One combinatorial function and its aplication

A. Grishkov

E-mail: grishkov@ime.usp.br

Abstract

1 Introduction

Consider the following counting problem of selection. Suppose that we have the set of balls such that every ball a is labeled by a pair of numbers (a_1, a_2) . For every finite set N of such balls and $a \in N$ we define the numbers

$$t_N(a) = |\{b \in N | b_1 = a_1\}|$$

$$\alpha_i(N) = |\{a \in N | t_N(a) = i\}|/i$$

and a vector $\alpha(N) = (\alpha_1(N), \alpha_2(N), ...) \in P = \{(\alpha_1, \alpha_2, ...) | \alpha_i \in \mathbf{Z}_+, m, \forall n > m : \alpha_n = 0\}$. We shall call the vector $\alpha(N)$ the type of the set N. Now consider n numerated boxes with our balls such that the i-th box contains only i balls: (1, i), (2, i), ..., (i, i).

Definition 1 Let $\alpha \in P$ and denote by K_{α}^{n} the number of ways to choose a set of balls of the type α from the given n boxes such that from one box we can take no more than one ball.

In the present work we begin the study of the function K_{α}^{n} as the function of n and α . We shall find the recurrence relation for this function and prove some properties of it as the function of n and α . As application of this study we shall resolve the following differential equation over finite field of p elements:

$$\underbrace{(...(f'f)'f)'...f)'f}_{p-1} = 0,$$

where $f \in \mathbf{Z}_{\mathbf{p}}[[x]]$.

2 Preliminaries

For every vector $\alpha = (\alpha_1, \alpha_2, ..., \alpha_m) \in P$ we can define the following numbers:

$$|lpha| = \sum_{i=1}^m lpha_i, ||lpha|| = \sum_{i=1}^m ilpha_i, \langlelpha
angle = \prod_{i=1}^m lpha_i! ((i+1)!)^{lpha_i}$$

and partial operators ∂_i , i = 1, 2, ... such that

$$\partial_i \alpha = \begin{cases} (\alpha_1 - 1, \alpha_2, \dots), & \text{if } i = 1 \text{ and } \alpha_1 > 0\\ (\alpha_1, \dots, \alpha_{i-1} + 1, \alpha_i - 1, \alpha_{i+1}, \dots) & \text{if } i > 1 \text{ and } \alpha_i > 0 \end{cases}$$
(1)

For every x and positive integer k set:

$$x^{[k]} = x(x-1)...(x-k+1).$$

Let p be interger positive number, denote by $\mathbf{Q}(p)$ the ring of the p-intergers numbers, recall that a number $a=n/m,n,m\in\mathbf{Z}$ is called p-interger if (n,p)=1

Theorem 1 Function K_{α}^{n} satisfies the following recurrence relation:

$$K_{\alpha}^{n+1} = K_{\alpha}^{n} + \sum_{i=2}^{m} (\alpha_{i-1} + 1) K_{\partial_{i}\alpha}^{n} + (n - ||\alpha|| + 2) K_{\partial_{1}\alpha}^{n}$$
 (2)

where $\alpha \in \mathbf{Z}_{+}^{\mathbf{m}}$.

Moreover there exists a unitary polinomial $f_{\alpha}(x) \in \mathbf{Q}[x]$ of degree $|\alpha|-1$ such that

$$K_{\alpha}^{n} = \frac{(n+1)^{[||\alpha||]+1} f_{\alpha}(n)}{\langle \alpha \rangle} \tag{3}$$

and $f_{\alpha}(x) \in \mathbf{Q}_{p}[x]$, if p is a prime number, $p > ||\alpha|| + 1$.

Proof. By definition, $K_{\alpha}^{n+1} = |M_{\alpha}^{n+1}|$, where M_{α}^{n+1} is the set of the selections of type α from the (n+1) boxes as it was desribed in the Introduction. It is obvious that $M_{\alpha}^{n+1} = M_{\alpha}^{n} \cup \bar{M}_{\alpha}^{n+1}$, where $\bar{M}_{\alpha}^{n+1} = M_{\alpha}^{n+1} \setminus M_{\alpha}^{n}$. We have by construction that every selection $a \in \bar{M}_{\alpha}^{n+1}$ contains a ball δ_{a} with the second lable (n+1) hence $\bar{M}_{\alpha}^{n+1} = \bigcup_{i=1}^{n+1} M_{i}$, where $M_{i} = \{a \in \bar{M}_{\alpha}^{n+1} | t_{a}(\delta_{a}) = i\}$. Note that $a \in M_{i}$ if and only if $\alpha(a \setminus \{\delta_{a}\}) = \partial_{i}\alpha$. But if a is a selection of the type $\partial_{i}\alpha$ then the (n+1)-th box contains exactly $(\alpha_{i-1}+1)$, (respectivly $(n-|\alpha|+2)$,) balls such that the selection a

with any of those balls has the type α , if i > 1 (respectively i = 1). Hence $|M_i| = (\alpha_{i-1} + 1)K_{\partial_i\alpha}^n$ if i > 1 and $|M_1| = (n - |\alpha| + 2)K_{\partial_1\alpha}^n$. From here the formula (2) follows.

To prove formula (3) note that $K_{\alpha}^{n}=0$ if $0 \leq n < ||\alpha||$ by definition. Hence formula (2) defines the function K_{α}^{n} for all n. We shall prove (3) by induction on $||\alpha||$. If we put together all equalities (2) for $0 \leq n \leq s$ then obtain:

$$K_{\alpha}^{s+1} = K_{\alpha}^{n} + \sum_{i=2}^{m} (\alpha_{i-1} + 1) \sum_{n=0}^{s} K_{\partial_{i}\alpha}^{n} + \sum_{n=0}^{s} (n - ||\alpha|| + 2) K_{\partial_{1}\alpha}^{n}$$
 (4)

Note that for intergers k and s there exist rational numbers $a_0, ..., a_k$ such that

$$\sum_{n=0}^{s} n^{k} = n^{k+1}/(k+1) + \sum_{i=0}^{k} a_{i} n^{i}$$
 (5)

By induction from (4) and (5) follows that K_{α}^{s+1} is a polynomial on s of degree $|\alpha| + ||\alpha||$. Then formula (2) is valid for all $n \in \mathbf{Z}$.

As we note $K_{\alpha}^{n} = 0$ if $0 \leq n < ||\alpha||$. Moreover from (2) we have

$$0 = K_{\alpha}^{0} = K_{\alpha}^{-1} + \sum_{i=2}^{m} (\alpha_{i-1} + 1) K_{\partial_{i}\alpha}^{-1} + (1 - ||\alpha||) K_{\partial_{1}\alpha}^{-1}$$
 (6)

If $\alpha = (1, 0, 0, ...)$ then $||\alpha|| = 1$ and (6) implies that $K_{\alpha}^{-1} = 0$. If $\alpha \neq (1, 0, ...)$ then using induction on $||\alpha||$, one obtains from (6) that $K_{\alpha}^{-1} = 0$. From here we can obtain that

$$K_{\alpha}^{n} = \frac{n^{[||\alpha||]} f_{\alpha}(n)}{r_{\alpha}},\tag{7}$$

where $r_{\alpha} \in \mathbf{Q}$ and $f_{\alpha}(x)$ is a unitary polynomial degree $|\alpha| - 1$. By induction on $||\alpha||$ we shall prove that $r_{\alpha} = \langle \alpha \rangle$. Substituting (7) in (2) and canceling $(n+1)n(n-1)...(n-||\alpha||+2)$ we obtain:

$$\frac{(n+2)f_{\alpha}(n+1)}{r_{\alpha}} = \frac{(n-|\alpha|+1)f_{\alpha}(n)}{r_{\alpha}} +$$

$$\sum_{i=2}^{m} \frac{(\alpha_{i-1}+1)f_{\partial_{i}\alpha}(n)}{\langle \partial_{i}\alpha \rangle} + \frac{(n-|\alpha|+2)f_{\partial_{1}\alpha}(n)}{\langle \partial_{1}\alpha \rangle}.$$

Since $||\alpha|| = ||\partial_i \alpha|| + 1, |\partial_i \alpha| = |\alpha|$, if i > 1 and $|\partial_1 \alpha| = |\alpha| - 1$ then comparing the coefficients of $n^{||\alpha||-1}$ we have:

$$\frac{(1+|\alpha|)}{r_{\alpha}} = \frac{1-||\alpha||}{r_{\alpha}} + \sum_{i=2}^{m} \frac{(\alpha_{i-1}+1)}{\langle \partial_{i}\alpha \rangle} + \frac{1}{\langle \partial_{1}\alpha \rangle}$$

or

$$\frac{||\alpha|| + |\alpha|}{r_{\alpha}} = \frac{\sum_{i=2}^{m} (i+1)\alpha_i + 2\alpha_1}{\langle \alpha \rangle} = \frac{\sum_{i=1}^{m} i\alpha_i + \sum_{i=1}^{m} \alpha_i}{\langle \alpha \rangle}$$

hence $r_{\alpha} = \langle \alpha \rangle$.

Let p be a prime number and $p > ||\alpha|| + 1$, we have to prove that $f_{\alpha}(x) \in \mathbf{Q}_{p()}[x]$. It is obvious that we can write

$$K_lpha^n = \sum_{i=||lpha||+1}^{||lpha||} a_lpha^i (n+1)^{[i]}$$

and $f_{\alpha}(x) \in \mathbf{Q}_{(p)}[x]$ if and only if $a_{\alpha}^{i} \in \mathbf{Q}_{(p)}, i = ||\alpha|| + 1, ..., |\alpha| + ||\alpha||$, because $\langle \alpha \rangle \in \mathbf{Q}_{(p)}$.

By induction on $|\alpha| + ||\alpha||$ we have $K_{\beta}^{p+j} \equiv 0$ for $|\beta| + ||\beta|| < |\alpha| + ||\alpha||$ and $j = -1, 0, 1, ..., ||\beta|| - 1$. Hence for $j = 0, 1, ..., ||\alpha|| - 2$ we have from (2):

$$K_{\alpha}^{p+j} - K_{\alpha}^{p+j-1} \equiv 0. \tag{8}$$

Here and above $a \equiv b \text{ means } a \equiv b \pmod{p}$.

Note that $pa_{\alpha}^i, i=||\alpha||+1,...,||\alpha||+|\alpha|$ and $a_{\alpha}^j, j=||\alpha||+1,...,p-1$ are p-intergers. Indeed,

$$a^i_lpha = (K^{i-1}_lpha - \sum_{j=||lpha||+1}^{i-1} a^j_lpha i^{[j]})/i!$$

and now it is enough to note that $|\alpha| + ||\alpha|| \le 2||\alpha|| < 2(p-1)$.

From here we have for $j = -1, 0, ..., |\alpha| + |\alpha|$

$$K_{\alpha}^{p+j} = \sum_{i=||\alpha||+1}^{||\alpha||+|\alpha|} a_{\alpha}^{i} (p+j+1)^{[i]}$$

$$\sum_{i=p}^{||\alpha||+|\alpha|} a_{\alpha}^{i} (p+j+1)^{[i]}$$

$$\sum_{i=p}^{p+j+1} a_{\alpha}^{i} (p+j+1)^{[i]}$$

$$\sum_{i=p}^{p+j+1} p a_{\alpha}^{i} [(p+j+1)^{[i]}/p].$$
(9)

From (8) and (9) hence that the numbers

$$A_{j} = \sum_{i=p}^{p+j+1} a_{\alpha}^{i} [(j+1)!(p-1)^{[i-j-2]} - j!(p-1)^{[i-j-1]}]$$
 (10)

are *p*-intergers for $j = 0, ..., ||\alpha|| + |\alpha|$.

Now we shall prove the following usufull property of K_{α}^{n} :

Proposition 1

$$\sum_{\beta < \alpha} (-1)^{||\beta||} K_{\beta}^{||\beta||+n} K_{\alpha-\beta}^{-||\beta||-n-2} = 0.$$
 (11)

Proof. We shall prove this identity by induction on $||\alpha||$ and with fixed $||\alpha||$ on n. It is obvious that it is enougt to prove (9) for all $n \ge -1$. For n = -1 it is obvious since $K_{\beta}^{||\beta||-1} = 0$ and $K_{\alpha}^{-1} = 0$. And now:

$$\begin{split} \sum_{\beta \leq \alpha} (-1)^{||\beta||} K_{\beta}^{||\beta||+n+1} K_{\alpha-\beta}^{-||\beta||-n-3} &= (\text{from } (2)) = \\ (-1)^{||\alpha||} K_{\alpha}^{||\alpha||+n+1} + \\ \sum_{\beta < \alpha} (-1)^{||\beta||} K_{\beta}^{||\beta||+n+1} (K_{\alpha-\beta}^{-||\beta||-n-2} - \\ \sum_{i=2}^{m} (\alpha_{i-1} - \beta_{i-1} + 1) K_{\partial_{i}(\alpha-\beta)}^{-||\beta||-n-3} - (-||\beta||-n-3 - ||\alpha|| + ||\beta|| + 2) K_{\partial_{1}(\alpha-\beta)}^{-||\beta||-n-3}) &= \\ (-1)^{||\alpha||} (K_{\alpha}^{||\alpha||+n} + \sum_{i=2}^{m} (\alpha_{i-1} + 1) K_{\partial_{i}\alpha}^{||\alpha||+n} + (||\alpha|| + n + 1 - ||\alpha|| + 2) K_{\partial_{1}\alpha}^{||\alpha||+n}) + \\ K_{\alpha}^{-||\alpha||-n-2} - \sum_{i=2}^{m} (\alpha_{i-1} + 1) K_{\partial_{i}\alpha}^{-n-3} + (n + ||\alpha|| + 1) K_{\partial_{1}\alpha}^{-n-3} + \\ \sum_{0 < \beta < \alpha} (-1)^{||\beta||} (K_{\beta}^{||\beta||+n} + \\ \sum_{i=2}^{m} (\beta_{i-1} + 1) K_{\partial_{i}\beta}^{||\beta||+n} + (||\beta|| + n - ||\beta|| + 2) K_{\partial_{1}\beta}^{||\beta||+n}) K_{\alpha-\beta}^{-||\beta||-n-2} - \\ \sum_{i=2}^{m} \sum_{\beta < \alpha} (-1)^{||\beta||} (\alpha_{i-1} - \beta_{i-1} + 1) K_{\beta}^{||\beta||+n+1} K_{\partial_{i}(\alpha-\beta)}^{-||\beta||-n-3} + \\ (n + ||\alpha|| + 1) \sum_{\beta < \alpha} (-1)^{||\beta||} K_{\beta}^{||\beta||+n+1} K_{\partial_{i}\alpha}^{-||\beta||-n-3} + \\ (-1)^{||\alpha||} S_{\alpha}^{n} + \sum_{i=2}^{m} (\alpha_{i-1} + 1) ((-1)^{||\alpha||} K_{\partial_{i}\beta}^{||\beta||+n} K_{\alpha-\beta}^{-||\beta||-n-2} - \\ \sum_{i=2}^{m} \sum_{\beta < \alpha} (-1)^{||\beta||} (\beta_{i-1} + 1) K_{\partial_{i}\beta}^{||\beta||+n} K_{\alpha-\beta}^{-||\beta||-n-2} - \\ \sum_{i=2}^{m} \sum_{\beta < \alpha} (-1)^{||\beta||} (\alpha_{i-1} - \beta_{i-1} + 1) K_{\partial_{i}\beta}^{||\beta||+n+1} K_{\partial_{i}(\alpha-\beta)}^{-||\beta||-n-3} + \\ (-1)^{||\alpha||} (-1)^{||\beta||} (-1)^{||\alpha||} (-1)^{||\beta||} (-1)^{||\alpha||} (-1)^{||$$

$$(n+2)((-1)^{||\alpha||}K_{\partial_1\alpha}^{||\alpha||+n} + \sum_{0<\beta<\alpha}(-1)^{||\beta||}K_{\partial_1\beta}^{||\beta||+n}K_{\alpha-\beta}^{-||\beta||-n-2}) +$$

$$(n+||\alpha||+1)(K_{\partial_1\alpha}^{-n-3} + \sum_{\beta < \alpha} (-1)^{||\beta||} K_{\beta}^{||\beta||+n+1} K_{\partial_1(\alpha-\beta)}^{-||\beta||-n-3})$$
 (12)

Note that:

$$\sum_{i=2}^{m} \sum_{0 < \beta < \alpha} (-1)^{|\beta|} (\beta_{i-1} + 1) K_{\partial_{i}\beta}^{|\beta|+n} K_{\alpha-\beta}^{-|\beta|-n-2} =
\sum_{i=2}^{m} \sum_{0 < \gamma < \partial_{i}\alpha} (-1)^{|\gamma|+1} (\gamma_{i-1}) K_{\gamma}^{|\gamma|+n+1} K_{\partial_{i}\alpha-\partial_{i}\beta}^{-|\gamma|-n-3} =
\sum_{i=2}^{m} \sum_{0 < \beta < \partial_{i}\alpha} (-1)^{|\beta|+1} (\beta_{i-1}) K_{\beta}^{|\beta|+n+1} K_{\partial_{i}\alpha-\partial_{i}\beta}^{-|\beta|-n-3}$$
(13)

since $(-1)^{||\alpha||=-(-1)^{||\partial_i\alpha||}}$, if $\alpha_i > 0$, and $\alpha - \beta = \partial_i\alpha - \partial_i\beta$, $||\beta|| = ||\partial_i\beta|| + 1$ if $\beta_i > 0$. Moreover,

$$(-1)^{||\alpha||} K_{\partial_1 \alpha}^{||\alpha||+n} + \sum_{0 < \beta < \alpha} (-1)^{||\beta||} K_{\partial_1 \beta}^{||\beta||+n} K_{\alpha-\beta}^{-||\beta||-n-2} =$$

$$\sum_{0 \le \gamma \le \partial_1 \alpha} (-1)^{||\gamma||+1} K_{\gamma}^{||\gamma||+n+1} K_{\partial_1 \alpha - \gamma}^{-||\gamma||-n-3} = S_{\partial_1 \alpha}^{n+1}, \tag{14}$$

since $||\beta|| = ||\partial_1\beta|| + 1$ and $\partial_1\alpha - \partial_1\beta = \alpha - \beta$, if $\beta_1 > 0$.

By analogy

$$K_{\partial_{1}\alpha}^{-n-3} + \sum_{\beta < \alpha} (-1)^{||\beta||} K_{\beta}^{||\beta||+n+1} K_{\partial_{1}(\alpha-\beta)}^{-||\beta||-n-3} = \sum_{\beta < \partial_{1}\alpha} (-1)^{||\beta||} K_{\beta}^{||\beta||+n+1} K_{\partial_{1}\alpha-\beta)}^{-||\beta||-n-3} = S_{\partial_{1}\alpha}^{n+1},$$
(15)

since $\partial_1(\alpha - \beta) = \partial_1\alpha - \beta$.

Substituting (10),(11) and (12) in (9) we obtain

$$S_{\alpha}^{n+1} = (-1)^{||\alpha||} S_{\alpha}^{n} + \sum_{i=2}^{m} (\alpha_{i} + 1) S_{\partial_{i}\alpha}^{n+1} + (||\alpha|| - 1) S_{\partial_{1}\alpha}^{n+1}.$$

From here by induction we have $S_{\alpha}^{n+1} = 0$. Proposition is proved.

Corollary 1 Let p be a prime number, then

$$\sum_{\beta \leq \alpha} (-1)^{||\beta||} K_{\beta}^{||\beta||+n} K_{\alpha-\beta}^{p-||\beta||-n-2} = 0.$$

Consider the following interpretation of function K_{α}^{n} .

The symmetric group S_n acts naturally on the ring $k[x_1,...,x_n]:(x_i)^{\sigma}=x_{\sigma i}$. Denote by $\Delta(x_1,...,x_n)=\Delta_n=\Delta$ the set of all monomials from $x_1,...,x_n$. For $v,w\in\Delta$ we shall wright $v\sim w$ if $v^{\sigma}=w$ for some $\sigma\in S_n$. If N is a selection of balls as in the Introduction with the first lable $\leq n$ then we can construct the corresponding element $v(N)\in\Delta$:

$$v(N) = \prod_{a \in N} x_{a_1}$$
.

If M is another selection of balls then we have:

$$v(N) \sim v(M) \iff \alpha(N) = \alpha(M).$$
 (16)

For every $v \in \Delta$ denote by $\{v\} = \{v\}_n$ equivalence class: $\{v\} = \{w \in \Delta_n | w \sim v\}$. It is obvious that $\{v\}$ contains a unique monomial of the form: $x_1...x_{\alpha_1}x_{\alpha_1+1}^2...x_{\alpha_1+\alpha_2}^2...x_{\alpha_1+...+\alpha_{k-1}+1}^k...x_{\alpha_1+...+\alpha_k}^k$, where $\alpha_i \in \mathbf{Z}_+$. In this case equivalence class $\{v\}_n$ we denote by $\{\alpha\}_n = \{\alpha\}$ and $\sum_{w \in \{v\}_n} w$ denote by v_{α}^n , where $\alpha = (\alpha_1, ..., \alpha_m)$. Note that for a selection of balls N:

$$v(N) \in \{\alpha\}$$
 if and only if $\alpha = \alpha(N)$.

Denote by $\sigma_n^i(x_1,...,x_n)$ the standart symmetric function:

$$(x-x_1)(x-x_2)...(x-x_n) = \sum_{i=0}^{n} (-1)^i \sigma_n^i(x_1, ..., x_n) x^{n-i}.$$
 (17)

Definition 2 Let $f(x_1,...,x_n) \in \mathbf{Q}[x_1,...,x_n]$ and $\alpha \in P$. If $f(x_1,...,x_n) = \sum_{v \in \Delta} f_v v$ then by definition

$$\alpha(f(x_1,...,x_n)) = \sum_{v \in \{\alpha\}} f_v.$$

And now we can prove:

Proposition 2
$$K_{\alpha}^{n} = \alpha(\sigma_{n}^{||\alpha||}(x_{1}, x_{1} + x_{2}, ..., x_{1} + ... + x_{n}))$$

Proof. First we note that for $\alpha \in \mathbf{Z}_+^{\mathbf{m}}$ and $v \in \{\alpha\}_n$, $f_v \neq 0$ implies $||\alpha|| = \deg v$. By definition, K_{α}^n is a number of ways to choose the α -type selections from n boxes if a i-th box contains the balls (1,i),(2,i),...,(i,i) or $K_{\alpha}^n = |M_{\alpha}^n|$, where

$$M_{\alpha}^{n} = \{a = [(i_{1}, j_{1}), ..., (i_{t}, j_{t})] | 1 \leq i_{1} < i_{2} < ... < i_{t} \leq n, 1 \leq j_{s} \leq i_{s}, \alpha(a) = \alpha\}.$$

Define on the set M_{α}^{n} an equivalence \sim :

 $\forall a, b \in M_{\alpha}^n : a \sim b \text{ if and only if } v(a) = v(b).$

Let $M_1, ..., M_r$ be equivalence classes of M_{α}^n . Then $K_{\alpha}^n = \sum_{i=1}^r |M_i|$. Note that $f_v = |M_i|$ if $v = v(a), a \in M_i$, which proves Proposition.

Corollary 2 $\sum_{\sigma \in S_n} \sigma_n^t(x_{\sigma 1}, ..., x_{\sigma 1} + ... + x_{\sigma n}) = \sum_{||\alpha||=t} K_{\alpha}^n v_{\alpha}^n$

Theorem 2 Let $R = \mathbf{Z}_{\mathbf{p}}[[x]]$ be a ring of power series of x over the field of p elements for prime p. Then for every $f \in R$ we have

$$\underbrace{(\dots(f'f)'f)'\dots f)'f}_{p-1} + (f^{p-1})^{(p-2)} = 0.$$
(18)

Prove. Let $f(x) = \sum_{i=0}^{\infty} a_i x^i$ be an arbitrary element from R. A straightforward calculation shows that the coefficient of x^n in the left part of (14) is the following:

$$\sum_{(i_1,...,i_{p-1})\in\Gamma_n} c_{i_1...i_{p-1}} a_{i_1}...a_{i_{p-1}}$$

$$[i_1(i_1+i_2-1)(i_1+i_2+i_3-2)...(i_1+...+i_{p-2}-p+2)-(i_1+...+i_{p-1})(i_1+...+i_{p-1}-1)...(i_1+...+i_{p-1}-p+2)],$$

where $\Gamma_n = \{(i_1,...,i_{p-1})|i_j \in \mathbf{Z}_+, i_1+...+i_{p-1}=n+p-2\}, \ c(i_1,...,i_{p-1})=c(i_{\sigma 1},...,i_{\sigma (p-1)}), \forall \sigma \in S_{p-1} \ \text{and} \ c(i_1,...,i_{p-1})=1/j_1!...j_s!, \ \text{if} \ i_1=...=i_{j_1} < i_{j_1+1}=...=i_{j_1+j_2} < ... < i_{j_1+...+j_{s-1}+1}=...i_{j_1+...+j_s}=i_{p-1}.$

Now the Theorem follows from the following

Proposition 3 In the ring of polynomials from $x_1, ..., x_{p-1}$ with intergers coefficients we have the following comparison modulo p:

$$(x_1 + ... + x_{p-1})(x_1 + ... + x_{p-1} - 1)...(x_1 + ... + x_{p-1} - p + 2) \equiv$$

$$\sum_{\sigma \in S_{p-1}} x_{\sigma 1} (x_{\sigma 1} + x_{\sigma 2} - 1) \dots (x_{\sigma 1} + \dots + x_{\sigma (p-1)} - p + 2) \pmod{p}. \tag{19}$$

Proof. Introduce the new variables: $y = y_1 + ... + y_{p-1}$, $y_i = x_i - 1$, i = 1, ..., p - 1. Then (15) we can rewrite in the following form:

$$(y-1)(y-2)...(y-(p-1)) \equiv$$

$$\sum_{\sigma \in S_{p-1}} (y_{\sigma_1} + 1)(y_{\sigma_1} + y_{\sigma_2} + 1)...(y_{\sigma_1} + ... + y_{\sigma_{p-1}} + 1) \pmod{p}. \tag{20}$$

But

$$(y-1)(y-2)...(y-(p-1)) \equiv y^{p-1} - 1, \tag{21}$$

And from (15) with x = -1 we have: $(y_1 + 1)(y_1 + y_2 + 1)...(y_i + ... + y_{p-1} + 1) =$

$$\sum_{i=0}^{p-1} \sigma_{p-1}^{i}(y_1, y_1 + y_2, ..., y_1 + ... + y_{p-1}), \tag{22}$$

hence from (19), (20) and Corollary 3 we can rerite the equality (18):

$$y_{p-1} - 1 \equiv (p-1)! + \sum_{\sigma \in S_{p-1}} \prod_{i=1}^{p-1} (y_{\sigma 1} + \dots + y_{\sigma i}) +$$

$$\sum_{\sigma \in S_{n-1}} \sum_{i=1}^{p-2} \sigma_{p-1}^{i}(y_{\sigma 1}, ..., y_{\sigma 1} + ... + y_{\sigma(p-1)}) \equiv 0.$$
 (23)

We prove that

$$S = \sum_{\sigma \in S_{p-1}} \sum_{i=1}^{p-2} \sigma_{p-1}^{i}(y_{\sigma 1}, ..., y_{\sigma 1} + ... + y_{\sigma(p-1)}) \equiv 0.$$
 (24)

Lemma 1 If $g \in \mathbf{Q}[x_1,...,x_n], h \in \mathbf{Q}[x_{n+1},...,x_m]$ and f = gh then for $\alpha \in P$ we have

$$\alpha(f) = \sum_{\beta \le \alpha} \beta(g)(\alpha - \beta)(h).$$

Proof. Let Δ_1 and Δ_2 be the sets of monomials from $x_1, ..., x_n$ and $x_{n+1},...,x_m$ respectivly. Note that for $v\in\Delta_1$ and $w\in\Delta_2$ if $v\in\{b\}$ and $w \in \{g\}$ we have that $vw \in \{\beta + \gamma\}$. And now if $g = \sum_{\beta \in \Delta_1} g_v v, h = \sum_{\beta \in \Delta_2} g_v v = \sum_{\beta \in \Delta_1} g_v v = \sum_{\beta \in \Delta_2} g_v v = \sum_{\beta \in$ $\sum_{w \in \Delta_2} h_w w$ then

$$\alpha(f) = \alpha(gh) = \alpha(\sum_{u} \sum_{vw=u} g_v h_w u) = \sum_{vw=u \in \{\alpha\}} g_v h_w =$$

$$\sum_{\beta \leq \alpha} \sum_{v \in \{\beta\}} \sum_{w \in \{\alpha - \beta\}} g_v h_w = \sum_{\beta \leq \alpha} (\sum_{v \in \{\beta\}} g_v) (\sum_{w \in \{\alpha - \beta\}} h_w) = \alpha(g) \alpha(h).$$

Lemma is proved. Note that $y_{p-1} = y - y_1 - \dots - y_{p-2}$ and substitute y_{p-1}

in (22) we receive:
$$S = \sum_{j=1}^{p-1} \sum_{\sigma \in S_{(j)}} \sum_{i=1}^{p-1} \sigma_{p-1}^{i}(y_{\sigma 1},...,y_{\sigma 1} + ... + y_{\sigma(j-1)}, y - y_{\sigma(j+1)} - ... - y_{\sigma(p-1)},..., y) =$$

 $\sum_{k=0}^{p-1} L_k y^k$, where $S_{(i)} = \{ \sigma \in S_{p-1} | \sigma(i) = p-1 \}$. Using the fact that that

$$\sigma_n^i(x_1,...,x_{j-1},y-x_j,...,y-x_{n-1},y) =$$

$$\sum_{k=0}^{n-j+1} y^k \left[\sum_{l=0}^{j-1} (-1)^{i-l-k} \sigma_{j-1}^l(x_1, ..., x_{j-1}) \sigma_{n-j}^{i-l-k}(x_j, ..., x_{n-1}) \right]$$

and $\sigma_n^m(...) = 0$, if m > n we calculate L_k :

$$L_k = \sum_{j=1}^{p-1} \sum_{\sigma \in S_{(j)}} \sum_{i=1}^{p-2} \sum_{l=0}^{j-1} (-1)^{i-l-k}$$

$$\sigma_{j-1}^l(y_{\sigma 1},...,y_{\sigma 1}+...+y_{\sigma (j-1)})\sigma_{p-j-1}^{i-l-k}(y_{\sigma (p-1)},...,y_{\sigma (j+1)}-...-y_{\sigma (p-1)}).$$

Hence for $\alpha \in P$ we have from Lemma 1:

$$\alpha(L_k) = \sum_{j=1}^{p-1} \sum_{\sigma \in S_{(j)}} \sum_{i=1}^{p-2} \sum_{l=0}^{j-1} \sum_{\beta < \alpha, ||\beta|| = l} (-1)^{i-l-k})$$

$$\beta(\sigma_{j-1}^{l}(y_{\sigma 1},...,y_{\sigma 1}+...+y_{\sigma(j-1)}))(\alpha-\beta)(\sigma_{p-j-1}^{i-l-k}(y_{\sigma(p-1)},...,y_{\sigma(j+1)}-...-y_{\sigma(p-1)})).$$

Note that every terms in the last sum does not depend of $\sigma \in S_j$, $|S_j| = (p-2)! \equiv 1$, $||\alpha|| = i$. We have from Proposition 2 and Corollary 2: $\alpha(L_k) = (-1)^{i-k} \sum_{\beta \leq \alpha} K_{\beta}^{j-1} K_{\alpha-\beta}^{p-j-2} \equiv 0$. Finally, one can prove similarly that

$$\sum_{\sigma \in S_{p-1}} \sigma_{p-1}^{p-1}(y_{\sigma 1}, ..., y_{\sigma 1} + ... + \sigma(p-1)) \equiv y^{p-1}$$

Proposition and, hence Theorem 2, is proved.

References

[1] M.Capobianco and J.Molluzo, Examples and counterexamples in graph theory, North Holland, 1978.

- [2] R.Costa and J.H.Guzzo, A class of exceptional Bernstein algebras associated to graphs, Comm. Alg. 25 (1997), No.7, 2129-2139.
- [3] Yu.I.Lyubich,

 Mathematical Structure in Population Genetics, Biomathematics, 22,
 Springer, Berlin-Heidelberg-New-York, 1992.