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1 Introduction

This paper is a continuation of [GG]. Here we prove Conjecture 5.1 [GG]. Recall

some notations and definition of [GG].

Definition 1.1. Let I, = {1,...,n}. We call a C P(1,) = {o|o C I,} an

even set if for all o,7 € a, we have |o| = |7| =0 and [cN7| =0 mod 2.

We note that P([,) is an elementary abelian group with the operation
oAT = (c\7T)U(t\ o). For a C P(l,), < a > denotes the group gener-

ated by a.

Definition 1.2. A subset H of P(I,) is connected if, for every partition
I, = IUJ, thereis 0 € H such that cNI#0 and cNJ #0.

Definition 1.3. A subset o C I, is called a-even if |pN 7| =0 mod 2 for
all 7 € a. A subset B C P(1,) is called an a-even set if all its elements are

a-evell.

For an even set a C P(I,), in [GG] we defined a commutative algebra S =

S’(a) with basis {e;, h;, fi, h%|i € I,, 0 €< a>\D} and multiplication given
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eifi = hy,
eh’ =e;,  f:h° = fi, fori € o, (1)
and zero for all other cases. We denoted h, = Z h; and defined hy = 0,
h = 0. -
The algebra S(a) contains a central ideal I generated by {h% + h™ + h727 +
honr |0, T €< a >}. We denote S(a) = S = S(a)/I.
For every a-even set o, we also defined an S-module A, whose basis is

{(o,p) |t € o} and the S-action is given by

(o, pe; = (o, pUi), €0\
(07 M) fz - (0-’ :U’\Z)7 L€
(07 :u) hl = <U7 ,U,), (XS g, (2)

N
(0, p) ¥ = ('JZM + !wﬂu\) (0, p), for p€a,

and for all other cases the action is zero.

Now let A = {0}Ua.

Definition 1.4. An algebra A is called a A-algebra if A = Z @ A, and,
acA
for every o # B € a, we have Ay Az C Aang, A2 C Ay, AgA. C A,

As Ay C Ay + Ay and Ag Ay = 0.
Define a commutative A-graded algebra A as follows. As a k-space, A is

A= AO@Z@AU, where Ay = S(a). (3)

oca
Moreover, S = S(a) is a subalgebra of A and, by (2), each A, is an S-module.

For o # 7 € a, the multiplication is given by

(0, 1) (1, 0) = (AT, (\T)U(p\0)), f uNp=0, uUpDonT. (4)
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€ py =1t pUe=o,
(o, 1) (o, 90) = 4 fi, pNe =0, pUep=0\i, (5)
ha+h¢+<@7®>7 MHQPZQ)?MUQO:U7

and all other products are zero.

Recall the definition of the product of two A-algebras. Let A = Z DA,

aEA
and B = Z@Ba be two A-algebras. Then AOB = Z@Aa ® B, is a
aEA aEA
A-algebra with multiplication |-, -] given by

00 ®ba, ag®bg] = > ¢, @dy, i agag = Y ¢y, babg = Y _ d,.

yEA yEA yEA
Proposition 1.1. Let a be an even set, A = A(a) and A = {0}Ua. Let M =

My® > .. ®M, be a commutative A-algebra. Then the algebra L = AOM is

oca

a Lie algebra if and only if M satisfies a list of A-identities given in Proposition
3.2 [GG].

We recall some of the A-identities which will be used in this paper.

Agbr - Cx + brCy -y + Cray - b =0, [0 NTNA=0,0 AT #X# 0 # 1A\ (6)

(asby)gcr = 0, (agby)ocr = ayCr - by, o#T, loNT| =2, (7)
UsCr - by = Gy - Crby + (aobs)pCr lonT| =0, (8)
(acbr - cx)o = (aq - bren)o, A=A, (9)
(ab)oc = (cb)oa, (ca)gb = 0, a,b,ce M., |t| =4, (10)
(ab)oc + (bc)oa = (ac)yb, a,byce M., |t =2, (11)
(agby)ocr = 0, lo| >4, (12)
(apbs - ¢5)o + (boco)o - ap + (coap - bs)p = 0 (13)
(agbs)o - co = (asco bs)o, o#0 (14)

We observe that if M is simple, then L = AOM is not necessarily a simple
algebra, but L/Z(L) is simple, where Z(L) is the center of L.

3



Let a be an even connected set and A = {0} Ua. Let M be the vari-
ety of A-algebras satisfying the list of identities of Proposition 3.2 [GG]. Let
M= M®),
Theorem 3.1 [GG]) we classified the simple A-algebras of the variety M, for

®M, & My be a commutative A-algebra in M. In [GG] (see

gca

which My = 0. Now we consider the case when Mj is abelian.

In the final section of [GG], we remarked that Theorem 3.1 [GG] is not true

if we omit the condition () ¢ a and we formulated the following conjecture.

Conjecture 1.1. Let M be an arbitrary simple finite dimensional /\-algebra
which satisfies all the list of identities of Proposition 3.2 [GG] and Mg = 0.
Then the corresponding Lie algebra L = MOA s a simple Lie algebra of type
Boy, Cr, Dagir, E7 or Eg.

2 Proof of Conjecture 1.1

In this section we prove Conjecture 1.1. For each () # o € a, define MY = {x €
M, |zM, C My} = {x € M, |(xM,)o = 0}.
Lemma 2.1. [ = Z oM? @ Z (M, M?) is an ideal in M.

sea\d sea\d
Proof. (a) First we prove that M,M? C M?, | for all ¢ # 7 € a. Indeed,
by (9), for a, € M,, b, € M?, ¢y € M2, _, we have (a, b, cx)o = (by-a,cy)o =
0.

(b) Now we prove that (M,M2)M, C M?, for all 7 € a. We need to prove
that (((byco)par)d;)o = 0 for all a, € M, b, € M?, ¢, € M,, d, € M,. We
have two cases:

(b.1) o #71. If |oNT|=2, we have by (7) that (((b, ¢;)par)d;)o = 0. If
| oN7 |=0 then, by (8) and (9), (((by ¢s)p ar)dr)o = ((by ar - cy)dr)o + ((cyar -
bo)d:)o = (byar - Codr)o + (by - (coar-dr))o = (by - ar(cydr))o = 0.



(b.2) 0 = 7. If | ¢ |= 2, then by (11) we have (((by ¢y)pay)ds)o =
((bg (la)(] Ca)dg)g + ((Co CLU)O bcr)da>0 Q k’(bg d(,)o = 0, as ba € M((T) . If | g |: 4,
then by (10) (((b, ¢5)p @s)ds)o = 0. This proves the lemma. O

By Lemma 2.1, if M is simple then I =0 and, for each o # @, M? = 0.

Lemma 2.2. For a simple algebra M as defined above and o € a, we have
0. My = ks, for s> = s.
1. If |o|=4 then M, = ka, where a> = s.
2. If | o |=2 then
2.1) M, = ka,, where (a%)y = s, or
2.2) My, = ka, ® kb, , where (a2)o = (b2)o = s and (a, by)o = 0 or

2.8) My, = ka, ® kb, , where (a,b,)o = s and (a2)y = (b2)o = 0.

Proof. The proof of item 0. is the same as in Lemma 3.1 of [GG].

Let | 0 |=4 and a, € M,. By Lemma 2.1, there exists b, € M, such that
(@, bs)o = s, then we have on the one hand (a, b,)oa, = a, and on the other
hand, by (10), (aybs)o s = (s Gs)obs = by, if (a,a,)g = as. Hence a, =
aby. If c€ M, and (bc)g = 7, then by (10), ¢ = (ab)oc = (bc)opa = va.
Hence dim M, = 1 and so item 1. is proved.

Now let | o |=2.

(a) There exists a € M, such that (a?)y = s. If dim M, = 1, then we have
case 2.1. Suppose that there exists b € M, \ ka. If (ab)y = as # 0 then we
can replace b by b + aa = b and we get (Ba)o = 0. Hence we can suppose
that b satisfies (ab)g = 0.

(a.1) Suppose that for all a € M, such that (ab)y = 0 we have (b*)y = 0
By Lemma 2.1, there exists ¢ € M, such that (cb)g = s. We can suppose that
(ca)o = 0 (by replacing ¢ by ¢ + aa = ¢ as before). Now, using identity (11),
we get (ab)gec = (cb)oa + (ac)ob = a, (bc)pa = (ba)oc + (ca)ob = 0 and



(be)pe = (be)oc + (ce)ob = c. Hence, [(ab)y, (bc)plc = a # 0, contradicting
the fact that Mj is abelian.

(a.2) There exists b € M, such that (b*)g = s and (ab)y = 0. If dim M, =
2 then item 2.2 is proved.

Suppose that dim M, > 2. By Lemma 2.1, there exists ¢ € M, such that
(ac)g = (bec)y =

(a.3) If (¢*)g = s then by (11), (ac)gc = (cc)pa = a, (ab)gc = 0 and
(ab)ga = b. Hence [(ac)y, (ab)g]c = b # 0, contradicting the fact that My is
abelian.

(a.4) Suppose that for all ¢ € M, such that (ac)y = (bc)o = 0 we have
(c*)o = 0. By Lemma 2.1, there exists d € M, such that (d*), = 0 and
(cd)o = s. Then, by identity (11), (ab)ga = b, (ab)gd = 0 and (ac)pd = a.
Hence [(ab)y, (ac)g]d # 0 and again the fact that My is abelian is contradicted.

(b) For all a € M, , (a*)y = 0. By Lemma 2.1, there exist a, b € M, such
that (a®)p = (b*)g = 0 and (ab)y = s. If dim M, = 2, then we have case 2.3.

If dimM, > 2, then by Lemma 2.1 there exist ¢, d € M, such that
(ac)o = (ad)g = (be)g = (bd)g = (¢*)o = (d*)g = 0 and (cd)y = s. In this
case, by (11), (ab)pa = a and (ac)gd = a. Hence [(ab)y, (ac)y]d = a # 0,
contradicting the fact that My is abelian. This proves the lemma. O
Lemma 2.3. Let a C P(I,) be an even set and A = {0} Ua. Let M be the
variety of A-algebras satisfying the list of identities of Proposition 3.2 [GG]. If
M € M is a simple A-algebra (containing no graded ideals), then M = {o €
a| M, # 0} is one of the following sets:

(i) {(20—1,2i,2)—1,2))|1<i<j<l} = Co,

(ii) {(2i—1,2i,2j—1,2)), (2i—1,20)|1<i<j<C} = By,

(i7i) {(1234), (1256), (1357), (3456), (2457), (2367), (1467)} = & ,

(v) & U{T|loe&, o =1L\o} =&.



Proof. The proof of this lemma in [GG] is based on the following facts:
(1) for all o € M, we have |o| =2 or 4.
(2)If o#7 €M and o N7 # D then o AT € M.

The item (2) may be proved as in [GG]|. Let us prove item (1). Suppose that
oc€M and | o |>4. Thus, by (12), (M, M,)o M, = 0, hence (M, M,)y = 0
and M, = M?. But by Lemma 2.1, M2 = 0. [

Theorem 2.1. Let M € M be a simple A-algebra such that My # 0 and
MQ)2 =0. Then M = By and M has a basis

{S7d’bj7a’b7b’mA|1§Z<.]§€}

with one of the following set of multiplication rules:

dij djr = di, dija; = b,
dijb; = aj, a; b; = dij,
(@iby = A, Na; = b, (15)
b = a;, (dZ))o = s,

or

dij djk = dy, dij a; = ay,

dij bj = bi, a; bj = dij>
a; bz =s+ >\a (dfj)o =S, (]‘6)
/\ai = aq, )\bz = bi7

where M(Qi—l,Qi,Qj—le) = kdij; M(Zi—l,Zi) = k:az@k:bz and MQ) = kM.

Proof. It M = By = {(2i—1, 23, 2j — 1, 2j), (2i—1, 2i)|1<i< j < (}, then
by Lemma 2.2 for 0 = (2i — 1, 2i) € 9 we have three cases

(a) M, = ka,, where (a2)y = s, or
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(b) M, = ka, ® kb, , where (a2)y = (b2)o = s and (a,b,)o = 0 or

(c) My = ka, ® kb, , where (a,by)o = s and (a2)y = (b2)y = 0.

Let us consider each case.

(a) For | o |= 2, by identity (11), we have (a, a,)pa, = 2(a?)pa, = 0 and
by (7), for | o |=| 7 |=2 with oN7T = 0 (ayas)par = 2a,a, -a, = 0.
If |o|=2and | oN7 |= 2 with 0 # 7, then by (7) (a,a,)pc, = 0.
Therefore, (a,a,)g € Z(M)=0. Let € M such that M, = kd and o C p,
T =u\o. Denote b, = da,. If ¢ € M, then, by (7), de-d = ¢(dd)y = c.
But dec € M, = kay,. Thus ¢ = dc-d = cva,d = ab; and M, = kb,. In
this case, M is the algebra obtained in [GG].

(b) Let d = dia € M(1234) and denote
b2 = dbl, Ao = dal, a1 Gy = Oéd, bgbl = ﬁd

By (7), dbs = d-db; = (dd)oby = by and day = d-day = (dd)pa; = a; .

Now, by (9), we have (babs)g = (dby-bs)g = (d-b1by)g = (dby-b1)g = s.
Hence, § = 1. Moreover, (azas)y = (daj-as)g = (das-ar)g = (d-ajasz)g = s.
Hence, a = 1.

Again by (9), (byas)o = (dby-as)g = (d-brag)y = (dag-by)g = 0. Hence,
by ay = 0. Analogously, a; by = 0.

Now denote 7 = (a1 a1)p, & = (bibi1)g, A = (a1by)p. For ¢ € M), by
identity (11), we have (aya1)pc = 2(a1c)oa; = 0.

By (8), for ¢ € M(g;—1,2:), 1 # 1, we have (aja1)pc = 2a,¢-a; = 0. Hence,
(a1 a1)p € Z(M) =0 and analogously (a;a;)g = (b;jb;)g = 0.

Moreover, by (11), Aa; = (a1b1)par = (a;a1)oby = by and analogously
Aby = ay1. By (7), Aag = (a1 b1)gaz = byas-a; = da; = by and in the same
way Aby = as.

Now we denote b; = d;1b; and a; = d;;a;. As above, we can prove that

bi bj = Clj = dija a; bj = 0 and (ai ai)@ = (bl bz)@ = 0 and ((Ii bl)@ = )\ IH
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this case, we have the multiplication rules given by (15).

(¢) Let d = di2 € M1231) be such that d> = s and denote

Ay — dCLl, bg = dbl, Cllbz = Oéd7

alangyd, dzblzﬂd, bleITd,

As in case (b), by (7), we have day = d-da; = (dd)pa; = a1 and dby =
d-dby = (dd)oby = by.

Now, by (9), we have (azas2)o = (day-az)o = (daz-a1)g = (a1a1)y = 0,
(babo)o = 0. Again by (9), (asbs)o = (day -bg)g = (dby-ar)g = (bray)o = s.

Now for ¢ € Mg, by identity (11), we have (a;a1)gc = 2(arc)oa; = 0
and by (8), for ¢ € M(g;_12i, 1 # 1, we have (a1 a1)gc = 2a;¢-a; = 0. Hence,
(a;a;)g = (bib)g € Z(M)=0.

By (11) we have (a1 b1)ga; = (a1 bi)oar = ay and, by (7), (a1b1)pas =
ashy - a1 = day = as.

From this, analogously to the previous case, for A = (a3 b1)g we get Aa; = q;
and \b; = b;.

Now for di; € M(2;-1,2i2j-1,2j) , it is clear, by (7), (8) and the fact that | o [< 4,
that Ad;; = (a1b1)pdi; = 0 O

We will denote by Dy the A-algebra M with multiplication rules given

by (15) and by Capy1 the one with multiplication rules given by (16).

3 Irreducible Representations of A-algebras

In this section we study the action of the A-algebras M of Theorem 2.1.

Theorem 3.1. Let M be a A-algebra as in Theorem 2.1 and V' be an irreducible
M -module. Then

1. M = D2£+1 and



1.1. V. =<wy,...,v,& p >, where v; € Vigi_12i), &, p € Vp and

v; dij = vy, (viag)p = &, (vibi)o = p,

§a; = v, b = vy, Ap=§, AX=up (17)

and all the other products are zero.
1.2. 'V s the adjoint module.
2. M = Cya

2.1. V. =<wi,...,v,T, 0 >, where v; € Vigi_125y, T, 0 € Vy and

(% dij = Uy, (Ui CLi)@ =T, (Ui bz)gj = W,

Tb = pa; =v;, AT =T, A= (18)

and all the other products are zero.

2.2. 'V s the adjoint module.
Proof. 1. Let Vy #£ 0 and vy € V. Define

Vij = Vo dija V; = Vg Qi w; = Vg by, (Ui bi)@ = My (wi ai)@ =¢&. (19)
By (14) we have (v;a;)o = (voa;-a;)o = vo (a;a;)0 = vo. Thus, by (8) and (11),
we have that p = = =p =& =+ =& and pia; = (vibpa; =

(via;)ob; + (a;bi)ov; = vob; = w; and analogously ub;, = v;.

Hence V' has a basis {v, v, v, w;, |t < 4,5 < ¢} and V is the adjoint
M-module.

Now suppose that Vo = 0 and take V,,, p # 0. As | pN (20 —1,2i) |=0
or 2, then (20 —1,2i) Cpu or puN(2i—1,2i) =0 for all 1 <7 < . Suppose
(1,2) C p. If (20 —1,20) C p, @ > 2, then o; = (1,2,20 — 1,2¢) C p and,
by (12), V,, = sV, = (di;d1i)oV, = 0, a contradiction. Hence, p = (12). Let
0 # v; € V{12) and denote

Vi = U1 dh', (UZ‘ bz)@ = T; (Ui ai)@ = U; - (20)
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Now by (6), we have (5 dz’j = U1 dli'dij = U dij 'dli + (%1 'dlidij = U dlj = Uj .
By (11), pia; = (viai)pa; = (via)oa; + (a;a;)ov;i = v; and p;b; =

(v;ai)pb; = (vibi)oa; + (a;b;)ov; = 0. Analogously, 7;a; = 0 and 7;b; = w; .

Moreover, by (8), wia; = (viai)pa; = viaj-a; + v;-a;a; = v;idij = v;.
Analogously, we prove that u;b; = 0, 7,0; = w;, 7,a; = 0. Hence p =
pp ==y and 7 =7 = --- = 7,. Furthermore, by (13), Ay = (a1 b1)gp =

(app-b1)g + (a1 - b))y = (vib1)g = 7 and, analogously, A7 = p. Hence
V =<wy,...,v 7,0 >, is the standard M-module.

2. Suppose Vy # 0. As in case 1, we can prove that V is the adjoint M-
module. Thus, let Vj = 0. Again as in case 1 we can prove that there exists

p = (12) such that V), # 0. Denote, as in the previous case,
Vi = U1 d1i7 (Uz' az’)@ = Wi (Ui bz)(Z) =T V; dij = Vj. (21)

By (11), pia; = (viaj)pa; = (viaj)oa; + (a;a;)ov; = 0 and p;b; = vy,
Tia; = v;, T;b; = 0.

By (8), pia; = (viai)pa; = viaj-a; + vi-a;a; = 0, pbj = (v;a;)pb; =
v;bj-a; +vi-a;b; = v;d;; = vj. Analogously, 7 a; = v;, 7;b; = 0. Hence p =
1 =+--=pup and 7 =7 = --- = 7,. Furthermore, by (13), Ay = (a1 b1)gp =

(@ p-b1)g + (a1 -pby)y = (a1v1)g = p and, analogously, A7 = 7. O

4 Lie algebras from A-algebras

First recall some well known facts about quadratic forms over an algebraically
closed field of characteristic 2 and its corresponding Lie algebras.

Let V be a n-dimensional k-space and f : V xV — k be a non-degenerate
symmetric bilinear form. This means that f(z,y) = f(y,z), for all z,y € V
and f(x,V) =0 implies z = 0. A non-degenerate symmetric bilinear form f

is called symplectic if f(x,z) = 0 and orthogonal otherwise. A vector space V
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has a unique orthogonal form f and in some basis {vy,...,v,} the form can be

written as

f(’U,U)) = Z TiYi
=1

where v = Z r;v; and w = Z Yi Vi .
i=1 i=1
If dimV is odd, then the vector space V does not have a symplectic form

and if dimV = 2¢ then it has a unique symplectic form. In this last case, the

form can be written, in an appropriate basis {vy,..., v, w1, ..., we}, as follows

l

flv,w) = Z(%tz + Yi%i)

i=1
¢ ¢
where v = Z (x;v; + y;w;) and w = Z (ziv; + tyw;) .

i=1 i=1
Let End(V) be the associative algebra of all linear transformations of V.

Consider the following sets
S(f) = {a€ End(V)| f(va,w) = f(v,wa), Vo,w €V},

O(f) = {a € End(V)| f(va,v) = 0, Vv e V}.

It is clear that O(f) C S(f). For f orthogonal, we denote D, = O(f) when
dimV = 2¢ and By, = O(f) when dimV = 2/ + 1. For f symplectic, C;, =
o(f).
Theorem 4.1. In the notation above we have

1. [5(f),5(f)] = O(f) -

2. Z(S(f)) =0 if dimV =20+1 and Z(O(f)) = 1 if dimV = 2¢.

3. O(f)/Z(O(f)) is simple if dimV > 2 and dimV # 4.

4. Cy is a 2-algebra.

5. By and D, are not 2-algebras and S(f) is the 2-envelope of By (resp.,
Dy ) in End(V).

6. dimCy =20 — ¢, dim By = 20> + ¢ and dim D, = 20> — /(.
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Theorem 4.2. Let M be a simple A-algebra in a A-variety M as described

above and L = MOA be the corresponding Lie algebra. Then

1. L = Cy if M has a basis {s, a;;|1 < i < j < {}, where a;; €
M9i—12i2j-12j) -

2. L = By if M has a basis {s, a;j, a;|1 < i < j < {}, where a;; €
Mgi—12i2j-125), @i € M2i—12i)-

3. L = Doypry or Coepq tf M has a basis {s, a;j, a;, bi, N1 < i< j </},
where a;; € Mg;—1,2i2j-1,2j) and the multiplication rules are given by (15) or (16).

4. L is a Lie algebra of type E; or Eg, if M = {o| M, #0} = & or &.

Proof. 1. By Theorem [GG], a A-algebra M has a module V with a basis
{vi,. ., v}, vi € Vigi12s. This M-module admits an M-invariant bilinear
form given by (v;,vj) = d;;. Note that if a M-module V = V@ > &V, admits
an M-invariant symmetric bilinear form f, then the corresponding L-module

W = VOA admits a L-invariant symmetric bilinear form as follows:

Moreover, f is symplectic (orthogonal) if and only if the restriction of f to
Vo @ Vp is symplectic (orthogonal). In our case, V5 @ Vj = 0 hence this form is
non-degenerate and symplectic. As dim W = 4¢ and dim L = 8(? — 2/, we have
that L = Cyy.

2. and 3. In all this cases M has a module V' with a basis {v,..., v, p, 7}
described in Theorem 3.1, with v; € V(g;_1,2;). The M-module V' admits an M-
invariant bilinear form given by (v;,v;) = d;; and (A, p) = 0, (A, A) = (i, ) =
1, if M has multiplication rules defined by (15) or (v;,v;) =d;; and (A, pu) = 1,
(A A) = (i, ) = 0, if M has multiplication rules defined by (16).

In the first case, the corresponding L-invariant bilinear form on the L-module
W = VOA is orthogonal and, in the second case, it is symplectic. As dim L =

82+ 60+ 1, then L = Dysyq in the first and L = Cyyq, in the second case.
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4. We prove this statement in the case & . The case &; is a corollary of this.

By definition, a Lie algebra L over a field k of characteristic 2 is a Lie
algebra of type Fjg if there exists a Z-form Lz of the Lie algebra L over the
field C of all complex numbers such that L = Lz ®7 k.

Let £ be the Lie algebra of type FEs over the complex field C constructed
in [?] with a basis

{61, fla"'7€8a f87 hlv"'7h8a (O-nu)v,ugo-eéé}

and multiplication rules stated by Theorem 1 [?].

Let Lz be a Z- module with generators

. L1
{ei,fi, hi,lzl,...,8, (0'7[L),h :§(GZ}L1),[L§0€€8}

Note that [Lz,Lz] C Lz, since for Ny =, pU) = o we have, by Theorem
1 [?], that

(0,0)(0,0) = (DS b= SRy /2 = (<)M =S hy),

i€y jey jey
1 _ _
(o mh” = 5(fpnr| = |EO7|)(o,pu), where =0\ p. (22)
But (|pun7t| —|zn7]) =(ont| =2 |a0n7]|)=lon7|=0(mod2).

Hence (o,p)h™ € Lyz.
Now we prove that L = Lz ®z k. Define £ : L — Lz ®z k given by
5(61) = €, f(fz) = fia 5(0-7“) - (U7M)7 5(h1> - hl §<ha) = h7. (NOte

that although the notation for the elements is the same, they are in two diferent

algebras.)

To prove that £ is an algebra isomorphism, it is enough to prove that

(o, w)h?) = [§(o 1), E(RF)] ().

(o) = (25 4 o nul) elto )
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and by (22)

§((o, 1) £(h7) = %(I pne | = TEne])E((o,wm).

Now since 3(|uNe| — [EN¢|) = —5(lune| + [ENe N+ [une|=
—1(one| + |pnel|= @ + | N pl, the equality (*) holds.
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