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Abstract

We prove that the maximal subloops of the simple Moufang Loop
of order 1080 have orders 120 and 108 and are unique up to isomor-
phism.

1 Introduction

Let Z(q) be an alternative 8-dimensional simple algebra over a finite field
Fq, q = pn. In [2], M.Liebeck proved that every finite simple non-associative
loop is isomorphic to loop PSL(Z(q)), where, for any algebra A with multi-
plicative norm N : A → K, K a field, we denote by PSL(A) the loop

PSL(A) = {x ∈ A | N(x) = 1}/C(A∗),

where C(A∗) is the center of A∗.
The loop PSL(Z(2)) has order 120 and is the minimal non-associative fi-

nite simple Moufang loop. This loop contains two classes of maximal subloops
[9]: M(S3, 2) and M(A4, 2). We use the standard notation: S3 (A4) is the
group of (even) permutations on 3 (4) symbols, for any non-abelian group
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G, M(G, 2) = G ∪Gx, x2 = 1 and xgx = g−1, for any g ∈ G, is the Chein’s
duplication of G (see [6]).

The main result of this paper is a description of all maximal subloops in
the simple Moufang loop PSL(Z(3)), which we denote by L. It is well known
that L contain a subloop PSL(Z(2)) [1]. On the other hand, the algebra
Z(3) contains a maximal 6-dimensional subalgebra A = M2(F3)⊕ V , where
V · V = 0 and V is an alternative M2(F3)-bimodule. The corresponding
subloop PSL(A) is a non-associative loop with 108 elements. We denote
this loop by M108. Now we can formulate the main result of this paper:

Theorem 1.1 The subloops PSL(Z(2)) and M108 are the unique, up to iso-
morphism, maximal subloops of the simple Moufang loop PSL(Z(3)).

The proof of this theorem consists of two parts. In the first part, we prove
that every maximal subloop M of L has one of the order 108, 120, 24, or 8.
For showing this, we use the connection between the groups with triality and
Moufang loops discovered by G.Glauberman [3] and S.Doro [4].

A group G possessing automorphisms ρ and σ such that ρ3 = σ2 =
(ρσ)2 = 1 is called a group with triality (relative to ρ and σ) if the following
relation holds for every x in G:

[x, σ] · [x, σ]ρ · [x, σ]ρ
2

= 1, (1.1)

where [x, y] = x−1y−1xy. We denote S = 〈ρ, σ〉. The triality is called non-
trivial if S 6= 1. The most interesting situation is when S is isomorphic to
the symmetric group S3 in which case the relation (1.1) does not depend on
the particular choice of the generators ρ and σ of S (see [4]) and we will thus
speak of a group with triality S.

Let G be an arbitrary group with triality. Then the set M = {[x, σρ] | x ∈
G} is a section of the left coset space G : CG(σ) and the composition m1·m2 =
π(m1m2), where π is the projection onto M parallel to CG(σ), endows M
with the structure of a Moufang loop (see [4]). We denote this loop by M(G)
and note that |M(G)| = |G : CG(σ)|.

It is well known [2] that, for the Moufang loop L=PSL(Z(3)), the cor-
responding simple group with triality is O+

8 (3) = G.
We proved that, for every subloop L0 ⊂ L there exist an S3-invariant

subgroup G0 ⊂ G such that M(G0)=L0. This implies that, for any maximal
subloop L0 ⊂ L, there exists a maximal S3-invariant subgroup G0 ⊂ G.
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Then we use the classification of maximal S3-invariant subgroups obtained
by P.Kleidman [5]. The study of maximal S3-invariant subgroups of G and
calculation of the order of the corresponding Moufang loop gives the following
result:

Proposition 1.2 Let L0 be a maximal subloop of L = PSL(Z(3)). Then
the order |L0| of L0 is one of the numbers 120, 108, 24, or 8.

In the second part, we prove the following proposition:

Proposition 1.3 1.Every subloop L0 of L of order 8 is isomorphic to the
group Z2 × Z2 × Z2 and can be embedded in some subloop M(A4, 2) ⊂ L of
order 24.

2.Every subloop L0 of L of order 24 is isomorphic to the (nonassociative)
Moufang loop M(A4, 2) and can be embedded in some subloop M120 of order
120.

It is clear that Theorem 1.1 follows from Proposition 1.2 and 1.3.

2 Proof of Proposition 1.2.

By definition, G = O+
8 (3) ∼= Ω+

8 (3)/C(Ω+
8 (3)), where Ω+

8 (3) = GO+
8 (3)′

and GO+
8 (3) is the group of 8 × 8 matrices which preserve a nondegenerate

quadratic form Q with discriminant D(Q) = 1 (see[5], definition (2.5.14)).
G is isomorphic to the group of Lie type D4(3), which is a group with tri-
ality with respect to its graph automorphism group isomorphic to S3. The
corresponding Moufang loop L = PSL(Z(3)) has order 1080 [2].

If G0 ⊂ G is an S3-invariant subgroup in G then the corresponding Mo-
ufang loop M(G0) is a subloop of L and the order of M(G0) is equal to
| G0 : CG0(σ) |. If L0 ⊂ L is some maximal subloop of L then there exists a
maximal S3-invariant subgroup in G0 such that M(G0) = L0 (see [10]).

Let G0 be a maximal S3-invariant subgroup in G = O+
8 (3). Then the

semidirect product G0 ·S3 is a maximal subgroup of G·S3 . In [5], P.Kleidman
classified all such subgroups. We give a list of all maximal S3-invariant
subgroup in G in the notation of [5].

1. P2, 2. Rs2, 3. G1
2, 4. N1, 5. N4, 6. I+4, 7. Ω+

8 (2). (?)
If a subgroup Pi, i ∈ {1, ..., 7} in this list is a group with triality, we

denote by Mi the corresponding Moufang loop. Then Proposition 1.2 is a
corollary of the following assertion:
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Proposition 2.1 The Moufang loops M1, M2, ...,M7 have the following or-
ders: |M1| = 27, |M2| = 108, |M3| = 1, |M4 = 2 |M5| = 8, |M6| =
24, |M7| = 120.

Proof. For reader’s convenience we present here a proof of this proposition,
because the main theorem in [10] simplifies significantly in the case q = 3.

By definition, a subgroup S ′ ' S3 of G ·S is called a triality complement
of G if G · S ∼= G · S ′ and G is a group with triality with respect to S ′. An
involution τ ∈ G ·S \G is triality involution if it lies in some triality comple-
ment of G. By [2], all triality complements are conjugated. In particular, all

triality involutions are conjugated in G1
df
= G〈σ〉. Let V be an 8-dimensional

F3-space equipped with a non-degenerated quadratic form Q with discrim-
inant 1. For a vector v ∈ V with Q(v) 6= 0, denote by rv the reflection in
the hyperplane Vv = {w ∈ V | (v, w) = 0}, where (·, ·) is the bilinear form
associated with Q. Then r̄v is a triality involution (see p.182 in [5]), where ā
for a ∈ GO+

8 (3) denotes the image of a in PGO+
8 (3). Note that G1 \ G has

two classes of involutions with representatives r̄v and τ = rv1rv2rv3 , where
(vi, vj) = δij, i, j = 1, 2, 3. Since |CG(r̄v)| 6= |CG(τ)|, it follows that that all
triality-involutions have the form r̄v for some reflection rv in a vector v such
that Q(v) is a square in F∗

3.
Let G0 be one of the groups from the list (?). If N = NGS(G0) contains

a triality involution σ = r̄v, then the order of the corresponding loop is
|G0 : CG0(σ)| = |Ĝ0 : CĜ0

(rv)|, where Ĝ0 is the preimage of G0 in GO+
8 (3).

Now we consider all the possibilities for G0 case by case.
1. G0=P2. In this case, G0 is a parabolic subgroup which normalizes three

totally singular (t.s.) subspaces U,R, T ⊆ V such that U ⊆ R∩T , dim U = 1,
dimR = dimT = 4 , dimR∩T = 3. Every t.s. 3-dimensional subspace lies in
exactly two t.s. 4-dimensional subspaces which are permuted by a reflection
rv GO+

8 (3). Hence, N = NGS(G0) contains triality-involution r̄v. Note that

the index t = |Ĝ0 : CĜ0
(rv)| is equal to the number of involutions in Ĝ0〈rv〉

conjugate to rv.
Since Ĝ0 = NΩ+

8 (3)(G0)(U,R ∩ T ), we have rv ∈ NGS(G0) if and only if

v ∈ U⊥ ∩ (R∩T )⊥=(R∩T )⊥. Hence, t = |{v ∈ (R∩T )⊥ | Q(v) = 1}| is the
number of nonsingular +1-subspaces of (R∩T )⊥, i.e. 1-dimensional subspaces
spanned by vectors v such that Q(v) is a square in F∗

3. Choose a standard
basis in V : {e1, ...e4; f1, ...f4} such that (ei, ej)=(fi, fj)=0, (ei, fj)=δij; i, j =
1, ...4. Without lost of generality we can take R = 〈e1, ..., e4〉 and T =
〈e1, e2, e3, f4〉. Then (R∩ T )⊥ = 〈e1, ..., e4, f4〉 and, given a v ∈ (R∩ T )⊥, we
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have Q(v) = αβ if v = αe4 + βf4 + v0, v0 ∈ 〈e1, e2, e3〉. Then the number
of non-singular vectors in (R ∩ T )⊥ is equal to 108, number of non-singular
1-subspaces is 54 and t = 27.

2. G0 = Rs2. In this case, G0 is a parabolic subgroup which normalizes a
t.s. 2-subspace U . We may assume that U = 〈e1, e2〉. Since v = e3 +f3 ∈ U⊥

and Q(v) = 1, it follows that N = NGS(G0) contains the triality-involution
r̄v. As in the case (1), the order of M(G0) is equal to number of non-
singular +1-subspaces in U⊥. For a vector v ∈ U⊥, which we write as
v = ae3 + bf3 + αe4 + βf4 + v0, with v0 ∈ 〈e1, e2〉, we have Q(v) = ab + αβ
Therefore, in this case, the number of non-singular +1-subspaces in U⊥ is
equal to 108.

3. G0 = G1
2. Since CG(S) ' G2(3) ([5], Proposition 3.1.1), we have

|G0 : CG0(σ)| = 1.
4. G0 = N1. Let W be a 4-dimensional space over F9 ⊃ F3 with a

unitary non-degenerate form f . Choose a basis {w1, ...w4} of W such that
f(wi, wj) = δij, 1 ≤ i, j ≤ 4. Denote Wi = 〈wi〉, i = 1, . . . , 4, W0 = W⊥

1 =
〈w2, w3, w4〉. The space W can be regarded an 8-dimensional F3-space W ∗

with the quadratic form Q∗(v)
df
= f(v, v). Then (W ∗, Q∗) is an orthogonal

nondegenerate geometry of sign +. Since the spaces (W ∗, Q∗) and (V, Q) are
isometric, this gives an embedding: ϕ : GU4(3) 7→ GO+

8 (3).
Take a subgroup of GU4(3) isomorphic to GU1(3)×GU3(3) and consider

the image N = ϕ(GU1(3) × GU3(3)). The space V has a basis in which the
elements of N have the block diagonal form ( A .

. B ), where A ∈ GU1(3) ⊆
GO−

2 (3) = GO(W ∗
1 ), B ∈ GU3(3) ⊆ GO−

6 (3) = GO(W ∗
0 ). Note that A =

ϕ(GU1(3)) ' Z4. Denote by η1 the subgroup of order 2 in Ā. Let N̂1

be a subgroup in Ω+
8 (3) generated by N ∩ Ω+

8 (3) and δ
df
= rw1rw2rw3rw4 .

Denote by N1 the image of N̂1 in G. We show that N1 is an N1-subgroup
in the sense of the definition on page 221 in [5], i.e., that N1 = R ∩ F ,
where R is an R−2 − subgroup, F is an F2-subgroup, and [η(R), η(F )] = 1

(see [5], p. 221). It is obvious that N1 ⊆ R
df
= NG(W ∗

1 ) and η(R) = η1.

Moreover, N1 ⊂ F
df
= NΩ+

8 (3)(ϕ(SU4(3)) and η(F ) = ϕ(C(GU4(3)) = η2.

Since [η1, η2] = 1, it follows that N1 lies the N1-subgroup R∩F . The equality
of the orders |N1| = |R ∩ F | implies N1 = R ∩ F .

We can thus assume that G0 is the subgroup N1 constructed above. Since
[rw1 , N ] ⊆ N , [rw1 , Ω

+
8 (3)] ⊆ Ω+

8 (3), and [rw1 , δ] = 1, we see that NGS(G0)

contains the triality involution r̄w1 . We have |Ĝ0 : CĜ0
(rw1)|= |N : CN(rw1)|=
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|A : CA(rw1)|. The group A〈rw1〉 is isomorphic to the dihedral group D8;
hence, |A : CA(rw1)| = 2.

5. G0 = N4
4 .

Let β = {v1, ...v8} be an orthonormal basis of V and let P̂ be the elementary
abelian subgroup of Ω+

8 (3) of order 16 generated by the diagonal matrices:
−1 = diag(−1,−1,−1,−1,−1,−1,−1,−1),
x = diag(1, 1, 1, 1,−1,−1,−1,−1),
y = diag(1, 1,−1,−1, 1, 1,−1,−1),
z = diag(1,−1, 1,−1, 1,−1, 1,−1).

Let P be the image of P̂ in G. Then, by definition, an N4
4 -subgroup G0 of

G is conjugate to the normalizer of P in G. Note that Ĝ0 = NΩ+
8 (3)(P̂ ).

Since NGΩ+
8 (3)(P̂ ) consists of monomials matrices in the basis β, and every

reflection has a single eigenvalue −1, while all other eigenvalues equal to +1,
it can be shown that the only reflections that normalize β are rvi

, vi ∈ β.

But Ĝ0 acts transitivly on β; hence, |Ĝ0 : CĜ0
(rvi

)| = 8.
6. G0 = I+4.

Let V = V1⊕V2 be a decomposition of V into the sum of two +4-spaces V1 and
V2. A reflection rv normalizes this decomposition if and only if rv normalizes
each Vi, i = 1, 2. This means that v ∈ V1 or v ∈ V2. It is well known
that the number of reflections rv in GO+

4 (3) corresponding to vectors v with
Q(v) = 1 is equal to 12 and all these reflections are conjugated in GO+

8 (3).
Thus, the number of reflections in GO+

8 (3) that normalize the decomposition

V = V1 ⊕ V2 is equal to 24 and all these reflections are conjugate in Î4.
7. G0 = Ω+

8 (2). It is well known that the Moufang loop corresponding
to an S3-invariant subgroup Ω+

8 (2) is the simple Moufang loop of order 120
(see [4]).

3 Proof of Proposition 1.3.

We recall the realization of Z(q) as the set of Zorn matrices[
α v
w β

]
, α, β ∈ Fq,v,w ∈ F3

q,

with the following multiplication:[
α v
w β

]
·
[

γ u
r τ

]
=

[
αγ + v · r αu + τv −w × r

γw + βr + v × u βτ + w · u

]
,
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where v = (v1, v2, v3),w = (w1, w2, w3) ∈ F3
q, v · w = v1w1 + v2w2 + v3w3,

v ×w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1).
It is known that C(Z(q)) = {E,−E}, where E is the identity matrix.

We will use the following notation: L = PSL(Z(3)); x ≡ y if x = y ∈ L or
x = ±y ∈ Z(3). For any X ⊆ L, we denote by Alg(X) the subalgebra of
Z(3) generated by the preimage of X in Z(3) and by G(X) the subloop of L
generated by X. We will identify the elements with norm 1 from Z(3) with
their images in L. Denote i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1). We note
that any non-identity element of L has order 2 or 3.

Lemma 3.1 Let x1 =

[
0 i
−i 0

]
, x2 =

[
0 j
−j 0

]
, x3 =

[
0 k
−k 0

]
.

Then, for a given i ∈ {1, 2, 3}, the element z =

[
α v
w β

]
∈ L satisfies

[xi, z] ≡ 1 if and only if either z ≡ xi, or z ≡ E, or α + β = 0 and vi = wi.

Proof. Obvious.

Lemma 3.2 The group Aut(L) acts transitively on the sets P2 = {x 6≡ 1 |
x2 ≡ 1} and P3 = {x 6≡ 1 | x3 ≡ 1}. The group Aut(Z(3)) acts transitivly on
the set {A | A ' M2(F3) ⊆ Z(3)}.

Proof. These facts are well-known.

Lemma 3.3 Let x, y be non-identity elements of L such that x 6≡ y and
x2 ≡ y2 ≡ [x, y] ≡ 1. Then Alg(x, y) ' M2(F3).

Proof. Since all elements of order 2 are conjugate, we may assume that

x =

[
0 i
−i 0

]
. By Lemma 3.1, we have y =

[
α v
w −α

]
,

v1 = w1. We have xy =

[
v1 −αi + i×w

−αi + i× v −v1

]
= −yx. It is clear

that A = Alg(x, y) has a basis 〈E, x, y, xy〉 and A is a simple 4-dimensional
algebra. It is easy to see that (−E−x−y)2 = E+x2+y2+2x+2y+xy+yx =
−E − x − y and det(E + x + y) = 0. Hence, A is a splitting algebra and
A ' M2(F3).

Corollary 3.4 Let

A2 = {(x, y) = (y, x) | x, y ∈ L, x2 ≡ y2 ≡ [x, y] ≡ 1, Alg(x, y) ' M2(F3)}.
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Then Aut(L) acts transitivly on the set A2. In particular, every pair (x, y) ∈

A2 is conjugated to the pair (x0, y0), where x0 ≡
[

0 i
−i 0

]
, y0 ≡

[
0 j
−j 0

]
.

Proof. Let (x, y) and (z, t) be two elements of A2. If Alg(x, y) = Alg(z, t)
then PSL(Alg(x, y)) = PSL(Alg(z, t)) and (x, y)ϕ = (z, t) for some ϕ ∈
PSL(Alg(x, y)) ' A4.

If Alg〈x, y〉 6= Alg〈z, t〉 then, by Lemmas 3.3 and 3.2, there exists ϕ ∈
Aut(Z(3)) such that Alg(x, y)ϕ = Alg(z, t).

Proposition 3.5 Every subgroup L0 ⊆ L of order 8 may be embedded in an
non-associative subloop of order 24, and every non-associative subloop of L
of order 24 may be embedded in some simple subloop of order 120.

Proof. Let A3 = {(x, y, z)|G(x, y, z) ' Z2 × Z2 × Z2} and C(x, y) = {z ∈
L|(x, y, z) ∈ A3}. We shall prove that |C(x, y)| = 12 or 0. If |C(x, y)| 6= 0
then, by Corollary 3.4, we can suppose that

x =

[
0 i
−i 0

]
y =

[
0 j
−j 0

]
. Then z =

[
−α v
w α

]
, and v = w.

Indeed, by definition [x, z] ≡ [y, z] ≡ [xy, z], where xy =

[
0 −k
k 0

]
; hence,

by Lemma 3.1, either v = w or z ∈ G(x, y). It is easy to see that, for

every z =

[
−α v
v α

]
∈ L, v 6= 0, G = G(x, y, z) ' Z2 × Z2 × Z2. Since

|V (F3, α
2+v ·v = −1)| = 24 and z ≡ −z, we have |C(x, y)| = 12. Therefore,

G(x, y) ⊂ A∗ and PSL(A) ' A4, where A = Alg(x, y). Let z =

[
1 i
−i −1

]
and define ϕ : A → A, ϕ(a) = zaz, then ϕ(x) = zxz = −z2x = x, ϕ(y) = y,
ϕ(xy) = xy, ϕ(E) = −E. The eight elements of order 3 of the group

PSL(A) ' A4 are represented by the elements

[
1 u
−u 1

]
, where u =

±i ± j ± k, u · u = 0. But ϕ

[
1 u
−u 1

]
= ϕ(E) + ϕ

[
0 u
−u 0

]
= −E +[

0 u
−u 0

]
≡ E +

[
0 −u
u 0

]
=

[
1 −u
u 1

]
=

[
1 u
−u 1

]−1

; hence, ϕ(a) ≡

a−1 for every a ∈ A4. It follows that A4∪A4z is the non-associative Moufang
loop M(A4, 2) of order 24 (Chein’s duplication [6]). But there are 12 elements
t ∈ A4z such that G(x, y, t) ' Z2 × Z2 × Z2. Therefore, G ⊆ M(A4, 2).
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Let Z(1
2
Z) be the Zorn alternative algebra over the ring 1

2
Z = {m/2n |

n, m ∈ Z}. In [1], Coxeter proved that Z(1
2
Z) contains a subloop M̃ of order

240 with the center C = {E,−E} such that M̃/C ' M120 is the simple
Moufang loop of order 120. For every odd prime number p, there exists a
homomorphism ϕp : Z(1

2
Z) 7→ Z(p) such that ϕp(M̃) = M̃p is a subloop of

order 240. Hence, the loop L contains a simple subloop M120 of order 120.
The loop M120 contains a subloop M24 of order 24 which is isomorphic to
M(A4, 2). Let A4 be the normal subgroup in M24 of order 12 and let K ⊂ A4

be the Sylow 2-subgroup of A4, K = G(x, y). We have

K ⊂ A4 ⊂ M24 ⊂ M120. (3.2)

If M ′
24 is some other subloop of L of order 24, as in [9] we can prove that

M ′
24 ' M(A4, 2), because all other Moufang loops of order 24 contain an

element of order 4 or 6. Hence, for M ′
24, we have an analog of (3.2):

K ′ ⊂ A′
4 ⊂ M ′

24. (3.3)

Since K ′ = G(x′, y′), (x′, y′) ∈ A2, Corollary 3.4 implies that there exists
ϕ ∈ Aut(L) such that K ′ = Kϕ. Hence, Aϕ

4 = A′
4, M24

ϕ = M ′
24, because,

for a given (r, s) ∈ A2, there exist unique subloops A′′
4 and M ′′

24 such that
G(r, s) ⊂ A′′

4 ⊂ M ′′
24. Then (3.2) and (3.3) give M ′

24 ⊆ M120
ϕ.
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