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ABsTrRACT. Let g be an untwisted affine Kac-Moody algebra and M()A) an
imaginary Verma module for g with S-highest weight A € P. We construct
quantum imaginary Verma modules M%()\) over the quantum group Ug(g), in-
vestigate their properties and show that M?()) is a true quantum deformation
of M() in the sense that the weight structure is preserved under the deforma-
tion.

Introduction.

The representation theory of Kac-Moody algebras is much richer than that
of finite-dimensional simple algebras. In particular, Kac-Moody algebras have
modules containing both finite and infinite-dimensional weight spaces, some-
thing that cannot happen in the finite-dimensional setting [Le]. These repre-
sentations of Kac-Moody algebras arise from taking non-standard partitions
of the root system, partitions which are not Weyl-equivalent to the standard
partition into positive and negative roots. For affine algebras, there is always
a finite number of Weyl-equivalency classes of these nonstandard partitions.
Corresponding to each partition is a Borel subalgebra and one can form repre-
sentations induced from one-dimensional modules for these nonstandard Borel
subalgebras. These induced modules are called modules of Verma-type, in
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analogy with standard Verma modules induced from a standard Borel subal-

gebra.

Verma-type modules were first studied and classified by Jakobsen and Kac
[JK1, JK2], and by Futorny [Ful, Fu2|. Further work elucidating their struc-
ture, including the construction of the appropriate categorical setting, deter-
mination of irreducibility criteria, BGG duality and BGG resolutions can be
found in [Col, Co2, CFM, Fu4]. In this paper, we consider what are, in a
sense, the most extreme case of nonstandard partitions for untwisted Kac-
Moody algebras, and the representations arising from them, the imaginary

Verma modules. We will recall needed properties of these modules from [Fu3].

Since their introduction by Drinfeld [Dr| and Jimbo [Ji] in 1985, there has
been a tremendous interest in studying quantized enveloping algebras for Kac-
Moody algebras and their representations. Quantum groups have turned out
to be extremely important objects with rich and diverse connections to an
ever-increasing number of areas of mathematics and physics. A vigorous body
of research is developing on determining their structure, their representations
and their applications.

In many cases, the representation theory of quantum groups parallels that
of the associated underlying classical algebras, although often with some sub-
tle differences. The closest parallel comes when the classical and quantum
representations have the same weight structure. In this paper, we construct
quantum imaginary Verma modules over the quantum group U,(g) associated

to an untwisted affine Kac-Moody algebra g.

One of the problems to be faced when studying nonstandard representations
of a Kac-Moody algebra g, is that the absence of a general PBW theorem for
quantum groups means that we cannot lift the triangular decomposition of g
up to a triangular decomposition of U,(g). In [CFKM], the authors studied
quantum imaginary Verma modules for the algebra U, (Agl)). There, they had
to construct an appropriate PBW basis to deal with that particular case (see
Proposition 2.2). The techniques used there do not easily generalize to the

case of all affine algebras.

In this paper we rely heavily on the work by Beck [Bel, Be2] and Beck

and Kac [BK] on PBW bases for quantum groups of affine algebras, and we
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exploit a particularly convenient description of the nonstandard partition of the
root, system used to construct the quantum imaginary Verma modules. This
approach allows us to determine a basis for the quantum imaginary Verma
modules in a unified manner without giving a PBW basis for the algebra.

Having constructed the quantum representations we wish to check that they
are true quantum deformations of the equivalent classical modules. That is,
the quantum and classical modules have the same weight structure. To do
this, we follow the A-form technique introduced by Lusztig [Lu], and subse-
quently refined and developed by Kang and co-authors [Ka, CFKM, BKMe].
For an overview of this procedure and a summary of known quantum defor-
mation results, see [M]. Our main result, generalizing that of [CFKM] is that
any quantum imaginary Verma module with integral S-highest weight A is a
quantum deformation of the equivalent imaginary Verma module over U(g) for
g an untwisted affine Kac-Moody algebra.

Armed with the quantum deformation theorem, we study some of the struc-
tural properties of quantum imaginary Verma modules. In particular, we prove
an irreducibility criterion and probe the structure of these modules when they
are reducible. The results obtained are similar to those given for non-quantum
imaginary Verma modules in [Fu3|, showing that these quantum modules are
closely related to their classical cousins.

The structure of the paper is as follows. First, we recall background infor-
mation and establish notation in Section 1. In Section 2 we review imaginary
Verma modules for affine algebras. In Section 3 we construct quantum imag-
inary Verma modules and provide them with a basis. Section 4 constructs
A-forms, and Section 5 gives the classical limits and quantum deformation
theorem. Section 6 discusses the irreducibility results. For additional basic
background material and notation on Kac-Moody algebras, see the book by
Kac [K]; for background information on quantum groups, see the excellent

texts by Chari and Pressley [CP]and Jantzen [Ja).
1. Preliminaries.
1.1. Let N be a positive integer. Fix index sets I = {1,...,N} and I =

{0,...,N}. Let g be a finite-dimensional simple complex Lie algebra with
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Cartan subalgebra b, root system A C §*, and set of simple roots II =
{a1,...,an}. Denote by A_|_ and A_, the positive and negative roots of
g. Let Q = ®N | Za; be the root lattice of g, and let A = (@ij)1<ij<n be
the Cartan matrix for g. Define a basis hq, ..., hy of § by a;(h;) = a;;. Let
P={Xxebh| AXh) € Z,i=1,...,N} be the weight lattice of g. Let (.|.)
denote both the symmetric invariant bilinear form on g and the induced form
on g*, normalized so that (a|a) = 2 for any short root a. For i =1,..., N, let
d; = (a;|a;)/2. Then each d; is a positive integer, the d; are relatively prime

and the diagonal matrix D= diag(dy,...,dy) is such that DA is symmetric.

1.2. Let g denote the untwisted affine Kac-Moody algebra associated to g.

Then g has the loop space realization
g=9gC[t,t '] @ Cc Cd,

where c is central in g; d is the degree derivation, so that [d,z ® t"] = nz @ t"
for any z € gand n € Z, and [z @ t",y @ t™] = [z, y] @ t"T™ + Spym.on(z|y)c
for all z,y € g, n,m € Z. We set h=Hheo Ced Cd.

The algebra g has a Cartan matrix A = (a;j)o<i,j<n Which is an extension
of A. There exists an integer dy and a diagonal matrix D = diag(do, . ..,dy)
such that DA is symmetric. An alternative Chevalley-Serre presentation of g
is given by defining it as the Lie algebra with generators e;, f;, h; (¢ € I) and

d subject to the relations
[hi, hj] =0, [d, h;] =0,
[his €5] = aizej,  [d,e5] = o je;,
[hi, fi] = —aij f5, d, fi] = —00,5 [,
[ei, fi] = dijhi,
(adei)l_“” (ej) = O, (adfi)l_‘“j (fj) = 0, 1 75 j
1.3. We can define the root system of g in the following way. Extend the root

lattice Q of g to a lattice Q = Q ®ZJ, and extend the form (.|.) to @ by setting
(¢|6) = 0 for all ¢ € Q and (8|6) = 0. Then the root system A of g is given by

A={a+né|aecAneZYU{kd|keZk+#0}.
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The roots of the form a + nd, a € A, n € Z are called real roots, and those
of the form k6, k € Z,k # 0 are called imaginary roots. We let A" and A*™
denote the sets of real and imaginary roots, respectively. The set of positive
real roots of g is A’ = AL U{a+nd | @ € A n> 0} and the set of positive
imaginary roots is AY™ = {ké | k > 0}. The the set of positive roots of g is
Ay =AU AT’. Similarly, on the negative side, we have A_ = AT U A",
where A™ = A_U{a+nd | @ € Ajn < 0} and A"™ = {k§ | k < 0}.
Further, if § denotes the highest positive root of g and ag := § — 6, then
IT = {ap,a1,...,an} is a set of simple roots for g. Let W denote the Weyl
group of g generated by the simple reflections rg,r1,...,7ny and B denote the

associated braid group with generators Ty, Ty, ..., TN.

1.4. Beck, [Bel, Be2] has introduced a total ordering of the root system leading
to PBW bases for g and its quantum analog, U,(g). We state the construction
here, partially following the more abstract notation developed by Damiani [Da]
and Gavarini [Gal.

For any affine algebra g, there exists a map m : Z — I such that, if we define
Tr(0)Tr(=1) " * " Tr(k+1) (Qr(k)) forall k <0
o = {Tﬂ'(l)rn@) T e—1) (U (k) for all k > 1,
then the map n' : Z — A’ given by n'(k) = S is a bijection. Further
we can choose m so that, {8x | ¥ < 0} = {a+nd | «a € Ay,n > 0} and
{(Br | k>1}={-a+nd | ac At ,n>0}.
It will be convenient for us to invert Beck’s original ordering of the positive

roots (cf [BK 1.4.1] for the original order, and [Ga, §2.1] for this ordering).

Thus, we set
Bo>PB1>P_9>->0>20>---> s > .

Clearly, if we say —a < —f iff § > « for all positive roots «, 3, we obtain a
corresponding ordering on A_.

The following elementary observation on the ordering will play a crucial role
later. Write A < B for two sets A and B if x <y for allz € A and y € B.

Then Beck’s total ordering of the positive roots can be divided into three sets:

{a+né|aecAn>0t>{né|n>0>{-a+nd|aecAL,n>0}.
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Similarly, for the negative roots, we have,
{—a+nd|acAin>0<{-nd|n>0}<{a—nd|acA,n>0}.

Note that the map =, and so the total ordering, is not unique. We as-
sume a suitable w chosen and fixed now throughout the paper. Beck’s original
approach and proof is constructive, but the existential approach avoids some

technicalities we do not need below.

1.5. The quantum group, or quantized universal enveloping algebra of g is the
associative algebra Uy (g) with 1 over C(q) with generators E;, F;, KI' (i € )
and D*! subject to the defining relations

KK;'=K;'K;=DD'=D"'D=1,
K;K; = K,K;, K;D=DK;,

K,E; = /" E;K;,  DE; = ¢7°E;D,
KiF; =q, “"F,K;,  DF; =q, " F;D,

K, — K; !
EiFy — FjE; = 0ij————,
q; — 4;
1—a;j -1 -
S| et ik
k=1 - 4 qi
1—a;j -1 -
SO0 BT R =0, i)
k=1 - 4 qi

where ¢; = g% (we can choose d; so that dy = 1 and ¢y = ¢q), and

[mL -Gl = f[l[j]q’ P

nl, [m — n]q![n]q!’ qg—q!

for alli € I, m,n € Z, m > n > 0. For any p € Q, we have u = ), ; c;a,
for some integers c;. Denote K, = [[;c; K;*. Then KyK, = Ky, for all
A 0 € Q. In particular, we have Ki,, = Kiil. Let U;(g) (resp. U, (g)) be
the subalgebra of U,(g) generated by E; (resp. F;), i € I, and let U (g) denote

the subalgebra generated by K= (i € I) and D*.
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The action of the braid group generators 7; on the generators of the quantum
group U,(g) is given by the following.
T;(E;) = - FK;, T;(F;) = —K; 'E;,

—a;;

1 1 s o
T(E) = (_1)7"—aij qi_TEi ij E'E{, if i #],
o ; [_aij - r]qi! [_T]qi! I
R r=0 [_T]qi! [_az_g - 'f']qz.!qZ I ? I

Ti(K;) = KGE; ™, LK) = KK,

T,(D) = DK;%°,  T,(D™')=D'K}>°.

1.6. For each B € A, define the root vector Eg, in U,(g) by
( E7r(0) k=0

-1 -1 -1
5o Tw(O)T'/r(—l) .- 'T'/r(k—l—l) (E'/r(k)) forall £ <0
o Erqy k=1

k

T () Tr(2) - Treo—1) (En (k) for all k£ > 1.
Each real root space is 1-dimensional, but each imaginary root space is N-
dimensional. Hence, for each positive imaginary root kd (k > 0) we define N
imaginary root vectors, E,(c? (i € I ) by

00 00

exp ((qZ —q ZE,(;&)Z,“> =14+ (¢*—q" ZK{I[Ei, E_q, 152"

k=1 k=1
Then for each k, the E,g? span the kd-root space and commute with each other.
Further, the Eg, (k € Z) and E,(;d) (k > 0) form a basis for U,

Let w denote the standard C-linear antiautomorphism of U,(g), and set
E_, = w(E,) for all @« € A;. Then U, has a basis of elements of the form
E_HE,, where E. are ordered monomials in the E,, « € AL and H is a
monomial in K*', and D*! (which all commute).

Furthermore, this basis is, in Beck’s terminology, convex, meaning that, if
a,B € Ay and Eg > E,, then

EpEo—q“PEEg= ) By Ey
a<y1<--<yr<p
for some integers ay,...,a, and scalars ¢y € Clg,¢7 '], v = (71,...,7%) [BK,

Proposition 1.7¢c], and similarly for the negative roots.
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2. Imaginary Verma modules for affine algebras.

Consider the partition A = S U —S of the root system of g where S =
{a+nd|aecA,,neZYU{kd|k>0}and —S ={a€ A| —aec S} This
partition is closed in the sense that, if o, 3 € S and a+ 3 € A, then a+ 8 € S.
Hence the space gs = @qes8q 1S a subalgebra of g, and g has a triangular
decomposition g = g_s & h @ gs. This is an example of the non-standard
triangular decompositions of affine algebras studied and classified by Jakobsen
and Kac [JK1, JK2]and Futorny [Ful, Fu2].

Let U(gs) (resp. U(g—s)) denote the universal enveloping algebra of gg
(resp. g_s). Then, from the PBW theorem, the triangular decomposition of
g determines a triangular decomposition of U(g) as U(g) = U(g_s) @ U(h) ®
Ulgs)

Let A € h*. Then X extends to a map on (U(h))*, also denoted by A\. A
U(g)-module V is called a weight module if V' = @,,¢4+V},, where V,, = {v €
V| h-v = p(h)vforallh € U(h)}. The non-zero subspaces V, are called
weight spaces. Any submodule of a weight module is a weight module. A
U(g)-module V is called an S-highest weight module with highest weight X if

there is some nonzero vector v € V such that

(i) ut-v =0 for all u™ € U(gs);
(ii) h-v = A(h)v for all h € U(h);
(iii) V =U(g) - v.
An S-highest weight module is a weight module.
Let A € h*. We make C into a 1-dimensional U(gg & h)-module by picking
a generating vector v and determining the action by (x+ h)-v = A(h)v, for all

x € gs,h € h. The induced module
M(\) =Ul(g) QU (gs@h) Cv =U(g-s) ®@ Cv

is called the imaginary Verma module with S-highest weight A. Imaginary
Verma modules are in many ways similar to ordinary Verma modules except
they contain both finite and infinite-dimensional weight spaces. Their basic
structural properties were studied in [Fu3], from which the relvant properties

are summarized here (cf. [Fu3, Proposition 1, Theorem 1]).
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Proposition 2.1. Let A € b*, and let M()) be the imaginary Verma module
of S-highest weight A\. Then M (X) has the following properties.

(i) The module M () is a free U(g_g)-module of rank 1 generated by the
S-highest weight vector 1 ® 1 of weight \.

(i) M(X) has a unique mazimal submodule.

(iii) Let V be a U(g)-module generated by some S-highest weight vector
v of weight \. Then there exists a unique surjective homomorphism
¢: M(A) — V such that p(1Q® 1) = v.

(iv) dimM(A)x = 1. For any u = X — ko, k a positive integer, 0 <
dim M (X), < oco. If p # A—kd for any integer k > 0 and dim M (\),, #
0, then dim M (\), = oo.

(v) Let A\, € b*. Any non-zero element of Homy g)(M(X), M (1)) is in-
jective.

(vi) The module M () is irreducible if and only if A(c) # 0.

3. Imaginary Verma modules for quantum affine algebras.

As in the classical case, we use the partition of the root system A = SU—-S
where S = {a+nd |a € Ay,n e ZYU{kd | k > 0}, and —S = A\ S. Let
Uy(£S) be the subalgebra of U,(g) generated by {Eg | 8 € £S5}, and let B,
denote the subalgebra of U,(g) generated by {Eg | € S} UH

A Uy(g)-module V¢ is called a quantum weight module if V¢ = @,epV/],
where

Vi={veV |Kf"  v=q"") D¥ .y ="}

Any submodule of a quantum weight module is a weight module. A U,(g)-
module V7 is called an S-highest weight module with highest weight A € P if
there is a non-zero vector v € V¥ such that:
(i) ut-v =0 for all u™ € Uy(S) \ C(g)*;
(ii) For each i € I, KX v = qii)‘(hi)v, D+l .y = qgﬂ(d)fu;
(iii) VI ="Ugy(g) - v.
Note that, in the absence of a general quantum PBW theorem for non-standard

partitions, we cannot immediately claim that an S-highest weight module V¢
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is generated by Uy(—S). This is in contrast to the classical case, and the reason

behind our next theorem.

Now we define a U, (g)-module as follows. Let C-v be a 1-dimensional vector
space. Let A € h*, and set Eg-v =0 for all 8 € S, Kl-il ‘v = q:d(h")v (iel)
and D! .y = 22Dy Now define M9()) = Uy ®B, Cv. Then M%(}) is an
S-highest weight Uj,-module called the guantum imaginary Verma module with
highest weight A.

In order to show that the module M?()\) is spanned by the “right” set of
vectors, we must appeal to Beck’s PBW basis of Uj,(g) and to the very useful
grading by degree introduced by Beck and Kac [BK, §1.8], which we reproduce

here as our notation differs slightly from theirs.

Beck [Be2] has shown that U,(g) has a basis comprising elements of the
form N(q,) K M(qa;), where the M(,,) are ordered monomials in Egﬁ ,BeA,,
ag € Zy, N(ag) = w(M(,,)), and K is an ordered monomial in K* and D*.
The notation (ag) indicates the sequence of powers ag as 3 runs over Ay. Of

course, almost all terms of the sequence are zero.

In [BK, §1.8], Beck and Kac define the total height of such a basis element
by

do(Nias) KMa)) = D (ag + ap)htp,
BeAL

where htg is the usual height of a root. Next, they set the total degree of a

basis element to be
d(N(ay) KMy)) = / 2841
(Nag) K May)) = (do(N(ag) K M(ar)), (ag), (ap)) € Z37" .

Considering Z1A++1 as a totally ordered semigroup with the usual lexicograph-
ical ordering, Beck and Kac introduce a filtration of U,(g) by defining Us, for
any s € ZiA“LH, to be the span of the basis monomials N(aﬁ)KM(afﬂ) with

degree d(N(q,) K M(%)) < s. Finally, they obtain the following proposition.

Proposition 3.1 [BK, Proposition 1.8]. The associated graded algebra GrUy(g)

of the ZiAJFH-ﬁltered algebra Uy(g) is algebra over C(q) generated by E,,
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a € A, counting multiplicities, KZ-jEl (i € I) and DF subject to the relations
K,K;'=K;'K;=DD '=D"'D=1,

K,K; = K;K;, K;D = DK;,

K,E, = ¢ E K, DE, = q"E,D, for a =~ +nd,y € A.
E,E_g=FE_gE, ifa,f € AL,

E.Eg = P ERE,, E E 3=q¢*PE 4E ,, ifa,feA, and B < a.

Next we need the following technical result, which we state in an abstract
manner. Let Z be a totally ordered set without infinite decreasing chains
(i.e., Z has a minimal element with respect to the ordering). Let A be an
associative algebra over a field K with generators {a; | i« € Z}. Let O =
{(ni|¢ € Z,n; € Z4,n; = 0 for all but finite number of indices )}. The set O
has a total lexicographical order such that (n; | ¢ € Z) > (m; | ¢ € Z) if and

only if there exists some j € Z such that n; > m; and ng = my, for all £ > j.

Suppose that A has a basis B = {v = afll ...af: | i1 > -+ > is}. Then
the orderings of Z and O impose an ordering on B. For any word v =
aj,...aj, € A, denote by v the unique element in B such that v = v +
( terms lower in the ordering ), for some A € K. If v = aflil ..al* as an

element of B, set |v| = (k;y,...,ki,) € O.

Proposition 3.2. Suppose that for all i and j in T we have: (*) aa; =
ijaja; + Y, cp o, where &5 # 0 and |aza;| > |v| for all v such that &, # 0.
Then |vw| = |v| + |w| for all v,w € B.

Proof. We proceed by induction on |w| and, for fixed |w|, by induction on |v|.
By our assumption the set Z has a minimal element ig. If |w| = ¢;, = (n;|n; =
0,% # ip,ni, = 1) then w is the minimal element in O. Hence, for any v € B,
we have 7w = vw and so |vw| = |[vw| = |v| + |w].

Let w = a; and v = v1a;. If j > i, then 7w = vw and |vw| = |v| + |w|.
If j <4, then by (*), vw = viaja; = via5a; + Y, cp Euviu. We will prove
that |viu| < |via;a;|. By induction on |v| we have |via;| = |v1| + |a;|, while by
induction on |w| we get |via;a;| = |via;| + |a;| = |v1| + |a;| + |a;|. Let &, # 0
and v = axuy. If £ < i then by induction on |w| we have |viu| = |v1|+|ul, since

lu| < |a;|. If k=1 then uq = asus and s < j < ¢ since |u| = |a;asuz| < |a;a;l.
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Then |viu| = |via;asuz| = |via;| + |asuz| and, as |a;| > |asuz|, we also have
lvia;| + |asuz| = |v1| + |a;| + |asus| < |v1] + |ai| + |ajl, since s < j. Hence we
have [vu| < |via;a;] if &, # 0 and |vw| = |via;a;| = |v1|+|a;|+|a;j| = |[v|+]a;].

Now assume that w = wia; with |w| > |wi| > |a;|. By induction, |[vw| =
lvwia;| = |vwq| + |a;| = |v] + |w1| + |a;| = |v| + |w|. Hence, the proposition is

proved. [

Let u be an arbitrary element of U,(g). We may write u uniquely as a sum
of basis monomials and define the total degree of u to be the largest total

degree of these basis elements. We make the following observation.

Proposition 3.3. Let u € Uy(g) be an arbitrary element and u',u” two basis
monomials with d(u') < d(u"). Then d(uu') < d(uu) and d(u'u) < d(u"u).

Proof. The result follows from Propositions 3.1 and 3.2. [
Now we are ready to the main result of this section.

Theorem 3.4. As a vector space, M%(\) is isomorphic to the space spanned

by the ordered monomials E_o_pns ... E_ks...E_qiks, @ € A+, n>0,k>0.

Proof. First, we introduce some notation to clarify the argument. Consider
the following subsets of A:

Ay ={a+nd | a€A+,n20},

As ={kd | k > 0},

As={-a+ké|ae A k>0},

Bi={-a—-nd|aecAi n>0}

By ={—kd | k > 0},

Bs={a—ké|aeAy k>0}.

Then A+ = A1UA2UA3 and A_ = BlLJBQUBg, while S = Al UAQUB3 and
—S = A3z U By U By. Note that, in our ordering of the root system, we have

Bl<BQ<Bg<A3<A2<A1.

For i =1,2,3, let X; denote an ordered monomial in elements Eg, 5 € A;,

and similarly, let Y; denote an ordered monomial of elements Eg, 8 € B;.
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Then, utilizing Beck’s PBW basis, any element u € Uy(g) can be written in

the form

u=> Y1Y2V3ZX3X,X1,

where Z € UJ(g).

Now, let v be the canonical generator of M (\). Suppose w € M()). Then,
since M(X) = Uy(g) - v, we have w = u - v for some u € Uy(g). In view of
the discussion above, we may write w = Y Y1Y2Y3ZX35X5 X7 - v, for suitable
monomials X;,Y;, Z.

By definition of M()\), monomials of the form X; and X5 act as 0 on v,
and Z commutes with X3 up to scalar in C(q). Hence, we can write w =
> Y1Y2Y3X3 - v. The theorem asserts that M () is spanned by monomials of
the form Y;Y5X3, so we must determine how to commute monomials of the
forms Y3 and X3. Let

X3 = E_a1_|_k15 . E_ar_*_kr(j, and

Y3 =FEg _mi5---Eg,—m,s,

for suitable roots «;,3; € A+ and positive integers k;,m;, 1 = 1,...,7r, j =
1,...,s. Then

YsX3=Eg _ms---Eg,—m,sF_a,+k6- - E_a,+k,.5
= E51—m15 s E,Bs—l—ms—15E—a1+k15Eﬂs—ms5E—a2+k25 s E—ar+kr5

+ (terms of lower total degree)
by using the grading of Proposition 3.1. Repeating this process we get that
Y3X3-v = X3Y3 v+ ( terms of lower degree) - v.

By induction on the total degree, we may order the terms of lower degree (as
they act on v). The base of the induction is trivial as, if dy = 1, there is only
one simple root involved and nothing to do. Since, by definition of M,(\), we

have Y3 -v =0, we are done. [J
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4. A-forms of imaginary Verma modules.

In the previous section, we constructed quantum imaginary Verma modules.
Now we wish to show that these quantum imaginary Verma modules are quan-
tum deformations of imaginary Verma modules defined over the affine algebra.
That is, we wish to show that the weight-space structure of a given module
M,(X) is the same as that of its classical counterpart M () for any A € P. To

do this, we construct an intermediate module, called an A-form.

Following [Lu], for each i € I, s € Z and n € Z,, we define the Lusztig

numbers in U,(g):

n s—r -1 _—(s—r+1)
[Ki ; s} H K,q; +1 - K; 1%‘

n pi @ - ’
[D : s} _ ﬁ Dgg~rtt — p=1gp sty
n r=1 qg - qO_T .
Let A = Clg,q 7!, ﬁ,i € I,n > 0]. Define the A-form, Uy(g), of U,(g) to
be the A-subalgebra of U, (g) with 1 generated by the elements E;, F;, K;-*, [Ki 1’ 0] ,

i € I, D*1, [D ’1 0]. Let U, (resp. U, ) denote the subalgebra of U, gen-

erated by the E;, (resp. F;), i € I, and let U} denote the subalgebra of Uy

generated by the elements K-, [Kzl’ 0}, i€ I, D1, [D ’1 0}-

For any i € I, s € Z and n € Z, we have the following identity

[ } ﬁ% ([ 0] +[s - r+1]qu;1> ( of. [BKMe, eq. 3.8]).

=1

Hence, all [K’A S] are in Uy. Similarly, all [D 7’1 8] are also in Uy.

Proposition 4.1. The following commutation relations hold between the gen-
14



erators of Uy. Fori,jel,se€Z,n € Zy,

A ARt

n n
[Kj , S:| Fi:Fi [Kj ; S—Clz'j:|’
n n
E; [D; 8] = [D; 8_5i70:|Eia
n n
|:Dﬂ S:|Fz:Fz |:D3 s_6i70:|’
n n
EiFj = FjEi, fOT’l;?é j,
n—1
n n — Kza —2r
E;F' = F'E; + F" 120[ ) }
r=

Proof. The first five equalities follow from the defining relations of U,(g) and
the definition of the Lusztig numbers, while the last equality is proved by

induction. O

An immediate consequence of Proposition 4.1 is that U, inherits the stan-
dard triangular decomposition of U,(g). In particular, any element u of Uy
can be written as a sum of monomials of the form u~u%ut where u* € UL
and u’ € U). In fact, we can say rather more. For each positive real root f3,
the root vector Eg in Beck’s basis is defined via the action of the braid group
on the generators F;. But the coefficients of this action are all in the ring A.
Consequently, the real root vectors are in U,. Next, consider the definition
of the positive imaginary root vectors E,(c?, 1 € I, k > 0. These are given
in terms of an exponential generating function containing commutators of the
form [E;, E_q,+ks], and these will also be in Uy since all the E; and E_,, 4xs
are. The C(q) coefficients of the generating function are all in A, and so the
imaginary root vectors are all in Ux. Thus, Uy inherits from Uy(g) a basis of

monomials of the form N(g,)K M(“'B)’ where M(a:ﬂ) and N, are as before,
K,L' 5 0

and K is now an (ordered) monomial in the generators K-, [ !

], 1 €1,
D;0
1
Let A € P, and let M?()) be the imaginary Verma module over U,(g)

with S-highest weight A and highest weight vector vyx. The A-form of M2(}\),
15
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M*™()), is defined to be the Uy submodule of M?(\) generated by vy. That is,
we set

MA(\) = Uy - vy.

Proposition 4.2. As a vector space, M*™(\) is isomorphic to the space spanned

by the ordered monomials E_o_ps ... E_gs...E_qiks, @ € A+, n>0,k>0.

Proof. As in the proof of Theorem 3.4, we note that any element u in U, can
be written as a sum of monomials of the form Y;Y5Y3ZX3X5X:, where the
X; and Y; are as in the theorem and Z is now in UY. Let w € M*(\). Then
w = u-v)y for some u € Uy. Write w =) Y1Y2Y37X35X5X;-v). As before, we
have X1 -vy =0, and X5 - vy, = 0. Also, Z commutes with X3, up to a scalar
in A, by Proposition 4.1.

Now we must check the action of Z on wvy. First, we have Kii cUy =
q;t)‘(hi)m € Avy, and D* - vy = qoi’\(d)v,\ € Aw)y. It remains only to check the
action of the Lusztig numbers. For i € I, s € Z and n € Z, we have

[ 7] a= [0277)

n n

The quantum binomials are in the ring A, and so it follows that

[)\(hi) + s}
n

ai

[Kzﬁ 8} - vy € Awy. Similarly, [DT;LS} vy € Avy. Hence, Z - vy € Avy. We

are left needing to commute the monomials Y3 and X3, but this commutator

must, by definition, be in U,. The result then follows from Theorem 3.4. [

Now that we have a vector space basis for the A-form M*(X) of M%()\), we

can begin comparing the two modules, first as vector spaces.

Proposition 4.3. For any A\ € P, as C(q)-vector spaces, C(q) @4 M*(\) =
Ma(N).

Proof. This proof is fairly standard. The C(g)-linear map ¢ : C(q)®s MA(\) —
M4()) defined by ((f ® v) = fv for f € C(g) and v € M"()) is clearly
surjective. Let {F,,-v) | w € Q} be the basis of M?(\) determined by Theorem
3.4. Let £ : M9(\) — C(q) ®4 M*()) be a C(q)-linear map defined by

§(Fw -’U)\) =1Q® F, - vy.
16



Then, by Proposition 4.2, £ is well-defined and the maps ¢ and £ are inverses.
O

We define a weight structure on M*(X) by setting MA(X), = MA(\) N
M?1(X),, for each p € P.

Proposition 4.4. M*()) is a weight module with the weight decomposition
ME(N) = @uepMA(N) -

Proof. The proof is quite standard, as in [BKMe, Proposition 3.23]. O

The vector-space isomorphism given above restricts to each weight space

and we obtain the following result.

Proposition 4.5. For each pn € P, M*()), is a free A-module and ranky M*()),, =
dim(c(q) Mq()\)u.

5. Classical limits.

In this section we take the classical limits of the A-forms of the quantum
imaginary Verma modules, and show that they are isomorphic to the imaginary
Verma modules of U(g).

Recall that A = C[q,q_l,ﬁ,i € I.n > 0]. Let J be the ideal of A
generated by ¢ — 1. Then there is an isomorphism of fields A/J = C given by
f+JI+— f() for any f € A. For any untwisted affine Kac-Moody algebra g,
let Uy = Ua(g), and set U’ = (A/J) ®a Us. Then U’ = Uy /JU,. Denote by
u’ the image in U’ of an element u € Uy. It was shown by Lusztig [Lu] and
DeConcini and Kac [DK] that (D)2 = 1 and (K[)> = 1 for all ¢ € I. If we
let K’ denote the ideal of U’ generated by D’ — 1 and {K| — 1 | i € I}, then
U =U'/K' 2 U(g), the universal enveloping algebra of g.

Note that, under the natural map Uy — U, /JUp = U’, we have ¢ — 1. The

composition of natural maps
Uy = Up/JU2U - U=U/K' =2U(g),

is called taking the classical limit of Uy.
Let @ € U denote the image of an element v € Uy. Then U is generated
by the elements F;, F;, D := [D ’1 0} and H; := [K’l’ 0

17
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the isomorphism between U(g) and U, the elements e;, f;,d and h; may be
identified with E;, F;, D and H;, respectively. Further, Beck [Bel, Section 6]
showed that we may identify the Ejg with a PBW basis of U(g), with elements
denoted eg.

For A € P, let M'(A) = A/J @y MA()\). Then M'(A\) = MA(X\)/TMA(\)
and M'()) is a U'-module. For p € P, let M'(\), = A/J ®y M*()),. Since
MA(N\) = &uepM*(N),, we must have M'(\) = ®,epM’(N),. We also have

the following standard result
Proposition 5.1. For p € P, dimy/y M'()),, = ranky MA(X),.

Proof. By Proposition 4.5, each weight space MA()\),, p € P, is a free A-
module. Let {v; | j € Q} be a basis for M#()), . Then every element
v' € M'(A\), = A/J @y MA()\), can be written uniquely as v’ = diea i ®Uj
for some scalars a; € A/J. (see [Hu, Chapter 4, Theorem 5.11]). Hence,
{1®w; | j € Q} is a basis for M'(\),. O

Proposition 5.2. The elements D' and K| (i € I) in U’ act as the identity
on the U' module M'(\) = A/J @, M*(\).

Proof. Let p € P and {v; | j € Q} be a basis of M“()),. Then by Proposition
51, {v; =1®w; | j € Q} is an A/J-basis for M'(A),. Let ¢ € I. For each
J € Q, we have K; -v; = qf(hi)vj. Letting ¢ — 1, we see K; - v; = v;. Thus,
K acts on the identity on each weight space of M’(\) and, since M'()) is a
weight module, each K/ acts as the identity on the whole space. Similarly,
D -v; = qg(d)vj implies that D’ - v; = v;, and that D’ acts as a scalar on

M'(\). O

Since M'()) is a U'-module, M(\) = M'(\)/K'M'(\) is a U = U'/K'-
module. But K’ was the ideal generated by D’ —1 and the K| —1, and D’ and
each K! acts as the identity on M’()\), so M(A\) = M'. Since U = U(g), this
means M ()\) has a U(g)-structure. The module M () is called the classical
limit of M*()). For v € M*()), let ¥ denote the image of v in M()).

Proposition 5.3. Let vy be the generating vector for M*(X). Then as a U(g)-
module, M () is a weight module generated by Uy and such that, for any u € P,

M), is the p-weight space of M ().
18



Proof. Let vy generate M*()\), so that M*()\) = Uy -vx. Then M(X) = U - vy,
so Uy generates M ()). As noted above, M’(})) is a U’-weight module and since
M(X) = M'(X\), M(}) is also a weight module. Hence, M()\) = ®,epM (M) ,.
It remains to show that the vector space M () u 1s actually the p-weight space
of M(X). That is, we have to show that h; - v, = u(h;)v, and d - v, = p(d)v,
for all i € I and 7, € M()\),,.

For v, € M*(\),, and i € I, we have

p(hi)

_ % )

q;
g —q; "

Up

[Ki ; 0} K, - K;'
= . ’UM.

1 ¢ —q; "

Passing to the classical limit, we obtain

Similarly, we have d -v, = D - v, = p(d)v,. O

Proposition 5.4. The U(g)-module M ()) is an S-highest weight, U(g_s)-free

module.

Proof. Let vy be a generating vector for M?()). By definition, Eg - vy = 0 for
all B € S. Hence, Eg - vy = 0 in the A-form M*()). Thus we have Eg - 75 =0
in M (). By Proposition 5.3, M () is a weight module generated by uy and
U(gs) is spanned by the Eg, 8 € S, so M()) is an S-highest weight module.
It remains to show that M () is a free U(g_g)-module. ;;From Propo-
sition 4.2, we know that M*™()) is isomorphic to the space spanned by the
ordered monomials F_o_p5... E_gs... E_qirs, @ € A+, n >0,k > 0.

Hence, M () is isomorphic to the space spanned by the ordered monomials

E_og_ns.- - . E_gs... E_qiks- But monomials in the images E_,_,s5, F_gs and

E_o1xs form a basis for U(g_g) and so M () is a U(g_g)-free module. [

We have shown that, for any A € P, if we start with a quantum imaginary
Verma module M9()), construct the A-form M*()\) and take the classical
limit, then the resulting module M () is a U(g)-module isomorphic to the
imaginary Verma module M ()). We have also seen that the weight space
structure is preserved under these operations, and so M%()) is a true quantum

deformation of M ()).
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Proposition 5.5. Let g be an affine Kac-Moody algebra. Let A € P. Then the
imaginary Verma module M ()\) admits a quantum deformation to the quantum
imaginary Verma module M(\) over Uy(g) in such a way that the weight space

decomposition is preserved.

6. Properties of quantum imaginary Verma modules.

Using the quantum deformation results obtained above, we are now in a
position to prove some structural results about quantum imaginary Verma
modules. Let G, be the subalgebra of U,(g) generated by the imaginary root
vectors E,(c?, i €I, ke Z\{0}. Then G, has a 1-dimensional center, which
we will denote by C' and a triangular decomposition G, = G;CG;F where
G(‘; (resp. G ) comprises ordered monomials in E,(C(S) iel ke Z (resp.
—k € Zy). Let G be the subalgebra of U(g) generated by the imaginary root
vectors el i € I, k € Z\ {0}. Then @ is isomorphic to Gy and we will identify
the two algebras.

Let M4(X) be the quantum imaginary Verma module over U,(g) with S-
highest weight A € P and generating vector vy. Consider the G ,-submodule

of M9()\) generated by vy, H1(A) = G4 - va.
Proposition 6.1. The Gg-module HI(X) is irreducible iff A(c) # 0.
Proof. The proof is similar to the affine case.

Proposition 6.2. Let x € Uy(g) be such that x - vy # 0. Then Uy(g)x - vy N
Hi(X) #0.

Proof. We recall the basis of M?(\) constructed in Theorem 3.4 and write x -
vx € M2()) in this basis. It is enough to consider homogeneous z. Set N(z-vy)
to be minus the sum of the heights of the finite roots in the decomposition of
x - vy (i.e., each —a+ kd contributes ht(a)). Then it is clear that N(z-vy) =0
if and only if z € G|,

It is enough to show that there exists y € U,(g) such that yx - vy # 0 and
N(yx -vy) < N(x-wvy). We will find a n element y = E,_gs where K is
sufficiently large and « is some suitable root.

Let w = z-vy € M?()\). Then, as in Proposition 4.3, we may write w = fw’

for some f € C(q) and w' € MA(X). Then v’ = f~lw = f~lz-v) € U; - w.
20



Furthermore, suppose w’' = (g — 1)*w”, with k > 0 and w” € M*()\). Then
w" = (¢ —1)7*w’ € U, - w. Hence, without loss of generality, we may assume
w = x-vy € MA()\) and ¢ — 1 is not a factor of w in M*()\). Taking the
classical limit, we then have w =z~ wv) # 0.

Suppose T is in G. Since x is homogeneous, the grading of M?()\) ensures
that x - vy is in H9(\). Suppose that Z is not in G. Then by [Fu3, Lemma
1] there exists a root o and nonnegative integer K such that e, gsT-vx #
0. Note that e,_gs is the image of F,_ks. Hence, F,_gsx - vy # 0 and
N(E4—ksz -vx) < N(z-vy). We complete the proof by induction. [

Corollary 6.3. M?()\) is irreducible iff A(c) # 0.
Proof. Follows immediately from Propositions 6.1 and 6.2.

iiFrom now on we will assume that A(c) = 0. In this case HI()) is a
reducible G,-module with maximal submodule HI(\) consisting of all spaces
except Cuvy.

Denote M{(A) = Uy(g)HI(A\). We remark that MJ(X\) # M2(N).

Set Ma(X) = MI(X)/MZ(\).

—_

Theorem 6.4. The U,(g)-module M4(X) is irreducible if and only if A\(h;) #
0, foralli=1,...,N.

—_

Proof. Let M4()) be irreducible and suppose there exists some ¢ € {1,..., N}
such that A(h)) = 0. Set @ = a; and E = E_,. We have that Ma(}) =
Uq4(g) - va. Consider W = U,E - vx. We show W is a proper submodule of
Ma().

Since E - vy # 0, W # (0). Suppose W = m) Then there must exist
elements m; in U, such that vy = Zj m;E - vy, and for each m;, we have
ht(m;) = a. (Recall the height of a monomial is the sum of heights of finite
roots involved.) Using Beck’s ordering and the notation introduced in the proof
of Theorem 3.4, we may write each m; in the form m; = Y1Y2Y3ZX3X5X;.

We consider the actions of the m; on E - vy. We need the following lemma.
Lemma 6.5. For any k € Z and B € A+, E_girsE -vy=0.

Proof. We divide the proof into cases.

1. k€ Z, B # a.
21
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2

Using Beck’s basis, we write Eg psFE-vy = ZZ n; n; vy where n:r are ordered
monomials of the form X3X,X; and n; are ordered monomials of the form
Y1Y5Y;. Since 8 # « and « is simple, then, due to the convexity of the
basis, this ordered expression must contain on the right an element of the form
X1 or Y; (depending on the sign of k). But X; - vy = Y3-vy = 0. Hence
EgiisE -vy =0.
2. ke Z\ {0}, B=q.

By [BK, (1.6.5d)], EoiksE - va = Xgs - va = 0 for some suitable vector X4
of weight k0, and this has a trivial action in J\?q\(i)
3.k=0,8=aqa.

In this case EoE_, = 0 because A(h;) = 0.

In all cases, we have E_g ysFE vy =0. O

Return to Proof of Theorem.

Consider the action of an element Y1Y5Y3ZX3X5X 1 F - vy. By Lemma 6.5,
X1E -vy = 0. Now X3 -vy, = 0, and so, [BK, (1.6.5b)], XoF - vy is in the
space of elements of the form X3 - vy. Elements of the form Z commute with
elements of the form X3 and act as scalars on vy. As shown in Theorem 3.4, we
may commute elements of the form Y3 with elements of the form X3 and then
Y3 - vy = 0. Hence we are left considering elements of the form Y;Y5 X3 - ).
The monomial is non-zero as it contains E and has height 0 as we supposed
> mjE - vy = vy. This is not possible and we have a contradiction. Hence W

—~——

is a proper submodule of M4(\) and M4(\) is reducible.

Now we prove the converse statement of the theorem. Let A(h;) # 0, i =

—~—

1,...,N. Let MA(X) = M2(\) N M*()) denote the A-form of M2()), and let

—~—— —~——

M()) denote its classical limit. Suppose N7 is a proper submodule of M4(\).
Then N* = N2 MA()) is a submodule of MA()) and the classical limit of

N

NA gives a proper submodule of M()). But this last module is irreducible by
[Fu3]. The Theorem is proved. [

Proposition 6.6. Let A(c) = 0 and A(h;) # 0 for all i. Then M()\) has an
infinite filtration with irreducible quotients M4(\ + ké), k > 0.

Proof. Follows from theorem above.
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Corollary 6.7. Let A(c) =0, A(h;) #0,i=1,..., N and N? be a submodule
of M2(\). Then N? is generated by N1 N HI(\).

Proof. Obvious from Proposition 6.6.
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