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1 Introduction.

It is well known that the classical exponential map: exp(z) = > z¢/i! has many
different applications in the various branches of mathematics. For instance,
if k is a locally compact field of characteristic 0 then exp : k — k* is a
homomorphism from the additive group of the field & in the multiplicative group.
If A is a locally nilpotent linear operator on a vector space V then {exp(tA)||t €
k} is 1-parametric group. Here and above k* = k\ {0}. In this paper we will
give some characterizations and generalizations of the exponential map and their
applications for the theory of groups, algebras and loops.

2 Analytic aspect of the exponential map.

Consider the followings categories G C M C D, where G is the category of
local Lie Groups, M the catagory of local analytic Moufang loops and D the
catagory of local analytic diassociative loops. Recall that a loop is diassociative
(Moufang) if every two elements generate a subgroup (this loop satisfies the
identity (zy - 2)z = z(y - 2x)). In his work ([21]) Malcev proved that the
tangent space for a loop from D has the structure of a Binary-Lie algebra
(BL-algebra) and if this loop is Moufang then the corresponding BL-algebra
is a Malcev algebra. Recall that an algebra is a BL-algebra (Malcev algebra)
if it is anticommutative and every two elements genarate a Lie subalgebra (it
satisfies the identity (zy - 2)x + (yz - )z + (22 - £)y = xz - yx). Hence for
the categories M and D we have an analogy of the classical correspondence:
Lie Groups— Lie Algebras. In the same article ([21]) Malcev noted that for
every BL-algebra B over a real field R we can construct the corresponding local
analytic diassociative loop D, because the classical Campbell-Hausdorf series
H(z,y) = z+y+ [z,y]/2 + ... depends only on two variables z,y and those
two elemens generate Lie subalgebra. In this case we have the classical (local)
exponential map exp : B — D,exp(z) = z. If the algebra B is a Malcev
algebra (note that every Malcev algebra is a BL-algebra but the converse is not



true) then the corresponding loop D is a local analytic Moufang loop. This is
an important Theorem of Kuzmin ([20]). Therefore the theory of local analytic
Moufang (diassociative) loops is equivalent to the theory of finite dimensional
Malcev (BL-) algebras. The theory of finite dimensional Malcev and BL-algebras
was developed in ([22],[18],[19],[4],[5], [6],[7],[8])-

Now we construct a global analytic Moufang (diassociative) loop for a given
local analitic loop D. For Lie groups it is the famous Cartan Theorem. For
Moufang loops this problem was solved by Kerdman in ([17]). But for dias-
sociative loops the situation is more difficult. In ([9]) the author constructed
a local analytic diassociative loop such the corresponding global analytic loop
does not exist. Let B be a finite dimensional BL-algebra over R. Denote by
B(a,b) a Lie subalgebra of B with two generators a,b € B and by G(a,b)
the corresponding simply connected Lie group. Then we have the exponential
map: exp : B(a,b) — G(a,b). We define a binary relation ~ on B such that
a~b,a,b e B iff exp(a) = exp(b). It is clear that if for a local analytic diasso-
ciative loop D corresponding to the BL-algebra B a global analytic loop exists
then the relation ~ is an equivalence.

Conjecture 1 For a given finite dimensional real BL-algebra the corresponding
global analytic diassociative loop exists iff the relation ~ on this BL-algebra is
an equivalence.

The first step in the direction of the proof of this conjecture was done in ([14]):

Theorem 1 Let B be a finite dimensional real BL-algebra such that the relation
~ on B is equality. Then the corresponding global analytic diassociative loop
exists.

The idea of the proof of this theorem is the following. Let B be a BL-
algebra over R with a basis {by,...,b,} and K = R[z1,x2,...,y1,¥2,...] is the
ring of polynomiais. Then B ®g K is a BL-algebra over K. Denote by By the
Lie subalgebra of B ®g K with two generators X = Y"1 | #;b;, Y = > | yib;.
Suppose that we have a faithful matrix representation « of By over K: 7 :
By — T (K) where T, (K) is the set of triangular matricies over K. Consider
the matrix

Z = exp ™' (ezp(n(X))exp(n(Y))).

It is clear that Z € M,,(K), where K = R|[[z1,...] is the ring of power series.
Suppose that

l
Z = Z f’l’”(ZZ)J
i=1

where Z; = p;;jb; € B®r K,pij € K and f; € K. If the series f1, ..., f; have an
analytic extension then we can define a multiplication on R™ by:

($17 ---,xn) : (y17 b yn) = (217 "'7Zn)7



where z; = 2321 fi(@1, o y1y - )pji(@1y ey Y1, 00).

As all finite dimensional semisimple BL-algebras over R are Malcev algebras
we can suppose (at first) that the BL-algebra B is solvable. In ([13],[14]) we
proved

Theorem 2 Let L be a completly solvable Lie algebra over K such that L is
free as K-module. Then L has a faithful triangulable representation over K.

For the proof of the Conjecture 1 the following is usefull:

Conjecture 2 If X,Y € M,,(K) are triangular matricies then there erists a
matriz Z € M, (K) such that exp(Z) = exp(X)exp(Y),Z = 22:1 fiZi, Z; €
Lie{X,Y}, the Lie algebra over R with generators X,Y, and f1, ..., fi have an-
alytic extension.

In order to establish Theorem 1 we proved in ([14]) a weak version of the Con-
jecture 2.
Now we illustrate the above construction:

Example 1 Let B be Bl-algebra with a basis {t,a,b,c} and the multiplication
at = bt =ac=bc=0,ab=c,ct =c.

Denote as above X = x1t+ 20+ =+ x3b+ x40, Y = y1t + Y20 + y3b + yac, then
[X,)Y]=Z = f-c, where f = (z2y3s — T3y2 + Tay1 — 21y4), [Z,X] = 21 Z. We
have

By=KX®KY ®KZ.

Define a representation w of By by the following formulas:

o= 0 ).

It is clear that

—n —z1(e¥1—1)/y1
e”fp(”(X))ewp(w(Y))=ewp(C)=(eo o )

Hence




where T = M It is not difficult to prove that the space B = R* with

y1(e¥l—e ™1
multiplication

1—-7
XY =(z1+y)t+ (z2 +y2)a+ (23 +y3) + (s +ys +

fe

I

is a diassociative analytic loop which corresponds to the BL-algebra B.

3 Algebraic aspect of the exponential map.

In this section we will introduce an algebraic analogy of the exponential map
from a Lie algebra into a Lie group.

Definition 1 Let k be a field of characteristic 0, G be an algebraic k-group and
L = L(Q) be the corresponding Lie algebra.

An algebraic map (or rational map) E : L — G is called exponential
algebraic map or EA-map if

1.E(kz) is an additive 1-parametric subgroup of G for every x € N(L) where
N(L) is the nilradical of G.

2.E(k*t) is a multiplicative 1-parametric subgroup of G if x € L is semisim-
ple.

The main problem about E A-maps is the existence of an EA-map for a given
algebraic group G.

Theorem 3 [11] Let T,,(k) be the group of triangular nondegenerate matricies
over k. Then for every closed algebraic subgroup of the rang one of T, (k) there
exists an EA-map.

Example 2 [11] Let G = G(n,m),n,m € Z* be the following algebraic group:
x € k*,
0 gm a,b,c€k.

Then the corresponding Lie algebra has the form:

0O p r
L= 0 nz ¢ |p,q,r,z€k.
0 0 mz

In this case the EA-map may be defined by the formula:

0O p r 1 p[i(l"'fl):_l] T
Ef 0 nz ¢ ={ 0 @@Q+2)" n )
0 0 mz 0 0 (1+2)™



where
(142" —(1+2)m

=q[ (n—m)z ]7
. =r[(1 +2: - 1] +pq[(m —n) —T;nn((ln;i-_z):);n(l —I—z)m]-

As in the analytic case, we can apply the EA-map for construction of diasso-
ciative (in this case algebraic) loops.

Example 3 (Grishkov ([11])) Let B = B(n,m) be a BL-algebra over k with a
basis {t,a,b,c} and multiplication:

at = na, bt = nb,ct =mec,ab=c,ac=bc=0,n,m € k.

If m,n #0,m,n € Z,n # m then the following local algebraic loop is diassocia-
tive and corresponds to B:

G(n,m) = {(z1,T2,23,24)|21 # —1,2; € ki =1,...,4}.

(.Tl, "'7'7:4) : (y17 "'7y4) = (047,8,’7,’7'),
where
a=2z1+y+ 2Ty,

_oye ol +z0)" — (zays — @1y)(1+y1)"

P @+ o) At g)n -1
_ays  of(l+a)" — 1(zsys — 21ys) (1 +y1)"
Y1 oy [(1+ z) (1 4y — 1 ’

_ Yy af(1+z1)" — 1](z2y3 — 23y2) (1 +y1)"
Y1 z1y1[(1 + 21)"(1 +y1)™ — 1](n —m)
af(1+z1)™ = 1J(1 + y1)™[(n — m)(z4y1 — T1y4) + T2y3 — T3Yo]
z1yi(n —m)[(1+21)™ (1 +y1)™ — 1]

Recall some important theorems from the theory of algebraic group.

Theorem 4 [3]/Let L be a finite dimensional solvable Lie algebra over an al-
gebraicly closed field k of characteristic 0. Then L is algebraic (it means that
there is an algebraic group G such that Lie(G) = L) iff we have:

1.L=T® N, where T is a torus of L and N is the nilradical.

AN =3 cr ®Na, where Ny = {x € Nzt = a(t)z,Vt € T} and

dimq{a|Nq # 0} = dimi{a|Ny # 0}.

Theorem 5 [23]If G is a local algebraic group then there exists a global alge-
braic group G1 such that G ~ G as local algebraic groups.



The following theorems show that the Theorems of C.Chevalley and A.Weyl are
not valid for algebraic diassociative loops.

Theorem 6 (Grishkov,([11]))Let B = B(n,m) the Bl-algebra from Ezample 3.
Then B is algebraic iff m # 0 and n/m € Q orn=m =0.

Theorem 7 [11]Let B = B(n,m) be the BL-algebra as above. Then for B there
exists the corresponding global algebraic diassociative loop G1 = G1(n,m) iff
n/m € Z.

If n=ms,2 <s,n,m € N then

G1 = {(z1,.,za)|z1 #0,2; € ki =1,..., 4},

(@150 24) - (Y150, ¥a) = (T1Y1, T2Y7 + Y2, T3Y7 + Y3, @),
where

s—2 j

o = z4y]" + ya + Y1’ (2293 — T3Y2) Z szlny{n /n(s —1).
7=0 i=0

Theorems 6 and 7 confirm the following Conjecture:

Conjecture 3 Let B be o finite dimensional solvable BL-algebra over an al-
gebraically closed field k of characterstic 0. Then B is algebraic (local) iff we
have:

(i) B=T & N,T is a torus and N is the nil radical of B.

(#5)N = 3 crs ONa,dimq{a|Ny # 0} = dimp{a|N, # 0}.

(i) N C No.

Moreover, B is an algebraic global iff we have (i)-(iii) and

(iv) NoNo C Zpez\o ®Npq, Vo € T™.

Note that for Moufang loops this conjecture was proved in [16].

4 Arithmetic aspect of the exponential map.

In this section we will discuss the analogues of the classical exponential map for
the case of the fields of characteristic p > 0.

Chevalley showed that the correspondence Lie algebras — Algebraic groups
breaks down completely in characteristic p > 0. Thus it is important to search
for a good substitute for the Lie algebra of an algebraic group.

In this section we will consider a solution to this problem in the follow-
ing particular case: the correspondence between LN, (F) and GN,(F) where
LN, (F) is the set of all Lie p-subalgebras of the Lie algebra

Np(F) = {a € Mp(F)|aij = 0,i > j},



F is a field of characteristic p > 2, GN,(F) is a set of all closed algebraic
subgroups of

Un(F) = {a € Mp(F)|ai; =1,a;; = 0,i > j}.

It is clear that for G € GN,,(F') the corresponding Lie algebra L(G) € LN ,,(F).
If the field F' has characteristic 0 then the classical exponential map gives a
good correspondence between GN,,(F) and LN ,(F'). In this case every algebra
L € LN, (F) can be considered as a group from GN,,(F), since Campbell-
Hausdorf series converges in every nilpotent Lie algebra. But this series has no
sense for a field F' of characteristic p and n > p. There is no hope to find a ”good”
correspondence between GN,,(F) and LN ,(F) because there are examples of
non-isomorphic groups G1,G2 € GN,(F) such that L(G1) ~ L(G2). But we
can reformulate the question:

Problem 1 Find a canonical (in some sense) function F : LN (F) —
GN,(F) such that L(F(L)) ~ L.

This problem is still open. We say that this problem has a solution in the
classical sence if there exists an exponential map £ : L(G) — G,L = L(G) €
LN (F),G € GN,(F) such that L as a group with the multiplication: a-b =
E~Y(E(a)&(b)) is isomorphic to G. I think that this problem has no solution in
the classical sense but there is a hope that for a certain subclass of p-subalgebras
of N,,(F) the map & exists.

Let F be a field of characteristic 3 and

INn(F)={L € LN (F)Va,b,c € L:{a,b,c} = abc + cba € L}.

Note that in this definition the products abc and cba are the usual products of
matrices.

Theorem 8 [15] In the notations above there exists a series:
oo
E(x)=1+ Zaix’,
i=1

such that for every L € JN ,(F) we can consider L as an algebraic group with
the multiplication: a-b= E 1(E(a)€(b)) € L and the Lie algebra corresponding
to this group is isomorphic to L.

We will call the series £(z) from Theorem 8 the 3-exponential map. Note
that the series £ from Theorem 8 is not unique and we can describe all such
series (3-exponential maps):

Theorem 9 [15] Let Z3 be the ring of integral 3-adic numbers and E(z) =
1+ Y 2 Azt € Zs[[z]] be a series such that



where E'(x) is the derivation of E(x) and A(x) = 1472, A\iz®. Then the serie
E(z) =1+ Y2, Azt is a 3-ezponential map. Here A, A € Zj is the element
from the field Z3/3Z3 that corresponds to A.

I hope that the converse of this theorem is valid too.

Example 4 Let
E(z) = exp()_ 2" /3%) € Zs[[x]]

=0
be the famouse Artin-Hasse exponent for p = 3. Then we have

o

E'(@2) = () 2* ) E(z), B0) = 1.

=0
Hence E(x) is a 3-exponential map.
Example 5 [15] Let
E(z)=z+ 1+ 22,
then

E'(z) = (V1+2?) 7 E(z), BE(0) = 1.

Hence E(z) is a 8-exponential map.

Note that the proof of the Theorem 8 is based on the fact that the 3-exponential
map E(z) from the last example is algebraic:

E(z)? = 2zE(z) — 1 =0,
moreover the inverse series (3-logarithmic map) is rational:
E '(z) = (z—27Y)/2.

We can consider the Lie algebras from JN,,(F) as algebras with two opera-
tions: binary [,] and ternary {,, }. It is easy to prove that these algebras satisfy
the following identities:

a® = [l,y], 2] + Iy, 2], 2] + [[2, 2], 4] = 0,

(1)
{:U,y,z} = {z,y,:c}, (2)

{x,y,z}—{y,a:,z}: [[x,y],z], (3)

{2, 9,2} 1] = {[z,t],y, 2} + {=, [y, 8], 2} + {z, 9, [2, 1]}, (4)

Hz,y, 2}t ul = {{=z,t,ul,y, 2} — {2, {y, t,ub, u} + {2y, {2, t,u}}. (5)

We will call an algebra with two operations [,] and {,, } a Lie-Jordan algebra
(LJ-algebra) if it satisfies the identities (1-5).



Theorem 10 [15] Let L be a LJ-algebra from TN (F') and £ be a 3-exponential
map. Then there ezists a series H(a,b) in the signature of the operations [, ]
and {,,} such that

axb=E1(E()Eb) = H(a,b).

Note that in view of Theorems 8 and 10 the LJ-algebra L € JN ,(F) with
operation ax b = H(a,b) is an algebraic group. The series

H(a,b) =a+b—[a,b] + {a,b,a} + {b,a,b} + ...

is the analogy of the classical Campbell-Hausdorf serie in characteristic 3. Now
suppose that we have any nilpotent LJ-algebra L over F', then we can consider
L as a loop with the multiplication axb = H(a, b). From the following Theorem
hence that this loop is a group.

Theorem 11 [10] Let L be a nilpotent LJ-algebra over field F of characteristic
3. Then L is a group with the miltiplication a xb = H(a,b).

Now we can apply the series H(a,b) for the construction of nilpotent dias-
sociative loops. We call an algebra B with two operations [,] and {,, } a binary
LJ-algebra if every two elements of B generate a LJ-subalgebra of B. It is clear
that if L is a binary LJ-algebra then L with the operation axb = H(a,b) is an
diassociative loop.

Definition 2 Let B be an algebra with two operations [,] and {,,} over a field
of characteristic 3. Then B is a MJ-algebra (Malcev-Jordan algebra) if and only
if it satisfies the identities (1),(2),(4),(5) and

{JI,y,lL‘} - {y,x,m} = [[x,y],x].

It is clear that if B is a nilpotent MJ-algebra over a field of characteristic 3
then we can consider B as a diassociative (algebraic) loop. It is possible that
all loops of this type are Moufang.

Conjecture 4 Let B be nilpotent a MJ-algebra over a field of characteristic 3.
Then the loop (B,x) is Moufang where axb = H(a,b).

This conjecture is a corollary of the following Conjecture 5.

Conjecture 5 Let B be a MJ-algebra over a field of characteristic 3. Then
there exists an alternative algebra A and a homomorphism w of MJ-algebras
7: B — A® such that ker(r) =0 and A®) is a MJ-algebra with operations:
[a,b] = ab— ba and {a,b,c} = (ab)c + (cb)a.

This Conjecture is intresting even if the binary operation [,] is trivial and
an alternative algebra A is commutative.



Now we will try to generalize the above theory to the case of characteristic
p > 3. Let F be a field of characteristic p > 3. For a definition of the class
JIN(F) we have to define the analogy of the associative polynomial abc +
cba. Let A be free associative ring over F' with two free generators a,b. It is
well known that the element (a + b)? — a? — b? belongs to the Lie subalgebra
Lie(a,b) ®z F of Ap = A®gz F with generators a,b. It means that there exists
a Lie polynomial p(a,b) € Lie(a,b) C A such that (a + b)? — a? — b? — p(a,b) =
pf(a,b), f(a,b) € A. Note that f(a,d) is unique only modulo Lie(a,b).

Denote

IN(F)={L € LI (F)Va,be L: f(a,b) € L}.

Conjecture 6 In the notations above there exists series over F':
0 .
E(x) =1 +Zaia:’
i=1

such that for every L € JN ,(F) we can consider L as a group with multiplica-
tion: a-b=E1(E(a)€(b)) € L and the Lie algebra corresponding to this group
is tsomorphic to L.

As above we will call the series £(x) from this Conjecture (if it exists) by a
p-exponential map.

Conjecture 7 Let Z, be the ring of integral p-adic numbers and E(z) = 1 +
Yoo Aixt € Zy[[z]] be a serie such that

E'(z) = A(z) E(2),

where E'(x) is the derivation of E(x) and A(z) =143 2, /\,-E(pfl)i. Then the
series E(z) = 1+ Y 2 A;x' is a p-exponential map. Here A, A € Z, is the
element from the field Z,/pZ, that corresponds to A.

It is not difficult to generalize the 3-exponential maps from Exampls 4 and 5 to
the case of arbitrary p > 3:

E(z) = exp(Y_ a¥' [p) € Z[a]]

i=0

is the Artin-Hasse exponent and we have
E'(2) = (Yo" " E(),B(0) = 1.
i=0

2. In the second case we have only the differential equation for E(z) = 1 +
Yy At

E'(x) = () Mag'PV)E(z), Aip—1)41 = 0,i > 0. (6)
i=0

10



Conjecture 8 The equation (6) has a unique solution £(x) € Zpy[[z]] and E(x)
is an algebraic function.

Suppose that £(z) is a solution of (6) Then we can wright: £(z) = eo(z) +
ze1(z) + ... + o7 2ep_o(z) where eq,...,ep—2 € Zy[[zP 1]],e1(z) = 1 and from
(6) we have

(- (eheo)')eo))-)'eo = . (7)

p—1

It is clear that equations (6) and (7) have unique solutions £(z) and eg(2P~1)
respectively in the ring Q[[z]] and the problem has the arithmetic nature. Is
it true that the coefficients of those series are in Q N Z,? As the first step
for resolution of equation (7) over Z, we have to solve this equation over the
field F, = Z/pZ. It is interesting that in this case the equation (7) over F), is
equivalent to the following:

CRLET ®

This equivalence is the consequence of the following equality in the ring
Fp[.'li'l, ceey wp—l] [12]

(@14 o+ zp_)(@1+ ot zpor — (@1 + 2o —p+2) =
ZJESP_1 xal(a:al + Too — 1)...(.’170-1 + o+ ZTop-1) —P+ 2),

where S, is the group of permutations.
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