Simple classical Lie algebras in characteristic 2 and their gradations, II.

A. N. Grishkov¹ Rua do Matão, 1010 - Butantã CEP 05508-900 - São Paulo-SP - Brazil grishkov@ime.usp.br M. Guerreiro² Departamento de Matemática - UFV CEP 36571-000 - Viçosa-MG - Brazil marines@ufv.br

1 Introduction

This paper is a continuation of [GG]. Here we prove Conjecture 5.1 [GG]. Recall some notations and definition of [GG].

Definition 1.1. Let $I_n = \{1, ..., n\}$. We call $\mathfrak{a} \subset \mathcal{P}(I_n) = \{\sigma \mid \sigma \subseteq I_n\}$ an even set if for all $\sigma, \tau \in \mathfrak{a}$, we have $|\sigma| \equiv |\tau| \equiv 0$ and $|\sigma \cap \tau| \equiv 0 \mod 2$.

We note that $\mathcal{P}(I_n)$ is an elementary abelian group with the operation $\sigma \triangle \tau = (\sigma \setminus \tau) \cup (\tau \setminus \sigma)$. For $\mathfrak{a} \subseteq \mathcal{P}(I_n)$, $\langle \mathfrak{a} \rangle$ denotes the group generated by \mathfrak{a} .

Definition 1.2. A subset H of $\mathcal{P}(I_n)$ is **connected** if, for every partition $I_n = I \cup J$, there is $\sigma \in H$ such that $\sigma \cap I \neq \emptyset$ and $\sigma \cap J \neq \emptyset$.

Definition 1.3. A subset $\sigma \subseteq I_n$ is called a-even if $|\mu \cap \tau| \equiv 0 \mod 2$ for all $\tau \in \mathfrak{a}$. A subset $B \subseteq \mathcal{P}(I_n)$ is called an a-even set if all its elements are a-even.

For an even set $\mathfrak{a} \subset \mathcal{P}(I_n)$, in [GG] we defined a commutative algebra $\tilde{S} = \tilde{S}(\mathfrak{a})$ with basis $\{e_i, h_i, f_i, h^{\sigma} \mid i \in I_n, \sigma \in <\mathfrak{a} > \setminus \emptyset\}$ and multiplication given

 $^{^1 \}rm Supported$ by FAPEMIG as visitor to the Depto. de Matemática - UFV in February 2001 $^2 \rm Supported$ by FAPESP as visitor to IME-USP in February 2000

$$e_i f_i = h_i,$$

 $e_i h^{\sigma} = e_i, \quad f_i h^{\sigma} = f_i, \qquad \text{for } i \in \sigma,$ (1)

and zero for all other cases. We denoted $h_{\mu} = \sum_{i \in \mu} h_i$ and defined $h_{\emptyset} = 0$, $h^{\emptyset} = 0$.

The algebra $\tilde{S}(\mathfrak{a})$ contains a central ideal I generated by $\{h^{\sigma} + h^{\tau} + h^{\sigma \Delta \tau} + h_{\sigma \cap \tau} | \sigma, \tau \in <\mathfrak{a}>\}$. We denote $S(\mathfrak{a}) = S = \tilde{S}(\mathfrak{a})/I$.

For every \mathfrak{a} -even set σ , we also defined an S-module Λ_{σ} whose basis is $\{(\sigma, \mu) \mid \mu \subseteq \sigma\}$ and the S-action is given by

$$(\sigma, \mu) e_{i} = (\sigma, \mu \cup i), \quad i \in \sigma \setminus \mu;$$

$$(\sigma, \mu) f_{i} = (\sigma, \mu \setminus i), \quad i \in \mu;$$

$$(\sigma, \mu) h_{i} = (\sigma, \mu), \quad i \in \sigma;$$

$$(\sigma, \mu) h^{\varphi} = \left(\frac{|\sigma \cap \varphi|}{2} + |\varphi \cap \mu|\right) (\sigma, \mu), \text{ for } \varphi \in \mathfrak{a},$$

$$(2)$$

and for all other cases the action is zero.

Now let $\Delta = \{0\} \cup \mathfrak{a}$.

Definition 1.4. An algebra A is called a Δ -algebra if $A = \sum_{\alpha \in \Delta} \oplus A_{\alpha}$ and, for every $\alpha \neq \beta \in \mathfrak{a}$, we have $A_{\alpha}A_{\beta} \subseteq A_{\alpha \bigtriangleup \beta}$, $A_0^2 \subseteq A_0$, $A_0A_{\alpha} \subseteq A_{\alpha}$, $A_{\alpha}A_{\alpha} \subseteq A_0 + A_{\emptyset}$ and $A_0A_{\emptyset} = 0$.

Define a commutative Δ -graded algebra Λ as follows. As a k-space, Λ is

$$\Lambda = \Lambda_0 \bigoplus \sum_{\sigma \in \mathfrak{a}} \oplus \Lambda_\sigma, \quad \text{where} \ \Lambda_0 = S(\mathfrak{a}).$$
(3)

Moreover, $S = S(\mathfrak{a})$ is a subalgebra of Λ and, by (2), each Λ_{σ} is an S-module. For $\sigma \neq \tau \in \mathfrak{a}$, the multiplication is given by

$$(\sigma, \mu)(\tau, \varphi) = (\sigma \triangle \tau, (\mu \setminus \tau) \cup (\varphi \setminus \sigma)), \text{ if } \mu \cap \varphi = \emptyset, \ \mu \cup \varphi \supset \sigma \cap \tau.$$
(4)

by

$$(\sigma, \mu) (\sigma, \varphi) = \begin{cases} e_i, & \mu \cap \varphi = i, \ \mu \cup \varphi = \sigma, \\ f_i, & \mu \cap \varphi = \emptyset, \ \mu \cup \varphi = \sigma \setminus i, \\ h^{\sigma} + h_{\varphi} + (\emptyset, \emptyset), \ \mu \cap \varphi = \emptyset, \ \mu \cup \varphi = \sigma, \end{cases}$$
(5)

and all other products are zero.

Recall the definition of the product of two Δ -algebras. Let $A = \sum_{\alpha \in \Delta} \oplus A_{\alpha}$ and $B = \sum_{\alpha \in \Delta} \oplus B_{\alpha}$ be two Δ -algebras. Then $A \Box B = \sum_{\alpha \in \Delta} \oplus A_{\alpha} \otimes B_{\alpha}$ is a Δ -algebra with multiplication $[\cdot, \cdot]$ given by

$$[a_{\alpha} \otimes b_{\alpha}, a_{\beta} \otimes b_{\beta}] = \sum_{\gamma \in \Delta} c_{\gamma} \otimes d_{\gamma}, \quad \text{if } a_{\alpha}a_{\beta} = \sum_{\gamma \in \Delta} c_{\gamma}, \ b_{\alpha}b_{\beta} = \sum_{\gamma \in \Delta} d_{\gamma}$$

Proposition 1.1. Let \mathfrak{a} be an even set, $\Lambda = \Lambda(\mathfrak{a})$ and $\Delta = \{0\} \cup \mathfrak{a}$. Let $M = M_0 \oplus \sum_{\sigma \in \mathfrak{a}} \oplus M_{\sigma}$ be a commutative Δ -algebra. Then the algebra $L = \Lambda \Box M$ is a Lie algebra if and only if M satisfies a list of Δ -identities given in Proposition 3.2 [GG].

We recall some of the Δ -identities which will be used in this paper.

$$a_{\sigma}b_{\tau} \cdot c_{\lambda} + b_{\tau}c_{\lambda} \cdot a_{\sigma} + c_{\lambda}a_{\sigma} \cdot b_{\tau} = 0, |\sigma \cap \tau \cap \lambda| = 0, \sigma \neq \tau \neq \lambda \neq \sigma \neq \tau \Delta \lambda, (6)$$

$$(a_{\sigma}b_{\sigma})_{\emptyset}c_{\tau} = 0, \ (a_{\sigma}b_{\sigma})_{0}c_{\tau} = a_{\sigma}c_{\tau} \cdot b_{\sigma}, \qquad \qquad \sigma \neq \tau, \ |\sigma \cap \tau| = 2, \qquad (7)$$

$$a_{\sigma}c_{\tau} \cdot b_{\sigma} = a_{\sigma} \cdot c_{\tau}b_{\sigma} + (a_{\sigma}b_{\sigma})_{\emptyset}c_{\tau}, \qquad |\sigma \cap \tau| = 0, \qquad (8)$$

$$(a_{\sigma}b_{\tau} \cdot c_{\lambda})_0 = (a_{\sigma} \cdot b_{\tau}c_{\lambda})_0, \qquad \qquad \lambda = \sigma \triangle \tau, \qquad (9)$$

$$(ab)_0 c = (cb)_0 a, \ (ca)_{\emptyset} b = 0,$$
 $a, b, c \in M_{\tau}, \ |\tau| = 4,$ (10)

$$(ab)_{0}c + (bc)_{0}a = (ac)_{\emptyset}b,$$
 $a, b, c \in M_{\tau}, |\tau| = 2,$ (11)

$$(a_{\sigma}b_{\sigma})_0 c_{\tau} = 0, \qquad |\sigma| > 4, \qquad (12)$$

$$(a_{\emptyset}b_{\sigma} \cdot c_{\sigma})_{\emptyset} + (b_{\sigma}c_{\sigma})_{\emptyset} \cdot a_{\emptyset} + (c_{\sigma}a_{\emptyset} \cdot b_{\sigma})_{\emptyset} = 0$$
(13)

$$(a_{\sigma}b_{\sigma})_0 \cdot c_0 = (a_{\sigma}c_0 \cdot b_{\sigma})_0, \qquad \qquad \sigma \neq \emptyset \qquad (14)$$

We observe that if M is simple, then $L = \Lambda \Box M$ is not necessarily a simple algebra, but L/Z(L) is simple, where Z(L) is the center of L.

Let \mathfrak{a} be an even connected set and $\Delta = \{0\} \cup \mathfrak{a}$. Let \mathcal{M} be the variety of Δ -algebras satisfying the list of identities of Proposition 3.2 [GG]. Let $\mathcal{M} = \mathcal{M}_0 \oplus \sum_{\sigma \in \mathfrak{a}} \oplus \mathcal{M}_\sigma \oplus \mathcal{M}_\emptyset$ be a commutative Δ -algebra in \mathcal{M} . In [GG] (see Theorem 3.1 [GG]) we classified the simple Δ -algebras of the variety \mathcal{M} , for which $\mathcal{M}_{\emptyset} = 0$. Now we consider the case when \mathcal{M}_{\emptyset} is abelian.

In the final section of [GG], we remarked that Theorem 3.1 [GG] is not true if we omit the condition $\emptyset \notin \mathfrak{a}$ and we formulated the following conjecture.

Conjecture 1.1. Let M be an arbitrary simple finite dimensional \triangle -algebra which satisfies all the list of identities of Proposition 3.2 [GG] and $M_{\emptyset}^2 = 0$. Then the corresponding Lie algebra $L = M \Box \Lambda$ is a simple Lie algebra of type $B_{2\ell}, C_{\ell}, D_{2\ell+1}, E_7$ or E_8 .

2 Proof of Conjecture 1.1

In this section we prove Conjecture 1.1. For each $\emptyset \neq \sigma \in \mathfrak{a}$, define $M_{\sigma}^{0} = \{x \in M_{\sigma} \mid xM_{\sigma} \subseteq M_{\emptyset}\} = \{x \in M_{\sigma} \mid (xM_{\sigma})_{0} = 0\}.$

Lemma 2.1. $I = \sum_{\sigma \in \mathfrak{a} \setminus \emptyset} \oplus M^0_{\sigma} \bigoplus \sum_{\sigma \in \mathfrak{a} \setminus \emptyset} (M_{\sigma} M^0_{\sigma})$ is an ideal in M.

Proof. (a) First we prove that $M_{\tau}M_{\sigma}^{0} \subseteq M_{\sigma \bigtriangleup \tau}^{0}$, for all $\sigma \neq \tau \in \mathfrak{a}$. Indeed, by (9), for $a_{\tau} \in M_{\tau}$, $b_{\sigma} \in M_{\sigma}^{0}$, $c_{\lambda} \in M_{\sigma \bigtriangleup \tau}^{0}$, we have $(a_{\tau} b_{\sigma} \cdot c_{\lambda})_{0} = (b_{\sigma} \cdot a_{\tau} c_{\lambda})_{0} = 0$.

(b) Now we prove that $(M_{\sigma}M_{\sigma}^{0})M_{\tau} \subseteq M_{\tau}^{0}$, for all $\tau \in \mathfrak{a}$. We need to prove that $(((b_{\sigma} c_{\sigma})_{\emptyset} a_{\tau})d_{\tau})_{0} = 0$ for all $a_{\tau} \in M_{\tau}$, $b_{\sigma} \in M_{\sigma}^{0}$, $c_{\sigma} \in M_{\sigma}$, $d_{\tau} \in M_{\tau}$. We have two cases:

(b.1) $\sigma \neq \tau$. If $| \sigma \cap \tau |= 2$, we have by (7) that $(((b_{\sigma} c_{\sigma})_{\emptyset} a_{\tau})d_{\tau})_0 = 0$. If $| \sigma \cap \tau |= 0$ then, by (8) and (9), $(((b_{\sigma} c_{\sigma})_{\emptyset} a_{\tau})d_{\tau})_0 = ((b_{\sigma} a_{\tau} \cdot c_{\sigma})d_{\tau})_0 + ((c_{\sigma} a_{\tau} \cdot b_{\sigma})d_{\tau})_0 = (b_{\sigma} a_{\tau} \cdot c_{\sigma} d_{\tau})_0 + (b_{\sigma} \cdot (c_{\sigma} a_{\tau} \cdot d_{\tau}))_0 = (b_{\sigma} \cdot a_{\tau} (c_{\sigma} d_{\tau}))_0 = 0.$

(b.2) $\sigma = \tau$. If $|\sigma| = 2$, then by (11) we have $(((b_{\sigma} c_{\sigma})_{\emptyset} a_{\sigma})d_{\sigma})_0 = ((b_{\sigma} a_{\sigma})_0 c_{\sigma})d_{\sigma})_0 + ((c_{\sigma} a_{\sigma})_0 b_{\sigma})d_{\sigma})_0 \subseteq k (b_{\sigma} d_{\sigma})_0 = 0$, as $b_{\sigma} \in M^0_{\sigma}$. If $|\sigma| = 4$, then by (10) $(((b_{\sigma} c_{\sigma})_{\emptyset} a_{\sigma})d_{\sigma})_0 = 0$. This proves the lemma.

By Lemma 2.1, if M is simple then I = 0 and, for each $\sigma \neq \emptyset$, $M_{\sigma}^{0} = 0$.

Lemma 2.2. For a simple algebra M as defined above and $\sigma \in \mathfrak{a}$, we have

0. $M_0 = k s$, for $s^2 = s$. 1. If $|\sigma| = 4$ then $M_{\sigma} = k a_{\sigma}$ where $a_{\sigma}^2 = s$. 2. If $|\sigma| = 2$ then 2.1) $M_{\sigma} = k a_{\sigma}$, where $(a_{\sigma}^2)_0 = s$, or 2.2) $M_{\sigma} = k a_{\sigma} \oplus k b_{\sigma}$, where $(a_{\sigma}^2)_0 = (b_{\sigma}^2)_0 = s$ and $(a_{\sigma} b_{\sigma})_0 = 0$ or 2.3) $M_{\sigma} = k a_{\sigma} \oplus k b_{\sigma}$, where $(a_{\sigma} b_{\sigma})_0 = s$ and $(a_{\sigma}^2)_0 = (b_{\sigma}^2)_0 = 0$.

Proof. The proof of item 0. is the same as in Lemma 3.1 of [GG].

Let $|\sigma| = 4$ and $a_{\sigma} \in M_{\sigma}$. By Lemma 2.1, there exists $b_{\sigma} \in M_{\sigma}$ such that $(a_{\sigma} b_{\sigma})_0 = s$, then we have on the one hand $(a_{\sigma} b_{\sigma})_0 a_{\sigma} = a_{\sigma}$ and on the other hand, by (10), $(a_{\sigma} b_{\sigma})_0 a_{\sigma} = (a_{\sigma} a_{\sigma})_0 b_{\sigma} = \alpha b_{\sigma}$, if $(a_{\sigma} a_{\sigma})_0 = \alpha s$. Hence $a_{\sigma} = \alpha b_{\sigma}$. If $c \in M_{\sigma}$ and $(b c)_0 = \gamma s$, then by (10), $c = (a b)_0 c = (b c)_0 a = \gamma a$. Hence dim $M_{\sigma} = 1$ and so item 1. is proved.

Now let $|\sigma| = 2$.

(a) There exists $a \in M_{\sigma}$ such that $(a^2)_0 = s$. If dim $M_{\sigma} = 1$, then we have case 2.1. Suppose that there exists $b \in M_{\sigma} \setminus k a$. If $(a b)_0 = \alpha s \neq 0$ then we can replace b by $b + \alpha a = \tilde{b}$ and we get $(\tilde{b} a)_0 = 0$. Hence we can suppose that b satisfies $(a b)_0 = 0$.

(a.1) Suppose that for all $a \in M_{\sigma}$ such that $(a b)_0 = 0$ we have $(b^2)_0 = 0$. By Lemma 2.1, there exists $c \in M_{\sigma}$ such that $(c b)_0 = s$. We can suppose that $(c a)_0 = 0$ (by replacing c by $c + \alpha a = \tilde{c}$ as before). Now, using identity (11), we get $(ab)_{\emptyset} c = (cb)_0 a + (ac)_0 b = a$, $(bc)_{\emptyset} a = (ba)_0 c + (ca)_0 b = 0$ and $(bc)_{\emptyset} c = (bc)_0 c + (cc)_0 b = c$. Hence, $[(ab)_{\emptyset}, (bc)_{\emptyset}] c = a \neq 0$, contradicting the fact that M_{\emptyset} is abelian.

(a.2) There exists $b \in M_{\sigma}$ such that $(b^2)_0 = s$ and $(a b)_0 = 0$. If dim $M_{\sigma} = 2$ then item 2.2 is proved.

Suppose that dim $M_{\sigma} > 2$. By Lemma 2.1, there exists $c \in M_{\sigma}$ such that $(a c)_0 = (b c)_0 = 0$.

(a.3) If $(c^2)_0 = s$ then by (11), $(ac)_{\emptyset} c = (cc)_0 a = a$, $(ab)_{\emptyset} c = 0$ and $(ab)_{\emptyset} a = b$. Hence $[(ac)_{\emptyset}, (ab)_{\emptyset}] c = b \neq 0$, contradicting the fact that M_{\emptyset} is abelian.

(a.4) Suppose that for all $c \in M_{\sigma}$ such that $(ac)_0 = (bc)_0 = 0$ we have $(c^2)_0 = 0$. By Lemma 2.1, there exists $d \in M_{\sigma}$ such that $(d^2)_0 = 0$ and $(cd)_0 = s$. Then, by identity (11), $(ab)_{\emptyset} a = b$, $(ab)_{\emptyset} d = 0$ and $(ac)_{\emptyset} d = a$. Hence $[(ab)_{\emptyset}, (ac)_{\emptyset}] d \neq 0$ and again the fact that M_{\emptyset} is abelian is contradicted.

(b) For all $a \in M_{\sigma}$, $(a^2)_0 = 0$. By Lemma 2.1, there exist $a, b \in M_{\sigma}$ such that $(a^2)_0 = (b^2)_0 = 0$ and $(a b)_0 = s$. If dim $M_{\sigma} = 2$, then we have case 2.3.

If dim $M_{\sigma} > 2$, then by Lemma 2.1 there exist $c, d \in M_{\sigma}$ such that $(a c)_0 = (a d)_0 = (b c)_0 = (b d)_0 = (c^2)_0 = (d^2)_0 = 0$ and $(c d)_0 = s$. In this case, by (11), $(ab)_{\emptyset} a = a$ and $(ac)_{\emptyset} d = a$. Hence $[(ab)_{\emptyset}, (ac)_{\emptyset}] d = a \neq 0$, contradicting the fact that M_{\emptyset} is abelian. This proves the lemma.

Lemma 2.3. Let $\mathfrak{a} \subset \mathcal{P}(I_n)$ be an even set and $\Delta = \{0\} \cup \mathfrak{a}$. Let \mathcal{M} be the variety of Δ -algebras satisfying the list of identities of Proposition 3.2 [GG]. If $\mathcal{M} \in \mathcal{M}$ is a simple Δ -algebra (containing no graded ideals), then $\mathfrak{M} = \{\sigma \in \mathfrak{a} \mid M_{\sigma} \neq 0\}$ is one of the following sets:

(i) $\{(2i-1, 2i, 2j-1, 2j) | 1 \le i < j \le \ell\} = C_{2\ell}$, (ii) $\{(2i-1, 2i, 2j-1, 2j), (2i-1, 2i) | 1 \le i < j \le \ell\} = \mathcal{B}_{2\ell}$, (iii) $\{(1234), (1256), (1357), (3456), (2457), (2367), (1467)\} = \mathcal{E}_7$, (iv) $\mathcal{E}_7 \cup \{\overline{\sigma} | \sigma \in \mathcal{E}_7, \overline{\sigma} = I_8 \setminus \sigma\} = \mathcal{E}_8$. *Proof.* The proof of this lemma in [GG] is based on the following facts:

- (1) for all $\sigma \in \mathfrak{M}$, we have $|\sigma| = 2$ or 4.
- (2) If $\sigma \neq \tau \in \mathfrak{M}$ and $\sigma \cap \tau \neq \emptyset$ then $\sigma \triangle \tau \in \mathfrak{M}$.

The item (2) may be proved as in [GG]. Let us prove item (1). Suppose that $\sigma \in \mathfrak{M}$ and $|\sigma| > 4$. Thus, by (12), $(M_{\sigma} M_{\sigma})_0 M_{\sigma} = 0$, hence $(M_{\sigma} M_{\sigma})_0 = 0$ and $M_{\sigma} = M_{\sigma}^0$. But by Lemma 2.1, $M_{\sigma}^0 = 0$.

Theorem 2.1. Let $M \in \mathcal{M}$ be a simple Δ -algebra such that $M_{\emptyset} \neq 0$ and $M_{\emptyset}^2 = 0$. Then $\mathfrak{M} = \mathcal{B}_{2\ell}$ and M has a basis

$$\{ s, d_{ij}, a_i, b_i, \lambda \mid 1 \le i < j \le \ell \}$$

with one of the following set of multiplication rules:

$$d_{ij} d_{jk} = d_{ik}, \qquad d_{ij} a_j = b_i,$$

$$d_{ij} b_j = a_i, \qquad a_i b_j = d_{ij},$$

$$(a_i b_i)_{\emptyset} = \lambda, \qquad \lambda a_i = b_i, \qquad (15)$$

$$\lambda b_i = a_i, \qquad (d_{ij}^2)_0 = s,$$

$$(a_i^2)_0 = (b_i^2)_0 = s$$

or

$$d_{ij} d_{jk} = d_{ik}, \qquad d_{ij} a_i = a_j,$$

$$d_{ij} b_j = b_i, \qquad a_i b_j = d_{ij},$$

$$a_i b_i = s + \lambda, \qquad (d_{ij}^2)_0 = s, \qquad (16)$$

$$\lambda a_i = a_i, \qquad \lambda b_i = b_i,$$

where $M_{(2i-1,2i,2j-1,2j)} = k d_{ij}$, $M_{(2i-1,2i)} = k a_i \oplus k b_i$ and $M_{\emptyset} = k \lambda$.

Proof. If $\mathfrak{M} = \mathcal{B}_{2\ell} = \{(2i-1, 2i, 2j-1, 2j), (2i-1, 2i) | 1 \le i < j \le \ell\}$, then by Lemma 2.2 for $\sigma = (2i-1, 2i) \in \mathfrak{M}$ we have three cases

(a) $M_{\sigma} = k a_{\sigma}$, where $(a_{\sigma}^2)_0 = s$, or

(b) $M_{\sigma} = k a_{\sigma} \oplus k b_{\sigma}$, where $(a_{\sigma}^2)_0 = (b_{\sigma}^2)_0 = s$ and $(a_{\sigma} b_{\sigma})_0 = 0$ or (c) $M_{\sigma} = k a_{\sigma} \oplus k b_{\sigma}$, where $(a_{\sigma} b_{\sigma})_0 = s$ and $(a_{\sigma}^2)_0 = (b_{\sigma}^2)_0 = 0$.

Let us consider each case.

(a) For $|\sigma| = 2$, by identity (11), we have $(a_{\sigma} a_{\sigma})_{\emptyset} a_{\sigma} = 2(a_{\sigma}^2)_0 a_{\sigma} = 0$ and by (7), for $|\sigma| = |\tau| = 2$ with $\sigma \cap \tau = \emptyset$ $(a_{\sigma} a_{\sigma})_{\emptyset} a_{\tau} = 2 a_{\sigma} a_{\tau} \cdot a_{\sigma} = 0$. If $|\sigma| = 2$ and $|\sigma \cap \tau| = 2$ with $\sigma \neq \tau$, then by (7) $(a_{\sigma} a_{\sigma})_{\emptyset} c_{\tau} = 0$. Therefore, $(a_{\sigma} a_{\sigma})_{\emptyset} \in Z(M) = 0$. Let $\mu \in \mathfrak{M}$ such that $M_{\mu} = k d$ and $\sigma \subseteq \mu$, $\tau = \mu \setminus \sigma$. Denote $b_{\tau} = d a_{\sigma}$. If $c \in M_{\tau}$ then, by (7), $d c \cdot d = c(dd)_0 = c$. But $dc \in M_{\sigma} = k a_{\sigma}$. Thus $c = dc \cdot d = \alpha a_{\sigma} d = \alpha b_{\tau}$ and $M_{\tau} = k b_{\tau}$. In this case, M is the algebra obtained in [GG].

(b) Let $d = d_{12} \in M_{(1234)}$ and denote

 $b_2 = d b_1,$ $a_2 = d a_1,$ $a_1 a_2 = \alpha d,$ $b_2 b_1 = \beta d$

By (7), $db_2 = d \cdot db_1 = (dd)_0 b_1 = b_1$ and $da_2 = d \cdot da_1 = (dd)_0 a_1 = a_1$.

Now, by (9), we have $(b_2 b_2)_0 = (d b_1 \cdot b_2)_0 = (d \cdot b_1 b_2)_0 = (d b_2 \cdot b_1)_0 = s$. Hence, $\beta = 1$. Moreover, $(a_2 a_2)_0 = (d a_1 \cdot a_2)_0 = (d a_2 \cdot a_1)_0 = (d \cdot a_1 a_2)_0 = s$. Hence, $\alpha = 1$.

Again by (9), $(b_2 a_2)_0 = (d b_1 \cdot a_2)_0 = (d \cdot b_1 a_2)_0 = (d a_2 \cdot b_1)_0 = 0$. Hence, $b_1 a_2 = 0$. Analogously, $a_1 b_2 = 0$.

Now denote $\tau = (a_1 a_1)_{\emptyset}, \ \xi = (b_1 b_1)_{\emptyset}, \ \lambda = (a_1 b_1)_{\emptyset}$. For $c \in M_{(12)}$, by identity (11), we have $(a_1 a_1)_{\emptyset} c = 2(a_1 c)_0 a_1 = 0$.

By (8), for $c \in M_{(2i-1,2i)}, i \neq 1$, we have $(a_1 a_1)_{\emptyset} c = 2a_1 c \cdot a_1 = 0$. Hence, $(a_1 a_1)_{\emptyset} \in Z(M) = 0$ and analogously $(a_i a_i)_{\emptyset} = (b_i b_i)_{\emptyset} = 0$.

Moreover, by (11), $\lambda a_1 = (a_1 b_1)_{\emptyset} a_1 = (a_1 a_1)_0 b_1 = b_1$ and analogously $\lambda b_1 = a_1$. By (7), $\lambda a_2 = (a_1 b_1)_{\emptyset} a_2 = b_1 a_2 \cdot a_1 = d a_1 = b_2$ and in the same way $\lambda b_2 = a_2$.

Now we denote $b_i = d_{i1} b_1$ and $a_i = d_{i1} a_1$. As above, we can prove that $b_i b_j = a_i a_j = d_{ij}, a_i b_j = 0$ and $(a_i a_i)_{\emptyset} = (b_i b_i)_{\emptyset} = 0$ and $(a_i b_i)_{\emptyset} = \lambda$. In this case, we have the multiplication rules given by (15).

(c) Let $d = d_{12} \in M_{(1234)}$ be such that $d^2 = s$ and denote

$$a_2 = d a_1,$$
 $b_2 = d b_1,$ $a_1 b_2 = \alpha d,$
 $a_1 a_2 = \gamma d,$ $a_2 b_1 = \beta d,$ $b_1 b_2 = \tau d,$

As in case (b), by (7), we have $da_2 = d \cdot da_1 = (dd)_0 a_1 = a_1$ and $db_2 = d \cdot db_1 = (dd)_0 b_1 = b_1$.

Now, by (9), we have $(a_2 a_2)_0 = (d a_1 \cdot a_2)_0 = (d a_2 \cdot a_1)_0 = (a_1 a_1)_0 = 0$, $(b_2 b_2)_0 = 0$. Again by (9), $(a_2 b_2)_0 = (d a_1 \cdot b_2)_0 = (d b_2 \cdot a_1)_0 = (b_1 a_1)_0 = s$.

Now for $c \in M_{(12)}$, by identity (11), we have $(a_1 a_1)_{\emptyset} c = 2(a_1 c)_0 a_1 = 0$ and by (8), for $c \in M_{(2i-1,2i)}, i \neq 1$, we have $(a_1 a_1)_{\emptyset} c = 2a_1 c \cdot a_1 = 0$. Hence, $(a_i a_i)_{\emptyset} = (b_i b_i)_{\emptyset} \in Z(M) = 0$.

By (11) we have $(a_1 b_1)_{\emptyset} a_1 = (a_1 b_1)_0 a_1 = a_1$ and, by (7), $(a_1 b_1)_{\emptyset} a_2 = a_2 b_1 \cdot a_1 = d a_1 = a_2$.

From this, analogously to the previous case, for $\lambda = (a_1 b_1)_{\emptyset}$ we get $\lambda a_i = a_i$ and $\lambda b_i = b_i$.

Now for $d_{ij} \in M_{(2i-1,2i,2j-1,2j)}$, it is clear, by (7), (8) and the fact that $|\sigma| \leq 4$, that $\lambda d_{ij} = (a_1 b_1)_{\emptyset} d_{ij} = 0$

We will denote by $D_{2\ell+1}$ the Δ -algebra M with multiplication rules given by (15) and by $C_{2\ell+1}$ the one with multiplication rules given by (16).

3 Irreducible Representations of Δ -algebras

In this section we study the action of the Δ -algebras M of Theorem 2.1.

Theorem 3.1. Let M be a Δ -algebra as in Theorem 2.1 and V be an irreducible M-module. Then

1.
$$M = D_{2\ell+1}$$
 and

1.1. $V = \langle v_1, \ldots, v_{\ell}, \xi, \mu \rangle$, where $v_i \in V_{(2i-1,2i)}$, $\xi, \mu \in V_{\emptyset}$ and

$$v_i d_{ij} = v_j, \qquad (v_i a_i)_{\emptyset} = \xi, \qquad (v_i b_i)_{\emptyset} = \mu,$$

$$\xi a_i = v_i, \qquad \mu b_i = v_i, \qquad \lambda \mu = \xi, \quad \lambda \xi = \mu$$
(17)

and all the other products are zero.

1.2. V is the adjoint module.

- 2. $M = C_{2\ell+1}$
- 2.1. $V = \langle v_1, \dots, v_{\ell}, \tau, \mu \rangle$, where $v_i \in V_{(2i-1,2i)}$, $\tau, \mu \in V_{\emptyset}$ and

$$v_i d_{ij} = v_j, \qquad (v_i a_i)_{\emptyset} = \tau, \qquad (v_i b_i)_{\emptyset} = \mu,$$

$$\tau b_i = \mu a_i = v_i, \qquad \lambda \tau = \tau, \qquad \lambda \mu = \mu \qquad (18)$$

and all the other products are zero.

2.2. V is the adjoint module.

Proof. 1. Let $V_0 \neq 0$ and $v_0 \in V_0$. Define

$$v_{ij} = v_0 d_{ij}, \quad v_i = v_0 a_i, \quad w_i = v_0 b_i, \quad (v_i b_i)_{\emptyset} = \mu_i \quad (w_i a_i)_{\emptyset} = \xi_i.$$
 (19)

By (14) we have $(v_i a_i)_0 = (v_0 a_i \cdot a_i)_0 = v_0 (a_i a_i)_0 = v_0$. Thus, by (8) and (11), we have that $\mu = \mu_1 = \cdots = \mu_\ell = \xi_1 = \cdots = \xi_\ell$ and $\mu_i a_i = (v_i b_i)_{\emptyset} a_i = (v_i a_i)_0 b_i + (a_i b_i)_0 v_i = v_0 b_i = w_i$ and analogously $\mu b_i = v_i$.

Hence V has a basis $\{v_0, v_{ij}, v_i, w_i, \mu \mid i \leq i, j \leq \ell\}$ and V is the adjoint M-module.

Now suppose that $V_0 = 0$ and take $V_{\mu}, \mu \neq 0$. As $| \mu \cap (2i - 1, 2i) | = 0$ or 2, then $(2i - 1, 2i) \subseteq \mu$ or $\mu \cap (2i - 1, 2i) = \emptyset$ for all $1 \leq i \leq \ell$. Suppose $(1,2) \subseteq \mu$. If $(2i - 1, 2i) \subseteq \mu$, i > 2, then $\sigma_{1i} = (1, 2, 2i - 1, 2i) \subseteq \mu$ and, by (12), $V_{\mu} = s V_{\mu} = (d_{1i} d_{1i})_0 V_{\mu} = 0$, a contradiction. Hence, $\mu = (12)$. Let $0 \neq v_1 \in V_{(12)}$ and denote

$$v_i = v_1 d_{1i},$$
 $(v_i b_i)_{\emptyset} = \tau_i$ $(v_i a_i)_{\emptyset} = \mu_i.$ (20)

Now by (6), we have $v_i d_{ij} = v_1 d_{1i} \cdot d_{ij} = v_1 d_{ij} \cdot d_{1i} + v_1 \cdot d_{1i} d_{ij} = v_1 d_{1j} = v_j$.

By (11), $\mu_i a_i = (v_i a_i)_{\emptyset} a_i = (v_i a_i)_0 a_i + (a_i a_i)_0 v_i = v_i$ and $\mu_i b_i = (v_i a_i)_{\emptyset} b_i = (v_i b_i)_0 a_i + (a_i b_i)_0 v_i = 0$. Analogously, $\tau_i a_i = 0$ and $\tau_i b_i = w_i$.

Moreover, by (8), $\mu_i a_j = (v_i a_i)_{\emptyset} a_j = v_i a_j \cdot a_i + v_i \cdot a_i a_j = v_i d_{ij} = v_j$.

Analogously, we prove that $\mu_i b_j = 0$, $\tau_i b_j = w_i$, $\tau_i a_j = 0$. Hence $\mu = \mu_1 = \cdots = \mu_\ell$ and $\tau = \tau_1 = \cdots = \tau_\ell$. Furthermore, by (13), $\lambda \mu = (a_1 b_1)_{\emptyset} \mu = (a_1 \mu \cdot b_1)_{\emptyset} + (a_1 \cdot \mu b_1)_{\emptyset} = (v_1 b_1)_{\emptyset} = \tau$ and, analogously, $\lambda \tau = \mu$. Hence $V = \langle v_1, \ldots, v_\ell, \tau, \mu \rangle$, is the standard *M*-module.

2. Suppose $V_0 \neq 0$. As in case 1, we can prove that V is the adjoint Mmodule. Thus, let $V_0 = 0$. Again as in case 1 we can prove that there exists $\mu = (12)$ such that $V_{\mu} \neq 0$. Denote, as in the previous case,

$$v_i = v_1 d_{1i},$$
 $(v_i a_i)_{\emptyset} = \mu_i$ $(v_i b_i)_{\emptyset} = \tau_i$ $v_i d_{ij} = v_j.$ (21)

By (11), $\mu_i a_i = (v_i a_i)_{\emptyset} a_i = (v_i a_i)_0 a_i + (a_i a_i)_0 v_i = 0$ and $\mu_i b_i = v_i$, $\tau_i a_i = v_i$, $\tau_i b_i = 0$.

By (8), $\mu_i a_j = (v_i a_i)_{\emptyset} a_j = v_i a_j \cdot a_i + v_i \cdot a_i a_j = 0$, $\mu_i b_j = (v_i a_i)_{\emptyset} b_j = v_i b_j \cdot a_i + v_i \cdot a_i b_j = v_i d_{ij} = v_j$. Analogously, $\tau_i a_j = v_i$, $\tau_i b_j = 0$. Hence $\mu = \mu_1 = \cdots = \mu_\ell$ and $\tau = \tau_1 = \cdots = \tau_\ell$. Furthermore, by (13), $\lambda \mu = (a_1 b_1)_{\emptyset} \mu = (a_1 \mu \cdot b_1)_{\emptyset} + (a_1 \cdot \mu b_1)_{\emptyset} = (a_1 v_1)_{\emptyset} = \mu$ and, analogously, $\lambda \tau = \tau$.

4 Lie algebras from Δ -algebras

First recall some well known facts about quadratic forms over an algebraically closed field of characteristic 2 and its corresponding Lie algebras.

Let V be a n-dimensional k-space and $f: V \times V \longrightarrow k$ be a non-degenerate symmetric bilinear form. This means that f(x,y) = f(y,x), for all $x, y \in V$ and f(x,V) = 0 implies x = 0. A non-degenerate symmetric bilinear form fis called *symplectic* if f(x,x) = 0 and *orthogonal* otherwise. A vector space V has a unique orthogonal form f and in some basis $\{v_1, \ldots, v_n\}$ the form can be written as

$$f(v,w) = \sum_{i=1}^{n} x_i y_i$$

where $v = \sum_{i=1}^{n} x_i v_i$ and $w = \sum_{i=1}^{n} y_i v_i$.

If dim V is odd, then the vector space V does not have a symplectic form and if dim $V = 2\ell$ then it has a unique symplectic form. In this last case, the form can be written, in an appropriate basis $\{v_1, \ldots, v_\ell, w_1, \ldots, w_\ell\}$, as follows

$$f(v,w) = \sum_{i=1}^{\ell} \left(x_i t_i + y_i z_i \right)$$

where $v = \sum_{i=1}^{\ell} (x_i v_i + y_i w_i)$ and $w = \sum_{i=1}^{\ell} (z_i v_i + t_i w_i)$.

Let End(V) be the associative algebra of all linear transformations of V. Consider the following sets

$$S(f) = \{ a \in End(V) \mid f(va, w) = f(v, wa), \ \forall v, w \in V \}$$
$$O(f) = \{ a \in End(V) \mid f(va, v) = 0, \ \forall v \in V \}.$$

,

It is clear that $O(f) \subseteq S(f)$. For f orthogonal, we denote $D_{\ell} = O(f)$ when dim $V = 2\ell$ and $B_{\ell} = O(f)$ when dim $V = 2\ell + 1$. For f symplectic, $C_{\ell} = O(f)$.

Theorem 4.1. In the notation above we have

- 1. [S(f), S(f)] = O(f).
- 2. Z(S(f)) = 0 if dim $V = 2\ell + 1$ and Z(O(f)) = 1 if dim $V = 2\ell$.
- 3. O(f)/Z(O(f)) is simple if dim V > 2 and dim $V \neq 4$.
- 4. C_{ℓ} is a 2-algebra.

5. B_{ℓ} and D_{ℓ} are not 2-algebras and S(f) is the 2-envelope of B_{ℓ} (resp., D_{ℓ}) in End(V).

6. dim
$$C_{\ell} = 2\ell^2 - \ell$$
, dim $B_{\ell} = 2\ell^2 + \ell$ and dim $D_{\ell} = 2\ell^2 - \ell$.

Theorem 4.2. Let M be a simple Δ -algebra in a Δ -variety \mathcal{M} as described above and $L = M \Box \Lambda$ be the corresponding Lie algebra. Then

 $1. \quad L = C_{2\ell} \quad if \ M \ has \ a \ basis \ \{s, \ a_{ij} \ | \ 1 \le i < j \le \ell\}, \ where \ a_{ij} \in M_{(2i-1,2i,2j-1,2j)} \, .$

2. $L = B_{2\ell}$ if M has a basis $\{s, a_{ij}, a_i | 1 \le i < j \le \ell\}$, where $a_{ij} \in M_{(2i-1,2i,2j-1,2j)}$, $a_i \in M_{(2i-1,2i)}$.

3. $L = D_{2\ell+1}$ or $C_{2\ell+1}$ if M has a basis $\{s, a_{ij}, a_i, b_i, \lambda \mid 1 \le i < j \le \ell\}$, where $a_{ij} \in M_{(2i-1,2i,2j-1,2j)}$ and the multiplication rules are given by (15) or (16).

4. L is a Lie algebra of type E_7 or E_8 , if $\mathfrak{M} = \{\sigma \mid M_\sigma \neq 0\} = \mathcal{E}_7$ or \mathcal{E}_8 .

Proof. 1. By Theorem [GG], a Δ -algebra M has a module V with a basis $\{v_1, \ldots, v_\ell\}, v_i \in V_{(2i-1,2i)}$. This M-module admits an M-invariant bilinear form given by $(v_i, v_j) = \delta_{ij}$. Note that if a M-module $V = V_0 \oplus \sum \bigoplus V_{\sigma}$ admits an M-invariant symmetric bilinear form f, then the corresponding L-module $W = V \Box \Lambda$ admits a L-invariant symmetric bilinear form as follows:

$$\hat{f}(v \otimes x, w \otimes y) = f(v, w)(x, y), \qquad v, w \in V, x, y \in \Lambda$$

Moreover, \tilde{f} is symplectic (orthogonal) if and only if the restriction of f to $V_0 \oplus V_{\emptyset}$ is symplectic (orthogonal). In our case, $V_0 \oplus V_{\emptyset} = 0$ hence this form is non-degenerate and symplectic. As dim $W = 4\ell$ and dim $L = 8\ell^2 - 2\ell$, we have that $L = C_{2\ell}$.

2. and 3. In all this cases M has a module V with a basis $\{v_1, \ldots, v_\ell, \mu, \tau\}$ described in Theorem 3.1, with $v_i \in V_{(2i-1,2i)}$. The M-module V admits an Minvariant bilinear form given by $(v_i, v_j) = \delta_{ij}$ and $(\lambda, \mu) = 0$, $(\lambda, \lambda) = (\mu, \mu) =$ 1, if M has multiplication rules defined by (15) or $(v_i, v_j) = \delta_{ij}$ and $(\lambda, \mu) = 1$, $(\lambda, \lambda) = (\mu, \mu) = 0$, if M has multiplication rules defined by (16).

In the first case, the corresponding *L*-invariant bilinear form on the *L*-module $W = V \Box \Lambda$ is orthogonal and, in the second case, it is symplectic. As dim $L = 8\ell^2 + 6\ell + 1$, then $L = D_{2\ell+1}$ in the first and $L = C_{2\ell+1}$, in the second case. 4. We prove this statement in the case \mathcal{E}_8 . The case \mathcal{E}_7 is a corollary of this.

By definition, a Lie algebra L over a field k of characteristic 2 is a Lie algebra of type E_8 if there exists a **Z**-form $\mathcal{L}_{\mathbf{Z}}$ of the Lie algebra \mathcal{L} over the field **C** of all complex numbers such that $L = \mathcal{L}_{\mathbf{Z}} \otimes_{\mathbf{Z}} k$.

Let \mathcal{L} be the Lie algebra of type E_8 over the complex field **C** constructed in [?] with a basis

$$\{e_1, f_1, \ldots, e_8, f_8, h_1, \ldots, h_8, (\sigma, \mu), \mu \subseteq \sigma \in \mathcal{E}_8\}$$

and multiplication rules stated by Theorem 1 [?].

Let $\mathcal{L}_{\mathbf{Z}}$ be a **Z**-module with generators

$$\{e_i, f_i, h_i, i = 1, \dots, 8, (\sigma, \mu), h^{\sigma} = \frac{1}{2} (\sum_{i \in \sigma} h_i), \mu \subseteq \sigma \in \mathcal{E}_8 \}.$$

Note that $[\mathcal{L}_{\mathbf{Z}}, \mathcal{L}_{\mathbf{Z}}] \subseteq \mathcal{L}_{\mathbf{Z}}$, since for $\varphi \cap \psi = \emptyset, \varphi \cup \psi = \sigma$ we have, by Theorem 1 [?], that

$$(\sigma,\varphi)(\sigma,\psi) = (-1)^{|\psi|+1} \left(\sum_{i\in\psi} h_i - \sum_{j\in\varphi} h_j\right)/2 = (-1)^{|\psi|+1} \left(h^{\sigma} - \sum_{j\in\varphi} h_j\right),$$
$$(\sigma,\mu)h^{\tau} = \frac{1}{2} \left(|\mu \cap \tau| - |\overline{\mu} \cap \tau|\right)(\sigma,\mu), \text{ where } \overline{\mu} = \sigma \setminus \mu.$$
(22)

But $(\mid \mu \cap \tau \mid - \mid \overline{\mu} \cap \tau \mid) = (\mid \sigma \cap \tau \mid -2 \mid \overline{\mu} \cap \tau \mid) \equiv \mid \sigma \cap \tau \mid \equiv 0 \pmod{2}$. Hence $(\sigma, \mu)h^{\tau} \in \mathcal{L}_{\mathbf{Z}}$.

Now we prove that $L \cong \mathcal{L}_{\mathbf{Z}} \otimes_{\mathbf{Z}} k$. Define $\xi : L \longrightarrow \mathcal{L}_{\mathbf{Z}} \otimes_{\mathbf{Z}} k$ given by $\xi(e_i) = e_i, \ \xi(f_i) = f_i, \ \xi(\sigma, \mu) = (\sigma, \mu), \ \xi(h_i) = h_i \ \xi(h^{\sigma}) = h^{\sigma}$. (Note that although the notation for the elements is the same, they are in two different algebras.)

To prove that ξ is an algebra isomorphism, it is enough to prove that

$$\xi((\sigma,\mu)h^{\varphi}) = \begin{bmatrix} \xi(\sigma,\mu), \xi(h^{\varphi}) \end{bmatrix} \quad (*)$$

By (2),

$$\xi((\sigma, \mu) h^{\varphi}) = \left(\frac{|\sigma \cap \varphi|}{2} + |\varphi \cap \mu|\right) \xi((\sigma, \mu))$$

and by (22)

$$\xi((\sigma,\mu))\,\xi(h^{\varphi})\,=\,\frac{1}{2}(\mid\mu\cap\varphi\mid\,-\,\mid\overline{\mu}\cap\varphi\mid)\xi((\sigma,\mu))$$

Now since $\frac{1}{2}(|\mu \cap \varphi| - |\overline{\mu} \cap \varphi|) = -\frac{1}{2}(|\mu \cap \varphi| + |\overline{\mu} \cap \varphi|) + |\mu \cap \varphi| = -\frac{1}{2}(|\sigma \cap \varphi| + |\mu \cap \varphi|) \equiv \frac{|\sigma \cap \varphi|}{2} + |\varphi \cap \mu|$, the equality (*) holds.

References

[GG] GRISHKOV, A.N., GUERREIRO, M., Simple classical Lie algebras in characteristic 2 and their gradations, I. International Journal of Mathematics, Game Theory, and Algebra, (to appear.).