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Abstract

Groups with triality, which arose in the papers of Glauberman and Doro, are
naturally connected with Moufang loops. In this paper, we describe all possible,
in a sense, groups with triality associated with a given Moufang loop. We also
introduce several universal groups with triality and discuss their properties.
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2 1 INTRODUCTION

1 Introduction

With every loop L there are naturally associated several groups: the group Mlt(L) of

permutations of L generated by the operators Lx and Rx of left and right multiplication

by x in L, the stabilizer I(L) in Mlt(L) of the identity 1 ∈ L, the automorphism group

Aut(L), the group of inner automorphisms Inn(L) = I(L) ∩ Aut(L). In the case of

Moufang loops Glauberman [5] noted that if L has trivial nucleus then the group Mlt(L)

admits a natural action of the symmetric group S3 = 〈σ, r | σ2 = ρ3 = (σρ)2 = 1〉 so

that Lσ
x = R−1

x , Lρ
x = Rx, Rρ

x = L−1
x R−1

x . Moreover, I(L) = {x ∈ Mlt(L) | xσ = x},
Inn(L) = {x ∈ I(L) | xρ = x}, and the group Mlt(L) in this case satisfies the following

identity:

(x−1xσ)(x−1xσ)ρ(x−1xσ)ρ2

= 1 (1)

for all x ∈ Mlt(L).

Subsequently, Doro [6] called a group G that admits an action of S3 satisfying (1)

a group with triality and showed that G = HMρ2
, where H = {x ∈ G | xσ = x} and

M = {x−1xσ | x ∈ G}; moreover, (Mρ2
, ?) is a Moufang loop with multiplication x?y = z

iff xy = hz for h ∈ H. He also showed that every Moufang loop can be obtained in this

way from a suitable group with triality. This approach made it possible to solve problems

about Moufang loops using the well developed theory of groups. For example Liebeck

[4] using the classification of finite simple groups proved that every non-associative finite

Moufang loop is isomorphic to a Paige loop M(q).

The Moufang loops first appeared in the papers of R. Moufang about projective

planes. The above theorem of Doro can be easily (and beautifully) proved [10] using the

relation between Moufang loops and projective planes (or 3-nets).

The authors of this paper have used the connection of Moufang loops and groups with

triality in the study of subloops of the simple Paige loops M(q). As a consequence, an

analog of Lagrange’s theorem was proved for finite Moufang loops [12] and the maximal

subloops of M(q) were described [13]. In the cited papers we used the fact that for a

given group with triality G the set M = {x−1xσ | x ∈ G } is a Moufang loop with respect

to the multiplication m.n = m−ρnm−ρ2
. This observation gives a (third) simple proof of

Doro’s theorem (see Theorem 1 of the present paper).

A group with triality corresponding to a given Moufang loop M is not uniquely

determined. Doro [6] defined by generators and defining relations a universal group
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with triality D(M) such that every other group with triality G corresponding to M and

satisfying [G,S3] = G is a homomorphic image of D(M).

In turn, Mikheev [7] constructed by an arbitrary Moufang loop M a group with

triality W(M) using the group of pseudoautomorphisms of M . Unfortunately, his paper

does not contain proofs which are very non-trivial. In this article, we present a proof

of Mikheev’s theorem and show that his group with triality W(M) possesses universal

properties dual to those of Doro’s group D(M). In doing so we construct by an arbitrary

Moufang loop M a corresponding universal group with triality U(M) which contains

D(M) and covers W(M).

There exists another important group with triality E(M) associated with every Mo-

ufang loop M , which is in a sense minimal among all such groups with triality. Moreover,

this group E(M) always covers Mlt(M) and can be viewed as a natural generalization

of Glauberman’s triality to all Moufang loops. We show that Mlt(M) is a group with

triality if and only if it coincides with E(M).

In the final section we have included some open problems about groups with triality

and Moufang loop which in our view are of certain interest and importance.

2 Moufang loops and groups with triality

Introduce some notation. CP (Q) is the centralizer of Q in P . For x, y in a group G, we

put [x, y] = x−1y−1xy, xy = y−1xy, x−y = (x−1)y.

A loop (Q, .) is called a Moufang loop if, for all x, y, z ∈ Q, one (hence, any) of the

following identities holds:

(x.y).(z.x) = (x.(y.z)).x, ((x.y).x).z = x.(y.(x.z)), x.(y.(z.y)) = ((x.y).z).y.

For basic properties of Moufang loops, see [1]. We use the notation Jx, yK = x−1.y−1.x.y

instead of [x, y] to denote the commutator in Q. By definition, the nucleus Nuc(Q) is

the set {a ∈ Q | a.(x.y) = (a.x).y}. The nucleus is a normal subgroup of Q. Also, denote

C(Q) = {c ∈ Q | xc = cx ∀x ∈ Q}.
A group G possessing automorphisms ρ and σ such that ρ3 = σ2 = (ρσ)2 = 1 is called

a group with triality (relative to ρ and σ) if the following relation holds for every x in G:

[x, σ] · [x, σ]ρ · [x, σ]ρ
2

= 1, (2)
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where [x, σ] = x−1xσ. Denote S = 〈ρ, σ〉. The relation (2) does not depend on a particular

choice of the generators ρ and σ of S (see [6]) and we will thus speak of a group with

triality S. If G is a group with triality S then, for g ∈ G, define

ξ(g) = g−1gσ, φ(g) = g−ρgρ2

, η(g) = gg−ρσgρ2

. (3)

Also, put M = ξ(G) and H = CG(σ). Observe that

mσ = m−1 ∈ M for all m ∈ M. (4)

Doro showed in [6] that the set Mρ2
is a right transversal of H in G and can be turned

to a Moufang loop (Mρ2
, ?) by putting

m ? n = k ⇐⇒ mn = hk, for h ∈ H m, n, k ∈ Mρ2

. (5)

In Theorem 1 below we give a new proof of this fact.

Let G be a group with triality S. S-invariant subgroups of G are called S-subgroups. A

homomorphism ϕ : G → H of groups with triality G and H is called an S-homomorphism

if ϕα = αϕ for all α ∈ S. Denote by ZS(G) the S-center of G, which is by definition the

maximal normal S-subgroup of G on which S acts trivially. The following dual properties

hold:

Lemma 1 For every group G with triality S, we have

(i) [[G,S], S] = [G, S] is the S-subgroup of G generated by M ,

(ii) ZS(G/ZS(G)) = 1 and ZS(G) = CG([G,S]S).

Proof. (i) [G,S] is generated by [G, σ] = M , [G, ρσ] = Mρ, [G, σρ] = Mρ2
, [G, ρ],

and [G, ρ2] = [G, ρ]σ. Note that [G, ρ] ⊆ MMρ, since g−1gρ = (g−1gσ)((gρσ)−1(gρσ)σ)ρ ∈
MMρ. Hence [G,S] is generated by M as an S-subgroup.

We also have [Mρ2
, σ] = M , since m−ρ2

mρ2σ = m−ρ2
m−ρ = m for all m ∈ M by (4)

and (2). Hence the inclusion [G,S] ⊆ [[G,S], S].

(ii) Clearly, CG([G,S]S) ⊆ ZS(G). For every N P G with trivial S-action, we have

[N,G, S] = 1 and [S, N,G] = 1. By the Three Subgroup Lemma, N centralizes [G,S]

and we have the reverse inclusion.

Observe that CG(S) ∩ M = 1, since m = mσ = m−1 implies m2 = 1 by (4) and

m = mρ implies m3 = 1 by (2), i.e., m = 1 for every m ∈ CG(S) ∩ M . Now, let N

be the full preimage of ZS(G/ZS(G)) in G. By (i), [N, S] is generated by [N, σ] as an



5

S-subgroup. Since [N, σ] ⊆ ZS(G) ⊆ CG(S) and [N, σ] ⊆ M , we have [N, S] = 1 as is

required. ¤

Lemma 2 Let G be a group with triality S, M = [G, σ], and H = CG(σ). We have

(i) m−ρnm−ρ2
= n−ρ2

mn−ρ ∈ M ∀ m,n ∈ M ;

(ii) [m,mρ] = [m,mρ2
] = [mρ,mρ2

] = 1 ∀ m ∈ M ;

(iii) η(G) ⊆ H;

(iv) [m−ρ2
, nρ] = [mρ, n−ρ2

] ∈ H ∀ m, n ∈ M ;

(v) φ(H) ⊆ M and φ(M) ⊆ H;

(vi) For every g ∈ G, we have g = η(g)ξ(g)ρ2
.

Proof. (i) By (2) and (4), we have

ξ(mρ2

nρ2

) = n−ρ2

m−ρ2

mσρnσρ = n−ρ2

m−ρ2

m−ρn−ρ = n−ρ2

mn−ρ ∈ M (6)

for all m,n ∈ M . Moreover, (2) also implies

n−ρ2
mn−ρ(n−ρ2

mn−ρ)ρ(n−ρ2
mn−ρ)ρ2

= n−ρ2
mnρ2

mρnmρ2
n−1 = 1.

Conjugating this equality by n, we obtain n−1n−ρ2
mnρ2

mρnmρ2
= nρmnρ2

mρnmρ2
= 1

for all m,n ∈ M . Replacing m by m−1, we have n−ρ2
mn−ρ = m−ρnm−ρ2

.

(ii) For every m ∈ M , we have mmρmρ2
= 1 by (2). Using (4), we obtain

1 = mσmρσmρ2σ = m−1m−ρ2
m−ρ. Replacing m by m−1, we have

mmρ2
mρ = mmρmρ2

; therefore, [mρ,mρ2
] = 1. It remain to act by ρ to obtain the

other two relations.

(iii) η(g)σ = gσg−ρgσρ = g(g−1gσ)(g−1gσ)ρ = g(g−1gσ)−ρ2
= gg−ρσgρ2

= η(g).

(iv) Let m,n ∈ M . Then, by item (i), we have

n−ρ2
m−1n−ρ = mρnmρ2

. Applying ρ2 to this equality, we have

n−ρm−ρ2
n−1 = mnρ2

mρ. This, together with (2), implies

n−ρm−ρ2
nρnρ2

= m−ρ2
m−ρnρ2

mρ; hence,

mρ2
n−ρm−ρ2

nρ = m−ρnρ2
mρn−ρ2

, i.e., [m−ρ2
, nρ] = [mρ, n−ρ2

]. We also have

η(mρ2

nρ2

) = mρ2

nρ2

n−σm−σm−ρn−ρ = mρ2

n−ρm−ρ2

nρ = [m−r2

, nρ] ∈ H (7)

by (4), (2), and (iii).

(v) Let h ∈ H and m ∈ M . Then (4) and (ii) imply

φ(m)σ = m−ρσmρ2σ = mρ2
m−ρ = m−ρmρ2

= φ(m) ∈ H.

ξ(φ(h)ρ2
) = ξ(h−1hρ) = h−ρhh−σhσρ2

= h−ρhρ2
= φ(h) ∈ M . ¤

(vi) This follows from (3).
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Theorem 1 Let G be a group with triality and put M = { [g, σ] | g ∈ G } as above.

Then the set M is a Moufang loop with respect to the multiplication law

m.n = m−ρnm−ρ2

= n−ρ2

mn−ρ ∀ m,n ∈ M. (8)

Moreover, this Moufang loop (M, .) is isomorphic to Doro’s loop (Mρ2
, ?) with multipli-

cation given by (5).

Proof. First, note that (8) correctly defines an operation on M in view of (i) of Lemma

2. Also, the identity of G is the identity of M and taking inverses or powers of elements

is the same whether considered in G or M , which follows from (2) and (ii) of Lemma 2.

We need to prove the Moufang identity ((m.n).m).k = m.(n.(m.k)). For m,n, k ∈ M ,

we have

((m.n).m).k = ((m−ρnm−ρ2
).m).k = ((m−ρnm−ρ2

)−ρm(m−ρnm−ρ2
)−ρ2

).k =

(mn−ρ(mρ2
mmρ)n−ρ2

m).k = (mnm).k = (mnm)−ρk(mnm)−ρ2
,

where we have used (2) and (i–ii) of Lemma 2. On the other hand,

m.(n.(m.k)) = m.(n.(m−ρkm−ρ2
)) =

m.(n−ρm−ρkm−ρ2
n−ρ2

) = (mnm)−ρk(mnm)−ρ2
. Hence, M is a Moufang loop.

By (vi) of Lemma 2, for every g ∈ G, we have g = η(g)ξ(g)ρ2
; hence, G = HMρ2

.

Moreover, Mρ2
is a right transversal of H in G. Indeed, if Hmρ2

= Hnρ2
for m,n ∈ M

then (mρ2
n−r2

)σ = mρ2
n−r2

, which implies m−ρ2
m−ρ = n−ρ2

n−ρ. Hence, m = n by (2).

Furthermore, for m,n ∈ M , we have

mρ2

nρ2

= η(mρ2

nρ2

)ξ(mρ2

nρ2

)ρ2

= [m−ρ2

, nρ](m−ρnm−ρ2

)ρ2

by (6) and (7). Hence, mρ2
? nρ2

= (m−ρnm−ρ2
)ρ2

and (M, .) ∼= (Mρ2
, ?), where the

isomorphism is the map m 7→ mρ2
. ¤

We henceforth denote by M(G) the Moufang loop (M, .) constructed as in the above

lemma from a given group with triality G. Conversely, given an arbitrary Moufang loop

Q there exist groups with triality G such that M(G) ∼= Q. One such group D(Q) was

constructed by Doro [6] and is defined in terms of abstract generators P(x), L(x), R(x)

indexed by elements of Q as follows:

D(Q) = {P(x), L(x), R(x), x ∈ Q | P(1) = L(1) = R(1) = 1, P(x)L(x)R(x) = 1,

P(x)P(y)P(x) = P(x.y.x), L(x)L(y)L(x) = L(x.y.x), R(x)R(y)R(x) = R(x.y.x),

P(y−1.x) = L(y)P(x)R(y), L(y−1.x) = R(y)L(x)P(y), R(y−1.x) = P(y)R(x)L(y),

P(x.y−1) = R(y)P(x)L(y), L(x.y−1) = P(y)L(x)R(y), R(x.y−1) = L(y)R(x)P(y) }

(9)
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with the action of ρ and σ given by

P(x)
ρ7−→ L(x)

ρ7−→ R(x)
ρ7−→ P(x),

P(x)
σ7−→ P−1

(x) , L(x)
σ7−→ R−1

(x), R(x)
σ7−→ L−1

(x).
(10)

This group satisfies [D(Q), S] = D(Q) and M(D(Q)) ∼= Q. Moreover, D(Q) is a universal

projective object in the following sense: if G is any group with triality such that M(G) ∼=
Q and G = [G,S] then there exists an S-epimorphism τ : D(Q) → G defined by

P(x)
τ7−→ x, L(x)

τ7−→ xρ, R(x)
τ7−→ xρ2

, (11)

where Q is identified with M(G) ⊆ G (see [6]).

A pseudoautomorphism of a Moufang loop (Q, .) is a bijection A : Q → Q with the

property that there exists an element a ∈ Q such that

xA.(yA.a) = (x.y)A.a for all x, y ∈ Q.

This element a is called a right companion of A. In general, a right companion of A is

not unique. Similarly, an element b such that

(b.xA).yA = b.(x.y)A for all x, y ∈ Q

is a left companion of A. The following properties are well known:

Lemma 3 Let A be a pseudoautomorphism of a Moufang loop Q with right companion

a then

(i) xnA = (xA)n for all x ∈ Q, n ∈ Z,

(ii) a−1 is a left companion of A,

(iii) (x.y.x)A = xA.yA.xA for all x, y ∈ Q,

(iv) all the right companions of A form the coset Na = aN , where N = Nuc(Q).

Proof. See [9, 3]. ¤
The set of pairs (A, a), where A is a pseudoautomorphism of Q with right companion

a is a group with respect to the operation

(A, a)(B, b) = (AB, aB · b).

This group is denoted by PsAut(Q).
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With arbitrary elements x, y of a Moufang loop Q, there are associated the bijections

Lx, Rx, Tx, Px Lx,y, Rx,y of Q defined as follows:

yLx = x.y, yRx = y.x, Tx = L−1
x Rx, Px = L−1

x R−1
x ,

Lx,y = LxLyL
−1
yx , Rx,y = RxRyR

−1
xy .

(12)

In particular, we have zLx,y = (y.x)−1.(y.(x.z)) and zRx,y = ((z.x).y).(x.y)−1. It is

known (see [1]) that (Tx, x
−3) and (Rx,y, Jx, yK) belong to PsAut(Q). We give a new

proof of these facts below (see Lemma 4) using groups with triality. Denote by PsInn(Q)

the subgroup of PsAut(Q) generated by the elements (Tx, x
−3) and (Rx,y, Jx, yK) for all

x, y in Q.

Some properties of Moufang loops can be proven using their ”enveloping” group with

triality:

Lemma 4 Let M be any Moufang loop and let G be a group with triality S = 〈ρ, σ〉
such that M(G) = M . Put H = CG(σ). Then we have:

(i) Jm,nK = [n−1,mρ2
][m,n−ρ] for all m,n ∈ M .

(ii) For every h ∈ H, the mapping Th : M → M defined by mTh = h−1mh is a

pseudoautomorphism of M with right companion φ(h). Moreover, the mapping

h 7→ (Th, φ(h)) (13)

is a homomorphism from H to PsAut(M) whose kernel is the S-center ZS(G).

(iii) Let m ∈ M and Tm = L−1
m Rm. Then nTm = m−1.n.m is a pseudoautomorphism

of M with right companion m−3. Moreover, Tm = Th where h = φ(m) ∈ H.

(iv) Let m,n ∈ M . Then Rm,n is a pseudoautomorphism of M with right companion

Jm,nK. Moreover, Rm,n = Th where h = [mρ, n−ρ2
] = [m−ρ2

, nρ] ∈ H. Similarly,

Lm,n is a pseudoautomorphism with right companion Jm−1, n−1K and Lm,n = Th where

h = [m−ρ, nρ2
] = [mρ2

, n−ρ] ∈ H.

(v)Rx,y = Lx−1,y−1 = R−1
y,x for all x, y ∈ M

Proof. (i) Let m,n ∈ M . By (iv) of Lemma 2, we have

[mρ, n−ρ2
] = [m−ρ2

, nρ]. Acting by ρ2 on both sides, we obtain

[m,n−ρ] = [m−ρ, n]. Hence, (2) implies

[n−1,mρ2
][m,n−ρ] = [n−1,mρ2

][m−ρ, n] = nm−ρ2
n−1(mρ2

mρ)n−1m−ρn =

nm−ρ2
n−1m−1n−1m−ρn. On the other hand,
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Jm,nK = (m−1.n−1).(m.n) = (nρ2
m−1nρ).(n−ρ2

mn−ρ) =

(n−ρ2
mn−ρ)−ρ2

(nρ2
m−1nρ)(n−ρ2

mn−ρ)−ρ = nm−ρ2
(nρnρ2

)m−1(nρnρ2
)m−ρn =

nm−ρ2
n−1m−1n−1m−ρn.

(ii) By (v) of Lemma 2, φ(h) ∈ M and MTh = M for every h ∈ H. For m ∈ M we have

mTh.φ(h) = (h−1mh).φ(h) = h−ρhh−1mhh−1hρ2

= h−ρmhρ2

. (14)

Hence, for m,n ∈ M , (m.n)Th.φ(h) = h−ρm−ρnm−ρ2
hρ2

. On the other hand

(mTh).(nTh.φ(h)) = (h−1mh).(h−ρnhρ2
) = h−ρm−ρhρh−ρnhρ2

h−ρ2
m−ρ2

hρ2
=

h−ρm−ρnm−ρ2
hρ2

. It follows that (Th, φ(h)) ∈ PsAut(M). By (14), we also have

(Th, φ(h))(Tk, φ(k)) = (ThTk, φ(h)Tk.φ(k)) = (Thk, k
−ρh−ρhρ2

kρ2
) = (Thk, φ(hk))

for all h, k ∈ H. Consequently, (13) is a homomorphism of H to PsAut(M).

Obviously, h ∈ H is in its kernel iff h centralizes both M and S, i.e. h ∈ ZS(G).

(iii) For m,n ∈ M , we have

nTm = m−1.n.m = (mρnmρ2
).m = m−ρ2

mρnmρ2
m−ρ =

(m−ρmρ2
)−1n(m−ρmρ2

) = nTφ(m) by (ii) of Lemma 2.

Now, by item (ii), Tφ(m) is a pseudoautomorphism with right companion

φ(φ(m)) = (m−ρmρ2

)−ρ(m−ρmρ2

)ρ2

= m−1mρ2

m−1mρ = m−3. (15)

(iv) For m,n, k ∈ M we have

kRm,n = ((k.m).n).(m.n)−1 = ((m−ρ2
km−ρ).n).(n−ρ2

mn−ρ)−1 =

(n−ρ2
mn−ρ)ρ2

(n−ρ2
m−ρ2

km−ρn−ρ)(n−ρ2
mn−ρ)ρ = n−ρmρ2

nρm−ρ2
km−ρnρ2

mρn−ρ2
=

[nρ, m−ρ2
]k[mρ, n−ρ2

] = kTh by (iv) of Lemma 2, where h = [mρ, n−ρ2
]. Therefore, by

item (ii), Rm,n is a pseudoautomorphism with right companion

φ([mρ, n−ρ2

]) = [n−1,mρ2

][m,n−ρ] = Jm,nK (16)

by item (i). The assertion about Lm,n may be proved similarly.

(v) The equality Rx,y = Lx−1,y−1 follows from item (iv). Since Ry,x = Th, where h =

[yρ, x−ρ2
], we have R−1

y,x = Th−1 . However, h−1 = [x−ρ2
, yρ] = [xρ, y−ρ2

] by (iv) of Lemma

2. Therefore, R−1
y,x = Rx,y by item (iv). ¤

Note that the transformation Tx of M is defined for x ∈ M and x ∈ H. In the former

case Tx acts by conjugation in M and in the latter by conjugation in G. Henceforth it

should be clear from the context which of the two actions is considered.
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Let (Q, .) be a Moufang loop. Following Mikheev [7], define a binary operation on

the Cartesian product PsAut(Q)×Q by the rule

[(A, a), x][(B, b), y] = [(A, a)(B, b)(C, c), xB.y], (17)

where

(C, c) = (Rb,xB, Jb, xBK)(RxB,y, JxB, yK).
Denote by W(Q) the groupoid PsAut(Q) × Q with the binary operation (17). It was

announced in [7] that W(Q) is in fact a group with triality (the extended group of pseu-

doautomorphisms of Q) with the action of the triality automorphisms ρ and σ given

by

[(A, a), x]
ρ7−→ [(A, a), a][(Tx, x

−3), x−2],

[(A, a), x]
σ7−→ [(A, a)(Tx, x

−3), x−1],
(18)

and that the loop M(W(Q)) is isomorphic to Q. We present a proof of these facts and

then establish some properties of W(Q). However a direct verification of associativity of

the product (17) is technically intractable. We chose an alternative way of showing this.

The following abstract result will be needed:

Lemma 5 Let P be a group and Q a groupoid. Let H and M be subsets of P such that

P = HM . Then a map ψ : P → Q is a homomorphism if and only if

(i) ψ(mn) = ψ(m)ψ(n), (ii) ψ(hk) = ψ(h)ψ(k),

(iii) ψ(mh) = ψ(m)ψ(h), (iv) ψ(hm) = ψ(h)ψ(m),

for all h, k ∈ H, m,n ∈ M . In particular, Im ψ is a group, whenever (i–iv) hold.

Proof. Let h, k ∈ H, m,n ∈ M . There exist k1 ∈ H, m1 ∈ M such that mk = k1m1.

We have

ψ(hmkn) = ψ(hk1m1n)
(iv)
= ψ(hk1)ψ(m1n)

(i),(ii)
= ψ(h)ψ(k1)ψ(m1)ψ(n)

(iv)
=

ψ(h)ψ(k1m1)ψ(n) = ψ(h)ψ(mk)ψ(n)
(iii)
= ψ(h)ψ(m)ψ(k)ψ(n)

(iv)
= ψ(hm)ψ(kn).

¤

Theorem 2 Let G be a group with triality S = 〈ρ, σ〉 and H = CG(σ). Let M =

M(G) be the corresponding Moufang loop and let W(M) = M ×PsAut(M) be the above

groupoid. Then the map τ : G → W(M) defined by
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τ(g) = [(Tη(g), φ(η(g))), ξ(g)] for all g ∈ G

is an S-homomorphism, where η(g) = gg−ρσgρ2 ∈ H, φ(h) = h−ρhρ2
, and the action of

S on W(M) is given by (18). In particular, Im τ is a group with triality. Moreover,

M(Im τ) ∼= M and Ker τ = ZS(G).

Proof. First, we show that the map τ satisfies the conditions (i)–(iv) of Lemma 5, with

respect to the decomposition G = HMρ2
. This will imply that Im τ is a group.

(i) Let m,n ∈ M, then m.n = m−ρnm−ρ2
. By definition

τ(mρ2
) = [(Tη(mρ2

), φ(η(mρ2
))), ξ(mρ2

)]. We have

ξ(mρ2
) = m−ρ2

mρ2σ = m−ρ2
m−ρ = m,

η(mρ2
) = mρ2

m−σmρ = mρ2
mmρ = 1, and φ(η(mρ2

)) = 1. Hence,

τ(mρ2

) = [(1, 1),m]. (19)

Similarly, τ(nρ2
) = [(1, 1), n]. Thus, (17) implies

τ(mρ2
)τ(nρ2

) = [(1, 1),m][(1, 1), n] = [(Rm,n, Jm,nK),m.n].

On the other hand, (6) and (7) imply τ(mρ2
nρ2

) = [(Th, φ(h)),m.n], where

h = [m−ρ2
, nρ] ∈ H; and, by (16) and (iv) of Lemma 2, we have

φ(h) = φ([mρ, n−ρ2
]) = Jm,nK. Hence,

[(Rm,n, Jm,nK),m.n] = [(Th, φ(h)),m.n] by (iv) of Lemma 4

(ii) If h, k ∈ H then η(h) = hh−ρ2
hρ2

= h and ξ(h) = 1. Hence,

τ(h) = [(Th, φ(h)), 1]. (20)

Similarly, τ(k) = [(Tk, φ(k)), 1] and τ(hk) = [(Thk, φ(hk)), 1]. By (17), we have

τ(h)τ(k) = [(ThTk, φ(h)k.φ(k), 1]. However, ThTk = Thk and

φ(h)k.φ(k) = (k−1h−ρhρ2
k).(k−ρk

ρ2
) = (k−ρkρ2

)−ρ2
k−1φ(h)k(k−ρkρ2

)−ρ =

k−ρkk−1φ(h)kk−1kρ2
= k−ρφ(h)kρ2

. On the other hand,

φ(hk) = (hk)−ρ(hk)ρ2
= k−ρφ(h)kρ2

.

(iii) Let m ∈ M and h ∈ H. Then τ(hmρ2
) = [(Th, φ(h)),m],

since η(hmρ2
) = h and ξ(hmρ2

) = m. On the other hand, we have

τ(h)τ(mρ2
) = [(Th, φ(h)), 1][(1, 1),m] = [(Th, φ(h)),m] by (19) and (17).

(vi) For m ∈ M and h ∈ H, we have

ξ(mρ2
h) = h−1m−ρ2

mρ2σh = h−1m−ρ2
m−ρh = h−1mh.
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Denote n = h−1mh = mTh and l = φ(h). Then we also have

η(mρ2
h) = mρ2

h(mρ2
h)−σρ2

(mρ2
h)ρ2

=

mρ2
hh−ρ2

mmρhρ2
= mρ2

hh−ρ2
m−ρ2

hρ2
= mρ2

hn−ρ2
.

Hence, τ(mρ2
h) = [(Tmρ2hn−ρ2 , φ(mρ2

hn−ρ2
)), n].

On the other hand, by (17) and (iv) of Lemma 4, we have

τ(mρ2
)τ(h) = [(1, 1),m][(Th, l), 1] = [(Th, l)(Rl,n, Jl, nK), n] =

[(ThT[lρ,n−ρ2 ], lRl,n.Jl, nK), n] = [(Th[lρ,n−ρ2 ], l.Jl, nK), n] =

[(Th[lρ,n−ρ2
], n

−1.l.n), n]. However,

h[lρ, n−ρ2
] = h(h−ρhρ2

)−ρ(h−1mh)ρ2
(h−ρhρ2

)ρn−ρ2
=

hh−1hρ2
h−ρ2

mρ2
hρ2

h−ρ2
hn−ρ2

= mρ2
hn−ρ2

. Hence,

φ(h[lρ, n−ρ2
]) = φ(mρ2

hn−ρ2
). Furthermore,

φ(h[lρ, n−ρ2
]) = [lρ, n−ρ2

]−ρh−ρhρ2
[l, n−ρ] =

[n−1, lρ
2
]l[l, n−ρ] = nl−ρ2

n−1lρ
2
lk−1nρln−ρ =

nl−ρ2
n−1lρ

2
nρnρ2

(n−ρ2
ln−ρ) = nl−ρ2

n−1lρ
2
n−1(l.n) =

nl−ρ2
n−1nρ(n−ρ2

ln−ρ)ρ2
(l.n) = (n−ρ2

ln−ρ)−ρ2
n−1(l.n)ρ2

(l.n) =

(l.n)−ρ2
n−1(l.n)−ρ = n−1.l.n. Therefore, τ(mρ2

)τ(h) = τ(mρ2
h).

Hence, τ is a group homomorphism. We now show that τρ = ρτ and τσ = στ , where

the action of ρ and σ is defined by (18). For all h ∈ H and m ∈ M , we have

τ(σ(hmρ2
)) = τ(hm−ρ) = τ(h)τ(m−ρ) = [(Th, φ(h)), 1][(Tm,m−3), m−1] =

[(Th, φ(h))(Tm,m−3), m−1], where we have used (20), the relations

η(m−ρ) = m−ρm−ρm−1 = m−ρm−ρ2
= φ(m),

ξ(m−ρ) = mρm−ρσ = mρmρ2
= m−1,

as well as (15), (17), and (iii) of Lemma 4 from which it follows that

τ(m−ρ) = [(Tm,m−3), m−1]. On the other hand, we have by (18)

σ(τ(hmρ2
)) = σ([(Th, φ(h),m)]) =

[(Th, φ(h))(Tm,m−3), m−1]. Therefore, τσ = στ . We also have

τ(ρ(hmρ2
)) = τ(hρ)τ(m) = [(Th, φ(h)), φ(h)][(Tφ(m),m

−3),m−2], since

η(hρ) = hρh−ρ2σh = hρh−ρh = h,

ξ(hρ) = h−ρhρσ = h−ρhρ2
= φ(h), and

η(m) = mm−σρ2
mρ2

= (mmρ2
)mρ2

= m−ρmρ2
= φ(m),

ξ(m) = m−1mσ = m−2. On the other hand, (18) implies

ρ(τ(hmρ2
)) = ρ([(Th, φ(h)), m]) = [(Th, φ(h)), φ(h)][(Tm,m−3),m−2]. However,

Tm = Tφ(m) by (iii) of Lemma (4). Hence, τ is an S-homomorphism and Im τ is a

group with triality. Moreover, M(Im τ) = τ(M) ∼= M .
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It remains to find Ker τ . We have

[(Tη(g), φ(η(g))), ξ(g)] = 1 if and only if ξ(g) = 1 and (Tη(g), φ(η(g))) = (1, 1), i.e.,

g ∈ H and (Tg, φ(g)) = (1, 1). However,

φ(g) = g−ρgρ2
= 1 if and only if ρ centralizes g and

Tg = 1 if and only if g centralizes M . Hence, we have

Ker τ = CG(σ) ∩ CG(ρ) ∩ CG(M) = CG(S) ∩ CG(M ∪Mρ) = CG(S[G,S]) = ZS(G)

by (i) of Lemma 1. ¤
Our aim is to show that W(M) is an epimorphic image of some group with triality

under the S-homomorphism τ . Starting with an arbitrary Moufang loop (Q, .) consider

the action of PsAut(Q) on D(Q) defined on the generators as follows

(P(x))
(A,a) = P(xA),

(L(x))
(A,a) = R(a)L(xA)R(a−1),

(R(x))
(A,a) = L(a−1)R(xA)L(a)

(21)

for all x ∈ Q and (A, a) ∈ PsAut(Q).

Lemma 6 The relations (21) define an action of PsAut(Q) by automorphisms on D(Q).

Proof. We need to show that the action of (A, a) ∈ PsAut(Q) preserves all the defining

relations in (9). For all x, y ∈ Q, using these relations and Lemma 3, we have

(P(x))
(A,a)(L(x))

(A,a)(R(x))
(A,a) = P(xA)R(a)L(xA)(R(a−1)L(a−1))R(xA)L(a) =

P(xA)R(a)(L(xA)P(a)R(xA))L(a) = P(xA)(R(a)P(x−1A.a)L(a)) = P(xA)P(x−1A) = 1.

(L(x))
(A,a)(L(y))

(A,a)(L(x))
(A,a) = R(a)L(xA)(R(a−1)R(a))L(yA)(R(a−1)R(a))L(xA)R(a−1) =

R(a)(L(xA)L(yA)L(xA))R(a−1) = R(a)L(xA.yA.xA)R(a−1) =

R(a)L((x.y.x)A)R(a−1) = (L(x.y.x))
(A,a).

(L(y))
(A,a)(P(x))

(A,a)(R(y))
(A,a) = R(a)L(yA)(R(a−1)P(xA)L(a−1))R(yA)L(a) =

R(a)(L(yA)P(xA.a)R(yA))L(a) = R(a)P(y−1A.(xA.a))L(a) = R(a)P((y−1.x)A.a)L(a) =

P((y−1.x)A) = (P(y−1x))
(A,a).

(L(y))
(A,a)(R(x))

(A,a)(P(y))
(A,a) = R(a)L(yA)(R(a−1)L(a−1))R(xA)L(a)P(yA) =

R(a)L(yA)(P(a)R(xA)L(a))P(yA) = R(a)(L(yA)R(a−1.xA)P(yA)) = R(a)R((a−1.xA).y−1A) =

R(a)R(a−1.(x.y−1)A) = (R(a)P(a))R((x.y−1)A)L(a) = L(a−1)R((x.y−1)A)L(a) = (R(x.y−1))
(A,a).

The remaining identities can be proved similarly and are therefore omitted. Hence (A, a)

induces an endomorphism of D(M). We also have for (A, a), (B, b) ∈ PsAut(Q)

((P(x))
(A,a))(B,b) = (P(xA))

(B,b) = P(xAB) = (P(x))
(AB,aB.b) = (P(x))

(A,a)(B,b),

((L(x))
(A,a))(B,b) = (R(a)L(xA)R(a−1))

(B,b) =
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L(b−1)R(aB)(L(b)R(b))L(xAB)(R(b−1)L(b−1))R(a−1B)L(b) =

(L(b−1)R(aB)P(b−1))L(xAB)(P(b)R(a−1B)L(b)) = R(aB.b)L(xAB)R(b−1.a−1B) =

(L(x))
(AB,aB.b) = (L(x))

(A,a)(B,b).

The identity for R(x) is proved similarly. Therefore, we have a group action of PsAut(Q)

on D(Q) by automorphisms. ¤
Denote by U(Q) the semidirect product PsAut(Q)D(Q) and extend the action of ρ

and σ on U(Q) as follows:

(A, a)D
ρ7−→ (A, a)R(a)D

ρ,

(A, a)D
σ7−→ (A, a)Dσ.

(22)

for all (A, a) ∈ PsAut(Q) and D ∈ D(Q).

Lemma 7 The group U(Q) is a group with triality S = 〈ρ, σ〉 given by (22). Moreover,

M(U(Q)) ∼= Q and the mapping τ : U(Q) → W(Q) defined in Theorem 2 is an S-

epimorphism.

Proof. First, show that ρ and σ are automorphisms. Given (A, a), (B, b) ∈ PsAut(Q)

and D, E ∈ D(Q), we have

((A, a)D)ρ((B, b)E)ρ = (A, a)R(a)D
ρ(B, b)R(b)E

ρ =

(A, a)(B, b)(R(a))
(B,b)Dρ(B,b)R(b)E

ρ. On the other hand,

((A, a)D(B, b)E)ρ = ((A, a)(B, b)D(B,b)E)ρ = (A, a)(B, b)R(aB.b)D
(B,b)ρEρ. However,

R(aB.b)D
(B,b)ρ = L(b−1)R(aB)P(b−1)D

ρ(B, b)ρ = (L(b−1)R(aB)L(b))R(b)D
ρ(B, b)R(b) =

(R(a))
(B,b)Dρ(B,b)R(b). Hence, ρ is an automorphism. We also have

((A, a)D)σ((B, b)E)σ = (A, a)Dσ(B, b)Eσ = (A, a)(B, b)Dσ(B,b)Eσ =

(A, a)(B, b)D(B,b)σEσ = ((A, a)(B, b)D(B,b)E)σ = ((A, a)D(B, b)E)σ.

Hence, σ is an automorphism. Now, obviously, σ2 = 1. Furthermore,

((A, a)D)ρ3

= ((A, a)R(a)D
ρ)ρ2

= ((A, a)R(a)P(a)D
ρ2

)ρ =

(A, a)R(a)P(a)L(a)D = (A, a)D, and

((A, a)D)(ρσ)2 = ((A, a)L(a−1)D
ρσ)ρσ = (A, a)L(a−1)L(a)D = (A, a)D. Note that

[(A, a)D, σ] = (1, 1)[D, σ], which implies that U(Q) is a group with triality 〈ρ, σ〉,
since D(Q) is. Moreover, M(U(Q)) = M(D(Q)) ∼= Q. The latter isomorphism is the

map M(U(Q)) 3 P(x) 7→ x ∈ Q. Hence we may identify Q with its image in U(Q).

Under this identification, the action of a pseudoautomorphism A with companion a on

Q corresponds to the mapping T(A,a) (the conjugation by (A, a) in U(q)), which is a

pseudoautomorphism of Q with companion P(a) in view of the first relation in (21).
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It is now easy to see that the mapping τ : U(Q) → W(Q) defined in Theorem 2 is

surjective. Indeed, the elements [(1, 1), x] of W(Q) always lie in Im τ and we show that so

do the elements [(A, a), 1] for arbitrary (A, a) ∈ PsAut(Q). By the above identification,

it is sufficient to show that the element [(T(A,a), P(a)), 1] lies in Im τ . However, this is

exactly the image under τ of (A, a) viewed as an element of U(Q). Indeed,

ξ((A, a)) = 1,

η((A, a)) = (A, a)ξ((A, a))−ρ2

= (A, a),

φ((A, a)) = [(A, a), ρ]ρ = Rρ
(a) = P(a); hence,

τ((A, a)) = [(T(A,a), P(a)), 1]. ¤
The important properties of Mikheev’s group W(Q) dual to those of Doro’s group

D(Q) are explained in the following assertion:

Corollary 1 For every Moufang loop Q, the set W(Q) with multiplication (17) is a

group with triality such that M(W(Q)) ∼= Q and ZS(W(Q)) = 1. Moreover, W(Q) is a

universal injective object in the following sense: if G is any group with triality such that

M(G) ∼= Q and ZS(G) = 1 then there exists an S-monomorphism τ : G → W(Q).

Proof. This is a consequence of Theorem 2 and Lemmas 7 and 1. ¤
Introduce yet another group with triality associated with any Moufang loop Q.

Denote by E(Q) the image of D(Q) in W(Q) under τ from Theorem 2. We have

M(E(Q)) ∼= Q. It is easy to see that E(Q) is the set PsInn(Q) × Q with multipli-

cation (17) (the extended group of inner pseudoautomorphisms). In particular, E(Q) is

generated by the elements of W(Q) of the form

[(Tm,m−3), 1], [(Rm,n, Jm,nK), 1], [(1, 1),m]

for all m,n ∈ Q. Moreover, this group satisfies ZS(E(Q)) = 1 and [E(Q), S] = E(Q).

Hence, E(Q) is the absolutely minimal group with triality corresponding to Q in the sense

that it has neither proper S-subgroups nor S-factor groups G satisfying M(G) = Q. Ob-

serve that the above homomorphism τ : D(Q) → E(Q) coincides with the homomorphism

(11). We also have

E(Q) ∼= D(Q)/ZS(D(Q)) ∼= [W(Q), S].

Furthermore, the centralizer CS(E(Q)) coincides with Inn(Q) since it consists of the

elements of form [(A, 1), 1], where A is an (inner) pseudoautomorphism with companion

1, i.e. an automorphism.
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By definition, the multiplication group Mlt(Q) of a Moufang loop Q is the group

of permutations of Q generated by Lx and Rx for all x ∈ Q, and the inner mapping

group I(Q) is the subgroup of Mlt(Q) generated by Tx and Rx,y for all x, y in Q. It is

known (see [1]) that I(Q) = {A ∈ Mlt(Q) | 1A = 1}. Glauberman [5] noted that the

multiplication group of a Moufang loop Q with Nuc(Q) = 1 is a group with triality with

respect to the action

Px
ρ7−→ Lx

ρ7−→ Rx
ρ7−→ Px,

Px
σ7−→ P−1

x , Lx
σ7−→ R−1

x , Rx
σ7−→ L−1

x .
(23)

Phillips [8] remarks that not every Moufang loop multiplication group has triality and

discusses the question: for what other Moufang loops Q does the group Mlt(Q) admit

Glauberman’s triality (23)? We show that the group E(Q) is a natural generalization of

the triality on Mlt(Q) to all Moufang loops and that Mlt(Q) has triality if and only if

it coincides with E(Q). We will need the following fact:

Lemma 8 Let Q be a Moufang loop. The subgroup H = CD(Q)(σ) of D(Q) is generated

by the elements T(x) = L(x−1)R(x) and R(x,y) = R(x)R(y)R(y−1.x−1) for all x, y ∈ Q.

Proof. First note that there exists a natural epimorphism µ : D(Q) → Mlt(Q), which

act on the generators by

P(x)
µ7−→ Px, R(x)

µ7−→ Rx, L(x)
µ7−→ Lx (24)

because all the relations corresponding to those in (9) hold in Mlt(Q) as well. We have

T σ
(x) = Lσ

(x−1)R
σ
(x) = R(x)L(x−1) = T(x), since R(x) and L(x) commute. Also,

Rσ
(x,y) = L(x−1)L(y−1)L(x.y) = R(x,y), which follows from R(y)P(x.y)L(y) = P(x). Hence,

T(x), R(x,y) ∈ H.

Every W ∈ D(Q) can be expressed as a word in R(x), L(x). Denote by l(W ) the

minimal length of such an expression. Prove the assertion by induction on l(W ), where

W ∈ H. If l(W ) = 0, the claim holds. Suppose l(W ) = 1, i.e., W is L(x) or R(x) for some

x ∈ Q. In either case, we have L(x) = R(x−1), which implies Lx = Rx−1 by the above

homomorphism (24). Hence, x2 = 1. In particular, W 2 = 1 and L(x) = R(x). Acting

by ρ on both sides (see (10)), we obtain R(x) = P(x). Hence, 1 = P(x)L(x)R(x) = W 3

and W = 1, a contradiction; i.e., H does not contain words of length 1. Suppose

l(W ) = n > 2. Then W = A(x)B(y)W0 for some x, y ∈ Q, where A,B ∈ {L,R} and

l(W0) = n− 2. If A = B = L, we have
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W = L(x)L(y)L(x−1.y−1)W1 = R(x−1,y−1)W1,

where W1 = L(y.x)W0. Hence, l(W1) 6 n− 1, W1 ∈ H, and the claim holds by induction.

If A = L and B = R, we have

W = L(x)R(x−1)R(x)R(y)R(y−1.x−1)W1 = T(x−1)R(x,y)W1,

where W1 = R(y−1.x−1)W0 and l(W1) 6 n− 1. Again, the claim holds by induction. The

remaining two cases are considered similarly. ¤

Lemma 9 The mapping λ : E(Q) → Mlt(Q) defined by

[(A, a), x]
λ7−→ ARx

is an epimorphism. Moreover, λ is an S-epimorphism if and only if Mlt(Q) is a group

with triality (23).

Proof. We could use the decomposition E(Q) = PsInn(Q)Q and Lemma 5 to show

that λ is a homomorphism. However, we choose a different approach. We show that

the epimorphism µ : D(Q) → Mlt(Q) defined in (24) can be factored through τ :

D(Q) → E(Q). To this end, we have to show that ZS(D(Q)) is contained in Ker µ. Let

A ∈ ZS(D(Q)). Then A ∈ H = CD(Q)(σ). By Lemma 8, A is expressed as a word in T(x)

and R(x,y). Observe that

τ(T(x)) = [(Tx, x
−3), 1] = [(µ(T(x)), x

−3), 1] and

τ(R(x,y)) = [(Rx,y, Jx, yK), 1] = [(µ(R(x,y)), Jx, yK), 1].

Consequently, τ(A) = [(µ(A), a), 1], where a is a suitable companion of µ(A); and τ(H) =

CE(Q)(σ) = PsInn(Q) (we have identified PsInn(Q) with its image in E(Q)). On the

other hand, τ(A) = [(1, 1), 1], since A ∈ ker τ . Hence, µ(A) = 1 as is required.

Consequently, there exists a homomorphism λ : E(Q) → Mlt(Q) such that the following

diagram commutes:

D(Q)
τ

##GG
GG

GG
GG

G

µ // Mlt(Q)

E(Q)

λ
::u

u
u

u
u

Take an arbitrary [(A, a), x] ∈ E(Q). We have [(A, a), x] = [(A, a), 1][(1, 1), x]. Since

[(A, a), 1] ∈ PsInn(Q), by the above discussion there exists W ∈ H such that τ(W ) =

[(A, a), 1] and A = µ(W ). Hence,
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λ([(A, a), x]) = λ(τ(W )τ(R(x))) = µ(W )µ(R(x)) = ARx.

It is now clear that λ is an S-homomorphism iff µ is an S-homomorphism, which

holds iff Mlt(Q) admits Glauberman’s triality (23). ¤
Observe that K = Ker λ consists of all elements of E(Q) of the form [(1, a), 1] and, for

λ to be an S-homomorphism, K must be S-invariant. However, [(1, a), 1]ρ = [(1, a), a] 6∈
K unless a = 1. Therefore, K must be trivial. Hence, we have

Corollary 2 The multiplication group Mlt(Q) of a Moufang loop Q admits Glauber-

man’s triality (23) if and only if the natural epimorphism λ : PsInn(Q) → I(Q), which

acts by λ : (A, a) 7→ A, is an isomorphism.

We put forward the following conjecture:

Conjecture 1 Let (Q, . ) be a Moufang loop. The kernel of the natural epimorphism

λ : PsInn(Q) → I(Q) is generated by the elements (1, c3) for all c ∈ C(Q) and (1, Jm,nK)
for all pairs m,n ∈ Q such that (x.m).n = x.(m.n) for all x ∈ Q.

3 Examples

In this section we give some examples of groups with triality.

Example 1 Let P be a group, let Pi
∼= P , i = 1, . . . , 4. Put Q = P1 × P2 × P3 × P4.

The symmetric group S4 acts on Q naturally. It is well known that S4 = SK, where

S = 〈σ = (12), ρ = (123)〉 and K = 〈a = (12)(34), b = (14)(23)〉. Denote G = KQ.

Proposition 1 The group G defined above is a group with triality with respect to the

action of S by conjugation and the corresponding Moufang loop M = M(G) is Chein’s

duplication M(P, 2) of P .

Proof. It is easy to see that

M = ξ(G) = { (x−1, x, 1, 1), a(1, 1, x−1, x) | x ∈ P }
and mmρmρ2

= 1 for all m ∈ M . Denote tx = (x−1, x, 1, 1) and identify a with

a(1, 1, 1, 1). Then we have a(1, 1, x−1, x) = a.tx and

tx.ty = txy, tx.(a.ty) = a.tx−1y,

(a.tx).ty = a.tyx, (a.tx).(a.ty) = tyx−1 .

Hence (M, .) is Chein’s duplication of P (see [2]). ¤



19

Example 2 Suppose that Q is a group. Then W(Q) is isomorphic to the semidirect

product Aut(Q)(Q × Q), where Aut(Q) acts on Q × Q componentwise, and the triality

automorphisms act as follows:

(A, x, y)
ρ7−→ (ATy, y

−1, y−1x), (A, x, y)
σ7−→ (ATy, y

−1x, y−1)

for all A ∈ Aut(Q), x, y ∈ Q, where Inn(Q) 3 Ty : x 7→ xy. The subgroup of this group

generated by the elements (Tx, x
−3, 1) and (1, x, x−1) for all x ∈ Q is isomorphic to E(Q).

Proof. The required isomorphism is the map

W(Q) 3 [(A, a), x] 7−→ (A, ax, x) ∈ Aut(Q)(Q×Q).

All the needed properties are easily verified. ¤

Example 3 Let M = Z3 = 〈v | v3 = 1〉 be a cyclic group of order 3. Then D(M) ∼=
Z3 × Z3 = 〈a, b | a3 = b3 = [a, b] = 1〉, where a = L(v), b = R(v) and aσ = b−1, bσ = a−1,

aρ = b, bρ = a−1b−1;

Also, W(M) ∼= Z2(Z3 × Z3) and E(M) ∼= Z3 as follows from the previous example.

There are two other basic groups with triality associated with M ; namely S3 = S with the

S-action by conjugation, and S3 = S with σ-action by conjugation and trivial ρ-action.

These two groups are S-embedded into W(M) by Theorem 2.

4 Open problems and conjectures

In this concluding section we give a number of most important and interesting, in our

opinion, problems in the theory of groups with triality and Moufang loops.

Conjecture 2 A simple (infinite) group G admits non-trivial triality S if and only if

G ∼= D4(k), where k is a field, and S is the group of graph automorphisms of G.

This conjecture is both important and difficult. The only encouraging fact is that the

corresponding problem for simple Lie algebras with triality was solved in the affirmative

(see [11]).

Conjecture 3 (G.P. Nagy, P. Vojtěchovský, [10]) Let G be a simple group with

triality S = 〈ρ, σ〉 such that G = [G,S] and ZS(G) = 1. Then CG(σ) = {x ∈ G | xσ = x}
and CG(ρ) = {x ∈ G | xρ = x} are simple groups.
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Denote by M(q) the finite simple Paige loop of order 1
d
q3(q4 − 1), where q is a prime

power and d = (2, q − 1). Note that this order is the product of two coprime numbers

q3(q2 − 1) and 1
d
(q2 + 1). Let M be a finite Moufang loop. A prime p is called ”bad” for

M if there exists a composition factor of M isomorphic to M(q) for some q such that p

divides 1
d
(q2 + 1). Otherwise the prime p is ”good” for M .

Conjecture 4 (Sylow’s Theorem) A finite Moufang loop M contains a Sylow p-sub-

loop if and only if p is a ”good” prime for M . Moreover, two Sylow p-subloops of M are

conjugate by an inner automorphism of M .

Define the Frattini subloop Φ(M) of a Moufang loop M as the intersection of all

maximal subloops of M , provided M has maximal subloops, and Φ(M) = M , otherwise.

As in the case of groups, Φ(M) is the normal subloop of M that consists of all non-

generating elements of M .

Conjecture 5 The Frattini subloop of a finite Moufang loop is nilpotent.

Define the following group:

F̃n,m = 〈x1, . . . , xn, y1 . . . , yn; a1, . . . , am, b1, . . . , bm, c1, . . . , cm | [xi, yi] = 1, i = 1, . . . , n〉

and the action of S = 〈ρ, σ〉 on F̃n,m as follows

xσ
i = x−1

i , yσ
i = xiyi, xρ

i = yi, yρ
i = x−1

i y−1
i ,

aσ
j = aj, bσ

j = cj, aρ
j = bj, bρ

j = cj.

Let Nn,m be the minimal normal subgroup of F̃n,m such that Fn,m = F̃n,m/Nn,m is a

group with triality S. Let Fn = Fn,0. It is not difficult to show that the following fact

holds:

Proposition 2 The loop Mn = M(Fn) is a free n-generated Moufang loop.

Problem 1 For which primes p does the group Fn (the loop Mn) have a p-torsion?

A more difficult question is to describe the structure of the Moufang loop corresponding

to the group Fn,m, m > 0. It is unknown (and, seemingly, non-trivial) even in the case

of the group F0,1. It is probable that the following is true:

Conjecture 6 The Moufang loop M(F0,1) is infinitely generated.
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Let G be a group with triality and let M = M(G). Take m,n, k ∈ M . By (iv) of

Lemma 4, the elements m,n, k associate (i.e., (m,n, k) = 1) if and only if

f(m,n, k) = [[mρ, nρ2

], k] = 1 (25)

By Moufang’s theorem [3, p.93] the relation (m, n, k) = 1 implies that the subloop of

M generated by m,n, k is a group. Therefore, we have

Proposition 3 Let M = M(G), where G is a group with triality. If elements m,n, k ∈
M satisfy (25) then f(x, y, z) = 1 for all x, y, z ∈ M(G1), where G1 is the S-subgroup of

G generated by m, n, k.

This proposition is equivalent to Moufang’s theorem. However, we have not found a

short group-theoretic proof of this proposition that would not use Moufang’s theorem.

Another consequence of Moufang’s theorem is the fact that the loop M2 = M(F2) is

a free group. In this case, the group with triality F2 is isomorphic to the S-subgroup in

G = M2 ×M2 ×M2 generated by the elements of the form (x−1, x, 1) for x ∈ M2. It is

easy to see that

F2 = {(x, y, z) ∈ G | xyz ∈ [M2,M2]}, M(F2) = {(x−1, x, 1) | x ∈ M2} ∼= M2.

This remark gives a simple criterion to verify relations in two variables m,n ∈ M in

an arbitrary group with triality. For example, we showed in Lemma 2 that [mρ, n−ρ2
] =

[m−ρ2
, nρ]. Verify this using the above criteria. Let m = (x−1, x, 1) and n = (y−1, y, 1).

Then

mρ = (1, x−1, x), n−ρ2
= (y−1, 1, y), m−ρ2

= (x−1, 1, x), nρ = (1, y−1, y)

and we have [mρ, n−ρ2
] = (1, 1, [x, y]) = [m−ρ2

, nρ].

Let G be a group with triality and M = M(G). Let N = Nuc(M) and define the

Moufang nucleus Nuc(G) of G to be the S-subgroup of G generated by N . Then Nuc(G)

is a normal subgroup of G and M(Nuc(G)) = N .

Problem 2 Describe perfect (i.e., equal to the commutator subgroup) algebraic (finite)

groups with triality, with trivial Moufang nucleus.

There is hope that the perfect algebraic groups with triality with trivial Moufang

nucleus over an arbitrary field have structure similar to the characteristic zero case,

which is described in [11] for Lie algebras with triality and is easily extended to the

algebraic groups over an algebraically closed field of characteristic zero.
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