \equiv & \frac{1}{2}\left(y x^{n} y\right) x^{2}+\left(y x^{n+1} y\right) x+\frac{1}{2} y x^{n+2} y \equiv \\
& \frac{1}{2} \sum_{i=0}^{n+2} \alpha(i, n) x^{i} y x^{n-i+4}+\sum_{i=0}^{n+3} \alpha(i, n+1) x^{i} y x^{n-i+4}+ \tag{2}\\
& \frac{1}{2} y x^{n+2} y \bmod S_{n+5} .
\end{align*}
$$

Also, from (1), we have

$$
\begin{align*}
\left(y x^{n} y\right) y \equiv & \sum_{\substack{i=0 \\
n+2}} \alpha(i, n) x^{i}\left(y x^{n-i+2} y\right) \equiv \alpha(0, n) y x^{n+2} y+ \\
& \sum_{i=1}^{n+2} \alpha(i, n) x^{i} \sum_{j=0}^{n-i+4} \alpha(j, n-i+2) x^{j} y x^{n-i-j+4} \bmod S_{n+5} \tag{3}
\end{align*}
$$

Therefore, from (2) and (3), we obtain

$$
\begin{equation*}
y x^{n+2} y \equiv \alpha(0, n+2) y x^{n+4}+\sum_{i=1}^{n+4} \alpha(i, n+2) x^{i} y x^{n-i+4} \text { modulo } S_{n+5} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
\alpha(0, n+2) & =\frac{2 \alpha(0, n+1)+\alpha(0, n)}{1-2 \alpha(0, n)} \text { and } \\
\alpha(i, n+2) & =\frac{2 \alpha(i, n+1)+\alpha(i, n)+2 \sum_{j=1}^{i} \alpha(j, n) \alpha(i-j, n-j+2)}{1-2 \alpha(0, n)} \\
\text { for } i & \geq 1 .
\end{aligned}
$$

Given the values of $\alpha(0, n)$ and $\alpha(0, n+1)$ we find that

$$
\alpha(0, n+2)=\left\{\begin{array}{c}
\frac{2 \alpha(0, n+1)+\alpha(0, n)}{1-2 \alpha(0, n)}=-\frac{1}{n+5} \text { for } n \text { odd } \\
\frac{1}{n+4} \text { for } n \text { even. }
\end{array}\right.
$$

Let V be the vector space generated by the set U. We have shown that $y x^{n} y \in V$ for all $n \geq 0$ and therefore, $V=S$. The precise form of the coefficients $\alpha(i, n+2)$ for $1 \leq i \leq n+4$ can be established in a straightforward, though lengthy manner.

Proposition 3. The set U is a \mathbb{Q}-basis for the algebra S.
Proof. Suppose U is linearly dependent then there exist $m, n \geq 0$ such that

$$
x^{m} y x^{n}=\sum_{(i, j)<(m, n)} \beta_{i j} x^{i} y x^{j}
$$

where the order on the pairs (i, j) is lexicographical and $\beta_{i j} \in \mathbb{Q}$. Let K be the extension of \mathbb{Q} by x. Then, S is a finitely generated right K-module and we note that it is freely generated as a right K-module by $y, x y, x^{2} y, \ldots, x^{l} y$ for some l.

By Zorn's Lemma, there exists a 2 -sided ideal I in R, maximal with respect to not containing e. Let \bar{R} be the quotient of the algebra R by I. Then, easily, \bar{R} is a prime ring.

Let \bar{S}, \bar{K} be the respective images of S, K in \bar{R}. Then, again, \bar{S} is a free right \bar{K}-module of finite rank. As \bar{e} is the identity element in \bar{S}, the representation of \bar{S} on itself by multiplication on the left is faithful. Thus, \bar{S} is identifiable with a subalgebra of $M_{n \times m}(\bar{K})$. Therefore, \bar{S} is a PI-algebra and \bar{R} is a GPI-algebra (it satisfies a polynomial identity with constant \bar{e}). By a Theorem of Martindale [2], there exists a field extension F of \mathbb{Q} such that $\bar{R}_{F}=F \otimes_{\mathbb{Q}} \bar{R}$ is primitive. Hence $\bar{e} \bar{R}_{F} \bar{e}$ is also primitive, but as this is a PI-algebra, it follows that $\bar{e} \bar{R}_{F} \bar{e}$ is isomorphic to $M_{p \times p}(F)$ for some p. Therefore $\bar{e}=0$; a contradiction is reached.

Corollary 3. Let I be an ideal of R such that $e \notin I$. Then, $I \cap S=0$.
Proof. If $I \cap S \neq 0$ then $S / I \cap S$ is finite dimensional and therefore so is R / I. But then $e \in I$; a contradiction.
3.3. Bases for $f R f$ and $f R e$. Define the subalgebra $T=f R f$ and subspace $W=f R e$ of P. Define in T the elements $p=f b f, q=f b^{2} f$, the subset $U^{\prime}=$ $\left\{p^{i}, p^{i} q p^{j} \mid i, j \geq 0\right\}$ and in W the subset $U^{\prime \prime}=\left\{f b x^{i}, f b^{2} x^{i}, f b x^{i} y x^{j} \mid i, j \geq 0\right\}$.

It can be established following a similar routine as in the case of $S=e R e$ that U^{\prime} is a basis for T. For example, consider the congruence (10) from Section 3.1. Then the multiplication $f \times(10) \times f$ produces

$$
f b^{2} e b f+f b e b^{2} f \equiv 0 \bmod P_{2}
$$

Therefore, on substituting $e=1-f$, we obtain

$$
f b^{3} f \equiv \frac{1}{2}(q p+p q) \bmod T_{2},
$$

and so, T is generated as an algebra by p, q.
More concretely, we have
Proposition 4. The following congruences hold in the algebra T,

$$
\begin{aligned}
q p^{2 n-3} q & \equiv \frac{1}{2 n} q p^{2 n-1}+\frac{1}{2 n} p^{2 n-1} q+\frac{2 n-1}{2 n(n-1)} \sum_{i=1}^{2 n-2} p^{i} q p^{2 n-i-1} \bmod T_{2 n} \\
\text { for } n & \geq 2 ; \\
q p^{2 n-2} q & \equiv-\frac{1}{2 n} q p^{2 n}-\frac{1}{2 n} p^{2 n} q-\frac{1}{n} \sum_{i=1}^{2 n-1} p^{i} q p^{2 n-i} \bmod T_{2 n+1}, \\
\text { for } n & \geq 1 .
\end{aligned}
$$

Moreover, U^{\prime} is $a \mathbb{Q}$-basis for T.
Again, similarly, we have
Proposition 5. The following congruences hold in the subspace $W=f R e$,

$$
\begin{aligned}
f b^{2} x^{2 n-1} y \equiv & -\frac{1}{2 n+1} f b^{2} x^{2 n+1}-\frac{1}{2 n+1} f b x^{2 n} y \\
& -\frac{4 n+1}{2 n(2 n+1)} \sum_{i=0}^{2 n-1} f b x^{i} y x^{2 n-i}
\end{aligned}
$$

$\bmod T_{2 n+2}$, for $n \geq 1$,

$$
\begin{aligned}
f b^{2} x^{2 n} y \equiv & \frac{1}{2 n+1} f b^{2} x^{2 n+2}+\frac{1}{2(n+1)} f b x^{2 n+1} y+ \\
& \frac{4 n+3}{(2 n+1)(2 n+2)} \sum_{i=0}^{2 n} f b x^{i} y x^{2 n-i+1}
\end{aligned}
$$

$\bmod T_{2 n+1}$, for $n \geq 1$.
Moreover, $U^{\prime \prime}$ is a \mathbb{Q}-basis of W.
Proof. We will only prove that $U^{\prime \prime}$ is linearly independent. Suppose we have a nontrivial dependence equation

$$
\sum \alpha_{i} f b^{2} x^{i}+\sum \beta_{i} f b x^{i+1}+\sum \gamma_{i j} f b x^{i} y x^{j}=0
$$

Suppose that the maximum b-degree of the monomials in the sum is $m+2$, then we will work modulo P_{m+1}; thus we have
(*)

$$
\alpha f b^{2} x^{m}+\beta f b x^{m+1}+\sum_{i=0}^{m-1} \gamma_{i} f b x^{i} y x^{m-i-1} \equiv 0 \bmod P_{m+1}
$$

We multiply $\left(^{*}\right)$ on the left by $e b$ and make the substitution $f=1-e$. This multiplication produces:
$\alpha\left((z) x^{m}-x y x^{m}\right)+\beta\left(y x^{m+1}-x^{m+3}\right)+$
$\sum \gamma_{i}\left(\left(y x^{i} y\right) x^{m-i-1}-x^{i+2} y x^{m-i-1}\right) \equiv 0 \bmod S_{m+2}$.
Then, on substituting in the above

$$
\begin{aligned}
z & \equiv-\frac{1}{2} y x-\frac{1}{2} x y \bmod R_{2} \\
y x^{i} y & \equiv \varepsilon_{i}\left(y x^{i+2}+x^{i+2} y\right)+\delta_{i} \sum_{1 \leq l \leq i+1} x^{l} y x^{i+2-l} \bmod R_{i+3}
\end{aligned}
$$

we get
$\alpha\left(-\frac{1}{2} y x^{m+1}-\frac{3}{2} x y x^{m}\right)+\beta\left(y x^{m+1}-x^{m+3}\right)+$
$\sum_{i} \gamma_{i}\left(\left(\varepsilon_{i}\left(y x^{i+2}+x^{i+2} y\right)+\delta_{i} \sum_{1 \leq l \leq i+1} x^{l} y x^{i+2-l}\right) x^{m-i-1}-x^{i+2} y x^{m-i-1}\right)$
$\equiv 0 \bmod S_{m+2}$.
Therefore,
$\alpha\left(-\frac{1}{2} y x^{m+1}-\frac{3}{2} x y x^{m}\right)+\beta\left(y x^{m+1}-x^{m+3}\right)+$
$\left(\sum_{i} \gamma_{i} \varepsilon_{i}\right) y x^{m+1}+\sum_{i} \gamma_{i} \varepsilon_{i} x^{i+2} y x^{m-i-1}+\sum_{i} \gamma_{i} \delta_{i}\left(\sum_{1 \leq l \leq i+1} x^{l} y x^{m-l+1}\right)$
$-\sum_{i} \gamma_{i} x^{i+2} y x^{m-i-1} \equiv 0 \bmod S_{m+2}$.
Hence,

$$
\begin{aligned}
& -\beta x^{m+3}+\left(-\frac{\alpha}{2}+\beta+\sum_{i \geq 0} \gamma_{i} \varepsilon_{i}\right) y x^{m+1}+ \\
& \left(-\frac{3}{2} \alpha+\sum_{i \geq 0} \gamma_{i} \delta_{i}\right) x y x^{m}+\sum_{0 \leq i \leq m-2}\left(\gamma_{i}\left(\varepsilon_{i}-1\right)+\sum_{i+1 \leq k} \gamma_{k} \delta_{k}\right) x^{i+2} y x^{m-i-1} \\
& +\gamma_{m-1}\left(\varepsilon_{m-1}-1\right) x^{m+1} y \equiv 0 \bmod S_{m+2} .
\end{aligned}
$$

We conclude

$$
\begin{aligned}
\beta & =0 \\
\alpha & =2 \sum_{i \geq 0} \gamma_{i} \varepsilon_{i}=\frac{2}{3} \sum_{i \geq 0} \gamma_{i} \delta_{i} \\
\gamma_{i}\left(\varepsilon_{i}-1\right)+\sum_{k \geq i+1} \gamma_{k} \delta_{k} & =0, \text { for } 0 \leq i \leq m-2, \\
\gamma_{m-1} & =0
\end{aligned}
$$

Since $\varepsilon_{i} \neq 1$ for all i, this system easily leads to $\gamma_{i}=0$ for all i and to $\alpha=0$. A contradiction is reached.

Corollary 4. The set

$$
\left\{x^{i}, x^{i} y x^{j}, p^{i}, p^{i} q p^{j}, f b x^{i}, f b x^{i} y x^{j}, f b^{2} x^{i}, x^{i} b f, x^{i} y x^{j} b f, x^{i} b^{2} f \mid i, j \geq 0\right\}
$$

is a basis of P, where $x^{0}=e, p^{0}=f$. Furthermore, the set

$$
\left\{b^{i} \mid i=1,2,3\right\} \cup\left\{b^{k} x^{i} b^{l}, b^{k} x^{i} y x^{j} b^{l} \mid i, j \geq 0, k, l=0,1\right\}
$$

is a basis for R, where $b^{0}=1$.

4. Ideal Structure of R

The ideal generated by e is $J=R e R$ and R / J is isomorphic to $\mathbb{Q}\left[b \mid b^{4}=0\right]$. The ideal structure of R is determined by

Theorem 3. The ideal J is the unique minimal non-zero ideal of the algebra R.
Proof. Let I be a minimal non-zero ideal of P not containing e. Then, $I \cap e P e=0$. Suppose that $f \in I$. Then, since $e+b=-f+(1+b)$, we get $0=(e+b)^{4}=$ $u+(1+b)^{4}$ for some $u \in I$. We have a contradiction since $1+b$ is invertible. Therefore $f \notin I$ and $I \cap f P f=0$. From the Peirce decomposition, we obtain $I=$ $e I f \oplus f I e$. Suppose a is a non-zero element of $f I e$ of b-degree m. Then

$$
\alpha f b^{2} x^{m}+\beta f b x^{m+1}+\sum_{i=0}^{m-1} \gamma_{i} f b x^{i} y x^{m-i-1} \equiv 0 \bmod P_{m+1}
$$

and a repetition of the argument in the previous proposition leads to a contradiction.

References

[1] Ferrero, M. , Puczylowski, E., Sidki, S., On the representation of an idempotent as a sum of nilpotent elements, Canad. Math. Bull. vol. 39 (2), (1996) 178-185.
[2] Martindale, W., Prime rings satisfying a generalized polynomial identity, J. Algebra vol. 12 (1969), 576-584.
[3] Salwa, A., Representing idempotents as a sum of two nilpotents-An application via matrices over division rings, Colloq. Math. vol. 77 (1), (1998) 59-83.

[^1]
[^0]: 1991 Mathematics Subject Classification. Primary 16U99.
 Key words and phrases. idempotent, nilpotent, infinite dimension
 The first author acknowledges support from the Brazilian scientific agencies FAPESP and CNPq and the second author acknowledges support from FAPDF and CNPq.

[^1]: Instituto de Matemática, Universidade de São Paulo, São Paulo, Brazil
 E-mail address: grishkov@ime.usp
 Departamento de Matemática, Universidade de Brasília, 70910-900 Brasília- DF, Brazil
 E-mail address: sidki@mat.unb.br

