Simple classical Lie algebras in characteristic 2 and their gradations, II.

A. N. Grishkov ${ }^{1}$
Rua do Matão, 1010 - Butantã
CEP 05508-900 - São Paulo-SP - Brazil grishkov@ime.usp.br

M. Guerreiro ${ }^{2}$
Departamento de Matemática - UFV
CEP 36571-000 - Viçosa-MG - Brazil marines@ufv.br

1 Introduction

This paper is a continuation of [GG]. Here we prove Conjecture 5.1 [GG]. Recall some notations and definition of [GG].

Definition 1.1. Let $I_{n}=\{1, \ldots, n\}$. We call $\mathfrak{a} \subset \mathcal{P}\left(I_{n}\right)=\left\{\sigma \mid \sigma \subseteq I_{n}\right\}$ an even set if for all $\sigma, \tau \in \mathfrak{a}$, we have $|\sigma| \equiv|\tau| \equiv 0$ and $|\sigma \cap \tau| \equiv 0 \bmod 2$.

We note that $\mathcal{P}\left(I_{n}\right)$ is an elementary abelian group with the operation $\sigma \triangle \tau=(\sigma \backslash \tau) \cup(\tau \backslash \sigma)$. For $\mathfrak{a} \subseteq \mathcal{P}\left(I_{n}\right),<\mathfrak{a}>$ denotes the group generated by \mathfrak{a}.

Definition 1.2. A subset H of $\mathcal{P}\left(I_{n}\right)$ is connected if, for every partition $I_{n}=I \cup J$, there is $\sigma \in H$ such that $\sigma \cap I \neq \emptyset$ and $\sigma \cap J \neq \emptyset$.

Definition 1.3. A subset $\sigma \subseteq I_{n}$ is called \mathfrak{a}-even if $|\mu \cap \tau| \equiv 0 \bmod 2$ for all $\tau \in \mathfrak{a}$. A subset $B \subseteq \mathcal{P}\left(I_{n}\right)$ is called an \mathfrak{a}-even set if all its elements are \mathfrak{a}-even.

For an even set $\mathfrak{a} \subset \mathcal{P}\left(I_{n}\right)$, in [GG] we defined a commutative algebra $\tilde{S}=$ $\tilde{S}(\mathfrak{a})$ with basis $\left\{e_{i}, h_{i}, f_{i}, h^{\sigma} \mid i \in I_{n}, \sigma \in<\mathfrak{a}>\backslash \emptyset\right\}$ and multiplication given

[^0]by
\[

$$
\begin{align*}
e_{i} f_{i} & =h_{i}, \\
e_{i} h^{\sigma} & =e_{i}, \quad f_{i} h^{\sigma}=f_{i}, \quad \text { for } i \in \sigma, \tag{1}
\end{align*}
$$
\]

and zero for all other cases. We denoted $h_{\mu}=\sum_{i \in \mu} h_{i}$ and defined $h_{\emptyset}=0$, $h^{\emptyset}=0$.

The algebra $\tilde{S}(\mathfrak{a})$ contains a central ideal I generated by $\left\{h^{\sigma}+h^{\tau}+h^{\sigma \Delta \tau}+\right.$ $\left.h_{\sigma \cap \tau} \mid \sigma, \tau \in<\mathfrak{a}>\right\}$. We denote $S(\mathfrak{a})=S=\tilde{S}(\mathfrak{a}) / I$.

For every \mathfrak{a}-even set σ, we also defined an S-module Λ_{σ} whose basis is $\{(\sigma, \mu) \mid \mu \subseteq \sigma\}$ and the S-action is given by

$$
\begin{align*}
(\sigma, \mu) e_{i} & =(\sigma, \mu \cup i), \quad i \in \sigma \backslash \mu \\
(\sigma, \mu) f_{i} & =(\sigma, \mu \backslash i), \quad i \in \mu \\
(\sigma, \mu) h_{i} & =(\sigma, \mu), \quad i \in \sigma \tag{2}\\
(\sigma, \mu) h^{\varphi} & =\left(\frac{|\sigma \cap \varphi|}{2}+|\varphi \cap \mu|\right)(\sigma, \mu), \text { for } \varphi \in \mathfrak{a}
\end{align*}
$$

and for all other cases the action is zero.
Now let $\Delta=\{0\} \cup \mathfrak{a}$.
Definition 1.4. An algebra A is called a Δ-algebra if $A=\sum_{\alpha \in \Delta} \oplus A_{\alpha}$ and, for every $\alpha \neq \beta \in \mathfrak{a}$, we have $A_{\alpha} A_{\beta} \subseteq A_{\alpha \triangle \beta}, A_{0}^{2} \subseteq A_{0}, A_{0} A_{\alpha} \subseteq A_{\alpha}$, $A_{\alpha} A_{\alpha} \subseteq A_{0}+A_{\emptyset}$ and $A_{0} A_{\emptyset}=0$.

Define a commutative Δ-graded algebra Λ as follows. As a k-space, Λ is

$$
\begin{equation*}
\Lambda=\Lambda_{0} \bigoplus \sum_{\sigma \in \mathfrak{a}} \oplus \Lambda_{\sigma}, \quad \text { where } \Lambda_{0}=S(\mathfrak{a}) \tag{3}
\end{equation*}
$$

Moreover, $S=S(\mathfrak{a})$ is a subalgebra of Λ and, by (2), each Λ_{σ} is an S-module. For $\sigma \neq \tau \in \mathfrak{a}$, the multiplication is given by

$$
\begin{equation*}
(\sigma, \mu)(\tau, \varphi)=(\sigma \triangle \tau,(\mu \backslash \tau) \cup(\varphi \backslash \sigma)), \text { if } \mu \cap \varphi=\emptyset, \mu \cup \varphi \supset \sigma \cap \tau \tag{4}
\end{equation*}
$$

$$
(\sigma, \mu)(\sigma, \varphi)= \begin{cases}e_{i}, & \mu \cap \varphi=i, \mu \cup \varphi=\sigma \tag{5}\\ f_{i}, & \mu \cap \varphi=\emptyset, \mu \cup \varphi=\sigma \backslash i \\ h^{\sigma}+h_{\varphi}+(\emptyset, \emptyset), & \mu \cap \varphi=\emptyset, \mu \cup \varphi=\sigma\end{cases}
$$

and all other products are zero.
Recall the definition of the product of two Δ-algebras. Let $A=\sum_{\alpha \in \Delta} \oplus A_{\alpha}$ and $B=\sum_{\alpha \in \Delta} \oplus B_{\alpha}$ be two Δ-algebras. Then $A \square B=\sum_{\alpha \in \Delta} \oplus A_{\alpha} \otimes B_{\alpha}$ is a Δ-algebra with multiplication $[\cdot, \cdot]$ given by

$$
\left[a_{\alpha} \otimes b_{\alpha}, a_{\beta} \otimes b_{\beta}\right]=\sum_{\gamma \in \Delta} c_{\gamma} \otimes d_{\gamma}, \quad \text { if } a_{\alpha} a_{\beta}=\sum_{\gamma \in \Delta} c_{\gamma}, b_{\alpha} b_{\beta}=\sum_{\gamma \in \Delta} d_{\gamma} .
$$

Proposition 1.1. Let \mathfrak{a} be an even set, $\Lambda=\Lambda(\mathfrak{a})$ and $\Delta=\{0\} \cup \mathfrak{a}$. Let $M=$ $M_{0} \oplus \sum_{\sigma \in \mathfrak{a}} \oplus M_{\sigma}$ be a commutative Δ-algebra. Then the algebra $L=\Lambda \square M$ is a Lie algebra if and only if M satisfies a list of Δ-identities given in Proposition $3.2[G G]$.

We recall some of the Δ-identities which will be used in this paper.

$$
\begin{array}{lr}
a_{\sigma} b_{\tau} \cdot c_{\lambda}+b_{\tau} c_{\lambda} \cdot a_{\sigma}+c_{\lambda} a_{\sigma} \cdot b_{\tau}=0,|\sigma \cap \tau \cap \lambda|=0, \sigma \neq \tau \neq \lambda \neq \sigma \neq \tau \triangle \lambda, \\
\left(a_{\sigma} b_{\sigma}\right)_{\emptyset} c_{\tau}=0,\left(a_{\sigma} b_{\sigma}\right)_{0} c_{\tau}=a_{\sigma} c_{\tau} \cdot b_{\sigma}, & \sigma \neq \tau,|\sigma \cap \tau|=2, \\
a_{\sigma} c_{\tau} \cdot b_{\sigma}=a_{\sigma} \cdot c_{\tau} b_{\sigma}+\left(a_{\sigma} b_{\sigma}\right)_{\emptyset} c_{\tau}, & |\sigma \cap \tau|=0, \\
\left(a_{\sigma} b_{\tau} \cdot c_{\lambda}\right)_{0}=\left(a_{\sigma} \cdot b_{\tau} c_{\lambda}\right)_{0}, & a, b, c \in M_{\tau},|\tau|=4, \\
(a b)_{0} c=(c b)_{0} a,(c a)_{\emptyset} b=0, & a, b, c \in M_{\tau},|\tau|=2, \\
(a b)_{0} c+(b c)_{0} a=(a c)_{\emptyset} b, & |\sigma|>4, \\
\left(a_{\sigma} b_{\sigma}\right)_{0} c_{\tau}=0, & \\
\left(a_{\emptyset} b_{\sigma} \cdot c_{\sigma}\right)_{\emptyset}+\left(b_{\sigma} c_{\sigma}\right)_{\emptyset} \cdot a_{\emptyset}+\left(c_{\sigma} a_{\emptyset} \cdot b_{\sigma}\right)_{\emptyset}=0 & \sigma \neq \emptyset \\
\left(a_{\sigma} b_{\sigma}\right)_{0} \cdot c_{0}=\left(a_{\sigma} c_{0} \cdot b_{\sigma}\right)_{0}, &
\end{array}
$$

We observe that if M is simple, then $L=\Lambda \square M$ is not necessarily a simple algebra, but $L / Z(L)$ is simple, where $Z(L)$ is the center of L.

Let \mathfrak{a} be an even connected set and $\Delta=\{0\} \cup \mathfrak{a}$. Let \mathcal{M} be the variety of Δ-algebras satisfying the list of identities of Proposition 3.2 [GG]. Let $M=M_{0} \oplus \sum_{\sigma \in \mathfrak{a}} \oplus M_{\sigma} \oplus M_{\emptyset}$ be a commutative Δ-algebra in \mathcal{M}. In [GG] (see Theorem 3.1 [GG]) we classified the simple Δ-algebras of the variety \mathcal{M}, for which $M_{\emptyset}=0$. Now we consider the case when M_{\emptyset} is abelian.

In the final section of [GG], we remarked that Theorem 3.1 [GG] is not true if we omit the condition $\emptyset \notin \mathfrak{a}$ and we formulated the following conjecture.

Conjecture 1.1. Let M be an arbitrary simple finite dimensional \triangle-algebra which satisfies all the list of identities of Proposition 3.2 [GG] and $M_{\emptyset}^{2}=0$. Then the corresponding Lie algebra $L=M \square \Lambda$ is a simple Lie algebra of type $B_{2 \ell}, C_{\ell}, D_{2 \ell+1}, E_{7}$ or E_{8}.

2 Proof of Conjecture 1.1

In this section we prove Conjecture 1.1. For each $\emptyset \neq \sigma \in \mathfrak{a}$, define $M_{\sigma}^{0}=\{x \in$ $\left.M_{\sigma} \mid x M_{\sigma} \subseteq M_{\emptyset}\right\}=\left\{x \in M_{\sigma} \mid\left(x M_{\sigma}\right)_{0}=0\right\}$.

Lemma 2.1. $I=\sum_{\sigma \in \mathfrak{a} \backslash \emptyset} \oplus M_{\sigma}^{0} \bigoplus \sum_{\sigma \in \mathfrak{a} \backslash \emptyset}\left(M_{\sigma} M_{\sigma}^{0}\right)$ is an ideal in M.
Proof. (a) First we prove that $M_{\tau} M_{\sigma}^{0} \subseteq M_{\sigma \Delta \tau}^{0}$, for all $\sigma \neq \tau \in \mathfrak{a}$. Indeed, by (9), for $a_{\tau} \in M_{\tau}, b_{\sigma} \in M_{\sigma}^{0}, c_{\lambda} \in M_{\sigma \Delta \tau}^{0}$, we have $\left(a_{\tau} b_{\sigma} \cdot c_{\lambda}\right)_{0}=\left(b_{\sigma} \cdot a_{\tau} c_{\lambda}\right)_{0}=$ 0 .
(b) Now we prove that $\left(M_{\sigma} M_{\sigma}^{0}\right) M_{\tau} \subseteq M_{\tau}^{0}$, for all $\tau \in \mathfrak{a}$. We need to prove that $\left(\left(\left(b_{\sigma} c_{\sigma}\right)_{\emptyset} a_{\tau}\right) d_{\tau}\right)_{0}=0$ for all $a_{\tau} \in M_{\tau}, b_{\sigma} \in M_{\sigma}^{0}, c_{\sigma} \in M_{\sigma}, d_{\tau} \in M_{\tau}$. We have two cases:
(b.1) $\sigma \neq \tau$. If $|\sigma \cap \tau|=2$, we have by (7) that $\left(\left(\left(b_{\sigma} c_{\sigma}\right)_{\emptyset} a_{\tau}\right) d_{\tau}\right)_{0}=0$. If $|\sigma \cap \tau|=0$ then, by (8) and (9), $\left(\left(\left(b_{\sigma} c_{\sigma}\right)_{\emptyset} a_{\tau}\right) d_{\tau}\right)_{0}=\left(\left(b_{\sigma} a_{\tau} \cdot c_{\sigma}\right) d_{\tau}\right)_{0}+\left(\left(c_{\sigma} a_{\tau}\right.\right.$. $\left.\left.b_{\sigma}\right) d_{\tau}\right)_{0}=\left(b_{\sigma} a_{\tau} \cdot c_{\sigma} d_{\tau}\right)_{0}+\left(b_{\sigma} \cdot\left(c_{\sigma} a_{\tau} \cdot d_{\tau}\right)\right)_{0}=\left(b_{\sigma} \cdot a_{\tau}\left(c_{\sigma} d_{\tau}\right)\right)_{0}=0$.
(b.2) $\sigma=\tau$. If $|\sigma|=2$, then by (11) we have $\left(\left(\left(b_{\sigma} c_{\sigma}\right)_{\emptyset} a_{\sigma}\right) d_{\sigma}\right)_{0}=$ $\left.\left.\left(\left(b_{\sigma} a_{\sigma}\right)_{0} c_{\sigma}\right) d_{\sigma}\right)_{0}+\left(\left(c_{\sigma} a_{\sigma}\right)_{0} b_{\sigma}\right) d_{\sigma}\right)_{0} \subseteq k\left(b_{\sigma} d_{\sigma}\right)_{0}=0$, as $b_{\sigma} \in M_{\sigma}^{0}$. If $|\sigma|=4$, then by $(10)\left(\left(\left(b_{\sigma} c_{\sigma}\right)_{\emptyset} a_{\sigma}\right) d_{\sigma}\right)_{0}=0$. This proves the lemma.

By Lemma 2.1, if M is simple then $I=0$ and, for each $\sigma \neq \emptyset, M_{\sigma}^{0}=0$.
Lemma 2.2. For a simple algebra M as defined above and $\sigma \in \mathfrak{a}$, we have
0. $M_{0}=k s$, for $s^{2}=s$.

1. If $|\sigma|=4$ then $M_{\sigma}=k a_{\sigma}$ where $a_{\sigma}^{2}=s$.
2. If $|\sigma|=2$ then
2.1) $M_{\sigma}=k a_{\sigma}$, where $\left(a_{\sigma}^{2}\right)_{0}=s$, or
2.2) $M_{\sigma}=k a_{\sigma} \oplus k b_{\sigma}$, where $\left(a_{\sigma}^{2}\right)_{0}=\left(b_{\sigma}^{2}\right)_{0}=s$ and $\left(a_{\sigma} b_{\sigma}\right)_{0}=0$ or
2.3) $M_{\sigma}=k a_{\sigma} \oplus k b_{\sigma}$, where $\left(a_{\sigma} b_{\sigma}\right)_{0}=s$ and $\left(a_{\sigma}^{2}\right)_{0}=\left(b_{\sigma}^{2}\right)_{0}=0$.

Proof. The proof of item 0 . is the same as in Lemma 3.1 of [GG].
Let $|\sigma|=4$ and $a_{\sigma} \in M_{\sigma}$. By Lemma 2.1, there exists $b_{\sigma} \in M_{\sigma}$ such that $\left(a_{\sigma} b_{\sigma}\right)_{0}=s$, then we have on the one hand $\left(a_{\sigma} b_{\sigma}\right)_{0} a_{\sigma}=a_{\sigma}$ and on the other hand, by (10), $\left(a_{\sigma} b_{\sigma}\right)_{0} a_{\sigma}=\left(a_{\sigma} a_{\sigma}\right)_{0} b_{\sigma}=\alpha b_{\sigma}$, if $\left(a_{\sigma} a_{\sigma}\right)_{0}=\alpha s$. Hence $a_{\sigma}=$ αb_{σ}. If $c \in M_{\sigma}$ and $(b c)_{0}=\gamma s$, then by (10), $c=(a b)_{0} c=(b c)_{0} a=\gamma a$. Hence $\operatorname{dim} M_{\sigma}=1$ and so item 1. is proved.

Now let $|\sigma|=2$.
(a) There exists $a \in M_{\sigma}$ such that $\left(a^{2}\right)_{0}=s$. If $\operatorname{dim} M_{\sigma}=1$, then we have case 2.1. Suppose that there exists $b \in M_{\sigma} \backslash k a$. If $(a b)_{0}=\alpha s \neq 0$ then we can replace b by $b+\alpha a=\tilde{b}$ and we get $(\tilde{b} a)_{0}=0$. Hence we can suppose that b satisfies $(a b)_{0}=0$.
(a.1) Suppose that for all $a \in M_{\sigma}$ such that $(a b)_{0}=0$ we have $\left(b^{2}\right)_{0}=0$. By Lemma 2.1, there exists $c \in M_{\sigma}$ such that $(c b)_{0}=s$. We can suppose that $(c a)_{0}=0$ (by replacing c by $c+\alpha a=\tilde{c}$ as before). Now, using identity (11), we get $(a b)_{\emptyset} c=(c b)_{0} a+(a c)_{0} b=a,(b c)_{\emptyset} a=(b a)_{0} c+(c a)_{0} b=0$ and
$(b c)_{\emptyset} c=(b c)_{0} c+(c c)_{0} b=c$. Hence, $\left[(a b)_{\emptyset},(b c)_{\emptyset}\right] c=a \neq 0$, contradicting the fact that M_{\emptyset} is abelian.
(a.2) There exists $b \in M_{\sigma}$ such that $\left(b^{2}\right)_{0}=s$ and $(a b)_{0}=0$. If $\operatorname{dim} M_{\sigma}=$ 2 then item 2.2 is proved.

Suppose that $\operatorname{dim} M_{\sigma}>2$. By Lemma 2.1, there exists $c \in M_{\sigma}$ such that $(a c)_{0}=(b c)_{0}=0$.
(a.3) If $\left(c^{2}\right)_{0}=s$ then by (11), $(a c)_{\emptyset} c=(c c)_{0} a=a,(a b)_{\emptyset} c=0$ and $(a b)_{\emptyset} a=b$. Hence $\left[(a c)_{\emptyset},(a b)_{\emptyset}\right] c=b \neq 0$, contradicting the fact that M_{\emptyset} is abelian.
(a.4) Suppose that for all $c \in M_{\sigma}$ such that $(a c)_{0}=(b c)_{0}=0$ we have $\left(c^{2}\right)_{0}=0$. By Lemma 2.1, there exists $d \in M_{\sigma}$ such that $\left(d^{2}\right)_{0}=0$ and $(c d)_{0}=s$. Then, by identity (11), $(a b)_{\emptyset} a=b,(a b)_{\emptyset} d=0$ and $(a c)_{\emptyset} d=a$. Hence $\left[(a b)_{\emptyset},(a c)_{\emptyset}\right] d \neq 0$ and again the fact that M_{\emptyset} is abelian is contradicted.
(b) For all $a \in M_{\sigma},\left(a^{2}\right)_{0}=0$. By Lemma 2.1, there exist $a, b \in M_{\sigma}$ such that $\left(a^{2}\right)_{0}=\left(b^{2}\right)_{0}=0$ and $(a b)_{0}=s$. If $\operatorname{dim} M_{\sigma}=2$, then we have case 2.3.

If $\operatorname{dim} M_{\sigma}>2$, then by Lemma 2.1 there exist $c, d \in M_{\sigma}$ such that $(a c)_{0}=(a d)_{0}=(b c)_{0}=(b d)_{0}=\left(c^{2}\right)_{0}=\left(d^{2}\right)_{0}=0$ and $(c d)_{0}=s$. In this case, by (11), $(a b)_{\emptyset} a=a$ and $(a c)_{\emptyset} d=a$. Hence $\left[(a b)_{\emptyset},(a c)_{\emptyset}\right] d=a \neq 0$, contradicting the fact that M_{\emptyset} is abelian. This proves the lemma.

Lemma 2.3. Let $\mathfrak{a} \subset \mathcal{P}\left(I_{n}\right)$ be an even set and $\Delta=\{0\} \cup \mathfrak{a}$. Let \mathcal{M} be the variety of Δ-algebras satisfying the list of identities of Proposition 3.2 [GG]. If $M \in \mathcal{M}$ is a simple Δ-algebra (containing no graded ideals), then $\mathfrak{M}=\{\sigma \in$ $\left.\mathfrak{a} \mid M_{\sigma} \neq 0\right\}$ is one of the following sets:
(i) $\{(2 i-1,2 i, 2 j-1,2 j) \mid 1 \leq i<j \leq \ell\}=\mathcal{C}_{2 \ell}$,
(ii) $\{(2 i-1,2 i, 2 j-1,2 j),(2 i-1,2 i) \mid 1 \leq i<j \leq \ell\}=\mathcal{B}_{2 \ell}$,
(iii) $\{(1234),(1256),(1357),(3456),(2457),(2367),(1467)\}=\mathcal{E}_{7}$,
(iv) $\mathcal{E}_{7} \cup\left\{\bar{\sigma} \mid \sigma \in \mathcal{E}_{7}, \bar{\sigma}=I_{8} \backslash \sigma\right\}=\mathcal{E}_{8}$.

Proof. The proof of this lemma in [GG] is based on the following facts:
(1) for all $\sigma \in \mathfrak{M}$, we have $|\sigma|=2$ or 4 .
(2) If $\sigma \neq \tau \in \mathfrak{M}$ and $\sigma \cap \tau \neq \emptyset$ then $\sigma \triangle \tau \in \mathfrak{M}$.

The item (2) may be proved as in [GG]. Let us prove item (1). Suppose that $\sigma \in \mathfrak{M}$ and $|\sigma|>4$. Thus, by (12), $\left(M_{\sigma} M_{\sigma}\right)_{0} M_{\sigma}=0$, hence $\left(M_{\sigma} M_{\sigma}\right)_{0}=0$ and $M_{\sigma}=M_{\sigma}^{0}$. But by Lemma 2.1, $M_{\sigma}^{0}=0$.

Theorem 2.1. Let $M \in \mathcal{M}$ be a simple Δ-algebra such that $M_{\emptyset} \neq 0$ and $M_{\emptyset}^{2}=0$. Then $\mathfrak{M}=\mathcal{B}_{2 \ell}$ and M has a basis

$$
\left\{s, d_{i j}, a_{i}, b_{i}, \lambda \mid 1 \leq i<j \leq \ell\right\}
$$

with one of the following set of multiplication rules:

$$
\begin{array}{rlrl}
d_{i j} d_{j k} & =d_{i k}, & d_{i j} a_{j} & =b_{i}, \\
d_{i j} b_{j} & =a_{i}, & a_{i} b_{j}=d_{i j}, \\
\left(a_{i} b_{i}\right)_{\emptyset} & =\lambda, & \lambda a_{i}=b_{i}, \tag{15}\\
\lambda b_{i} & =a_{i}, & \left(d_{i j}^{2}\right)_{0}=s, \\
\left(a_{i}^{2}\right)_{0} & =\left(b_{i}^{2}\right)_{0}=s &
\end{array}
$$

or

$$
\begin{align*}
d_{i j} d_{j k} & =d_{i k}, & d_{i j} a_{i} & =a_{j}, \\
d_{i j} b_{j} & =b_{i}, & a_{i} b_{j} & =d_{i j}, \\
a_{i} b_{i} & =s+\lambda, & \left(d_{i j}^{2}\right)_{0} & =s, \tag{16}\\
\lambda a_{i} & =a_{i}, & \lambda b_{i} & =b_{i},
\end{align*}
$$

where $M_{(2 i-1,2 i, 2 j-1,2 j)}=k d_{i j}, M_{(2 i-1,2 i)}=k a_{i} \oplus k b_{i}$ and $M_{\emptyset}=k \lambda$.

Proof. If $\mathfrak{M}=\mathcal{B}_{2 \ell}=\{(2 i-1,2 i, 2 j-1,2 j),(2 i-1,2 i) \mid 1 \leq i<j \leq \ell\}$, then by Lemma 2.2 for $\sigma=(2 i-1,2 i) \in \mathfrak{M}$ we have three cases
(a) $M_{\sigma}=k a_{\sigma}$, where $\left(a_{\sigma}^{2}\right)_{0}=s$, or
(b) $M_{\sigma}=k a_{\sigma} \oplus k b_{\sigma}$, where $\left(a_{\sigma}^{2}\right)_{0}=\left(b_{\sigma}^{2}\right)_{0}=s$ and $\left(a_{\sigma} b_{\sigma}\right)_{0}=0$ or
(c) $M_{\sigma}=k a_{\sigma} \oplus k b_{\sigma}$, where $\left(a_{\sigma} b_{\sigma}\right)_{0}=s$ and $\left(a_{\sigma}^{2}\right)_{0}=\left(b_{\sigma}^{2}\right)_{0}=0$.

Let us consider each case.
(a) For $|\sigma|=2$, by identity (11), we have $\left(a_{\sigma} a_{\sigma}\right)_{\emptyset} a_{\sigma}=2\left(a_{\sigma}^{2}\right)_{0} a_{\sigma}=0$ and by (7), for $|\sigma|=|\tau|=2$ with $\sigma \cap \tau=\emptyset\left(a_{\sigma} a_{\sigma}\right)_{\emptyset} a_{\tau}=2 a_{\sigma} a_{\tau} \cdot a_{\sigma}=0$. If $|\sigma|=2$ and $|\sigma \cap \tau|=2$ with $\sigma \neq \tau$, then by (7) $\left(a_{\sigma} a_{\sigma}\right)_{\emptyset} c_{\tau}=0$. Therefore, $\left(a_{\sigma} a_{\sigma}\right)_{\emptyset} \in Z(M)=0$. Let $\mu \in \mathfrak{M}$ such that $M_{\mu}=k d$ and $\sigma \subseteq \mu$, $\tau=\mu \backslash \sigma$. Denote $b_{\tau}=d a_{\sigma}$. If $c \in M_{\tau}$ then, by (7), $d c \cdot d=c(d d)_{0}=c$. But $d c \in M_{\sigma}=k a_{\sigma}$. Thus $c=d c \cdot d=\alpha a_{\sigma} d=\alpha b_{\tau}$ and $M_{\tau}=k b_{\tau}$. In this case, M is the algebra obtained in [GG].
(b) Let $d=d_{12} \in M_{(1234)}$ and denote

$$
b_{2}=d b_{1}, \quad a_{2}=d a_{1}, \quad a_{1} a_{2}=\alpha d, \quad b_{2} b_{1}=\beta d
$$

$\operatorname{By}(7), d b_{2}=d \cdot d b_{1}=(d d)_{0} b_{1}=b_{1}$ and $d a_{2}=d \cdot d a_{1}=(d d)_{0} a_{1}=a_{1}$.
Now, by (9), we have $\left(b_{2} b_{2}\right)_{0}=\left(d b_{1} \cdot b_{2}\right)_{0}=\left(d \cdot b_{1} b_{2}\right)_{0}=\left(d b_{2} \cdot b_{1}\right)_{0}=s$. Hence, $\beta=1$. Moreover, $\left(a_{2} a_{2}\right)_{0}=\left(d a_{1} \cdot a_{2}\right)_{0}=\left(d a_{2} \cdot a_{1}\right)_{0}=\left(d \cdot a_{1} a_{2}\right)_{0}=s$. Hence, $\alpha=1$.

Again by (9), $\left(b_{2} a_{2}\right)_{0}=\left(d b_{1} \cdot a_{2}\right)_{0}=\left(d \cdot b_{1} a_{2}\right)_{0}=\left(d a_{2} \cdot b_{1}\right)_{0}=0$. Hence, $b_{1} a_{2}=0$. Analogously, $a_{1} b_{2}=0$.

Now denote $\tau=\left(a_{1} a_{1}\right)_{\emptyset}, \xi=\left(b_{1} b_{1}\right)_{\emptyset}, \lambda=\left(a_{1} b_{1}\right)_{\emptyset}$. For $c \in M_{(12)}$, by identity (11), we have $\left(a_{1} a_{1}\right)_{\varnothing} c=2\left(a_{1} c\right)_{0} a_{1}=0$.

By (8), for $c \in M_{(2 i-1,2 i)}, i \neq 1$, we have $\left(a_{1} a_{1}\right)_{\emptyset} c=2 a_{1} c \cdot a_{1}=0$. Hence, $\left(a_{1} a_{1}\right)_{\emptyset} \in Z(M)=0$ and analogously $\left(a_{i} a_{i}\right)_{\emptyset}=\left(b_{i} b_{i}\right)_{\emptyset}=0$.

Moreover, by (11), $\lambda a_{1}=\left(a_{1} b_{1}\right)_{\emptyset} a_{1}=\left(a_{1} a_{1}\right)_{0} b_{1}=b_{1}$ and analogously $\lambda b_{1}=a_{1} \cdot \operatorname{By}(7), \lambda a_{2}=\left(a_{1} b_{1}\right)_{\emptyset} a_{2}=b_{1} a_{2} \cdot a_{1}=d a_{1}=b_{2}$ and in the same way $\lambda b_{2}=a_{2}$.

Now we denote $b_{i}=d_{i 1} b_{1}$ and $a_{i}=d_{i 1} a_{1}$. As above, we can prove that $b_{i} b_{j}=a_{i} a_{j}=d_{i j}, a_{i} b_{j}=0$ and $\left(a_{i} a_{i}\right)_{\emptyset}=\left(b_{i} b_{i}\right)_{\emptyset}=0$ and $\left(a_{i} b_{i}\right)_{\emptyset}=\lambda$. In
this case, we have the multiplication rules given by (15).
(c) Let $d=d_{12} \in M_{(1234)}$ be such that $d^{2}=s$ and denote

$$
\begin{aligned}
a_{2} & =d a_{1}, & b_{2} & =d b_{1},
\end{aligned}
$$

As in case (b), by (7), we have $d a_{2}=d \cdot d a_{1}=(d d)_{0} a_{1}=a_{1}$ and $d b_{2}=$ $d \cdot d b_{1}=(d d)_{0} b_{1}=b_{1}$.

Now, by (9), we have $\left(a_{2} a_{2}\right)_{0}=\left(d a_{1} \cdot a_{2}\right)_{0}=\left(d a_{2} \cdot a_{1}\right)_{0}=\left(a_{1} a_{1}\right)_{0}=0$, $\left(b_{2} b_{2}\right)_{0}=0$. Again by $(9),\left(a_{2} b_{2}\right)_{0}=\left(d a_{1} \cdot b_{2}\right)_{0}=\left(d b_{2} \cdot a_{1}\right)_{0}=\left(b_{1} a_{1}\right)_{0}=s$.

Now for $c \in M_{(12)}$, by identity (11), we have $\left(a_{1} a_{1}\right)_{\emptyset} c=2\left(a_{1} c\right)_{0} a_{1}=0$ and by (8), for $c \in M_{(2 i-1,2 i)}, i \neq 1$, we have $\left(a_{1} a_{1}\right)_{\emptyset} c=2 a_{1} c \cdot a_{1}=0$. Hence, $\left(a_{i} a_{i}\right)_{\emptyset}=\left(b_{i} b_{i}\right)_{\emptyset} \in Z(M)=0$.

By (11) we have $\left(a_{1} b_{1}\right)_{\emptyset} a_{1}=\left(a_{1} b_{1}\right)_{0} a_{1}=a_{1}$ and, by (7), $\left(a_{1} b_{1}\right)_{\emptyset} a_{2}=$ $a_{2} b_{1} \cdot a_{1}=d a_{1}=a_{2}$.

From this, analogously to the previous case, for $\lambda=\left(a_{1} b_{1}\right)_{\emptyset}$ we get $\lambda a_{i}=a_{i}$ and $\lambda b_{i}=b_{i}$.

Now for $d_{i j} \in M_{(2 i-1,2 i, 2 j-1,2 j)}$, it is clear, by (7), (8) and the fact that $|\sigma| \leq 4$, that $\lambda d_{i j}=\left(a_{1} b_{1}\right)_{\emptyset} d_{i j}=0$

We will denote by $D_{2 \ell+1}$ the Δ-algebra M with multiplication rules given by (15) and by $C_{2 \ell+1}$ the one with multiplication rules given by (16).

3 Irreducible Representations of Δ-algebras

In this section we study the action of the Δ-algebras M of Theorem 2.1.
Theorem 3.1. Let M be a Δ-algebra as in Theorem 2.1 and V be an irreducible M-module. Then

1. $M=D_{2 \ell+1}$ and
1.1. $V=<v_{1}, \ldots, v_{\ell}, \xi, \mu>$, where $v_{i} \in V_{(2 i-1,2 i)}, \xi, \mu \in V_{\emptyset}$ and

$$
\begin{align*}
& v_{i} d_{i j}=v_{j}, \quad\left(v_{i} a_{i}\right)_{\emptyset}=\xi, \quad\left(v_{i} b_{i}\right)_{\emptyset}=\mu, \\
& \xi a_{i}=v_{i}, \quad \mu b_{i}=v_{i}, \quad \lambda \mu=\xi, \quad \lambda \xi=\mu \tag{17}
\end{align*}
$$

and all the other products are zero.
1.2. V is the adjoint module.
2. $M=C_{2 \ell+1}$
2.1. $V=<v_{1}, \ldots, v_{\ell}, \tau, \mu>$, where $v_{i} \in V_{(2 i-1,2 i)}, \tau, \mu \in V_{\emptyset}$ and

$$
\left.\begin{array}{rlrl}
v_{i} d_{i j} & =v_{j}, & \left(v_{i} a_{i}\right)_{\emptyset} & =\tau, \\
\tau b_{i} & =\mu a_{i}=v_{i}, & \lambda \tau & =\tau, \tag{18}
\end{array} v_{i} b_{i}\right)_{\emptyset}=\mu, ~ 子 \mu=\mu
$$

and all the other products are zero.
2.2. V is the adjoint module.

Proof. 1. Let $V_{0} \neq 0$ and $v_{0} \in V_{0}$. Define

$$
\begin{equation*}
v_{i j}=v_{0} d_{i j}, \quad v_{i}=v_{0} a_{i}, \quad w_{i}=v_{0} b_{i}, \quad\left(v_{i} b_{i}\right)_{\emptyset}=\mu_{i} \quad\left(w_{i} a_{i}\right)_{\emptyset}=\xi_{i} . \tag{19}
\end{equation*}
$$

By (14) we have $\left(v_{i} a_{i}\right)_{0}=\left(v_{0} a_{i} \cdot a_{i}\right)_{0}=v_{0}\left(a_{i} a_{i}\right)_{0}=v_{0}$. Thus, by (8) and (11), we have that $\mu=\mu_{1}=\cdots=\mu_{\ell}=\xi_{1}=\cdots=\xi_{\ell}$ and $\mu_{i} a_{i}=\left(v_{i} b_{i}\right)_{\emptyset} a_{i}=$ $\left(v_{i} a_{i}\right)_{0} b_{i}+\left(a_{i} b_{i}\right)_{0} v_{i}=v_{0} b_{i}=w_{i}$ and analogously $\mu b_{i}=v_{i}$.

Hence V has a basis $\left\{v_{0}, v_{i j}, v_{i}, w_{i}, \mu \mid i \leq i, j \leq \ell\right\}$ and V is the adjoint M-module.

Now suppose that $V_{0}=0$ and take $V_{\mu}, \mu \neq 0$. As $|\mu \cap(2 i-1,2 i)|=0$ or 2 , then $(2 i-1,2 i) \subseteq \mu$ or $\mu \cap(2 i-1,2 i)=\emptyset$ for all $1 \leq i \leq \ell$. Suppose $(1,2) \subseteq \mu$. If $(2 i-1,2 i) \subseteq \mu, i>2$, then $\sigma_{1 i}=(1,2,2 i-1,2 i) \subseteq \mu$ and, by (12), $V_{\mu}=s V_{\mu}=\left(d_{1 i} d_{1 i}\right)_{0} V_{\mu}=0$, a contradiction. Hence, $\mu=(12)$. Let $0 \neq v_{1} \in V_{(12)}$ and denote

$$
\begin{equation*}
v_{i}=v_{1} d_{1 i}, \quad\left(v_{i} b_{i}\right)_{\emptyset}=\tau_{i} \quad\left(v_{i} a_{i}\right)_{\emptyset}=\mu_{i} . \tag{20}
\end{equation*}
$$

Now by (6), we have $v_{i} d_{i j}=v_{1} d_{1 i} \cdot d_{i j}=v_{1} d_{i j} \cdot d_{1 i}+v_{1} \cdot d_{1 i} d_{i j}=v_{1} d_{1 j}=v_{j}$.
By (11), $\mu_{i} a_{i}=\left(v_{i} a_{i}\right)_{\emptyset} a_{i}=\left(v_{i} a_{i}\right)_{0} a_{i}+\left(a_{i} a_{i}\right)_{0} v_{i}=v_{i}$ and $\mu_{i} b_{i}=$ $\left(v_{i} a_{i}\right)_{\emptyset} b_{i}=\left(v_{i} b_{i}\right)_{0} a_{i}+\left(a_{i} b_{i}\right)_{0} v_{i}=0$. Analogously, $\tau_{i} a_{i}=0$ and $\tau_{i} b_{i}=w_{i}$.

Moreover, by (8), $\mu_{i} a_{j}=\left(v_{i} a_{i}\right)_{\emptyset} a_{j}=v_{i} a_{j} \cdot a_{i}+v_{i} \cdot a_{i} a_{j}=v_{i} d_{i j}=v_{j}$.
Analogously, we prove that $\mu_{i} b_{j}=0, \tau_{i} b_{j}=w_{i}, \tau_{i} a_{j}=0$. Hence $\mu=$ $\mu_{1}=\cdots=\mu_{\ell}$ and $\tau=\tau_{1}=\cdots=\tau_{\ell}$. Furthermore, by (13), $\lambda \mu=\left(a_{1} b_{1}\right)_{\emptyset} \mu=$ $\left(a_{1} \mu \cdot b_{1}\right)_{\emptyset}+\left(a_{1} \cdot \mu b_{1}\right)_{\emptyset}=\left(v_{1} b_{1}\right)_{\emptyset}=\tau$ and, analogously, $\lambda \tau=\mu$. Hence $V=\left\langle v_{1}, \ldots, v_{\ell}, \tau, \mu\right\rangle$, is the standard M-module.
2. Suppose $V_{0} \neq 0$. As in case 1 , we can prove that V is the adjoint M module. Thus, let $V_{0}=0$. Again as in case 1 we can prove that there exists $\mu=(12)$ such that $V_{\mu} \neq 0$. Denote, as in the previous case,

$$
\begin{equation*}
v_{i}=v_{1} d_{1 i}, \quad\left(v_{i} a_{i}\right)_{\emptyset}=\mu_{i} \quad\left(v_{i} b_{i}\right)_{\emptyset}=\tau_{i} \quad v_{i} d_{i j}=v_{j} . \tag{21}
\end{equation*}
$$

By (11), $\mu_{i} a_{i}=\left(v_{i} a_{i}\right)_{\emptyset} a_{i}=\left(v_{i} a_{i}\right)_{0} a_{i}+\left(a_{i} a_{i}\right)_{0} v_{i}=0$ and $\mu_{i} b_{i}=v_{i}$, $\tau_{i} a_{i}=v_{i}, \tau_{i} b_{i}=0$.

By (8), $\mu_{i} a_{j}=\left(v_{i} a_{i}\right)_{\emptyset} a_{j}=v_{i} a_{j} \cdot a_{i}+v_{i} \cdot a_{i} a_{j}=0, \mu_{i} b_{j}=\left(v_{i} a_{i}\right)_{\emptyset} b_{j}=$ $v_{i} b_{j} \cdot a_{i}+v_{i} \cdot a_{i} b_{j}=v_{i} d_{i j}=v_{j}$. Analogously, $\tau_{i} a_{j}=v_{i}, \tau_{i} b_{j}=0$. Hence $\mu=$ $\mu_{1}=\cdots=\mu_{\ell}$ and $\tau=\tau_{1}=\cdots=\tau_{\ell}$. Furthermore, by (13), $\lambda \mu=\left(a_{1} b_{1}\right)_{\emptyset} \mu=$ $\left(a_{1} \mu \cdot b_{1}\right)_{\emptyset}+\left(a_{1} \cdot \mu b_{1}\right)_{\emptyset}=\left(a_{1} v_{1}\right)_{\emptyset}=\mu$ and, analogously, $\lambda \tau=\tau$.

4 Lie algebras from Δ-algebras

First recall some well known facts about quadratic forms over an algebraically closed field of characteristic 2 and its corresponding Lie algebras.

Let V be a n-dimensional k-space and $f: V \times V \longrightarrow k$ be a non-degenerate symmetric bilinear form. This means that $f(x, y)=f(y, x)$, for all $x, y \in V$ and $f(x, V)=0$ implies $x=0$. A non-degenerate symmetric bilinear form f is called symplectic if $f(x, x)=0$ and orthogonal otherwise. A vector space V
has a unique orthogonal form f and in some basis $\left\{v_{1}, \ldots, v_{n}\right\}$ the form can be written as

$$
f(v, w)=\sum_{i=1}^{n} x_{i} y_{i}
$$

where $v=\sum_{i=1}^{n} x_{i} v_{i}$ and $w=\sum_{i=1}^{n} y_{i} v_{i}$.
If $\operatorname{dim} V$ is odd, then the vector space V does not have a symplectic form and if $\operatorname{dim} V=2 \ell$ then it has a unique symplectic form. In this last case, the form can be written, in an appropriate basis $\left\{v_{1}, \ldots, v_{\ell}, w_{1}, \ldots, w_{\ell}\right\}$, as follows

$$
f(v, w)=\sum_{i=1}^{\ell}\left(x_{i} t_{i}+y_{i} z_{i}\right)
$$

where $v=\sum_{i=1}^{\ell}\left(x_{i} v_{i}+y_{i} w_{i}\right)$ and $w=\sum_{i=1}^{\ell}\left(z_{i} v_{i}+t_{i} w_{i}\right)$.
Let $\operatorname{End}(V)$ be the associative algebra of all linear transformations of V. Consider the following sets

$$
\begin{gathered}
S(f)=\{a \in \operatorname{End}(V) \mid f(v a, w)=f(v, w a), \forall v, w \in V\}, \\
O(f)=\{a \in \operatorname{End}(V) \mid f(v a, v)=0, \forall v \in V\} .
\end{gathered}
$$

It is clear that $O(f) \subseteq S(f)$. For f orthogonal, we denote $D_{\ell}=O(f)$ when $\operatorname{dim} V=2 \ell$ and $B_{\ell}=O(f)$ when $\operatorname{dim} V=2 \ell+1$. For f symplectic, $C_{\ell}=$ $O(f)$.

Theorem 4.1. In the notation above we have

1. $[S(f), S(f)]=O(f)$.
2. $Z(S(f))=0$ if $\operatorname{dim} V=2 \ell+1$ and $Z(O(f))=1$ if $\operatorname{dim} V=2 \ell$.
3. $O(f) / Z(O(f))$ is simple if $\operatorname{dim} V>2$ and $\operatorname{dim} V \neq 4$.
4. C_{ℓ} is a 2-algebra.
5. B_{ℓ} and D_{ℓ} are not 2-algebras and $S(f)$ is the 2-envelope of B_{ℓ} (resp., $\left.D_{\ell}\right)$ in $\operatorname{End}(V)$.
6. $\operatorname{dim} C_{\ell}=2 \ell^{2}-\ell, \operatorname{dim} B_{\ell}=2 \ell^{2}+\ell$ and $\operatorname{dim} D_{\ell}=2 \ell^{2}-\ell$.

Theorem 4.2. Let M be a simple Δ-algebra in a Δ-variety \mathcal{M} as described above and $L=M \square \Lambda$ be the corresponding Lie algebra. Then

1. $L=C_{2 \ell}$ if M has a basis $\left\{s, a_{i j} \mid 1 \leq i<j \leq \ell\right\}$, where $a_{i j} \in$ $M_{(2 i-1,2 i, 2 j-1,2 j)}$.
2. $L=B_{2 \ell}$ if M has a basis $\left\{s, a_{i j}, a_{i} \mid 1 \leq i<j \leq \ell\right\}$, where $a_{i j} \in$ $M_{(2 i-1,2 i, 2 j-1,2 j)}, \quad a_{i} \in M_{(2 i-1,2 i)}$.
3. $L=D_{2 \ell+1}$ or $C_{2 \ell+1}$ if M has a basis $\left\{s, a_{i j}, a_{i}, b_{i}, \lambda \mid 1 \leq i<j \leq \ell\right\}$, where $a_{i j} \in M_{(2 i-1,2 i, 2 j-1,2 j)}$ and the multiplication rules are given by (15) or (16).
4. L is a Lie algebra of type E_{7} or E_{8}, if $\mathfrak{M}=\left\{\sigma \mid M_{\sigma} \neq 0\right\}=\mathcal{E}_{7}$ or \mathcal{E}_{8}.

Proof. 1. By Theorem [GG], a Δ-algebra M has a module V with a basis $\left\{v_{1}, \ldots, v_{\ell}\right\}, v_{i} \in V_{(2 i-1,2 i)}$. This M-module admits an M-invariant bilinear form given by $\left(v_{i}, v_{j}\right)=\delta_{i j}$. Note that if a M-module $V=V_{0} \oplus \sum \oplus V_{\sigma}$ admits an M-invariant symmetric bilinear form f, then the corresponding L-module $W=V \square \Lambda$ admits a L-invariant symmetric bilinear form as follows:

$$
\tilde{f}(v \otimes x, w \otimes y)=f(v, w)(x, y), \quad v, w \in V, x, y \in \Lambda
$$

Moreover, \tilde{f} is symplectic (orthogonal) if and only if the restriction of f to $V_{0} \oplus V_{\emptyset}$ is symplectic (orthogonal). In our case, $V_{0} \oplus V_{\emptyset}=0$ hence this form is non-degenerate and symplectic. As $\operatorname{dim} W=4 \ell$ and $\operatorname{dim} L=8 \ell^{2}-2 \ell$, we have that $L=C_{2 \ell}$.
2. and 3. In all this cases M has a module V with a basis $\left\{v_{1}, \ldots, v_{\ell}, \mu, \tau\right\}$ described in Theorem 3.1, with $v_{i} \in V_{(2 i-1,2 i)}$. The M-module V admits an M invariant bilinear form given by $\left(v_{i}, v_{j}\right)=\delta_{i j}$ and $(\lambda, \mu)=0,(\lambda, \lambda)=(\mu, \mu)=$ 1 , if M has multiplication rules defined by (15) or $\left(v_{i}, v_{j}\right)=\delta_{i j}$ and $(\lambda, \mu)=1$, $(\lambda, \lambda)=(\mu, \mu)=0$, if M has multiplication rules defined by (16).

In the first case, the corresponding L-invariant bilinear form on the L-module $W=V \square \Lambda$ is orthogonal and, in the second case, it is symplectic. As $\operatorname{dim} L=$ $8 \ell^{2}+6 \ell+1$, then $L=D_{2 \ell+1}$ in the first and $L=C_{2 \ell+1}$, in the second case.
4. We prove this statement in the case \mathcal{E}_{8}. The case \mathcal{E}_{7} is a corollary of this. By definition, a Lie algebra L over a field k of characteristic 2 is a Lie algebra of type E_{8} if there exists a \mathbf{Z}-form $\mathcal{L}_{\mathbf{Z}}$ of the Lie algebra \mathcal{L} over the field \mathbf{C} of all complex numbers such that $L=\mathcal{L}_{\mathbf{Z}} \otimes_{\mathbf{z}} k$.

Let \mathcal{L} be the Lie algebra of type E_{8} over the complex field \mathbf{C} constructed in [?] with a basis

$$
\left\{e_{1}, f_{1}, \ldots, e_{8}, f_{8}, h_{1}, \ldots, h_{8},(\sigma, \mu), \mu \subseteq \sigma \in \mathcal{E}_{8}\right\}
$$

and multiplication rules stated by Theorem 1 [?].
Let $\mathcal{L}_{\mathbf{Z}}$ be a \mathbf{Z} - module with generators

$$
\left\{e_{i}, f_{i}, h_{i}, i=1, \ldots, 8,(\sigma, \mu), h^{\sigma}=\frac{1}{2}\left(\sum_{i \in \sigma} h_{i}\right), \mu \subseteq \sigma \in \mathcal{E}_{8}\right\} .
$$

Note that $\left[\mathcal{L}_{\mathbf{Z}}, \mathcal{L}_{\mathbf{Z}}\right] \subseteq \mathcal{L}_{\mathbf{Z}}$, since for $\varphi \cap \psi=\emptyset, \varphi \cup \psi=\sigma$ we have, by Theorem 1 [?], that

$$
\begin{gather*}
(\sigma, \varphi)(\sigma, \psi)=(-1)^{|\psi|+1}\left(\sum_{i \in \psi} h_{i}-\sum_{j \in \varphi} h_{j}\right) / 2=(-1)^{|\psi|+1}\left(h^{\sigma}-\sum_{j \in \varphi} h_{j}\right) \\
(\sigma, \mu) h^{\tau}=\frac{1}{2}(|\mu \cap \tau|-|\bar{\mu} \cap \tau|)(\sigma, \mu), \text { where } \bar{\mu}=\sigma \backslash \mu \tag{22}
\end{gather*}
$$

But $(|\mu \cap \tau|-|\bar{\mu} \cap \tau|)=(|\sigma \cap \tau|-2|\bar{\mu} \cap \tau|) \equiv|\sigma \cap \tau| \equiv 0(\bmod 2)$. Hence $(\sigma, \mu) h^{\tau} \in \mathcal{L}_{\mathbf{Z}}$.

Now we prove that $L \cong \mathcal{L}_{\mathbf{Z}} \otimes_{\mathbf{Z}} k$. Define $\xi: L \longrightarrow \mathcal{L}_{\mathbf{Z}} \otimes_{\mathbf{Z}} k$ given by $\xi\left(e_{i}\right)=e_{i}, \xi\left(f_{i}\right)=f_{i}, \xi(\sigma, \mu)=(\sigma, \mu), \xi\left(h_{i}\right)=h_{i} \xi\left(h^{\sigma}\right)=h^{\sigma}$. (Note that although the notation for the elements is the same, they are in two diferent algebras.)

To prove that ξ is an algebra isomorphism, it is enough to prove that

$$
\xi\left((\sigma, \mu) h^{\varphi}\right)=\left[\xi(\sigma, \mu), \xi\left(h^{\varphi}\right)\right] \quad(*) .
$$

By (2),

$$
\xi\left((\sigma, \mu) h^{\varphi}\right)=\left(\frac{|\sigma \cap \varphi|}{2}+|\varphi \cap \mu|\right) \xi((\sigma, \mu))
$$

and by (22)

$$
\xi((\sigma, \mu)) \xi\left(h^{\varphi}\right)=\frac{1}{2}(|\mu \cap \varphi|-|\bar{\mu} \cap \varphi|) \xi((\sigma, \mu)) .
$$

Now since $\frac{1}{2}(|\mu \cap \varphi|-|\bar{\mu} \cap \varphi|)=-\frac{1}{2}(|\mu \cap \varphi|+|\bar{\mu} \cap \varphi|)+|\mu \cap \varphi|=$ $-\frac{1}{2}\left(|\sigma \cap \varphi|+|\mu \cap \varphi| \equiv \frac{|\sigma \cap \varphi|}{2}+|\varphi \cap \mu|\right.$, the equality $\left(^{*}\right)$ holds.

References

[GG] Grishkov, A.N., Guerreiro, M., Simple classical Lie algebras in characteristic 2 and their gradations, I. International Journal of Mathematics, Game Theory, and Algebra,(to appear.).

[^0]: ${ }^{1}$ Supported by FAPEMIG as visitor to the Depto. de Matemática - UFV in February 2001
 ${ }^{2}$ Supported by FAPESP as visitor to IME-USP in February 2000

