Three aspects of the exponential map

Alexandr Grishkov

Omsk State University (Russia) and University of São Paulo (Brasil)

e-mail: grishkov@ime.usp.br

1 Introduction.

It is well known that the classical exponential map: $exp(x) = \sum x^i/i!$ has many different applications in the various branches of mathematics. For instance, if k is a locally compact field of characteristic 0 then $exp: k \longrightarrow k^*$ is a homomorphism from the additive group of the field k in the multiplicative group. If A is a locally nilpotent linear operator on a vector space V then $\{exp(tA)||t\in k\}$ is 1-parametric group. Here and above $k^*=k\setminus\{0\}$. In this paper we will give some characterizations and generalizations of the exponential map and their applications for the theory of groups, algebras and loops.

2 Analytic aspect of the exponential map.

Consider the followings categories $G \subset M \subset D$, where G is the category of local Lie Groups, M the catagory of local analytic Moufang loops and D the catagory of local analytic diassociative loops. Recall that a loop is diassociative (Moufang) if every two elements generate a subgroup (this loop satisfies the identity $(xy \cdot z)x = x(y \cdot zx)$. In his work ([21]) Malcev proved that the tangent space for a loop from D has the structure of a Binary-Lie algebra (BL-algebra) and if this loop is Moufang then the corresponding BL-algebra is a Malcev algebra. Recall that an algebra is a BL-algebra (Malcev algebra) if it is anticommutative and every two elements genarate a Lie subalgebra (it satisfies the identity $(xy \cdot z)x + (yz \cdot x)x + (zx \cdot x)y = xz \cdot yx$. Hence for the categories M and D we have an analogy of the classical correspondence: Lie Groups \longrightarrow Lie Algebras. In the same article ([21]) Malcev noted that for every BL-algebra B over a real field \mathbf{R} we can construct the corresponding local analytic diassociative loop D, because the classical Campbell-Hausdorf series $H(x,y) = x + y + [x,y]/2 + \dots$ depends only on two variables x, y and those two elemens generate Lie subalgebra. In this case we have the classical (local) exponential map $exp: B \longrightarrow D, exp(x) = x$. If the algebra B is a Malcev algebra (note that every Malcev algebra is a BL-algebra but the converse is not

true) then the corresponding loop D is a local analytic Moufang loop. This is an important Theorem of Kuzmin ([20]). Therefore the theory of local analytic Moufang (diassociative) loops is equivalent to the theory of finite dimensional Malcev (BL-) algebras. The theory of finite dimensional Malcev and BL-algebras was developed in ([22],[18],[19],[4],[5], [6],[7],[8]).

Now we construct a global analytic Moufang (diassociative) loop for a given local analitic loop D. For Lie groups it is the famous Cartan Theorem. For Moufang loops this problem was solved by Kerdman in ([17]). But for diassociative loops the situation is more difficult. In ([9]) the author constructed a local analytic diassociative loop such the corresponding global analytic loop does not exist. Let B be a finite dimensional BL-algebra over \mathbf{R} . Denote by B(a,b) a Lie subalgebra of B with two generators $a,b\in B$ and by G(a,b) the corresponding simply connected Lie group. Then we have the exponential map: $exp:B(a,b)\longrightarrow G(a,b)$. We define a binary relation \sim on B such that $a\sim b, a,b\in B$ iff exp(a)=exp(b). It is clear that if for a local analytic diassociative loop D corresponding to the BL-algebra B a global analytic loop exists then the relation \sim is an equivalence.

Conjecture 1 For a given finite dimensional real BL-algebra the corresponding global analytic diassociative loop exists iff the relation \sim on this BL-algebra is an equivalence.

The first step in the direction of the proof of this conjecture was done in ([14]):

Theorem 1 Let B be a finite dimensional real BL-algebra such that the relation \sim on B is equality. Then the corresponding global analytic diassociative loop exists.

The idea of the proof of this theorem is the following. Let B be a BL-algebra over \mathbf{R} with a basis $\{b_1,...,b_n\}$ and $K = \mathbf{R}[x_1,x_2,...,y_1,y_2,...]$ is the ring of polynomiais. Then $B \otimes_{\mathbf{R}} K$ is a BL-algebra over K. Denote by B_0 the Lie subalgebra of $B \otimes_{\mathbf{R}} K$ with two generators $X = \sum_{i=1}^n x_i b_i, Y = \sum_{i=1}^n y_i b_i$. Suppose that we have a faithful matrix representation π of B_0 over K: π : $B_0 \longrightarrow \mathcal{T}_m(K)$ where $\mathcal{T}_m(K)$ is the set of triangular matricies over K. Consider the matrix

$$Z=exp^{-1}(exp(\pi(X))exp(\pi(Y))).$$

It is clear that $Z \in M_m(\overline{K})$, where $\overline{K} = \mathbf{R}[[x_1, ...]]$ is the ring of power series. Suppose that

$$Z = \sum_{i=1}^{l} f_i \pi(Z_i),$$

where $Z_i = p_{ij}b_j \in B \otimes_{\mathbf{R}} K$, $p_{ij} \in K$ and $f_i \in \overline{K}$. If the series $f_1, ..., f_l$ have an analytic extension then we can define a multiplication on \mathbf{R}^n by:

$$(x_1,...,x_n)\cdot(y_1,...,y_n)=(z_1,...,z_n),$$

where $z_i = \sum_{j=1}^l f_j(x_1, ..., y_1, ...) p_{ji}(x_1, ..., y_1, ...)$. As all finite dimensional semisimple BL-algebras over **R** are Malcev algebras we can suppose (at first) that the BL-algebra B is solvable. In ([13],[14]) we proved

Theorem 2 Let L be a completly solvable Lie algebra over K such that L is free as K-module. Then L has a faithful triangulable representation over K.

For the proof of the Conjecture 1 the following is usefull:

Conjecture 2 If $X, Y \in M_m(K)$ are triangular matricies then there exists a matrix $Z \in M_m(\overline{K})$ such that $exp(Z) = exp(X)exp(Y), Z = \sum_{i=1}^l f_i Z_i, Z_i \in$ $Lie\{X,Y\}$, the Lie algebra over **R** with generators X,Y, and $f_1,...,f_l$ have an-

In order to establish Theorem 1 we proved in ([14]) a weak version of the Conjecture 2.

Now we illustrate the above construction:

Example 1 Let B be Bl-algebra with a basis $\{t, a, b, c\}$ and the multiplication

$$at = bt = ac = bc = 0, ab = c, ct = c.$$

Denote as above $X = x_1t + x_2a + x + x_3b + x_4c$, $Y = y_1t + y_2a + y_3b + y_4c$, then $[X,Y] = Z = f \cdot c$, where $f = (x_2y_3 - x_3y_2 + x_4y_1 - x_1y_4)$, $[Z,X] = x_1Z$. We have

$$B_0 = KX \oplus KY \oplus KZ.$$

Define a representation π of B_0 by the following formulas:

$$\pi(X) = \begin{pmatrix} -x_1 & 0 \\ 0 & 0 \end{pmatrix},$$

$$\pi(Y) = \begin{pmatrix} 0 & 1 \\ 0 & y_1 \end{pmatrix},$$

$$\pi(Z) = \begin{pmatrix} 0 & -x_1 \\ 0 & 0 \end{pmatrix}.$$

It is clear that

$$\exp(\pi(X)) \exp(\pi(Y)) = \exp(C) = \left(\begin{array}{cc} e^{-x_1} & e^{-x_1(e^{y_1}-1)/y_1} \\ 0 & e^{y_1} \end{array} \right).$$

Hence

$$C = \pi(X) + \pi(Y) + \frac{1-\tau}{x_1}\pi(Z) = \begin{pmatrix} -x_1 & \tau \\ 0 & y_1 \end{pmatrix},$$

where $\tau = \frac{(x_1+y_1)(e^{y_1}-1)}{y_1(e^{y_1}-e^{-x_1})}$. It is not difficult to prove that the space $B = \mathbf{R}^4$ with multiplication

$$X \cdot Y = (x_1 + y_1)t + (x_2 + y_2)a + (x_3 + y_3) + (x_4 + y_4 + \frac{1 - \tau}{x_1}f)c$$

is a diassociative analytic loop which corresponds to the BL-algebra B.

3 Algebraic aspect of the exponential map.

In this section we will introduce an algebraic analogy of the exponential map from a Lie algebra into a Lie group.

Definition 1 Let k be a field of characteristic 0, G be an algebraic k-group and L = L(G) be the corresponding Lie algebra.

An algebraic map (or rational map) $E:L\longrightarrow G$ is called exponential algebraic map or EA-map if

1.E(kx) is an additive 1-parametric subgroup of G for every $x \in N(L)$ where N(L) is the nilradical of G.

2. $E(k^*t)$ is a multiplicative 1-parametric subgroup of G if $x \in L$ is semisimple.

The main problem about EA-maps is the existence of an EA-map for a given algebraic group G.

Theorem 3 [11] Let $T_n(k)$ be the group of triangular nondegenerate matricies over k. Then for every closed algebraic subgroup of the rang one of $T_n(k)$ there exists an EA-map.

Example 2 [11] Let $G = G(n, m), n, m \in \mathbb{Z}^*$ be the following algebraic group:

$$G = \left\{ \left(\begin{array}{ccc} 1 & a & b \\ 0 & x^n & c \\ 0 & 0 & x^m \end{array} \right) \left| \begin{array}{c} x \in k^\star, \\ a, b, c \in k. \end{array} \right. \right\}$$

Then the corresponding Lie algebra has the form:

$$L = \left\{ \left(egin{array}{ccc} 0 & p & r \ 0 & nz & q \ 0 & 0 & mz \end{array}
ight) \left| egin{array}{ccc} p,q,r,z \in k. \end{array}
ight.$$

In this case the EA-map may be defined by the formula:

$$E\left(\begin{array}{ccc} 0 & p & r \\ 0 & nz & q \\ 0 & 0 & mz \end{array}\right) = \left(\begin{array}{ccc} 1 & p\left[\frac{(1+z)^n - 1}{nz}\right] & \tau \\ 0 & (1+z)^n & \eta \\ 0 & 0 & (1+z)^m \end{array}\right),$$

where

$$\begin{split} \eta &= q[\frac{(1+z)^n - (1+z)^m}{(n-m)z}],\\ \tau &= r[\frac{(1+z)^m - 1}{mz}] + pq[\frac{(m-n) - m(1+z)^n + n(1+z)^m}{mn(m-n)z^2}]. \end{split}$$

As in the analytic case, we can apply the EA-map for construction of diassociative (in this case algebraic) loops.

Example 3 (Grishkov ([11])) Let B = B(n,m) be a BL-algebra over k with a basis $\{t, a, b, c\}$ and multiplication:

$$at = na, bt = nb, ct = mc, ab = c, ac = bc = 0, n, m \in k.$$

If $m, n \neq 0, m, n \in \mathbb{Z}$, $n \neq m$ then the following local algebraic loop is diassociative and corresponds to B:

$$G(n,m) = \{(x_1, x_2, x_3, x_4) | x_1 \neq -1, x_i \in k, i = 1, ..., 4\}.$$
$$(x_1, ..., x_4) \cdot (y_1, ..., y_4) = (\alpha, \beta, \gamma, \tau),$$

where

$$\alpha = x_1 + y_1 + x_1 y_1,$$

$$\beta = \frac{\alpha y_2}{y_1} + \frac{\alpha[(1+x_1)^n - 1](x_2 y_1 - x_1 y_2)(1+y_1)^n}{x_1 y_1 [(1+x_1)^n (1+y_1)^n - 1]},$$

$$\gamma = \frac{\alpha y_3}{y_1} + \frac{\alpha[(1+x_1)^n - 1](x_3 y_1 - x_1 y_3)(1+y_1)^n}{x_1 y_1 [(1+x_1)^n (1+y_1)^n - 1]},$$

$$\tau = \frac{\alpha y_4}{y_1} + \frac{\alpha[(1+x_1)^n - 1](x_2 y_3 - x_3 y_2)(1+y_1)^n}{x_1 y_1 [(1+x_1)^n (1+y_1)^n - 1](n-m)} +$$

$$\frac{\alpha[(1+x_1)^m - 1](1+y_1)^m [(n-m)(x_4 y_1 - x_1 y_4) + x_2 y_3 - x_3 y_2]}{x_1 y_1 (n-m)[(1+x_1)^m (1+y_1)^m - 1]}$$

Recall some important theorems from the theory of algebraic group.

Theorem 4 [3]Let L be a finite dimensional solvable Lie algebra over an algebraicly closed field k of characteristic 0. Then L is algebraic (it means that there is an algebraic group G such that Lie(G) = L) iff we have:

1.L = T
$$\oplus$$
 N, where T is a torus of L and N is the nilradical.
2.N = $\sum_{\alpha \in T^*} \oplus N_{\alpha}$, where $N_{\alpha} = \{x \in N | xt = \alpha(t)x, \forall t \in T\}$ and

$$dim_{\mathbf{Q}}\{\alpha|N_{\alpha}\neq 0\} = dim_{k}\{\alpha|N_{\alpha}\neq 0\}.$$

Theorem 5 [23]If G is a local algebraic group then there exists a global algebraic group G_1 such that $G \simeq G_1$ as local algebraic groups.

The following theorems show that the Theorems of C.Chevalley and A.Weyl are not valid for algebraic diassociative loops.

Theorem 6 (Grishkov,([11]))Let B = B(n,m) the Bl-algebra from Example 3. Then B is algebraic iff $m \neq 0$ and $n/m \in \mathbf{Q}$ or n = m = 0.

Theorem 7 [11]Let B = B(n, m) be the BL-algebra as above. Then for B there exists the corresponding global algebraic diassociative loop $G_1 = G_1(n, m)$ iff $n/m \in \mathbf{Z}$.

If $n = ms, 2 \le s, n, m \in \mathbb{N}$ then

$$G_1 = \{(x_1, ..., x_4) | x_1 \neq 0, x_i \in k, i = 1, ..., 4\},$$

$$(x_1, ..., x_4) \cdot (y_1, ..., y_4) = (x_1 y_1, x_2 y_1^n + y_2, x_3 y_1^n + y_3, \alpha),$$

where

$$\alpha = x_4 y_1^m + y_4 + y_1^n (x_2 y_3 - x_3 y_2) \left(\sum_{i=0}^{s-2} \sum_{i=0}^{j} x_1^{in} y_1^{jn} \right) / n(s-1).$$

Theorems 6 and 7 confirm the following Conjecture:

Conjecture 3 Let B be a finite dimensional solvable BL-algebra over an algebraically closed field k of characteristic 0. Then B is algebraic (local) iff we have:

- $(i)B = T \oplus N, T$ is a torus and N is the nil radical of B.
- $(ii)N = \sum_{\alpha \in T^*} \oplus N_{\alpha}, dim_{\mathbf{Q}}\{\alpha | N_{\alpha} \neq 0\} = dim_k\{\alpha | N_{\alpha} \neq 0\}.$
- $(iii)N_0^2 \subset N_0$.

Moreover, B is an algebraic global iff we have (i)-(iii) and

(iv)
$$N_{\alpha}N_{\alpha} \subset \sum_{p \in \mathbb{Z} \setminus 0} \oplus N_{p\alpha}, \forall \alpha \in T^{*}$$
.

Note that for Moufang loops this conjecture was proved in [16].

4 Arithmetic aspect of the exponential map.

In this section we will discuss the analogues of the classical exponential map for the case of the fields of characteristic p > 0.

Chevalley showed that the correspondence Lie algebras – Algebraic groups breaks down completely in characteristic p > 0. Thus it is important to search for a good substitute for the Lie algebra of an algebraic group.

In this section we will consider a solution to this problem in the following particular case: the correspondence between $\mathcal{LN}_n(F)$ and $GN_n(F)$ where $\mathcal{LN}_n(F)$ is the set of all Lie *p*-subalgebras of the Lie algebra

$$N_n(F) = \{a \in M_n(F) | a_{ij} = 0, i > j\},\$$

F is a field of characteristic p > 2, $GN_n(F)$ is a set of all closed algebraic subgroups of

$$U_n(F) = \{a \in M_n(F) | a_{ii} = 1, a_{ij} = 0, i > j\}.$$

It is clear that for $G \in GN_n(F)$ the corresponding Lie algebra $L(G) \in \mathcal{LN}_n(F)$. If the field F has characteristic 0 then the classical exponential map gives a good correspondence between $GN_n(F)$ and $\mathcal{LN}_n(F)$. In this case every algebra $L \in \mathcal{LN}_n(F)$ can be considered as a group from $GN_n(F)$, since Campbell-Hausdorf series converges in every nilpotent Lie algebra. But this series has no sense for a field F of characteristic p and $n \geq p$. There is no hope to find a "good" correspondence between $GN_n(F)$ and $\mathcal{LN}_n(F)$ because there are examples of non-isomorphic groups $G_1, G_2 \in GN_n(F)$ such that $L(G_1) \simeq L(G_2)$. But we can reformulate the question:

Problem 1 Find a canonical (in some sense) function $\mathcal{F}: \mathcal{LN}_n(F) \longrightarrow GN_n(F)$ such that $L(\mathcal{F}(L)) \simeq L$.

This problem is still open. We say that this problem has a solution in the classical sence if there exists an **exponential** map $\mathcal{E}: L(G) \longrightarrow G, L = L(G) \in \mathcal{LN}_n(F), G \in GN_n(F)$ such that L as a group with the multiplication: $a \cdot b = \mathcal{E}^{-1}(\mathcal{E}(a)\mathcal{E}(b))$ is isomorphic to G. I think that this problem has no solution in the classical sense but there is a hope that for a certain subclass of p-subalgebras of $N_n(F)$ the map \mathcal{E} exists.

Let F be a field of characteristic 3 and

$$\mathcal{JN}_n(F) = \{ L \in \mathcal{LN}_n(F) | \forall a, b, c \in L : \{a, b, c\} = abc + cba \in L \}.$$

Note that in this definition the products abc and cba are the usual products of matrices.

Theorem 8 [15] In the notations above there exists a series:

$$\mathcal{E}(x) = 1 + \sum_{i=1}^{\infty} a_i x^i,$$

such that for every $L \in \mathcal{JN}_n(F)$ we can consider L as an algebraic group with the multiplication: $a \cdot b = \mathcal{E}^{-1}(\mathcal{E}(a)\mathcal{E}(b)) \in L$ and the Lie algebra corresponding to this group is isomorphic to L.

We will call the series $\mathcal{E}(x)$ from Theorem 8 the **3-exponential map**. Note that the series \mathcal{E} from Theorem 8 is not unique and we can describe all such series (3-exponential maps):

Theorem 9 [15] Let \mathbb{Z}_3 be the ring of integral 3-adic numbers and $E(x) = 1 + \sum_{i=0}^{\infty} A_i x^i \in \mathbb{Z}_3[[x]]$ be a series such that

$$E'(x) = \Lambda(x)E(x),$$

where E'(x) is the derivation of E(x) and $\Lambda(x)=1+\sum_{i=1}^{\infty}\lambda_{i}x^{2i}$. Then the serie $\overline{E}(x)=1+\sum_{i=1}^{\infty}\overline{A_{i}}x^{i}$ is a 3-exponential map. Here $\overline{A},A\in\mathbf{Z}_{3}$ is the element from the field $\mathbf{Z}_{3}/3\mathbf{Z}_{3}$ that corresponds to A.

I hope that the converse of this theorem is valid too.

Example 4 Let

$$E(x) = exp(\sum_{i=0}^{\infty} x^{3^i}/3^i) \in \mathbf{Z}_3[[x]]$$

be the famouse Artin-Hasse exponent for p = 3. Then we have

$$E'(x) = (\sum_{i=0}^{\infty} x^{3^{i}-1})E(x), E(0) = 1.$$

Hence $\overline{E}(x)$ is a 3-exponential map.

Example 5 [15] Let

$$E(x) = x + \sqrt{1 + x^2},$$

then

$$E'(x) = (\sqrt{1+x^2})^{-1}E(x), E(0) = 1.$$

Hence $\overline{E}(x)$ is a 3-exponential map.

Note that the proof of the Theorem 8 is based on the fact that the 3-exponential map E(x) from the last example is algebraic:

$$E(x)^2 - 2xE(x) - 1 = 0,$$

moreover the inverse series (3-logarithmic map) is rational:

$$\overline{E}^{-1}(x) = (x - x^{-1})/2.$$

We can consider the Lie algebras from $\mathcal{JN}_n(F)$ as algebras with two operations: binary [,] and ternary $\{,,\}$. It is easy to prove that these algebras satisfy the following identities:

$$x^{2} = [[x, y], z] + [[y, z], x] + [[z, x], y] = 0,$$
(1)

$$\{x, y, z\} = \{z, y, x\},$$
 (2)

$$\{x, y, z\} - \{y, x, z\} = [[x, y], z],$$
 (3)

$$[\{x, y, z\}, t] = \{[x, t], y, z\} + \{x, [y, t], z\} + \{x, y, [z, t]\}, \tag{4}$$

$$\{\{x, y, z\}, t, u\} = \{\{x, t, u\}, y, z\} - \{x, \{y, t, u\}, u\} + \{x, y, \{z, t, u\}\}.$$
 (5)

We will call an algebra with two operations [,] and $\{,,\}$ a **Lie-Jordan algebra** (LJ-algebra) if it satisfies the identities (1-5).

Theorem 10 [15] Let L be a LJ-algebra from $\mathcal{JN}_n(F)$ and \mathcal{E} be a 3-exponential map. Then there exists a series H(a,b) in the signature of the operations [,] and $\{,,\}$ such that

$$a \star b = \mathcal{E}^{-1}(\mathcal{E}(a)\mathcal{E}(b)) = H(a, b).$$

Note that in view of Theorems 8 and 10 the LJ-algebra $L \in \mathcal{JN}_n(F)$ with operation $a \star b = H(a, b)$ is an algebraic group. The series

$$H(a,b) = a+b-[a,b] + \{a,b,a\} + \{b,a,b\} + \dots$$

is the analogy of the classical Campbell-Hausdorf serie in characteristic 3. Now suppose that we have any nilpotent LJ-algebra L over F, then we can consider L as a loop with the multiplication $a \star b = H(a, b)$. From the following Theorem hence that this loop is a group.

Theorem 11 [10] Let L be a nilpotent LJ-algebra over field F of characteristic 3. Then L is a group with the miltiplication $a \star b = H(a, b)$.

Now we can apply the series H(a,b) for the construction of nilpotent diassociative loops. We call an algebra B with two operations [,] and $\{,,\}$ a binary LJ-algebra if every two elements of B generate a LJ-subalgebra of B. It is clear that if L is a binary LJ-algebra then L with the operation $a \star b = H(a,b)$ is an diassociative loop.

Definition 2 Let B be an algebra with two operations [,] and $\{,,\}$ over a field of characteristic 3. Then B is a MJ-algebra (Malcev-Jordan algebra) if and only if it satisfies the identities (1),(2),(4),(5) and

$${x, y, x} - {y, x, x} = [[x, y], x].$$

It is clear that if B is a nilpotent MJ-algebra over a field of characteristic 3 then we can consider B as a diassociative (algebraic) loop. It is possible that all loops of this type are Moufang.

Conjecture 4 Let B be nilpotent a MJ-algebra over a field of characteristic 3. Then the loop (B, \star) is Moufang where $a \star b = H(a, b)$.

This conjecture is a corollary of the following Conjecture 5.

Conjecture 5 Let B be a MJ-algebra over a field of characteristic 3. Then there exists an alternative algebra A and a homomorphism π of MJ-algebras $\pi: B \longrightarrow A^{(\pm)}$ such that $ker(\pi) = 0$ and $A^{(\pm)}$ is a MJ-algebra with operations: [a,b] = ab - ba and $\{a,b,c\} = (ab)c + (cb)a$.

This Conjecture is intresting even if the binary operation [,] is trivial and an alternative algebra A is commutative.

Now we will try to generalize the above theory to the case of characteristic $p \geq 3$. Let F be a field of characteristic $p \geq 3$. For a definition of the class $\mathcal{JN}_n(F)$ we have to define the analogy of the associative polynomial abc+cba. Let A be free associative ring over F with two free generators a,b. It is well known that the element $(a+b)^p-a^p-b^p$ belongs to the Lie subalgebra $Lie(a,b)\otimes_{\mathbf{Z}}F$ of $A_F=A\otimes_{\mathbf{Z}}F$ with generators a,b. It means that there exists a Lie polynomial $p(a,b)\in Lie(a,b)\subset A$ such that $(a+b)^p-a^p-b^p-p(a,b)=pf(a,b), f(a,b)\in A$. Note that f(a,b) is unique only modulo Lie(a,b).

Denote

$$\mathcal{JN}_n(F) = \{ L \in \mathcal{LJ}_n(F) | \forall a, b \in L : f(a, b) \in L \}.$$

Conjecture 6 In the notations above there exists series over F:

$$\mathcal{E}(x) = 1 + \sum_{i=1}^{\infty} a_i x^i$$

such that for every $L \in \mathcal{JN}_n(F)$ we can consider L as a group with multiplication: $a \cdot b = \mathcal{E}^{-1}(\mathcal{E}(a)\mathcal{E}(b)) \in L$ and the Lie algebra corresponding to this group is isomorphic to L.

As above we will call the series $\mathcal{E}(x)$ from this Conjecture (if it exists) by a p-exponential map.

Conjecture 7 Let \mathbf{Z}_p be the ring of integral p-adic numbers and $E(x) = 1 + \sum_{i=0}^{\infty} A_i x^i \in \mathbf{Z}_p[[x]]$ be a serie such that

$$E'(x) = \Lambda(x)E(x),$$

where E'(x) is the derivation of E(x) and $\Lambda(x)=1+\sum_{i=1}^{\infty}\lambda_ix^{(p-1)i}$. Then the series $\overline{E}(x)=1+\sum_{i=1}^{\infty}\overline{A}_ix^i$ is a p-exponential map. Here $\overline{A},A\in\mathbf{Z}_p$ is the element from the field $\mathbf{Z}_p/p\mathbf{Z}_p$ that corresponds to A.

It is not difficult to generalize the 3-exponential maps from Exampls 4 and 5 to the case of arbitrary $p \ge 3$:

$$\mathcal{E}(x) = exp(\sum_{i=0}^{\infty} x^{p^i}/p^i) \in \mathbf{Z}[[x]]$$

is the Artin-Hasse exponent and we have

$$E'(x) = (\sum_{i=0}^{\infty} x^{p^i - 1}) E(x), E(0) = 1.$$

2. In the second case we have only the differential equation for $E(x)=1+\sum_{i=1}^{\infty}A_ix^i$:

$$E'(x) = (\sum_{i=0}^{\infty} \lambda_i x^{i(p-1)}) E(x), A_{i(p-1)+1} = 0, i > 0.$$
 (6)

Conjecture 8 The equation (6) has a unique solution $\mathcal{E}(x) \in \mathbf{Z}_p[[x]]$ and $\mathcal{E}(x)$ is an algebraic function.

Suppose that $\mathcal{E}(x)$ is a solution of (6) Then we can wright: $\mathcal{E}(x) = e_0(x) + xe_1(x) + ... + x^{p-2}e_{p-2}(x)$ where $e_0, ..., e_{p-2} \in \mathbf{Z}_p[[x^{p-1}]], e_1(x) = 1$ and from (6) we have

$$\left(\dots \underbrace{(e_0'e_0)'(e_0)'(\dots)'e_0}_{n-1} = x.$$
 (7)

It is clear that equations (6) and (7) have unique solutions $\mathcal{E}(x)$ and $e_0(x^{p-1})$ respectively in the ring $\mathbf{Q}[[x]]$ and the problem has the arithmetic nature. Is it true that the coefficients of those series are in $\mathbf{Q} \cap \mathbf{Z}_p$? As the first step for resolution of equation (7) over \mathbf{Z}_p we have to solve this equation over the field $\mathbf{F}_p = \mathbf{Z}/p\mathbf{Z}$. It is interesting that in this case the equation (7) over \mathbf{F}_p is equivalent to the following:

$$(e_0^{p-1})^{(p-2)} = x. (8)$$

This equivalence is the consequence of the following equality in the ring $\mathbf{F}_p[x_1,...,x_{p-1}]$ [12]:

$$\begin{array}{l} (x_1+\ldots+x_{p-1})(x_1+\ldots+x_{p-1}-1)...(x_1+\ldots+x_{p-1}-p+2) = \\ \sum_{\sigma \in S_{p-1}} x_{\sigma 1}(x_{\sigma 1}+x_{\sigma 2}-1)...(x_{\sigma 1}+\ldots+x_{\sigma (p-1)}-p+2), \end{array}$$

where S_{p-1} is the group of permutations.

References

- [1] Carlesson R. Malcev-Moduln, J.Reine Angew. Math., 281,(1976), 199-210.
- [2] Carlesson R. On the exeptional central simple non-Lie Malcev algebras, Trans. Amer. Math. Soc., V.244, (1978), pp. 173-184.
- [3] Chevalley C. *Théorie des Groupes de Lie*. Tome II, Actualités Sci.Ind. No. 1152. Paris,1951.
- [4] Grishkov A.N. An analogue of Levi's theorem for Malcev Algebras, Algebra i Logika, V.16,(1977), No.4, pp.389-396.
- [5] Grishkov A.N. Finite dimentional Binary-Lie Algebras Algebra i Logika, Vol.16,(1977), No.5,pp.549-556.
- [6] Grishkov A.N. Decomposable Malcev algebras, Algebra i Logika, V.19,(1980), No.4, pp.405-422.
- [7] Grishkov A.N. Structure and representation of binary-Lie algebras, Izv.Akad.Nauk SSSR, ser.mat. V.44,(1980), pp.999-1030.

- [8] Grishkov A.N. On the conjugacy of Levi factors in Binary Lie algebras, Izv.Akad.Nauk SSSR,ser.mat., V.50,(1986),No.2, pp.305-334.
- [9] Grishkov A.N. About global nalatytic alternative loops, Preprint n 510, Novosibirsk, Russia, (1985), p.13.
- [10] Grishkov A.N., Shestakov I.P. On the speciality of the Lie-Jordan Algebras, (manuscript).
- [11] Grishkov A.N. Algebraic diassociative Loops. (manuscript).
- [12] Grishkov A.N. One combinatorial function and their applications, (manuscript).
- [13] Grishkov A.N. Representations of the Lie rings, (manuscript).
- [14] Grishkov A.N. Solvable Lie Groups over rings, Preprint, Novosibirsk, 1986, p.36.
- [15] Grishkov A.N. An analogy of the exponential map in characteristic 3,(manuscript).
- [16] Grishkov A.N. Algebraic Moufang Loops, (manuscript).
- [17] Kerdman F. Global analytic Moufang Loops, Algebra i Logika, v.18,n.5, p. 523-555.
- [18] Kuzmin E.N. Malcev Algebras and their representations, Algebra i Logika, V.7,(1968) No.4, p.49-69.
- [19] Kuzmin E.N. Levi's theorem for Malcev algebras, Algebra i Logika, V.16,(1977),No.4, p.424-431.
- [20] Kuzmin E.N. The connection between Malcev algebra and analytic Moufang Loops, Algebra i Logika, 10(1971), no.1, p.1-14.
- [21] Malcev A.I. Analitic loops, J.Mat.Sb., V.36,(1955), p.569-576. Izv.AN USSR, ser.mat. V.8,(1956), No.4, p.326-356.
- [22] Sagle A.A. Simple Malcev algebras over fields of characteristic zero, Pac.J.Math., V.12.(1962), No.3,p.1057-1078.
- [23] Weyl A. On algebraic groups and homogeneous spaces. Amer.J.Math.,77(1955),p.493-512.