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Abstract

1 Introduction

Consider the following counting problem of selection. Suppose that we have
the set of balls such that every ball a is labeled by a pair of numbers (a1, a3).
For every finite set N of such balls and a € N we define the numbers

tn(a) = [{b € Niby = ar}|

aj(N) = [{a € Nty (a) = i}|/i

and a vector a(N) = (a1 (N), az2(N),...) € P = {(a1, a2, ...)|a; € Zy,m,Vn >
m : ap, = 0}. We shall call the vector a(N) the type of the set N. Now con-
sider n numerated boxes with our balls such that the i-th box contains only
i balls: (1,14), (2,1), ..., (%,1)-

Definition 1 Let o € P and denote by K[} the number of ways to choose a
set of balls of the type a from the given n boxes such that from one box we
can take no more than one ball.

In the present work we begin the study of the function K[} as the function
of n and «. We shall find the recurrence relation for this function and prove
some properties of it as the function of n and «. As application of this
study we shall resolve the following differential equation over finite field of
p elements:

where f € Zp[[z]].



2 Preliminaries

For every vector a = (a1, g, ..., &) € P we can define the following num-
bers:

|| = iai, ||| = iiai, (a) = ﬁai!((i 1))

and partial operators 0;,7 = 1,2, .. such that

Bo — (1 — 1,0, ...), ifi=1and a; >0 (1)
) (ary 01+ 1,05 — 1 ayg,..) ifi>1and a; >0

For every x and positive integer k set:
e =gz —1)..(z -k +1).

Let p be interger positive number,denote by Q(p) the ring of the p-intergers
numbres, recall that a number a = n/m,n,m € Z is called p-interger if

(n,p) =1

Theorem 1 Function K] satisfies the following recurrence relation:

Kt = Ko+ Y (i1 + DEG o + (n — [lof| + 2)K, 4 (2)
=2

where o € Z.
Moreover there exists a unitary polinomial fo(z) € Q[z] of degree |a| —1

such that

n+ D417 (n
PEELID A0 5

and fo(x) € Qplz], if p is a prime number, p > ||of| + 1.

Proof. By definition, K7t = | M|, where M2 is the set of the selec-
tions of type « from the (n + 1) boxes as it was desribed in the Introduc-
tion. It is obvious that M2t = M? U M7 T, where M? ! = MI L\ ME.
We have by construction that every selection a € M?*! contains a ball §,
with the second lable (n + 1) hence M2t! = U M;, where M; = {a €
M t,(8,) = i}. Note that a € M; if and only if a(a \ {0,}) = d;a. But
if a is a selection of the type 0;a then the (n + 1)—th box contains ex-
actly (aj—1 + 1),(respectivly (n — |a| + 2),) balls such that the selection a



with any of those balls has the type «a, if i > 1 (respectivly i = 1). Hence
|M;| = (i1 + 1)K}, if i > 1 and [M1]| = (n — |a| +2) K, . From here the
formula (2) follows.

To prove formula (3) note that K7 = 0 if 0 < n < ||a|| by definition.
Hence formula (2) defines the function K} for all n. We shall prove (3) by
induction on ||e||. If we put together all equalities (2) for 0 < n < s then
obtain:

m S S
K =Kg+) (i +1) Y Kjo+ ) (n—|lol] +2)K5,  (4)
=2 n=0 n=0
Note that for intergers k£ and s there exist rational numbers ay, ..., ax such
that

S

>onkF=nf (K + 1) +Zaz (5)

n=0
By induction from (4) and (5) follows that K§+1 is a polynomial on s of
degree || + ||@||- Then formula (2) is valid for all n € Z.
As we note K} = 0if 0 <n < ||a||. Moreover from (2) we have

0=K2=K, +Zazl+ DKL+ (1= llal) K5 (6)
=2
If a = (1,0,0,..) then ||a|| = 1 and (6) implies that K, = 0. If o # (1,0,...)
then using induction on ||c||, one obtains from (6) that K, = 0. From here
we can obtain that el
«
Ky = Sl @
To
where r,, € Q and f,(z) is a unitary polynomial degree || — 1. By induction
on ||a|| we shall prove that r, = (). Substituting (7) in (2) and canceling
(n+1)n(n —1)...(n — ||a|| + 2) we obtain:

(n+2faln+1) _ (n—|o] +1)fa(n)

+
Ta Ta
zm: Qi1 +1 f(?loz( ) (’)’L— |a| +2)f81a(n)
+ .
= i) (O1c)
Since ||a|| = ||8Z-a|| + 1,|8ioz| = |af, if 4 > 1 and |01e| = |a| — 1 then

all-1

comparing the coefficients of we have:

(lel) 1=l | (st ) | 1
Ta Ta <a,0é> <810£>

=2



lall + o _ X204+ Dai + 200 _ 32, dai + 3577 i
ra (@) - (o)
hence r, = ().
Let p be a prime number and p > ||a|| + 1, we have to prove that
fa(z) € Qyplx]. Tt is obvious that we can write

o+l .
K] = Z al,(n+ 1)[1]
i=|lal[+1

and fo(z) € Q(p[7] if and only if al, € Qp),i = |lal| +1,...; |a] + ||,
because (a) € Q(p)-

By induction on |a| + ||a|| we have Kgﬂ =0 for |8 + [|18]| < |a| + |||
and j = —1,0,1,...,]|8|| — 1. Hence for j = 0,1,...,||a|| — 2 we have from
(2):

KPHi _ gPpHi—l =, (8)
Here and above a = b means a = b(mod p).
Note that pal,,i = ||e|| +1,...,||e|| + |a| and @, = ||a|| + 1,...,p — 1
are p-intergers. Indeed,
. . i_l - -
ap = (K = Y abil)/il

i=llefl+1

and now it is enougt to note that || + ||| < 2||ef| < 2(p — 1).

From here we have for j = —1,0,...,|a| + ||
llal[+]ef : j
Kpti =3y° Hallil ai,(p+j+ 1)1
ZIIOLIH-IOLI i (p+j+ 1)l )

ST G (p - + D
Zpﬂﬂpaa[(p +5+ 1) /p).

From (8) and (9) hence that the numbers

pHj+1 o o
Aj= 3 ablG+ D - DI - jip — i (10)
i=p
are p-intergers for j = 0,..., ||a|| + |a/-

Now we shall prove the following usufull property of K :



Proposition 1

—|8]|-n—2
ﬂ;(_l)HﬂKgﬂ‘FnKaﬂg n =0. (11)
<a

Proof. We shall prove this identity by induction on ||| and with fixed |||
on n. It is obvious that it is enougt to prove (9) for all n > —1. For n = —1

it is obvious since Kgﬁnfl =0 and K;! = 0. And now:

Z(—1)Hﬂ”KgﬂHij_lK;ﬂZH*n*?' = (from (2)) =
p<a
(_1)||aHK|OlaH+n+1_l_
Y peal(—1) Bl K A (g A= =2
X1 (i1 =Bia+ ) Ko o = (=118l =m=3—llall+|B+2 K50 5 ") =
(=) el (a5 (o + DY 4 (|l [+ 41— || o] [+2) K S )4
K12 s (i + DK, + (n+ ||al| + )K"+
Eo<,@<a(—1)HB”(K,|5JﬂH+n+
S (Bict + DEYIT™ + (18I +n — |18I] +2) Ky i o2
Sy Spcal DI iy — Bioy + KR IAIZA=0y
(n+ [la] +1) Spea(~1)BIENITr g, IR0
(~1)l 5 4+ Sy (i + 1)((-1) N K™ — K ¥+
Yo Yocpea=DIP (Bimt + 1)Kg1,’3ﬂ”+”K;ﬂg”_”_2_

+n+1 7—[|8][-n—3
Diso Z,B<a(—1)”ﬂ”(ai—1 —Bi-1+ 1)Kgﬂ“ " K8¢|(|5!ﬂ)n +



+ +n g—|B]|—n—2
(n+ 2)(~1)lel KI5 g o (1) BRI g 18n=2)

(n+ [le| + 1) (K% + > (- |IﬂHKHf3||+”+1K |Bll—n—3

ha

01(a—p)
B<a

Note that:

=[1Bll-n-2 _
Yy Yocpeal=1) (Bt + DEYIT RIS =
— D)+, )K”V“”‘“K 7|l -n—3 _

0;a—0; 3

2’;2 ZO<7<6¢0¢(

Bll+n+1 B||-n-3
Z S (1B g K g 8ln
= 20<,6<6a

(12)

(13)

since (—1)llel==CD"%1 e 005 0, and o — 8 = d,a — 88, ||8]] = ||8:8]] + 1

if 8; > 0.
Moreover,

(-1 )||aHK||°‘||+"_|_ Z ||f3HKHﬂ||+nK HﬂH—" 2 _
0<f<a

—|lyl|-n—3
> (YRR T = sy
0<y<dra
since ||f|| = ||016]| + 1 and 1o — 1S = — B, if p1 > 0.
By analogy

3 [18l+n+1 g —||Bl|—n—3 _
Kalz +Zg< (— )IIﬂHK Kl(a P

[Bll4+n+1g-—1Bll-mn—3 _ on+1
/Bza (- )||ﬂHK K PR gla’
<o

since 01(a — ) = 01 — B.
Substituting (10),(11) and (12) in (9) we obtain

St = (C1)1 5+ S (s + DS+ (fal] — 1)SEEL
1=2

From here by induction we have S?*! = 0. Proposition is proved.

(14)



Corollary 1 Let p be a prime number, then
+ —||18]|-n—2
Yp<a(—1) PIKLP TP 2 — g,

Consider the following interpretation of function K.

The symmetric group S, acts naturally on the ring k[z1, ..., z,] : (z;)7 =
Zgi- Denote by A(zi,..,z,) = A, = A the set of all monomials from
1,y ...,Zp. For v,w € A we shall wright v ~ w if v = w for some o € §,,. If
N is a selection of balls as in the Introduction with the first lable < n then
we can construct the corresponding element v(N) € A :

v(N) = [laen Tar-

If M is another selection of balls then we have:

v(N) ~v(M) <= a(N) = a(M). (16)

For every v € A denote by {v} = {v}, equivalence class: {v} = {w €
Aplw ~ v}. It is obvious that {v} contains a unique monomial of the form:
xl"‘xalmil—l—l"'xil—f—az"‘J:I(il—l—...—l—ak,l—l—l"'xloczl—i—...—f—ak’ where o; € Z,. In this
case equivalence class {v}, we denote by {a}, = {a} and },,c(,y, w denote
by v7, where a = (a1, ..., o). Note that for a selection of balls N :

v(N) € {a} if and only if a = a(N).

Denote by o (x1, ..., 7,) the standart symmetric function:

n

(x —z1)(x — z9)...(x — x,) = Z(—l)ia,’;(xl, ooy T )T (17)
=0
Definition 2 Let f(z1,...,2,) € Q[z1,...,2zs] and o € P. If f(z1,...,x,) =
> wea fov then by definition
Oé(f(fll']_, ,5571)) = Z’ue{a} fU'

And now we can prove:

Proposition 2 K? = a(a'rla“(:cl,xl + L9y ey T+ e + T))

Proof. First we note that for « € ZT* and v € {a},, f, # 0 implies
||a|| = degv. By definition, K7 is a number of ways to choose the a-type
selections from n boxes if a i—th box contains the balls (1,1), (2,4), ..., (i, %)
or K} = |[M}|, where

Mg = {0, = [(ilajl),"'a(it,jt)”l <ip <ig <. <ip <my1 < g <
is,a(a) = a}.

Define on the set M} an equivalence ~:

Va,b € MZ :a ~ b if and only if v(a) = v(b).



Let M, ..., M, be equivalence classes of M. Then K7 = Y i_, | M.
Note that f, = |M;| if v = v(a),a € M;, which proves Proposition.

Corollary 2 Y ,cs 04(To1, -y Tol + .. + Ton)) = >ljal=t KGva-

Theorem 2 Let R = Zy[[z]] be a ring of power series of x over the field of
p elements for prime p. Then for every f € R we have

D)) fA(PHE? =0 (18)
ptl
Prove. Let f(z) = Y%°,a;z' be an arbitrary element from R. A

straightforward calculation shows that the coefficient of z™ in the left part
of (14) is the following;:

E cil...ip_1a'i1"'a'ip_1

y —
(21 cenlp 1)€Fn

[’il(’il + 19 — 1)(’i1 + 99 + 13 — 2)...(’i1 + ...+ ’ip_Q —-p+ 2)—
(4. Fip_)(l1 + o Fip—1 = 1)@ + .o +ip1 —p+ 2)],
where I',, = {(‘il, ---aip—l)"ij S Z+,’i1+...+’ip_1 = n+p—2}, C(‘il, ---aip—l) =
C(’igl, ...,ia(pfl)),VO' S Spfl and C(il, ...,’l.pfl) = 1/]1']5', ifi; =...= ’1:_7'1 <
Uil = o = ity < oo < Gjitotjomitl = wobjifotss = Ip—1-
Now the Theorem follows from the following

Proposition 3 In the ring of polynomials from x1,...,x,—1 with intergers
coefficients we have the following comparison modulo p:
@1+ F+rp )1+t — 1)z + o+ zpo1 —p+2) =

Z To1(To1 + To2 — 1) (To1 + oo + Top—1) — P + 2)(mod p).  (19)
O'ESP_l

Proof. Introduce the new variables:y = y1 + ... + yp—1, i = z; — 1,1 =
1,...,p — 1. Then (15) we can rewrite in the following form:

(y—1)(y—2)..(y—(p—1)) =

> Wor + V)Wor + Yoo + 1)ee-(Yoy + - + Yo,y + 1)(modp).  (20)
0ESp_1

But
W—Dy—2)..(y—(p—1) =9y ' -1, (21)



And from (15) with z = —1 we have:
i+ D +ye+ 1) (yi+..+ypa+1) =

p—1
D op (Y yr  Y2s e Y1 o+ Ypo1), (22)
=0

hence from (19),(20) and Corollary 3 we can rerite the equality (18):

p—1
1 — 1= -+ Y J[Wor + - +yoi)+

0€Sp—1 1=1
p—2
Z Z 02—1(%1, oy Yol + - F Yo(p—1)) = 0. (23)
0ESp—1 i=1
We prove that
p—2
S= 3 Y op 1o, Yo + oo+ Yop-1)) = 0. (24)

O'ESpfl =1

Lemma 1 If g € Q[z1,...,zn],h € Q[zpt1,...,ZTm] and f = gh then for
a € P we have

a(f) = Xp<a B(g)(a = B)(h).

Proof. Let Ay and A, be the sets of monomials from z1,...,z, and
Tpt1, -, T respectivly. Note that for v € A; and w € Ay if v € {b} and
w € {g} we have that vw € {8 + v}. And now if g = Y gcn, gov,h =
> weA, hww then

alf) =algh) =a(}_ D ghow) = D ghw=

U vW=U vw=uc{a}

Y3 Y ghe=3(Y @) 3 k) =alg)alh).

BLave{B} we{a—p} B<La ve{B} we{a—p}
Lemma is proved. Note that y,_1 =y —y1 — ... — yp_2 and substitute y,_1
in (22) we receive:
—1 -1
S = Z?:l g€S(j) Zf:l

az)—l(ydla s Yol o Yo(i—1)2Y = Yo(j+1) = = — Yo(p—1)s -+ y) =

9



Sheo Ley®,
where Sy = {0 € Sp_1|0(i) = p — 1}. Using the fact that that

1 _
O'n(mla yLj—1,Y — Tjy--y Y — -’If'n—lay)_

n—j+1 j—1

Z PO (=1) Rk (@1 yo1)0h (@ ey )]
1=0

and o7 () =0, if m > n we calculate Ly, :

-5 ¥ Ty

j=10€Sjy i=1 =0

1oty s Yot F oo+ Yo(=1)) Tyt Yo(p—1)s -+ Yo (1) — = — Yo(p—1))-

Hence for a € P we have from Lemma 1:
p—245—-1

5 30303 3D IINEIRE

Jj=lo€S(y i=1 1=0 B<a,||B||=l

B0} 1 (Yo1, -y Yor Ao (1)) (@=B) (05 (Yo (p—1)s s Yo (1) = Yo (p—1)))-

Note that every terms in the last sum does not depend of o € Sj, |S;| =
(p —2)! =1, ||a|| =i. We have from Proposition 2 and Corollary 2:
oLy) = (1) * Tpen K5 K2 = 0.
Finally, one can prove 31m11arly that

Z O’ﬁ:%(y(ﬂa - Yol + ...+ U(p — ]_)) = yp_1
UESp_l

Proposition and, hence Theorem 2, is proved.
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