The maximal subloops of the simple Moufang loop of order 1080

A. N. Grichkov*
M. L. Merlini Giuliani ${ }^{\dagger}$
A. V. Zavarnitsine ${ }^{\ddagger}$

Abstract

We prove that the maximal subloops of the simple Moufang Loop of order 1080 have orders 120 and 108 and are unique up to isomorphism.

1 Introduction

Let $\mathcal{Z}(q)$ be an alternative 8 -dimensional simple algebra over a finite field $\mathbf{F}_{q}, q=p^{n}$. In [2], M.Liebeck proved that every finite simple non-associative loop is isomorphic to loop $\operatorname{PSL}(\mathcal{Z}(q))$, where, for any algebra A with multiplicative norm $N: A \rightarrow K, K$ a field, we denote by $\operatorname{PSL}(A)$ the loop

$$
P S L(A)=\{x \in A \mid N(x)=1\} / C\left(A^{*}\right),
$$

where $C\left(A^{*}\right)$ is the center of A^{*}.
The loop $\operatorname{PSL}(\mathcal{Z}(2))$ has order 120 and is the minimal non-associative finite simple Moufang loop. This loop contains two classes of maximal subloops [9]: $M\left(S_{3}, 2\right)$ and $M\left(A_{4}, 2\right)$. We use the standard notation: $S_{3}\left(A_{4}\right)$ is the group of (even) permutations on 3 (4) symbols, for any non-abelian group

[^0]$G, M(G, 2)=G \cup G x, x^{2}=1$ and $x g x=g^{-1}$, for any $g \in G$, is the Chein's duplication of G (see [6]).

The main result of this paper is a description of all maximal subloops in the simple Moufang loop $\operatorname{PSL}(\mathcal{Z}(3))$, which we denote by L. It is well known that L contain a subloop $\operatorname{PSL}(\mathcal{Z}(2))$ [1]. On the other hand, the algebra $\mathcal{Z}(3)$ contains a maximal 6-dimensional subalgebra $A=M_{2}\left(\mathbf{F}_{3}\right) \oplus V$, where $V \cdot V=0$ and V is an alternative $M_{2}\left(\mathbf{F}_{3}\right)$-bimodule. The corresponding subloop $\operatorname{PSL}(A)$ is a non-associative loop with 108 elements. We denote this loop by M_{108}. Now we can formulate the main result of this paper:

Theorem 1.1 The subloops $\operatorname{PSL}(\mathcal{Z}(2))$ and M_{108} are the unique, up to isomorphism, maximal subloops of the simple Moufang loop $\operatorname{PSL}(\mathcal{Z}(3))$.

The proof of this theorem consists of two parts. In the first part, we prove that every maximal subloop M of L has one of the order $108,120,24$, or 8. For showing this, we use the connection between the groups with triality and Moufang loops discovered by G.Glauberman [3] and S.Doro [4].

A group G possessing automorphisms ρ and σ such that $\rho^{3}=\sigma^{2}=$ $(\rho \sigma)^{2}=1$ is called a group with triality (relative to ρ and σ) if the following relation holds for every x in G :

$$
\begin{equation*}
[x, \sigma] \cdot[x, \sigma]^{\rho} \cdot[x, \sigma]^{\rho^{2}}=1 \tag{1.1}
\end{equation*}
$$

where $[x, y]=x^{-1} y^{-1} x y$. We denote $S=\langle\rho, \sigma\rangle$. The triality is called nontrivial if $S \neq 1$. The most interesting situation is when S is isomorphic to the symmetric group S_{3} in which case the relation (1.1) does not depend on the particular choice of the generators ρ and σ of S (see [4]) and we will thus speak of a group with triality S.

Let G be an arbitrary group with triality. Then the set $M=\{[x, \sigma \rho] \mid x \in$ $G\}$ is a section of the left coset space $G: C_{G}(\sigma)$ and the composition $m_{1} \cdot m_{2}=$ $\pi\left(m_{1} m_{2}\right)$, where π is the projection onto M parallel to $C_{G}(\sigma)$, endows M with the structure of a Moufang loop (see [4]). We denote this loop by $M(G)$ and note that $|M(G)|=\left|G: C_{G}(\sigma)\right|$.

It is well known [2] that, for the Moufang loop $L=P S L(\mathcal{Z}(3))$, the corresponding simple group with triality is $O_{8}^{+}(3)=G$.

We proved that, for every subloop $L_{0} \subset L$ there exist an S_{3}-invariant subgroup $G_{0} \subset G$ such that $M\left(G_{0}\right)=L_{0}$. This implies that, for any maximal subloop $L_{0} \subset L$, there exists a maximal S_{3}-invariant subgroup $G_{0} \subset G$.

Then we use the classification of maximal S_{3}-invariant subgroups obtained by P.Kleidman [5]. The study of maximal S_{3}-invariant subgroups of G and calculation of the order of the corresponding Moufang loop gives the following result:

Proposition 1.2 Let L_{0} be a maximal subloop of $L=\operatorname{PSL}(\mathcal{Z}(3))$. Then the order $\left|L_{0}\right|$ of L_{0} is one of the numbers $120,108,24$, or 8.

In the second part, we prove the following proposition:
Proposition 1.3 1.Every subloop L_{0} of L of order 8 is isomorphic to the group $Z_{2} \times Z_{2} \times Z_{2}$ and can be embedded in some subloop $M\left(A_{4}, 2\right) \subset L$ of order 24.
2.Every subloop L_{0} of L of order 24 is isomorphic to the (nonassociative) Moufang loop $M\left(A_{4}, 2\right)$ and can be embedded in some subloop M_{120} of order 120.

It is clear that Theorem 1.1 follows from Proposition 1.2 and 1.3.

2 Proof of Proposition 1.2.

By definition, $G=O_{8}^{+}(3) \cong \Omega_{8}^{+}(3) / C\left(\Omega_{8}^{+}(3)\right)$, where $\Omega_{8}^{+}(3)=G O_{8}^{+}(3)^{\prime}$ and $G O_{8}^{+}(3)$ is the group of 8×8 matrices which preserve a nondegenerate quadratic form Q with discriminant $D(Q)=1$ (see[5], definition (2.5.14)). G is isomorphic to the group of Lie type $D_{4}(3)$, which is a group with triality with respect to its graph automorphism group isomorphic to S_{3}. The corresponding Moufang loop $L=\operatorname{PSL}(\mathcal{Z}(3))$ has order 1080 [2].

If $G_{0} \subset G$ is an S_{3}-invariant subgroup in G then the corresponding Moufang loop $M\left(G_{0}\right)$ is a subloop of L and the order of $M\left(G_{0}\right)$ is equal to | $G_{0}: C_{G_{0}}(\sigma) \mid$. If $L_{0} \subset L$ is some maximal subloop of L then there exists a maximal S_{3}-invariant subgroup in G_{0} such that $M\left(G_{0}\right)=L_{0}$ (see [10]).

Let G_{0} be a maximal S_{3}-invariant subgroup in $G=O_{8}^{+}(3)$. Then the semidirect product $G_{0} \cdot S_{3}$ is a maximal subgroup of $G \cdot S_{3}$. In [5], P.Kleidman classified all such subgroups. We give a list of all maximal S_{3}-invariant subgroup in G in the notation of [5].

1. $P_{2}, 2 . R_{s 2}$,
2. G_{2}^{1},
3. N_{1}
4. N_{4}, 6. $I_{+} 4, ~ 7 . ~ \Omega_{8}^{+}(2)$.

If a subgroup $P_{i}, i \in\{1, \ldots, 7\}$ in this list is a group with triality, we denote by M_{i} the corresponding Moufang loop. Then Proposition 1.2 is a corollary of the following assertion:

Proposition 2.1 The Moufang loops $M_{1}, M_{2}, \ldots, M_{7}$ have the following orders: $\left|M_{1}\right|=27, \quad\left|M_{2}\right|=108, \quad\left|M_{3}\right|=1, \quad\left|M_{4}=2 \quad\right| M_{5}|=8, \quad| M_{6} \mid=$ $24, \quad\left|M_{7}\right|=120$.

Proof. For reader's convenience we present here a proof of this proposition, because the main theorem in [10] simplifies significantly in the case $q=3$.

By definition, a subgroup $S^{\prime} \simeq S_{3}$ of $G \cdot S$ is called a triality complement of G if $G \cdot S \cong G \cdot S^{\prime}$ and G is a group with triality with respect to S^{\prime}. An involution $\tau \in G \cdot S \backslash G$ is triality involution if it lies in some triality complement of G. By [2], all triality complements are conjugated. In particular, all triality involutions are conjugated in $G_{1} \stackrel{d f}{=} G\langle\sigma\rangle$. Let V be an 8-dimensional \mathbf{F}_{3}-space equipped with a non-degenerated quadratic form Q with discriminant 1. For a vector $v \in V$ with $Q(v) \neq 0$, denote by r_{v} the reflection in the hyperplane $V_{v}=\{w \in V \mid(v, w)=0\}$, where (\cdot, \cdot) is the bilinear form associated with Q. Then \bar{r}_{v} is a triality involution (see p. 182 in [5]), where \bar{a} for $a \in G O_{8}^{+}(3)$ denotes the image of a in $P G O_{8}^{+}(3)$. Note that $G_{1} \backslash G$ has two classes of involutions with representatives \bar{r}_{v} and $\tau=r_{v_{1}} r_{v_{2}} r_{v_{3}}$, where $\left(v_{i}, v_{j}\right)=\delta_{i j}, i, j=1,2,3$. Since $\left|C_{G}\left(\bar{r}_{v}\right)\right| \neq\left|C_{G}(\tau)\right|$, it follows that that all triality-involutions have the form \bar{r}_{v} for some reflection r_{v} in a vector v such that $Q(v)$ is a square in \mathbf{F}_{3}^{*}.

Let G_{0} be one of the groups from the list (\star). If $N=N_{G S}\left(G_{0}\right)$ contains a triality involution $\sigma=\bar{r}_{v}$, then the order of the corresponding loop is $\left|G_{0}: C_{G_{0}}(\sigma)\right|=\left|\widehat{G}_{0}: C_{\widehat{G}_{0}}\left(r_{v}\right)\right|$, where \widehat{G}_{0} is the preimage of G_{0} in $G O_{8}^{+}(3)$.

Now we consider all the possibilities for G_{0} case by case.

1. $G_{0}=P_{2}$. In this case, G_{0} is a parabolic subgroup which normalizes three totally singular (t.s.) subspaces $U, R, T \subseteq V$ such that $U \subseteq R \cap T$, $\operatorname{dim} U=1$, $\operatorname{dim} R=\operatorname{dim} T=4, \operatorname{dim} R \cap T=3$. Every t.s. 3-dimensional subspace lies in exactly two t.s. 4 -dimensional subspaces which are permuted by a reflection $r_{v} G O_{8}^{+}(3)$. Hence, $N=N_{G S}\left(G_{0}\right)$ contains triality-involution $\overline{r_{v}}$. Note that the index $t=\left|\widehat{G_{0}}: C_{\widehat{G_{0}}}\left(r_{v}\right)\right|$ is equal to the number of involutions in $\widehat{G}_{0}\left\langle r_{v}\right\rangle$ conjugate to r_{v}.

Since $\widehat{G}_{0}=N_{\Omega_{8}^{+}(3)}\left(G_{0}\right)(U, R \cap T)$, we have $r_{v} \in N_{G S}\left(G_{0}\right)$ if and only if $v \in U^{\perp} \cap(R \cap T)^{\perp}=(R \cap T)^{\perp}$. Hence, $t=\left|\left\{v \in(R \cap T)^{\perp} \mid Q(v)=1\right\}\right|$ is the number of nonsingular +1 -subspaces of $(R \cap T)^{\perp}$, i.e. 1-dimensional subspaces spanned by vectors v such that $Q(v)$ is a square in \mathbf{F}_{3}^{*}. Choose a standard basis in $V:\left\{e_{1}, \ldots e_{4} ; f_{1}, \ldots f_{4}\right\}$ such that $\left(e_{i}, e_{j}\right)=\left(f_{i}, f_{j}\right)=0,\left(e_{i}, f_{j}\right)=\delta_{i j} ; i, j=$ $1, \ldots 4$. Without lost of generality we can take $R=\left\langle e_{1}, \ldots, e_{4}\right\rangle$ and $T=$ $\left\langle e_{1}, e_{2}, e_{3}, f_{4}\right\rangle$. Then $(R \cap T)^{\perp}=\left\langle e_{1}, \ldots, e_{4}, f_{4}\right\rangle$ and, given a $v \in(R \cap T)^{\perp}$, we
have $Q(v)=\alpha \beta$ if $v=\alpha e_{4}+\beta f_{4}+v_{0}, v_{0} \in\left\langle e_{1}, e_{2}, e_{3}\right\rangle$. Then the number of non-singular vectors in $(R \cap T)^{\perp}$ is equal to 108 , number of non-singular 1 -subspaces is 54 and $t=27$.
2. $G_{0}=R_{s 2}$. In this case, G_{0} is a parabolic subgroup which normalizes a t.s. 2-subspace U. We may assume that $U=\left\langle e_{1}, e_{2}\right\rangle$. Since $v=e_{3}+f_{3} \in U^{\perp}$ and $Q(v)=1$, it follows that $N=N_{G S}\left(G_{0}\right)$ contains the triality-involution \bar{r}_{v}. As in the case (1), the order of $M\left(G_{0}\right)$ is equal to number of nonsingular +1 -subspaces in U^{\perp}. For a vector $v \in U^{\perp}$, which we write as $v=a e_{3}+b f_{3}+\alpha e_{4}+\beta f_{4}+v_{0}$, with $v_{0} \in\left\langle e_{1}, e_{2}\right\rangle$, we have $Q(v)=a b+\alpha \beta$ Therefore, in this case, the number of non-singular +1 -subspaces in U^{\perp} is equal to 108 .
3. $G_{0}=G_{2}^{1}$. Since $C_{G}(S) \simeq G_{2}(3)$ ([5], Proposition 3.1.1), we have $\left|G_{0}: C_{G_{0}}(\sigma)\right|=1$.
4. $\quad G_{0}=N_{1}$. Let W be a 4-dimensional space over $\mathbf{F}_{9} \supset \mathbf{F}_{3}$ with a unitary non-degenerate form f. Choose a basis $\left\{w_{1}, \ldots w_{4}\right\}$ of W such that $f\left(w_{i}, w_{j}\right)=\delta_{i j}, 1 \leq i, j \leq 4$. Denote $W_{i}=\left\langle w_{i}\right\rangle, i=1, \ldots, 4, W_{0}=W_{1}^{\perp}=$ $\left\langle w_{2}, w_{3}, w_{4}\right\rangle$. The space W can be regarded an 8-dimensional \mathbf{F}_{3}-space W^{*} with the quadratic form $Q^{*}(v) \stackrel{d f}{=} f(v, v)$. Then $\left(W^{*}, Q^{*}\right)$ is an orthogonal nondegenerate geometry of sign + . Since the spaces $\left(W^{*}, Q^{*}\right)$ and (V, Q) are isometric, this gives an embedding: $\varphi: G U_{4}(3) \mapsto G O_{8}^{+}(3)$.

Take a subgroup of $G U_{4}(3)$ isomorphic to $G U_{1}(3) \times G U_{3}(3)$ and consider the image $N=\varphi\left(G U_{1}(3) \times G U_{3}(3)\right)$. The space V has a basis in which the elements of N have the block diagonal form (${ }^{A} \dot{B}$), where $A \in G U_{1}(3) \subseteq$ $G O_{2}^{-}(3)=G O\left(W_{1}^{*}\right), B \in G U_{3}(3) \subseteq G O_{6}^{-}(3)=G O\left(W_{0}^{*}\right)$. Note that $A=$ $\varphi\left(G U_{1}(3)\right) \simeq Z_{4}$. Denote by η_{1} the subgroup of order 2 in \bar{A}. Let $\widehat{N_{1}}$ be a subgroup in $\Omega_{8}^{+}(3)$ generated by $N \cap \Omega_{8}^{+}(3)$ and $\delta \stackrel{d f}{=} r_{w_{1}} r_{w_{2}} r_{w_{3}} r_{w_{4}}$. Denote by N_{1} the image of $\widehat{N_{1}}$ in G. We show that N_{1} is an N_{1}-subgroup in the sense of the definition on page 221 in [5], i.e., that $N_{1}=R \cap F$, where R is an R_{-2} - subgroup, F is an F_{2}-subgroup, and $[\eta(R), \eta(F)]=1$ (see [5], p. 221). It is obvious that $N_{1} \subseteq R \stackrel{d f}{=} N_{G}\left(W_{1}^{*}\right)$ and $\eta(R)=\eta_{1}$. Moreover, $N_{1} \subset F \stackrel{d f}{=} N_{\Omega_{8}^{+}(3)}\left(\varphi\left(S U_{4}(3)\right)\right.$ and $\eta(F)=\overline{\varphi\left(C\left(G U_{4}(3)\right)\right.}=\eta_{2}$. Since $\left[\eta_{1}, \eta_{2}\right]=1$, it follows that N_{1} lies the N_{1}-subgroup $R \cap F$. The equality of the orders $\left|N_{1}\right|=|R \cap F|$ implies $N_{1}=R \cap F$.

We can thus assume that G_{0} is the subgroup N_{1} constructed above. Since $\left[r_{w_{1}}, N\right] \subseteq N,\left[r_{w_{1}}, \Omega_{8}^{+}(3)\right] \subseteq \Omega_{8}^{+}(3)$, and $\left[r_{w_{1}}, \delta\right]=1$, we see that $N_{G S}\left(G_{0}\right)$ contains the triality involution $\bar{r}_{w_{1}}$. We have $\left|\widehat{G_{0}}: C_{\widehat{G_{0}}}\left(r_{w_{1}}\right)\right|=\left|N: C_{N}\left(r_{w_{1}}\right)\right|=$
$\left|A: C_{A}\left(r_{w_{1}}\right)\right|$. The group $A\left\langle r_{w_{1}}\right\rangle$ is isomorphic to the dihedral group D_{8}; hence, $\left|A: C_{A}\left(r_{w_{1}}\right)\right|=2$.
5. $G_{0}=N_{4}^{4}$.

Let $\beta=\left\{v_{1}, \ldots v_{8}\right\}$ be an orthonormal basis of V and let \widehat{P} be the elementary abelian subgroup of $\Omega_{8}^{+}(3)$ of order 16 generated by the diagonal matrices:
$-\mathbf{1}=\operatorname{diag}(-1,-1,-1,-1,-1,-1,-1,-1)$,
$x=\operatorname{diag}(1,1,1,1,-1,-1,-1,-1)$,
$y=\operatorname{diag}(1,1,-1,-1,1,1,-1,-1)$,
$z=\operatorname{diag}(1,-1,1,-1,1,-1,1,-1)$.
Let P be the image of \widehat{P} in G. Then, by definition, an N_{4}^{4}-subgroup G_{0} of G is conjugate to the normalizer of P in G. Note that $\widehat{G_{0}}=N_{\Omega_{8}^{+}(3)}(\widehat{P})$.
Since $N_{G \Omega_{8}^{+}(3)}(\widehat{P})$ consists of monomials matrices in the basis β, and every reflection has a single eigenvalue -1 , while all other eigenvalues equal to +1 , it can be shown that the only reflections that normalize β are $r_{v_{i}}, v_{i} \in \beta$. But \widehat{G}_{0} acts transitivly on β; hence, $\left|\widehat{G_{0}}: C_{\widehat{G_{0}}}\left(r_{v_{i}}\right)\right|=8$.

$$
\text { 6. } G_{0}=I_{+4} \text {. }
$$

Let $V=V_{1} \oplus V_{2}$ be a decomposition of V into the sum of two +4 -spaces V_{1} and V_{2}. A reflection r_{v} normalizes this decomposition if and only if r_{v} normalizes each $V_{i}, i=1,2$. This means that $v \in V_{1}$ or $v \in V_{2}$. It is well known that the number of reflections r_{v} in $G O_{4}^{+}(3)$ corresponding to vectors v with $Q(v)=1$ is equal to 12 and all these reflections are conjugated in $G O_{8}^{+}(3)$. Thus, the number of reflections in $\mathrm{GO}_{8}^{+}(3)$ that normalize the decomposition $V=V_{1} \oplus V_{2}$ is equal to 24 and all these reflections are conjugate in \widehat{I}_{4}.
7. $G_{0}=\Omega_{8}^{+}(2)$. It is well known that the Moufang loop corresponding to an S_{3}-invariant subgroup $\Omega_{8}^{+}(2)$ is the simple Moufang loop of order 120 (see [4]).

3 Proof of Proposition 1.3.

We recall the realization of $\mathcal{Z}(q)$ as the set of Zorn matrices

$$
\left[\begin{array}{cc}
\alpha & \mathbf{v} \\
\mathbf{w} & \beta
\end{array}\right], \alpha, \beta \in \mathbf{F}_{q}, \mathbf{v}, \mathbf{w} \in \mathbf{F}_{q}^{3},
$$

with the following multiplication:

$$
\left[\begin{array}{cc}
\alpha & \mathbf{v} \\
\mathbf{w} & \beta
\end{array}\right] \cdot\left[\begin{array}{ll}
\gamma & \mathbf{u} \\
\mathbf{r} & \tau
\end{array}\right]=\left[\begin{array}{cc}
\alpha \gamma+\mathbf{v} \cdot \mathbf{r} & \alpha \mathbf{u}+\tau \mathbf{v}-\mathbf{w} \times \mathbf{r} \\
\gamma \mathbf{w}+\beta \mathbf{r}+\mathbf{v} \times \mathbf{u} & \beta \tau+\mathbf{w} \cdot \mathbf{u}
\end{array}\right],
$$

where $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right), \mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right) \in \mathbf{F}_{q}^{3}, \mathbf{v} \cdot \mathbf{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}$, $\mathbf{v} \times \mathbf{w}=\left(v_{2} w_{3}-v_{3} w_{2}, v_{3} w_{1}-v_{1} w_{3}, v_{1} w_{2}-v_{2} w_{1}\right)$.

It is known that $C(\mathcal{Z}(q))=\{E,-E\}$, where E is the identity matrix. We will use the following notation: $L=\operatorname{PSL}(\mathcal{Z}(3)) ; x \equiv y$ if $x=y \in L$ or $x= \pm y \in \mathcal{Z}(3)$. For any $X \subseteq L$, we denote by $\operatorname{Alg}(X)$ the subalgebra of $\mathcal{Z}(3)$ generated by the preimage of X in $\mathcal{Z}(3)$ and by $G(X)$ the subloop of L generated by X. We will identify the elements with norm 1 from $\mathcal{Z}(3)$ with their images in L. Denote $\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)$. We note that any non-identity element of L has order 2 or 3 .

Lemma 3.1 Let $x_{1}=\left[\begin{array}{cc}0 & \mathbf{i} \\ -\mathbf{i} & 0\end{array}\right], x_{2}=\left[\begin{array}{cc}0 & \mathbf{j} \\ -\mathbf{j} & 0\end{array}\right], x_{3}=\left[\begin{array}{cc}0 & \mathbf{k} \\ -\mathbf{k} & 0\end{array}\right]$.
Then, for a given $i \in\{1,2,3\}$, the element $z=\left[\begin{array}{cc}\alpha & \mathbf{v} \\ \mathbf{w} & \beta\end{array}\right] \in L$ satisfies $\left[x_{i}, z\right] \equiv 1$ if and only if either $z \equiv x_{i}$, or $z \equiv E$, or $\alpha+\beta=0$ and $v_{i}=w_{i}$.

Proof. Obvious.
Lemma 3.2 The group $\operatorname{Aut}(L)$ acts transitively on the sets $P_{2}=\{x \not \equiv 1 \mid$ $\left.x^{2} \equiv 1\right\}$ and $P_{3}=\left\{x \not \equiv 1 \mid x^{3} \equiv 1\right\}$. The group $\operatorname{Aut}(\mathcal{Z}(3))$ acts transitivly on the set $\left\{A \mid A \simeq M_{2}\left(\mathbf{F}_{3}\right) \subseteq \mathcal{Z}(3)\right\}$.

Proof. These facts are well-known.
Lemma 3.3 Let x, y be non-identity elements of L such that $x \not \equiv y$ and $x^{2} \equiv y^{2} \equiv[x, y] \equiv 1$. Then $\operatorname{Alg}(x, y) \simeq M_{2}\left(\mathbf{F}_{3}\right)$.

Proof. Since all elements of order 2 are conjugate, we may assume that $x=\left[\begin{array}{cc}0 & \mathbf{i} \\ -\mathbf{i} & 0\end{array}\right]$. By Lemma 3.1, we have $y=\left[\begin{array}{cc}\alpha & \mathbf{v} \\ \mathbf{w} & -\alpha\end{array}\right]$, $v_{1}=w_{1}$. We have $x y=\left[\begin{array}{cc}v_{1} & -\alpha \mathbf{i}+\mathbf{i} \times \mathbf{w} \\ -\alpha \mathbf{i}+\mathbf{i} \times \mathbf{v} & -v_{1}\end{array}\right]=-y x$. It is clear that $A=A l g(x, y)$ has a basis $\langle E, x, y, x y\rangle$ and A is a simple 4-dimensional algebra. It is easy to see that $(-E-x-y)^{2}=E+x^{2}+y^{2}+2 x+2 y+x y+y x=$ $-E-x-y$ and $\operatorname{det}(E+x+y)=0$. Hence, A is a splitting algebra and $A \simeq M_{2}\left(\mathbf{F}_{3}\right)$.

Corollary 3.4 Let

$$
\mathcal{A}_{2}=\left\{(x, y)=(y, x) \mid x, y \in L, x^{2} \equiv y^{2} \equiv[x, y] \equiv 1, \operatorname{Alg}(x, y) \simeq M_{2}\left(\mathbf{F}_{3}\right)\right\}
$$

Then $\operatorname{Aut}(L)$ acts transitivly on the set \mathcal{A}_{2}. In particular, every pair $(x, y) \in$ \mathcal{A}_{2} is conjugated to the pair $\left(x_{0}, y_{0}\right)$, where $x_{0} \equiv\left[\begin{array}{cc}0 & \mathbf{i} \\ -\mathbf{i} & 0\end{array}\right]$, $y_{0} \equiv\left[\begin{array}{cc}0 & \mathbf{j} \\ -\mathbf{j} & 0\end{array}\right]$.

Proof. Let (x, y) and (z, t) be two elements of \mathcal{A}_{2}. If $\operatorname{Alg}(x, y)=\operatorname{Alg}(z, t)$ then $\operatorname{PSL}(\operatorname{Alg}(x, y))=\operatorname{PSL}(\operatorname{Alg}(z, t))$ and $(x, y)^{\varphi}=(z, t)$ for some $\varphi \in$ $\operatorname{PSL}(\operatorname{Alg}(x, y)) \simeq A_{4}$.

If $A l g\langle x, y\rangle \neq A l g\langle z, t\rangle$ then, by Lemmas 3.3 and 3.2, there exists $\varphi \in$ $\operatorname{Aut}(\mathcal{Z}(3))$ such that $\operatorname{Alg}(x, y)^{\varphi}=\operatorname{Alg}(z, t)$.

Proposition 3.5 Every subgroup $L_{0} \subseteq L$ of order 8 may be embedded in an non-associative subloop of order 24, and every non-associative subloop of L of order 24 may be embedded in some simple subloop of order 120 .

Proof. Let $\mathcal{A}_{3}=\left\{(x, y, z) \mid G(x, y, z) \simeq Z_{2} \times Z_{2} \times Z_{2}\right\}$ and $C(x, y)=\{z \in$ $\left.L \mid(x, y, z) \in \mathcal{A}_{3}\right\}$. We shall prove that $|C(x, y)|=12$ or 0 . If $|C(x, y)| \neq 0$ then, by Corollary 3.4, we can suppose that $x=\left[\begin{array}{cc}0 & \mathbf{i} \\ -\mathbf{i} & 0\end{array}\right] \quad y=\left[\begin{array}{cc}0 & \mathbf{j} \\ -\mathbf{j} & 0\end{array}\right] . \quad$ Then $z=\left[\begin{array}{cc}-\alpha & \mathbf{v} \\ \mathbf{w} & \alpha\end{array}\right]$, and $\mathbf{v}=\mathbf{w}$. Indeed, by definition $[x, z] \equiv[y, z] \equiv[x y, z]$, where $x y=\left[\begin{array}{cc}0 & -\mathbf{k} \\ \mathbf{k} & 0\end{array}\right]$; hence, by Lemma 3.1, either $\mathbf{v}=\mathbf{w}$ or $z \in G(x, y)$. It is easy to see that, for every $z=\left[\begin{array}{cc}-\alpha & \mathbf{v} \\ \mathbf{v} & \alpha\end{array}\right] \in L, \mathbf{v} \neq 0, G=G(x, y, z) \simeq Z_{2} \times Z_{2} \times Z_{2}$. Since $\left|V\left(\mathbf{F}_{3}, \alpha^{2}+\mathbf{v} \cdot \mathbf{v}=-1\right)\right|=24$ and $z \equiv-z$, we have $|C(x, y)|=12$. Therefore, $G(x, y) \subset A^{*}$ and $P S L(A) \simeq A_{4}$, where $A=\operatorname{Alg}(x, y)$. Let $z=\left[\begin{array}{cc}1 & \mathbf{i} \\ -\mathbf{i} & -1\end{array}\right]$ and define $\varphi: A \rightarrow A, \varphi(a)=z a z$, then $\varphi(x)=z x z=-z^{2} x=x, \varphi(y)=y$, $\varphi(x y)=x y, \varphi(E)=-E$. The eight elements of order 3 of the group $\operatorname{PSL}(A) \simeq A_{4}$ are represented by the elements $\left[\begin{array}{cc}1 & \mathbf{u} \\ -\mathbf{u} & 1\end{array}\right] \quad$, where $\mathbf{u}=$ $\pm \mathbf{i} \pm \mathbf{j} \pm \mathbf{k}, \quad \mathbf{u} \cdot \mathbf{u}=0 . \operatorname{But} \varphi\left[\begin{array}{cc}1 & \mathbf{u} \\ -\mathbf{u} & 1\end{array}\right]=\varphi(E)+\varphi\left[\begin{array}{cc}0 & \mathbf{u} \\ -\mathbf{u} & 0\end{array}\right]=-E+$ $\left[\begin{array}{cc}0 & \mathbf{u} \\ -\mathbf{u} & 0\end{array}\right] \equiv E+\left[\begin{array}{cc}0 & -\mathbf{u} \\ \mathbf{u} & 0\end{array}\right]=\left[\begin{array}{cc}1 & -\mathbf{u} \\ \mathbf{u} & 1\end{array}\right]=\left[\begin{array}{cc}1 & \mathbf{u} \\ -\mathbf{u} & 1\end{array}\right]^{-1}$; hence, $\varphi(a) \equiv$ a^{-1} for every $a \in A_{4}$. It follows that $A_{4} \cup A_{4} z$ is the non-associative Moufang loop $M\left(A_{4}, 2\right)$ of order 24 (Chein's duplication [6]). But there are 12 elements $t \in A_{4} z$ such that $G(x, y, t) \simeq Z_{2} \times Z_{2} \times Z_{2}$. Therefore, $G \subseteq M\left(A_{4}, 2\right)$.

Let $\mathcal{Z}\left(\frac{1}{2} \mathbf{Z}\right)$ be the Zorn alternative algebra over the ring $\frac{1}{2} \mathbf{Z}=\left\{m / 2^{n} \mid\right.$ $n, m \in \mathbf{Z}\}$. In [1], Coxeter proved that $\mathcal{Z}\left(\frac{1}{2} \mathbf{Z}\right)$ contains a subloop \widetilde{M} of order 240 with the center $C=\{E,-E\}$ such that $\widetilde{M} / C \simeq M_{120}$ is the simple Moufang loop of order 120. For every odd prime number p, there exists a homomorphism $\varphi_{p}: \mathcal{Z}\left(\frac{1}{2} \mathbf{Z}\right) \mapsto \mathcal{Z}(p)$ such that $\varphi_{p}(\widetilde{M})=\widetilde{M}_{p}$ is a subloop of order 240. Hence, the loop L contains a simple subloop M_{120} of order 120 . The loop M_{120} contains a subloop M_{24} of order 24 which is isomorphic to $M\left(A_{4}, 2\right)$. Let A_{4} be the normal subgroup in M_{24} of order 12 and let $K \subset A_{4}$ be the Sylow 2-subgroup of $A_{4}, K=G(x, y)$. We have

$$
\begin{equation*}
K \subset A_{4} \subset M_{24} \subset M_{120} \tag{3.2}
\end{equation*}
$$

If M_{24}^{\prime} is some other subloop of L of order 24, as in [9] we can prove that $M_{24}^{\prime} \simeq M\left(A_{4}, 2\right)$, because all other Moufang loops of order 24 contain an element of order 4 or 6 . Hence, for M_{24}^{\prime}, we have an analog of (3.2):

$$
\begin{equation*}
K^{\prime} \subset A_{4}^{\prime} \subset M_{24}^{\prime} \tag{3.3}
\end{equation*}
$$

Since $K^{\prime}=G\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime}, y^{\prime}\right) \in \mathcal{A}_{2}$, Corollary 3.4 implies that there exists $\varphi \in \operatorname{Aut}(L)$ such that $K^{\prime}=K^{\varphi}$. Hence, $A_{4}^{\varphi}=A_{4}^{\prime}, M_{24}^{\varphi}=M_{24}^{\prime}$, because, for a given $(r, s) \in \mathcal{A}_{2}$, there exist unique subloops $A_{4}^{\prime \prime}$ and $M_{24}^{\prime \prime}$ such that $G(r, s) \subset A_{4}^{\prime \prime} \subset M_{24}^{\prime \prime}$. Then (3.2) and (3.3) give $M_{24}^{\prime} \subseteq M_{120}{ }^{\varphi}$.

References

[1] H.S.M. Coxeter, Integral Cayley Numbers, Duke Mathematical Journal, 13, (1946).
[2] M. W. Liebeck, The classification of finite simple Moufang loops, Math. Proc. Camb. Phil. Soc., 102, (1987), 33-47.
[3] G. Glauberman, On loops of odd order II, J. Algebra, 8, (1968), 393-414.
[4] S. Doro, Simple Moufang loops, Math. Proc. Camb. Phil. Soc., 83, (1978), 377-392.
[5] P. B. Kleidman, The maximal subgroups of the finite 8-dimensional orthogonal groups $P \Omega_{8}^{+}(q)$ and of their automorphism groups, J. Algebra, 110, N 1 (1987), 173-242.
[6] O. Chein, Moufang Loops of Small Order I, Trans. Amer. Math. Soc. 188 (1974), 31-51.
[7] O. Chein, Moufang Loops of Small Order II, Memoirs Amer. Math. Soc. 197 (13) (1978).
[8] L.J. Paige, A class of simple Moufang loops, Proc. Amer. Math. Soc., 7 (1956), 471-482.
[9] M.L. Merlini Giuliani, F.C.Polcino Milies, On the structure of the simple Moufang loop $G L L\left(F_{2}\right)$, In Nonassociative Algebra and Its Application, the fourth international conference, Lecture Notes in Pure and Applied Mathematics 211, edited by R. Costa, A. Grishkov, H. Guzzo Jr., L.A.Peresi; Marcel Dekker, New York, (2000)
[10] A. Grishkov, A. Zavarnitsine, Lagrange's Theorem for Moufang Loops, submitted.

M.L. Merlini Giuliani

Departamento de Matemática
Univ. Federal de Santa Maria
97119-105 - Santa Maria RS
Brazil
lurdinha@ccne.ufsm.br

[^0]: *supported by FAPESP and CNPq, Brazil
 ${ }^{\dagger}$ supported by FAPERGS, Brazil, Proc. 01/0295.2
 ${ }^{\ddagger}$ supported by FAPESP, Brazil, Proc. 01/14811.4, and RAS, Russia, grant N7, 6th competition for young scientists

