Representations of completely solvable Lie algebras over a ring of polynomials

Alexandr Grishkov

Omsk State University (Russia) and University of São Paulo (Brazil)

1 RÉSUMÉ

Si R est un anneau de polynômes et L est une R-algèbre complétement résoluble, c'est-à-dire qu'il existe une chaine d'idéaux $L = L_0 \subset L_1 \subset ... \subset L_n \subset 0$, avec L_i/L_{i+1} un R-module libre de dimension 1, alors L admet une représentation par matrices triangulaires sur R.

In this article we show that a completely solvable Lie algebra over a ring of polynomials has a triangulable faithful representation. This fact is important in the theory of analytic diassosiative loops. In 1955 Malcev noted [5] that, every Binary Lie algebra B over the field $\mathbf R$ of real numbers, some neighborhood $D \subset B$ of zero can be considered as a local analytic diassociative loop with the multiplication $x \star y = H(x,y) = x + y + [x,y]/2 + \ldots$, where H(x,y) stands for the Campbell-Hausdorf series. Recall that by definition an algebra B is Binary Lie if every two elements of B generate a Lie subalgebra. By the Cartan theorem, for every local analytic Lie group, there exists a corresponding global analytic Lie group. An analogy is not valid for local analytic diassociative loops [1]. The problem of existence of a global analytic dissociative loop for a given Binary Lie algebra is not easy. The following can help in solving the problem.

Let B be a Binary Lie algebra over \mathbf{R} with a finite basis $\{b_1, \ldots, b_n\}$ and $B_K = B \otimes_R K$ be corresponding Binary Lie over the polynomial ring $K = \mathbf{R}[x_1, x_2, \ldots, y_1, y_2, \ldots]$. Denote $X = x_1b_1 + \ldots + x_nb_n$ and $Y = y_1b_1 + \ldots + y_nb_n$, and let B(X,Y) be a Lie subalgebra generated by X,Y. By the theorem [2], the algebra B is completely solvable, hence, B(X,Y) is so. By the theorem 1 of the present work B(X,Y) has a faithful triangulable representation π . Therefore, there exists a triangular matrix Z such that $exp(\pi(X))exp(\pi(Y)) = exp(Z)$. Suppose that $Z = f_1\pi(b_1) + \ldots + f_n\pi(b_n)$, where f_1, \ldots, f_n are analytic functions on \mathbf{R}^{2n} . Then \mathbf{R}^n is a global analytic diassociative loop with a multiplication given by the rule

$$(x_1,\ldots,x_n)\cdot(y_1,\ldots,y_n)=(f_1,\ldots,f_n).$$

Moreover, this loop corresponds to B.

Let R be a polynomial ring, $R = k[x_1, \ldots, x_m]$, where k is a field of characteristic 0, let Q be the field of fractions of R. For every R-module V, we denote by $dim_R V$ the dimension of the Q-module $V \otimes_R Q$. We call an Lie algebra L over R completely solvable if L admits some normal series

$$L = L_1 > L_2 > \ldots > L_n = 0,$$

such that $dim_R(L_i/L_{i+1}) = 1, i = 1, ..., n-1$.

A module V over the Lie algebra L_R is called triangulable if V is free R-module with a free basis $\{v_1, \ldots, v_p\}$, such that $V_i = \{v_i, \ldots, v_p\}_R$ is an L-submodule.

The main result of this section is the following

Theorem 1 Let $R = k[x_1, ..., x_m]$, L be a completely solvable Lie algebra over R, and let L be free as an R-module. Then L has a faithfull triangulable module.

Proof. Suppose that L is a splitting Lie algebra, i.e. $L = T \oplus N$, where N is the nilradical of L and T is a torus. Moreover, T and N are free R-module. Let t_1, \ldots, t_q be a free basis of the R-module T. First we will prove the statement in this particular case by induction on q.

1. Case q=0. Let $\mathcal{L}=L\otimes_R Q$, a nilpotent Lie algebra over Q. By the Ado theorem [3], \mathcal{L} has a faithfull finite-dimensional representation ρ : $\mathcal{L}\to End_QV$ such that all elements $\rho(x), x\in\mathcal{L}$ are nilpotent. Fix a Q-basis in V and generators n_1,\ldots,n_l of the R-module \mathcal{L} . We can find $a\in R$ such that all coefficients of the matrices $a\rho(n_1),\ldots,a\rho(n_l)$ are in R. We denote $D=diag(1,a,\ldots,a^{n-1})$, where $n=dim_QV$. If the matrices $\rho(n_1),\ldots,\rho(n_l)$ are upper triangular, then the matrices

$$D^{-1}\rho(n_1)D, \ldots, D^{-1}\rho(n_l)D$$

have coefficients in R. It means that the Lie R-algebra L has faithfull triangable module over R.

2. Case q > 0. Denote $t = t_q$ and $L_0 = T_0 \oplus N$, where $T_0 = \{t_1, \dots, t_{q-1}\}_R$. Now it is suffices to prove the following

Lemma 1. Let L be a completely solvable Lie R-algebra and let $L=Rt\oplus L_0$, where L_0 is an ideal of L. Then, for every representation $\rho_0:L_0\to End_R(V_0)$, where V_0 is a free R-module, there exists an extension $\rho:L\to End_R(V)$ such that V is a free R-module and $V=V_0\oplus V_1$, V_1 is an R-submodule of V, $\rho|_{V_0}=\rho_0$. Moreover, if V_0 is a triangulable L_0 -module, then V is triangulable.

Proof. Let W be an L-module induced by V_0 , $W = \sum_{i=0}^{\infty} \oplus V_0 \otimes t^i$. The lemma will be proved if we construct a unitary polynomial $f(x) \in R[x]$ such that $V_0 f(t) L \cap V_0 = 0$ with all the roots of f(x) are in R. We will construct f(x) by induction on $dim V_0$. If $dim V_0 = 1$, we can take $f(x) = x^2$. In the case of $dim V_0 > 0$, we need the following

Lemma 2 Let s(x) and p(x) be unitary polynomials, $s(x), p(x) \in R[x]$. Then there exists an unitary polynomial $f(x) \in R[x]$ such that, in the ring R[x,y],

$$f(x+y) = f(y) + s(x)r_1(x,y) + xp(x)r_2(x,y)$$
(1)

for some $r_1(x,y), r_2(x,y) \in R[x,y]$. Moreover, if all the roots of s(x) and p(x) are in R then all the roots of f(x) are in R.

Proof. Let R_1 be an extension of R such that $s(x) = (x - \alpha_1) \cdot \ldots \cdot (x - \alpha_n)$ and $p(x) = (x - \beta_1) \cdot \ldots \cdot (x - \beta_m)$ for some $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m \in R_1$. We define

$$f(x) = p^{n}(x) \prod_{i,j} (x - \alpha_i - \beta_j).$$

Note that $f(x) \in R[x]$ if $s(x), p(x) \in R[x]$. We will prove (1) by induction on n. For n = 1,

$$f(x+y) - f(x) =$$

$$p(x+y) \prod_{j} (x+y-\alpha_{1}-\beta_{j}) - p(y) \prod_{j} (y-\alpha_{1}-\beta_{j}) =$$

$$p(x+y) \prod_{j} [(x-\alpha_{1}) + (y-\beta_{j})] - p(y) \prod_{j} (y-\alpha_{1}-\beta_{j}) =$$

$$p(x+y) \prod_{j} (y-\beta_{j}) + (x-\alpha_{1})r'_{1}(x,y) - p(y) \prod_{j} (y-\alpha_{1}-\beta_{j}) =$$

$$(x-\alpha_{1})r'_{1}(x,y) + p(y) [\prod_{j} (x+y-\beta_{j}) - \prod_{j} (y-\alpha_{1}-\beta_{j})].$$

Since

$$\prod_{j} (x + y - \beta_{j}) = xr_{3}(x, y) + p(y),$$

$$\prod_{j} (y - \alpha_{1} - \beta_{j}) = \prod_{j} [(x - \alpha_{1}) + (y - \beta_{j}) - x] = (x - \alpha_{1})r_{4}(x, y) + xr_{5}(x, y) + p(y),$$

we obtain

$$[\prod_{j}(x+y-eta_{j})-\prod_{j}(y-lpha_{1}-eta_{j})]=x(r_{3}-r_{5})-(x-lpha_{1})r_{4}.$$

The equality (1) is proved for n = 1.

Let
$$n > 1$$
. Denote $s_1(x) = \prod_{i=1}^{n-1} (x - \alpha_i)$. By induction,

$$f(x+y) - f(y) = p^{n}(x+y) \prod_{i,j} (x+y-\alpha_{i}-\beta_{j}) - f(y) =$$

$$\{p^{n-1}(x+y) \prod_{i,j} (x+y-\alpha_{i}-\beta_{j})\} \{p(x+y) \prod_{j} (x+y-\alpha_{n}-\beta_{j})\} - f(y) = \{s_{1}(x)r'_{1}(x,y) + xp(y)r'_{2}(x,y) + p^{n-1}(y) \prod_{i < n,j} (y-\alpha_{i}-\beta_{j})\} - f(y) = \{s_{1}(x)r'_{1}(x,y) + xp(y)r'_{2}(x,y) + p^{n-1}(y) \prod_{j} (y-\alpha_{n}-\beta_{j})\} - f(y) = f(y) + f(y) +$$

$$p^{n}(y)\prod_{i,j}(y-\alpha_{i}-\beta_{j})=s(x)r'_{1}(x,y)r'_{3}(x,y)+xp(y)r_{2}(x,y).$$

Now we return to the proof of Lemma 1. As L_0 is triangulable L_0 -module, then there exists an L_0 -submodule $V_1 < V_0$ such that $V_0 = V_1 \oplus Rv, v \in V_0$. By induction, there exists a polynomial p(x) such that the induced L-module $W_1 = \sum_{i=0}^{\infty} \oplus V_1 t^i$ contains a submodule $V_2 \supset V_1 p(t)$ and $V_2 \cap V_1 = 0$. Moreover, W_1/V_2 is a triangulable L-module. Denote by s(x) a minimal polynomial such that Ls(ad(t)) = 0. By induction, all the roots of p(x) are in R and all the roots of s(x) are in R, since L is completely solvable. By Lemma 2, to given s(x) and p(x), we can associate a polynomial f(x) such that equality (1) holds. We will prove that $W_0 = V_2 + W_1 f(t)$ is an L-submodule what we need. As $W_0 t \subseteq W_0$, we have to prove that $W_1 \subseteq W_1$ for any $u \in L_1$. Denote $u \in L_1$ such that $u \in L_2$ for any $u \in L_3$. Denote $u \in L_4$ for any $u \in L_4$. From ([3],

p.50), it follows that

$$vf(t)a = \sum_{i=0}^{\infty} va^i f^{(i)}(t)/i!.$$
 (2)

By Lemma 2, in the commutative ring R[x, y] we get

$$\sum_{i=0}^{\infty} x^{i} f^{(i)}(y) / i! = f(x+y) =$$

$$f(y) + s(x) r_{1}(x,y) + x p(y) r_{2}(x,y) =$$

$$f(y) + s(x) \sum_{i=0}^{k_{1}} r_{1i}(x) y^{i} + \sum_{i=1}^{k_{2}} r_{2i}(x) p(y) y^{i},$$
(3)

where

$$r_1(x,y) = \sum_{i=0}^{k_1} r_{1i}(x)y^i, r_2(x,y) = \sum_{i=0}^{k_2} r_{2i}(x)y^i.$$

Denote $s_i(x) = s(x)r_{1i}(x)$. From (3), we derive

$$\sum_{i=0}^{\infty} x^i f^{(i)}(y)/i! = f(y) + \sum_{i=0}^{k_1} s_i(x) y^i + \sum_{i=1}^{k_2} r_{2i}(x) p(y) y^i.$$
 (4)

Let Ass be a free associative algebra over R with free generators $\{y, x_1, x_2, \ldots\}$. Then (4) yields in Ass

$$\sum_{i=0}^{\infty} x_i f^{(i)}(y) / i! = f(y) + \sum_{i=0}^{k_1} s_i^{\sigma}(x) y^i + \sum_{i=1}^{k_2} r_{2i}^{\sigma}(x) p(y) y^i, \tag{5}$$

where σ is a linear map: $R[x] \to Ass$,

$$g(x)^{\sigma} = \sum_{i=0}^{k} \alpha_i x_i$$
, if $g(x) = \sum_{i=0}^{k} \alpha_i x^i$.

Finally, (5) implies

$$vf(t)a = vaf(t) + \sum_{i=0}^{k_1} [a, s_i(adt)]t^i + \sum_{i=1}^{k_2} [a, r_{2i}(adt)]p(t)t^i \in W_0,$$

since $[a, r_{2i}(adt)] \in L_0$, [L, s(adt)] = 0 and $s_i(x) = s(x)l_i(x)$. We constructed an L-module $U = W/W_0$, which is free as R-module since f(x) is unitary polynomial. The L-module U is triangulable since all the roots of f(x) are in R.

With this lemma we can complete the inductive step and prove theorem in the of L splitting.

Suppose now that L is not splitting. Recall that Q is the field of fraction of R. A Lie Q-algebra $L_Q = L \otimes_R Q$ is embedded to a splitting Q-algebra $\mathcal{L} = \mathcal{T} \oplus \mathcal{N}$. Here, $\mathcal{N} = \sum_{\alpha \in \tau} \oplus \mathcal{N}_{\alpha}$, where $\tau \subset Q^*$ and $\mathcal{N}_{\alpha} = \{n \in \mathcal{N} | nt = \alpha(t)n, \forall t \in \mathcal{T}\}$ (see [4]). Let $\{g_1, \ldots, g_n\} \subseteq L$ be free basis of L. In \mathcal{L} , we have $g_i = t_i + n_i, t_i \in \mathcal{T}, n_i \in \mathcal{N}, i = 1, \ldots, n$. Note that $g_1, \ldots, g_n \in \mathcal{T} = \{t \in \mathcal{T} \mid \alpha(t) \in R, \forall \alpha \in \tau\}$ and T is a free R-module. In \mathcal{L} , we have $n_i = \sum_{\alpha \in \tau} n_{i\alpha}, n_{i\alpha} \in \mathcal{N}_{\alpha}, i = 1, \ldots, n$. Let N_1 be an R-algebra Lie with generators $n_{j\alpha}|\alpha \in \tau, i = 1, \ldots, n\}$. It is obvious that N_1 is a finite-dimensional R-module and $N_1T \subset N_1$. Hence $L_1 = T \oplus N_1$ is a splitting complitely solvable R-algebra and L is subalgebra of L_1 .

References

- [1] A.Grishkov, Analytic alternative loops, preprint, N510, 1985, Novosibirsk.
- [2] A.Grishkov, Lie theorem for soluble Binary-Lie Algebras, Algebra and Logic, v.20,n.3.p.255-281.
- [3] N.Jacobson, Lie Algebras, Interscience publishers, New York, 1962.
- [4] A.Malcev, On solvable Lie algebras. Izvest. Akad. Nauk S.S.R. Ser. Mat. 9(1945), pp. 329-356. Am. Math. Transl. No. 27(1950).

 $[5]\ A. Malcev,\ Analytic\ loops,\ J. Mat. Sb.,\ v. 36, (1955), p. 569-576.$

e-mail: grishkov@ime.usp.br