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1 Introduction.

Suppose that a group G or a Lie algebra L acts by automorphisms or deriva-
tions respectively on some algebra A. Moreover, we assume that as a G-
module (respectively L-module), A is a direct sum of irreducible modules
A1, ..., A We will call such algebra A by A-algebras, where A = A1®...H&A,.
In [2], [3] we proposed a method of studying a category of A-algebras from
a fixed variety M. In the present paper we describe this method and apply
it for the classification of the simple algebras from a certain category which
contains the exceptional simple Lie algebra Fg. This new construction of
the Lie algebra Ejg defines a basis with a simple multiplication. Finally, we
apply this basis to obtain the multiplicative Cartan decomposition (MCD)
of the Lie algebra Fg and to compute the generators of the automorphism
group of MCD. Observe that in the original work [6] J. Thompson called
this decomposition by Dempwolff’s decomposition. Let Eg(k) be the excep-
tional algebraic group of type Eg over a field k. In his thesis [4], Peter Smith
constructed a certain subgroup D of Eg(C) called the Dempwolff group.
Here D is a non-split extension of Z5 by Ls(2), which was used by Thomp-
son to construct his sporadic simple group T'h. Smith produced 248 x 248
matrices which generate D and preserve the Multiplicative Cartan Decom-
position. For his construction he used a computer. These matrices have
rational entries with denominators being powers of 2.



In this paper we give a more simple description of the above 248 x
248 matrices of P. Smith. The main result (Theorem 2) is based on the
construction of the exceptional Lie algebra of type Eg (Theorem 1).

Let k be a field of characteristic p > 2, such that the equation z2+1 =0
has a solution in k. We shall use the following standard notation: Q is the
field of rational numbers, Z5 is the group of two elements, k{X} = kX is
the k—space with a basis X.

2 Construction of the Lie algebras of type F; and
Eg.

In this chapter we recall some results from the theory of graded varieties [3]
and apply them to construction of simple Lie algebras.

We fix a set V and shall call by V-space (V-algebra, V-module) a space
V with a fixed V-grading: V =} .y ®V,. We can consider the V-space
V as an algebra with unary operations {a|a € V} such that for a € A:
(@)a = aq ifa =3 gcyap. Let A =37 g®Aa be a V-algebra. Then
a V-identity on A is a (non-associative) polynomial f(z,y,...) in signature
(+,-,a € V) such that f(a,b,...) = 0 for all elements a,b,... € A. For
example, f(z,y) = (Tayp)y- Let V =37 cp ®Va, W =3 5. o ®Wp be two
given V-spaces, we define the contraction of the V-spaces as following

vVaw = Z oV, @ W,.
a€eV

Thus VOW is a V-space too.
If A and B are two V-algebras then we define the contraction of V-
algebras A and B as a V-space AOB with the multiplication rule

aa ®ba-ag®bg =Y ¢y ®dy,
YEV

where a0 = E,yev Cy, babﬂ = nyEV dv'

Definition 1 A set N of algebras over k is called V-variety if N is the set
of all V-algebras over k which satisfy a given set of V-identities.

For a given set X of V-algebras or V-identities we denote by {X} the
minimal V-variety which contains all V-algebras from X or satisfies all
identities from X.



If N and M are two V-varieties then we define a contraction operation

by
NOM = {AOB|A € N,B € M},

and a division operation by

N/M= {A] VBe M,AO0B € N, and A satisfies
all the identities of M of the type (anbg), = 0}.

It is obvious that (N/M)OM C N.

Between these two operations (contraction and division) there is some
difference. If we have a set X of V-polynomials such that A={X} and an
V-algebra A such that M ={A} then finding a set Z such that NOM ={Z}
may require non-trivial efforts. On the other hand there is a simple algorithm
for constructing the set of V-identities Z such that N'/M ={Z}. First we
have to take the absolutely free V-algebra F' = F(z1,...), where {z;} are the
homogeneous free generators of F. Let B = {a;|i = 1, ...} be a homogeneous
basis of the V-algebra A. For any V-identity f(zay,-.-;Za,) of X and any
subset T = {a;,,...,a;,} of B such that a; € A,, we can construct the
following set of V- identities: G(f,T) = {g1(za)---);---s Gm(Za,...)}, where

f(xcu ® iy sy Tary, @ ain) = Z;nzl gj ® af; and k] # kia lf] ?é 1.

Proposition 1 If N' and M are V-varieties such that N={X}, M ={A}
and B = {a;|i = 1,...} is a basis of the V-algebra A then

N/M = {M27G(f7T)|f € XaT C B}a
where My is the set of identities of the variety M of the type (zoz5)y = 0.

This proposition is usefull for the classification of simple V-algebras from
a given variety A which has the form AOA for a given V-algebra A.

Let N be a variety (not nesessarily graded). Then a Zs-graded algebra A
is called a N-superalgebra if AOG € N, where G is the Grassman algebra.
It means that Zy-variety Ny of N/-superalgebras is the variety N'/Gr, where
Gr = {G}. And it is well known that there is a simple algorithm to constract
the graded identities of A-superalgebras if we know the identities of the
variety N.

In this section we describe some aplication of this notion for a constrac-
tion of the simple exceptional finite dimentional Lie algebras of the types
E7 and Eg.



Let Ay be a set of some subsets of I,, = {1,...,n} and A = Ag U I,,.
Then we can define an A—algebra A(A) = A with the basis

B:B(A) = {eiafiahiai: ].,---,’fl;(O',QO) | ® gO’ EA}

and an A—graduation

Ai=ke; @ khi ® fi,i € I, A = Y _ k(o ).
uCo

We also define the multiplication by the rule
eifi = —fiei = hi,e;hi = —hie; = 2e;, hifi = — fihi = 2f;,
ei(0,¢) = —(0,9)ei = (0,0 Ud),i €0\ ¢;
(0,90)fi = —filo, ) = (0,90 \ 1), € ;
(0, 0)hi = —hi(0,9) = (0, ¢),i € ¢;
(0,9)hi = —hi(o,9) = —(0,9),i €0\ ¢;

(—1)l¥l+le;, eNp=i,0Uth=o0;
(0,9)(0,9) = (DS, pNPp=0,pUt =0\74;
- ‘ (Z'LE(phZ_Z]E'z/)h])’ ‘Pﬂ¢:®a<PU¢=Ua

(1)l oAT, (p\ T) U (9 \ 0)),
(0,90)(T,¢)—{ cZ TN =0,cNTC U, cAT € A, @

All other products are equal to zero. Here and below we use the standard
notation c AT =0 \ 7 U7 \ ¢ for symmetric difference.

We observe that every variety N defines the V-variety which we can
denote by the same letter N’ and this V-variety consists of all V-algebras
from N.

Proposition 2 Let Ay be a set {o | o C I,|o| =4}, A= AyUI, and L

be a A-variety of Lie algebras. Then the A—variety L/{A(A)} is defined by
the following A—identities

(as-b); = (@ -bi)o = (a5 b = 0,i £ jyo T A £ abT. (2)



(a5 -bs)x = (ag - bs); =0, i¢o.
ag by = (=)l a0 £ T
ay by = by - ag.

ai-ij(Sgbj-ai, a; by, =by-a;, 1€oa,
ai-b(;:O, ’i¢0’.

(ag - bi) - ¢j = ac - (bi- ¢5), (ai - bi) - i = a - (bi - ¢i)-

(a5 -br)-ex=0, c#T#AF# 0o F#oAr,joNTNA > 1.

or leNTNA =1,lcN7|+|cNAl =1(mod2).

(a5 - br) - ex+ (=)™ (ag - cr) - by = 0,

O£ TH#ANE o F#oAT, lenTNA =1.
(—1)/*M N (ag - br) - + (1) (by - ¢2) - a0+
(=1)/™ A (cy - ag) - by = 0,]c N TN A = 0.

(ao+br) - cx = (=1)7(br - r) - o = —(cx - ag) - br,
oNT|=2,0# .
((br-cx)-ac)i, 1€0\T,

((aa ' bT) : C)\)i = {

((ex-ag) -br)i, 1€7\o0,

where, A\ = c AT € Ag.

((ag * bs)i - o) = (b Cs)j " aq),0,§ € 0.

(13)



((ag -bs)i-cr) + ((¢r-ag) - bs) =0,i EaNriloNT| =2 (14)

((ag - bg)i-cr)=0,i €conNmilonT|=1 or 3. (15)

Proof. All A—identities (2-15) follow from the identities of Lie algebras
by straightforward calculations. O

Proposition 3 Let P be a simple finite dimensional A—algebra from L/{A},
P=3% ciPoand D={a € Ay | Py, #0}. If k is algebraically closed then
dim P, = 1,0 € D and one of the following equalities holds

(0)D ={(2¢ - 1,2¢,25 — 1,25) | 1 <i < j <n},
(1) D = & = {(1234), (1256), (1357), (3456), (2367), (2457), (1467)},
(iii)D258=€7U{U|5'218\0'€57}.

Proof. Let i € I,. It follows from (6) and (7) that P; is a commutative
and associative subalgebra of P. If P; contains zero divisors a,b € P;,a-b =
0, then aP - bP = 0, a contradiction. Hence P; = ksi,sz2 = s;. Note that
P? # 0. Indeed, if P? = 0 then we see from (14) that (P, - P;)? = 0 for every
7 € D, which is impossible. If o € D and a,b € P, such that a-b = s;,1 € 0,
then from (13) we obtain that (a-b);-b = (b-b);-a = b, hence dimyP, = 1. If
0,7 € D and |ocN7| = 1 or 3 then from (15) we have P, = 0, a contradiction.
Hence we obtain |[cN7| =2 or 0 for any o,7 € D. At last we note that from
(14) it follows that o AT € D for any 0,7 € D such that |oc N 7| = 2. Now it
is easy to prove that if D = {0 |0 C I,,|o| =4,|lcN7|=2 or O;lcN7|=
2= o0A1 € D, VYo,7 € D} then D satisfies one of the conditions (i)-(iii).
O

Our purpose is to construct a simple algebra P = P(D) from L£/A for
D = &; or £g. Let O be the Caley-Dikson algebra with the standard genera-
tors i, j, k, then By = {1,1, j, k,1j, ik, jk,ij - k} is a basis of O. We note that
B = £By is a Moufang loop and By = B/{+£1} is an elementary 2-group.
Let us remind that a loop is Moufang if it satisfies the identity zy - zx =
(z - yz)z. Let us fix an isomorphism ¢ : By — D7, where D; = & U {0}
with a product o A7 and t(7) = (1234),¢(j) = (1256),t(k) = (1357). We can
consider a set M7y = +D7 as a Moufang loop such that ¢t : B — Mz, t(ax) =
at(z),a € {x},z € By, is an isomorphism. Set Mg = M7 X Z,, where



Zy = {e,b|b? = e}. Identify Mg with the set +& U +{0, I3} via ac - e = ao,
ac-b=ac,0 € & and al - e = al,al - b = alg, where a € {+}.

Let Pg be an A—algebra with a basis {si, ..., ss,0lc € &} and the mul-
tiplication rule

oxo = Zsi,a*T = ao AT,
1€0

if 0 - 7 = aoc/AT in the loop Mg. It is obvious that the space P; with the
basis {s1,...,$7,0|0 € £7} is a subalgebra of Ps.

Proposition 4 Let P = P(D) be a simple finite dimensional A—algebra
from L/A and D = &; or D = Eg. Then P isomorphic to Pr or Pg.

Proof. Let P = P(D) be a simple A—algebra and D = &7. From
Proposition 3 we have that P has a basis {s1, ..., s7,0lc € &} and we can
normalize this basis such that o-0 =), s;. Then from (12) one gets that
((0-71)-XN)i=((1-A)-0); for 0,7 € E7,0 # 7. Hence we can assume that
o -7 = a), where A = ¢ /AT and a? does not depend on o, 7. But it follows
from (14) that a® = 1. Now we note that o -7 = —7 - o follows from (4) and
(9),(4) lead to

(o) A=—(c-A)-T=7-(0-A)=—(1-0) -],

if o # A. This means that we are done already in the case of £7, since in the
loop M7 we have the same equalities zy = —yz, (xy)z = —z(yz), if z,y,2
are linear independent over Z,.

In the case D = &g the proof is analogous. O

Now we can prove the main result of this chapter.

Theorem 1 A simple Lie algebra of type Eg over an algebraically closed
field of characteristic p > 2 has a basis

BS = {eiahiafiai = ]-7 78’ (UaH)W Coc 58}



and the following multiplication rules in this basis:

eifi = hi,esh; = 2¢;, hi fi = 2f;,
ei(o,p) = (0,0 Ui),i €0\ 5
(0:0)fi = (0,0 \ 1), € ¢;
(0, 9)hi = (0,9),i € ¢;
(0,9)hi = —(0, )i € 0\ ¢;
(1), pNY =i,pU¢=o0;
(0,0)(a,9) =< (DI, pNp=0,pUh=0\i

_1\l¥]
L (Ciephi = Sjephi)/2, 0Nv=0,pUyp =o;

(=) (o %, (0 \ T) U (9 \ 0)),
(o, 0)(T,9) = (16)
c# T, oNY=0,0NTCUyp,ocAT € A,

where o x X\ is the product in the Moufang loop Msg.

Proof. Let L be the algebra from the hypotheses of the Theorem.
From Proposition 4 we have that L is a Lie algebra. It is obvious that
H = k{h1,...,hg} is a Cartan subalgebra of L and L has the following
Cartan decomposition

8
L=Ho) (kei@kf)® Y klo,p).
i=1 uCoeés

Hence we can identify the set of roots Vg of L with the following subset of
the space Q8

Vs = {#a; = (0,...,0,£2,0,...,0),i =1,...,8, a(o,p) =
~——

i—1

(£e1, e, teg)yp Co €&s,e5=1i € pyes = —-1,i €\ u;6, =0, € I3\ o}.



It is easy to prove that the following symmetric bilinear form on L is invari-
ant and non-degenerate:

(his hy) = 2687, (i, f5) = =47,
(17)
((U’ /1’)’ (Ua/j)) = (_1)|u|+1’

and the others products are zero. The corresponding form on the roots is
(Oéi, Olj) = 2(5{,
(18)
(aloy ), alm, 9)) = (lw Nyl + Nyl = lp Nyl = |pnyl)/2,
where i = o \ g, = 7\ . We define an order on Q%: v > w, if v — w =

(0,...,0,a,..),a € Q,a > 0. Then the following set is a set of the simple
positive roots:

(]-a _]-a _1a _1a070a070)7 Qy, (07()’ 17 _17 _17 _150a0)7 Ug ,

(0,070,07 1, _1, _11 _1)’ asg, (Oa 11 _1105 _1507 05 _1)’ arg.

Now it is easy to construct the Dynkin diagram of the root system Vg, which
is of type Eg. O

3 The multiplicative Cartan decomposition of the
exceptional Lie Algebra FEg.

In this chapter we construct an elementary abelian subgroup Z3 in the group

Auty(Eg) such that the corresponding grading of the Lie algebra Ejg is the

famous MCD (multiplicative Cartan decomposition) [6].
In previous chapter we constructed the Lie Algebra Fg with Z3 grading

L= 3% oL,

oe&gU{0}

where L, = 3, k(o, 1), Zj = Gg = E3 U Iz U {g} is a group with product
oAt and L, = S. Denoting L, ® Ls by V, we get
L=v,o YV, (19)
o€y



It is easy to see that (19) is Z3-grading, where Z3 = G7 = & U {¢} C Gs.
From the Theorem 1 we have that the following involution « is the Cartan

involution
hE = —h;,ef = —fi,i € Ig, (o, 1)* = (0,0 \ p), (20)

7

which preserves G7-grading (19).
We define another involution r of L

h”: = hi’e;ﬂ = _eiafir = _fi’i € 181 (O-’/J‘)T = (_1)|N|(U’ /1’) (21)

Let Gy denote the elementary abelian 2-group with generators {o,k,7 | 0 €
Gr}. Then Gy = Z3 and :

L-Y HEo Y 4% 22)
o€y o€y

where

Ay ={h1,...hg}, Hy = {e1 + fi,-..,es + fs}, Af =0,
Hg’ ={e1 — fi,...,es — fs},
A = {(oyp) £ (0,0), (3,)) £ (3,)) | 0 € Er,p T, A C 53| | M€ 22},
H = {(0,)£(0,1), (06, )%(5,3) | 0 € Er,u Co, A C 3| | A€ 2241}

Is is easy to check that

[HE, HY) C AP, | [A7, A%) C AP

oAT? oAT?
[AP, HI) C HY, 0,7 € E7,p,q € {£},

but all of the subspaces of the grading (22) are the Cartan subalgebras.
Hence the decomposition (22) is the MCD.

4 The automorphism Group of MCD

In this chapter we calculate the automorphism group G of MCD. Moreover,
we obtain the generators of this group and their action on the basis Bg of
Eg. Fix the sets o1 = (1234), 09 = (1256), 03 = (1357).

Lemma 1 Let G1 be the automorphism group of the Moufang loop Mg.

Then G1 = (GL3(2) x V3) x Vi, where V; is an i—dimensional Zo—space.
Moreover, there exists an embedding of G1 into G = Aut(MCD).

10



Proof. Note that Z(Mg) = {a € Mg | [a,z] = (z,y,a) = (z,a,y) =
(a,z,y) = 1,Vz,y € Mg} = {£1,+1g} and [Msg, Mg] = {£1}, here (z,y,2) =
((zy)2)(z(yz))~! and [r,y] = zyz~'y~!. Hence for 4 € G; we have:
(£1)? C {£1}, (£Is)? C {£Is}.

The factor loop Mg/{£1l} is a 4-dimensional Zy—space with a base
{o1,09,03, I3}. We consider GL4(2) as linear automorphisms of this Z,—space.
Then Stab(Is) = {¢ € GL4(2) | I? = Iy} = (GL3(2) x V3). For every
A € Stab(Ig) we can construct an automorphism ¢4 such that af’ 4 =
oidyi = 1,23 I$A = Iy, (-1)%4 = —1. But Zaumy){¢a | A €
Stabl(ls)} = {4 € Aut(Ms) | [, $a] = 1,VA € Stab(Is)} = {6 € Aut(Ms) |
o/ = +0i,i=1,2,3;IY = +I3} = V; and the first part of Lemma is proved.

To prove the second part we define a homomorphism ® : G; — Sg by
the rule: ®(a) = &, where a € G1,08 = £, & € Sg and &(i) = p;, where

p1 = p1 N2 N pg,pa = (1 Np2) \ p1,p3 = p1 N3\ p1,

pa = p1 \ {P1,p2, 3}, 05 = p2 Nz \ p1,p6 = p2 \ {p1,p2,p5},

p7r = p3 \ {p1,p3,p5},p8 = Ig \ {11 U pa U p3}-

Note that ker® = V.

Now we can define an embedding ¥ : Gy — Aut(MCD). If a« € V; C G4
then ¥(a) = 9 € Aut(MCD), where z¥ = z,2 € S, (o,p)¥ = e(o,p),
e € {1} and 0 = €0 for 0 € Mg. If @ € GL3(2) x V3 then by definition
U(a) = 19 where :c;p = Toip T € {e,h, f}, (o, )Y = (&(0), &(u)) here &(o)
is the action of Sg on the set of all subsets of Ig. Lemma is proved. O

Now we construct the generators of the group G = Aut(MCD). It is
obvious that G = {p € Auty(L) | G§ = ¢~'Gop C Go}. We fix a basis of
Gy as a Zy—space: {01,09,03,k,7}. Then every ¢ € G has a unique form
© = p1p2, where 1 € GL5(2), p2 € Z gy, (1)(Go)-

Corollary 1 Let © be a homomorphism G to GL5(2),7(p) = ¢1. Then
m(¥(G1) = GL3(2) = {llagl| | aij € Z2,ai5 = 0,3f 4 <i#j <5}

K = U(Aut(M3g)) N kerm is a 2-group of type 2*13.Z(K) has a basis
{01,09,03} and K is generated by {¢1, b2, ¢3, b4}, where ¢; = U(¢p;). Here

i is the unique automorphism of Mg such that ¢;(0;) = o}, ¢i(0:) = G, ¢i(Is) =
Ig,i #j=1,2,3,¢4(03) = 04,8 = 1,2,3, d4(Ig) = —Is. Moreover, [¢;, ps] =
oi,t=1,2,3.

11



Corollary 2 Let Stabg, W be the stabilizer of the elementary 2-group W
with the basis {01, 02,03} in G1. Then Stabg, W = Ga x (Ig), Go ~ GL3(2)-
w.

Lemma 2 Let @1 and @y be the reflections in the roots (o,i) and (o,p),
where o € Eg,1 € o,p € 3. Then ¢ = p(0,4,p) = p1p2 € G.

Proof. We denote o = (ijln),c = (pgst),u = (ip), G, = {0,0,0,1s} C
Ggs. Then every set TAG, contains an unique element 7 € &g, such that
p C 7. Suppose that 7 = (ijpg). Then 7 = (Inst),A = 7Ac = (Inpq),\ =
TAG = (ijst).

Our aim is to describe the action of the involution ¢ on the basis Bg of
L. If z,y € Bg then we wright (z,y) if z¥ = y and (£z) if z¥ = +z. We
denote by € one of the sets o or &. If we have in Mg that ox7 = e}, e € {x},
then from Theorem 1 we can obtain by straightforward calculations that

(em, (0,0)), {fm, (0,0)),m € pN6;
{em, =(0, (0N p) Um)), {fm, =(6,0N (pUm)),m €6\ ;
((0,0)); lpLul = 3;((6,0), (0,6 \ p)), p € {(9), (P) };
{((,), p €{0, (i5), (pa), 7} (7 p)), p € {(I5), (It), (ns), (nt)};
(=X 0), p € {(lpg), (npa), (), ()} (= (X, p)), p € {(ig5), (it), (), (1) };
((,ijp), e\ N); (7 ij), —e (X, i)); {(7,ip), (7, 7))
—(

bl

)

((7,igp),e(X, N)); ((7, ipa), —e (A, pq)); {(7,4q), — (T, In));
((1,3p), (7, 81)), ((1,9),€(X, In)), {(7, @), —e(X, D)),
((1,59), =(7,0)),{(7,5), —e(A\, 0)), (7, p), e(X, 1)),

((7,1ns),e(A,i8)), (T, Int), e(A,it)), (7, 1st),e(A, pl)),

((7,tns),e(A, pn)), ((7,1), —e(A, 1g)), {(T, n), —e(A, ng)),

((7,1), —e(X, jt)) ))s (A nlp), (A, ist)),

), ((7,5), —€(X, j5)),
(A, Ing), —(X,9)), (A, p), (A, dst)), (A, q), (X, 9))-

We point out that in order to verify that ¢ is an automorphism of L it is
sufficient to check it on an invariant subalgebra D, of type Dg with a basis

{ei,fi,hi,i: 1,...,8;(04,ﬁ) |,3g p € {0',5',7',7_',/\,/_\}}. O

12



Lemma 3 In above notation we have:
A =r{p(o,i,p) | 0 € {o1,09,03},i €, pE T} =
{e+eintesyteiteule=en+..+es,i=1,23}

and A with w(Aut(Mg)) generate a subgroup @ ~ GL4(2) of GL5(2) where
Q = {HGUH c GL5(2) | as; = Q;5 = O,’i = 1, ,4}

Proof. We have by a straightforward calculation from Lemma 2 that
pop~l = pop =r, if ¢ = ¢(0,i,p). For instance

ei 5 (0,0) S —(0,0) 5 —e,
(O-’IL.) = (Uajln) £> _(Uajln) £> _(U’i)a
(0,0) B e; 5 e 5 (0,0).
Analogously, ¢re = o, for instance
(U’ U) 4 €; 5 —€; 4 _(U, U),
(U’i) = (0’,]171) l) _(U’jln) £> _(U’i)a
ei 5 (0,0) 5 (0,0) S e

Moreover, 1o = 7, if 7 € {01,02,03} \ {0} and prp = k. O
Lemma 4 Let w be a linear map from L onto L such that

h® = h,Vh € H,e§ = ie;, f{ = —if;,j € Is; (o, p)* = >0 (o, ),
where i = /—1 and e(o) € {0,1} and the map o — (—1)°(%) is a homomor-
phism from Gg to Zo = {0,1} such that e(0;) = 1,5 = 1,2,3; e(Ig) = 0.
Then w € G,w* =1 and 7(w) = e + e54.

Proof. Let (o,¢), (7,€) are the basis elements of L. If [(c, ¢), (7,&)] =
0 then (1) leads to ¢ N& # P or cUT € ¢ UE. Hence, by definition,
[(0,9)%, (1,6)%] = 0. If [(0,¢9),(1,€)] = (—1)l°"¢/(a, B) # 0 then o = o *
B=(p\T)U(No)and pNE&=0,0 N7 C @ UE. Therefore

[(0, )%, (1,€)*] = > 2l HAF 22+ (1) 008 (o, ) =
2@ AT)HeUEl (_1)loN¢l (o, B) =

2@ A H(\TUENTUED)] (1)l (o, g) =

,L'2—|—25(0'A7')+|(90\T)U(€\U)‘ (—1)'006‘ (aa /8) =
(_1)|0’ﬂ§‘ (a’ IB)UJ,
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as lonNt|=2.
We point out that since o1,09,03,7 € C(H) = {¢ € Auty(Es) | h? =
h,Vh € H} and [C(H),C(H)] =1 then wojw™' =0, =1,2,3; wrw™' =

r. Simultaneously xrx = z71,Vz € C(H). Then swk = w™! = w? and

wkw ™! = kw?. But w? = r. Lemma is proved. O

We note that all automorphisms in GG, which we had constructed so far
belong to N(H), the normalizer of H. Now we define an automorphism in
G which does not belong to N(H).

Lemma 5 Let n € Endg(L) and

e] = (ei+ fi —hi)/2, f = (ei + fi+ hi)/2,h] = (e; — fi),i € Ig;

(—1)l7! . _

n_\ -/ _1)lul+lpnT]| —

(UaT) - 4 Z( 1) T(O’,M),T—O’\T,O’Egg.
uCo

Then n € G,n? = kr and m(n) = e + ess + es4 + eaq + e55.

Proof. First we check that n € Auty(L). Let (o,7), (p, 1) belong to B
and o = 0 x ¢. Then

[(o,7)7, (0, 9)"] = R =
D (o (=) BT (g, 1)) (S (—1) XA, ) =
(—1)l7¥l/16 Z(M)GA(_UIul+|uﬂ?|+|A|+\wﬁl+\m/\\(a’ (n\ @) U\ 0)),

where A = {(p,A) | # € o,A C g,uN X = 0,0 N C p UM} Denote
Ae = {(, NI = (A\ o) U (u\ ¢), } and prove

> (u A)eA§(—1)‘“‘+|“”f|+\>\|+\>\mﬁ|+\m>\\ _
4(—1)lEHEN\UW\0)) [ +lony]
Tﬂ¢:@,0ﬂ¢gTu¢; (23)

0, 7N #0 or cNp C TUY.
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Let us fix (1, \) € A¢ and consider the following partition of o U 7 :

Qu=(np\el, Q=TNu\e Q=7\(uUp),
Q=7\(WUp), Q=0NN\o, Q= NI\,
Qr=9¢\(A\Uo), Qs=9\(AU0), Qo=7NANY,
Qu=7NANY, Qu=1NpNy, Qu=1NpNp,
Qiz=TNANY, Qu=TNANY, Qiz=7NpN1Y,

Qe =T NN
We denote P; = |Q;], i = 1,...16 then

lul+ N7+ A+ AN+ o N A =

P+ P+ P11+ Pio+ P+

(24)
Pro + Py + Pry+ Pig + Ps + Ps + Py + Pro + Pr3 + Prat
P6+P10+P14+P9+P10+P13—|—P14,

I+ 1EN(T\ ) U (P \ o)) +]oNny| = -

P +Py+ Ps+ FPs+ Py + Ps + Py + P11 + Pi3 + Pis.

Ifrny Z(Z),aﬁgo C 17U then Py = P11 = P14 = Pig = 0 and from (24)
and (25) we have:

| +1p 07+ A+ AN 9P| + o N Al = P+ Ps + Py + Pra(mod2),

Il +EN(T\ ) U@ \o))|+|oNny| =P+ Ps+ Pis + Pis.
But Pig + P12 + P13 + P15 = |0 N | = 2 and hence

a4+ 07+ N+ NN+ o VA= €+ 16N (T \ @) U\ o)) + o Ny,

which proves the first part of (23).

Let us suppose that 7Ny #0 or o N € 7U. Then from (24) we
obtain

lu| + N7+ A+ [ANP|+|oNA =P+ Ps+ Pig + Pi1 + Pio + Py,

15



which imply
Z(u A)eAg(—1)|“|+‘“”ﬂ+|’\\+|/\ﬂ1ﬁ\+|am| _
(26)
(=D 32 pyeag (1) Pt Pt
M, 3

If c N = {4,j} then we have the following 4 possibilities:
Lrny=07Ny={i,rNe={j} 2.7NY=0,7N% = {i,j};
rny ={j}, 7Ny ={i} 4.mN=0,7N9 = {i}.

It is easy to prove the second part of (23) for all of these cases.
From (23) we have R=10,if rNy #0 or
sNe € 7U, and

I (=1)IT\el+[¥\ol+IrNo]+ony| Z _1)|§|+‘§m_(r\tp) W\9l(q, ¢),

4
§CaVep

ifrNy=0,c0NpCTUIYP.
On the other hand

(=)W, (T\ @) U (¥ \ 0))" =

(— )\r\¢|+|¢\a\+\an¢|

ch Vo (- 1)|£|+\€ﬂ(r\w) (¥\o)| (o, &) =

It is easy to show that 6?2 = fi, fi"2 = e,,hn —h;,i =1,...,8. Moreover,
2 —
(o,7)7 = (=1)I"1/4 Zuga(_l)lulﬂuﬂﬂ(g, ) =
(=1)71/16 Yo pco (1P 3,y (—1)?HHINTHIE (5, )) = (27)
(_1)‘T|/16 Z)\ga(_l))\ Zpga(_l)mmﬂ—'—')\mm(aa >‘)
If A =7 then
Z(_l)\uﬂflﬂfﬂﬂl - Z(_l)\ﬂ - 16(_1)|f|_ (28)
uCo uCo

Let us suppose that A € 7 and choose i € A\ 7. Then
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Z”CU(_l)\uﬂflﬂx\ﬂm =

}:iENga(__1ﬂunf%HAnﬁ|+_§:i€uga(__1yunfpﬂxmﬁ|::

i (29)
Zieuga(_l)mﬁr\ﬂ)\ﬂm T Zi&uga(_1)|(“UZ)HT|+|AHNUZ|+1 —
ZiEugU[(_l)\uﬂlemm + (_1)|uﬁﬂ+|mﬂ|+1] =0.
From (27),(28) and (29) we have
(o,7)" = (=1)lTH217l(, 7) = (=1)I"I(5, 7),
" =rr, P =n"".
It is obvious that on = no,c € &. We prove that nkn~! = r and

1

nrn~! = k. Indeed nkn ! = nrn® = nrrrn = nry, since

ei > (ei+ fi— hi)[2 D (—ei — fi — hi) /2 5 —e; = €,

—~

(0,7) = (=143 o (1M (0, ) 5 ()74 0 (=1) T (o, )
= (=D)71/16 Yoaco (— 1N 3o (1) TN (5, 3).

By analogy with (28) and (29) we can prove that

Z(_1)|u\+|mu|+|ﬁﬂﬂ — Z(_l)lmul-i-\ﬁﬁﬂ = 16(—1)!"!

uCo uCo
and if A # 7 then

Z (= 1)l mOml+HEOAl —
uCo

Hence (o, 7)" = (-1)I"l(6,7) and nry = r.

Analogously we can prove that nrn ! = nkn = k. Hence 7(n) = e+ess+
es4 + €44 + €55. Lemma, is proved. O

From Lemmas 1-5 we have that m(Auty M CD) = GL5(2). Now we have
to find N = kerm. Let o € £g,p € o and t5, h, are the following linear maps
L—L

hS hVh € H e 5 (—1)10e, 1 55 (—1)lo0ilf, i e I,

17



o [ VP, € (0,0} or ¢ {n0)p e,
(%) (30

(—1)lM e+ (p, 1), 4 ¢ {0,5},p ¢ 9.
h; '8 (—1)le0il b, i € I,

h .
e =3 e;,1 ¢ o,

h h .
e; = —fi 46,’,7, € o,

[ @ (180) 1), € {0
(,p) = (31)
_(wa (/’LAO-) N ¢)a¢ ¢ {U’ 6}'

Lemma 6 Let T, be the mazimal elementary 2-group from the Cartan torus
T = {p € AutgyL|h¥ = h,Yh € H}. Then Ty has the following basis

1 1 1 5
{’l", 017027037t017t027 Ug’ta'l} caG.

Proof. The only property we have to prove is that ¢ is an automorphism
forpeoels. Let uCpeésg,pCrTelsand uNp=0,pN7TCulUyp
then from (1) we obtain that

{1 (r )} = ()% (Ywr, u\ TU R\ 9l =

(—1)POPHNGAAD (k7 1\ 7 U\ ), (32

(W, 1) (1,9)"% = erea(~1)WNPHI Il (Ywe i\ T U\ 9),

where €,e1,e9 € {£1}. But

lon(w\TUe\p)|=lon(p\7)+|on(e\d)
loNpl+lonpnt|+loNy|+|loNypNel = (33)
loNu|+loNy|+|lecny Nl

Suppose that {¢, 7,9A1} N{o,0} =B and p € YN 7. Then e = —1,¢1 =
gg =1and |[oNyN7|=|p| =1. Hence from (32) and (33) we have

{@, w) (1, 0)}* = (%, )% (1,0)".

The other cases are considered analogously.
O
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210+5

Lemma 7 kerm is a 2-group of type with the generators

{h0'1ah'0'2’h0'37¢17 ¢2a ¢3a ¢4,tél,t;2,t}73, }’

where {¢1, p2, ¢3, b1} was defined in the Corollary 1 and
{hoys hoys hos,tl 2L tL 0} by (30),(31), Z(kerw) = Gy.

037 %017 Y027 g3

Proof. Let ¢ belong to kerm. If hY # =+h; for some i € I3, then ¢
induces some nontrivial automorphism of the Moufang Loop Mg. In this
case we can find ¢ € U(AutMg) N kerm such that hf¢ = +h;,Vi € Ig. If
he = +h;,Vi € Iy then o = {i | h? = —h;} € &. Indeed, if o ¢ &g then
there exists & € £ such that | No| = 1(mod2). Moreover, it is obvious that
(&,0)% € k(§,€ N o), hence (A])? # A and ¢ ¢ kerm. Thus o € £ and
1 = phgs € Ty C kerw. Lemma is proved.

O

Now we formulate the main result of this paper:

Theorem 2 The automorphisms constructed in Lemmas 1-6 generate the
group G = Auty MCD.

One can prove that the automorphisms 7(G2) constructed in Corollary
2, ¢(01,1,5) (from Lemma 2) and automorphisms constructed in Lemmas
3-5 generate the Dempwolff group, see [4],[1].
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5 ABSTRACT

We construct a new basis for exceptional simple Lie algebra L of type Eg and
describe the multiplication rule in this basis. It allows to find an action of
generators of automorphism group of multiplicative Cartan decomposition
of L on this basis.
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