Simple classical Lie algebras in characteristic 2 and their graduations, II.

A. N. Grishkov* M. Guerreiro[†]

June 20, 2002

1 Introduction

This paper is a continuation of [GG]. Here we prove Conjecture 5.1 [GG]. Recall some notations and definition of [GG].

Definition 1.1. Let $I_n = \{1, ..., n\}$. We call $\mathfrak{a} \subset \mathcal{P}(I_n) = \{\sigma \mid \sigma \subseteq I_n\}$ an **even** set if for all $\sigma, \tau \in \mathfrak{a}$, we have $|\sigma| \equiv |\tau| \equiv 0$ and $|\sigma \cap \tau| \equiv 0$ mod 2.

We note that $\mathcal{P}(I_n)$ is an elementary abelian group with the operation $\sigma \triangle \tau = (\sigma \setminus \tau) \cup (\tau \setminus \sigma)$. For $\mathfrak{a} \subseteq \mathcal{P}(I_n)$, $< \mathfrak{a} >$ denotes the group generated by \mathfrak{a} .

Definition 1.2. A subset H of $\mathcal{P}(I_n)$ is **connected** if, for every partition $I_n = I \cup J$, there is $\sigma \in H$ such that $\sigma \cap I \neq \emptyset$ and $\sigma \cap J \neq \emptyset$.

Definition 1.3. A subset $\sigma \subseteq I_n$ is called \mathfrak{a} -even if $|\mu \cap \tau| \equiv 0 \mod 2$ for all $\tau \in \mathfrak{a}$. A subset $B \subseteq \mathcal{P}(I_n)$ is called an \mathfrak{a} -even set if all its elements are \mathfrak{a} -even.

^{*}Supported by FAPEMIG as visitor to the Depto. de Matemática - UFV in February 2001

[†]Supported by FAPESP as visitor to IME-USP in February 2000

For an even set $\mathfrak{a} \subset \mathcal{P}(I_n)$, we construct an algebra $\tilde{S} = \tilde{S}(\mathfrak{a})$ with basis $\{e_i, h_i, f_i, h^{\sigma} | i \in I_n, \sigma \in <\mathfrak{a} > \}$ and multiplication given by

$$e_i f_i = h_i,$$
 $e_i h^{\sigma} = e_i,$ $f_i h^{\sigma} = f_i,$ for $i \in \sigma$, (1)

and zero for any other cases. Denote $h_{\mu} = \sum_{i \in \mu} h_i$, $h_{\emptyset} = 0$.

It is easy to show that the algebra $\tilde{S}(\mathfrak{a})$ contains a central ideal I generated by $\{h^{\sigma} + h^{\tau} + h^{\sigma \triangle \tau} + h_{\sigma \cap \tau} \mid \sigma, \tau \in <\mathfrak{a}>\}$. We denote $S(\mathfrak{a}) = S = \tilde{S}(\mathfrak{a})/I$.

For every \mathfrak{a} -even set σ , define an S-module Λ_{σ} whose basis is $\{(\sigma, \mu) \mid \mu \subseteq \sigma\}$ and the S-action is given by

$$(\sigma, \mu) e_{i} = (\sigma, \mu \cup i), \quad i \in \sigma \setminus \mu;$$

$$(\sigma, \mu) f_{i} = (\sigma, \mu \setminus i), \quad i \in \mu;$$

$$(\sigma, \mu) h_{i} = (\sigma, \mu), \quad i \in \sigma;$$

$$(\sigma, \mu) h^{\varphi} = \left(\frac{|\sigma \cap \varphi|}{2} + |\varphi \cap \mu|\right) (\sigma, \mu), \text{ for } \varphi \in \mathfrak{a},$$

$$(2)$$

and for any other cases the action is zero.

Now let $\Delta = \{0\} \cup \mathfrak{a}$.

Definition 1.4. An algebra A is called a Δ -algebra if $A = \sum_{\alpha \in \Delta} \oplus A_{\alpha}$ and, for every $\alpha \neq \beta \in \mathfrak{a}$, we have $A_{\alpha} A_{\beta} \subseteq A_{\alpha \triangle \beta}$, $A_0^2 \subseteq A_0$, $A_0 A_{\alpha} \subseteq A_{\alpha}$, $A_{\alpha} A_{\alpha} \subseteq A_0 + A_{\emptyset}$ and $A_0 A_{\emptyset} = 0$.

Define a commutative Δ -graded algebra Λ as follows. As a k-space, Λ is

$$\Lambda = \Lambda_0 \bigoplus \sum_{\sigma \in \mathfrak{a}} \oplus \Lambda_\sigma , \quad \text{where } \Lambda_0 = S(\mathfrak{a}) . \tag{3}$$

Moreover, $S = S(\mathfrak{a})$ is a subalgebra of Λ and, by (2), each Λ_{σ} is an S-module. For $\sigma \neq \tau \in \mathfrak{a}$, the multiplication is given by

$$(\sigma, \mu) (\tau, \varphi) = (\sigma \triangle \tau, (\mu \setminus \tau) \cup (\varphi \setminus \sigma)), \text{ if } \mu \cap \varphi = \emptyset, \ \mu \cup \varphi \supset \sigma \cap \tau.$$
 (4)

$$(\sigma, \mu) (\sigma, \varphi) = \begin{cases} e_i, & \mu \cap \varphi = i, \ \mu \cup \varphi = \sigma, \\ f_i, & \mu \cap \varphi = \emptyset, \ \mu \cup \varphi = \sigma \setminus i, \end{cases}$$

$$h^{\sigma} + \sum_{i \in \varphi} h_i + (\emptyset, \emptyset), \quad \mu \cap \varphi = \emptyset, \ \mu \cup \varphi = \sigma,$$

$$(5)$$

and all other products are zero.

Recall the definition of the product of two Δ -algebras. Let $A = \sum_{\alpha \in \Delta} \oplus A_{\alpha}$ and $B = \sum_{\alpha \in \Delta} \oplus B_{\alpha}$ be two Δ -algebras. Then $A \square B = \sum_{\alpha \in \Delta} \oplus A_{\alpha} \otimes B_{\alpha}$ is a Δ -algebra with multiplication $[\cdot, \cdot]$ given by

$$[a_{lpha}\otimes b_{lpha},\ a_{eta}\otimes b_{eta}] \,=\, \sum_{\gamma\in\Delta}\, c_{\gamma}\otimes d_{\gamma}\,, \qquad ext{if}\ \ a_{lpha}a_{eta} \,=\, \sum_{\gamma\in\Delta}\, c_{\gamma}\,,\ b_{lpha}b_{eta} \,=\, \sum_{\gamma\in\Delta}\, d_{\gamma}.$$

Proposition 1.1. Let \mathfrak{a} be an even set, $\langle \mathfrak{a} \rangle$ be the group generated by \mathfrak{a} , $\Lambda = \Lambda(\langle \mathfrak{a} \rangle)$ and $\Delta = \{0\} \cup \mathfrak{a}$. Let $M = M_0 \oplus \sum_{\sigma \in \mathfrak{a}} \oplus M_{\sigma}$ be a commutative Δ -algebra. Then the algebra $L = \Lambda \Box M$ is a Lie algebra if and only if M satisfies a list of Δ -identities given in Proposition 3.1 [GG].

We recall some of the Δ -identities which will be used in this paper. $\sigma \Delta \tau \neq$

$$\mu a_{\sigma} b_{\tau} \cdot c_{\lambda} + b_{\tau} c_{\lambda} \cdot a_{\sigma} + c_{\lambda} a_{\sigma} \cdot b_{\tau} = 0, |\sigma \cap \tau \cap \lambda| = 0, \sigma \neq \tau \neq \lambda \neq \sigma \neq \tau \triangle \lambda, (6)$$

$$(a_{\sigma} b_{\sigma})_{\emptyset} c_{\tau} = 0, \qquad (a_{\sigma} b_{\sigma})_{\emptyset} c_{\tau} = 0, (a_{\sigma} b_{\sigma})_{0} c_{\tau} = a_{\sigma} c_{\tau} \cdot b_{\sigma}$$

$$(a_{\sigma} b_{\sigma})_{\emptyset} c_{\tau} = 0, (a_{\sigma} b_{\sigma})_{0} c_{\tau} = a_{\sigma} c_{\tau} \cdot b_{\sigma}$$

$$(a_{\sigma} b_{\sigma})_{\emptyset} c_{\tau} = 0, (a_{\sigma} b_{\sigma})_{0} c_{\tau} = a_{\sigma} c_{\tau} \cdot b_{\sigma}$$

$$(a_{\sigma} b_{\tau})_{\emptyset} c_{\tau} = 0, (a_{\sigma} b_{\sigma})_{\emptyset} c_{\tau} = 0, (a_{\sigma} b_{\sigma})_{\emptyset} c_{\tau}$$

$$(a_{\sigma} b_{\sigma})_{\emptyset} c_{\tau} = 0, (a_{\sigma} b_{\sigma})_{$$

(15)

We observe that $L = \Lambda \square M$ is not necessarily a simple algebra, even though M is simple, but L/Z(L) is simple, where Z(L) is the center of L.

2 Novo artigo

Let \mathfrak{a} be an even connected set, $\langle \mathfrak{a} \rangle$ be the group generated by \mathfrak{a} , and $\Delta = \{0\} \cup \mathfrak{a}$. Let \mathcal{M} be the variety of Δ -algebras satisfying the list of identities of Proposition 3.1 [GG]. Let $M = M_0 \oplus \sum_{\sigma \in \mathfrak{a}} \oplus M_\sigma \oplus M_\emptyset$ be a commutative

 Δ -algebra in \mathcal{M} . In [GG] (see Theorem 3.1 [GG]) we classified the simple Δ -algebras of the variety \mathcal{M} , for which $M_{\emptyset} = 0$. Now we consider the case when $0 \neq M_{\emptyset}$ is abelian.

Recall the S-module $\Lambda = \Lambda_0 \bigoplus \sum_{\sigma \in \mathfrak{a}} \oplus \Lambda_{\sigma}$, where $\Lambda_0 = S(\mathfrak{a})$ and the corresponding Lie algebra $L = M \square \Lambda$.

In the final section of [GG], we remarked that Theorem 3.1 [GG] is not true if we omit the condition $\emptyset \notin \mathfrak{a}$ and we formulated the following conjecture.

Conjecture 2.1. Let M be an arbitrary simple finite dimensional \triangle -algebra which satisfies all the list of identities of Proposition 3.1 [GG] and $M_{\emptyset}^2 = 0$. Then the corresponding Lie algebra $L = M \square \Lambda$ is a simple Lie algebra of type $B_{2\ell}$, C_{ℓ} , $D_{2\ell+1}$, E_7 or E_8 .

For each $\emptyset \neq \sigma \in \mathfrak{a}$, define $M_{\sigma}^{0} = \{x \in M_{\sigma} \mid xM_{\sigma} \subseteq M_{\emptyset}\} = \{x \in M_{\sigma} \mid (xM_{\sigma})_{0} = 0\}.$

Lemma 2.1.
$$I = \sum_{\sigma \in \mathfrak{a} \setminus \emptyset} \oplus M_{\sigma}^0 \bigoplus \sum_{\sigma \in \mathfrak{a}} (M_{\sigma} M_{\sigma}^0)$$
 is an ideal in M .

- *Proof.* (a) First we prove that $M_{\tau}M_{\sigma}^{0} \subseteq M_{\sigma \triangle \tau}^{0}$, for all $\sigma \neq \tau \in \mathfrak{a}$. Indeed, by (9), for $a_{\tau} \in M_{\tau}$, $b_{\sigma} \in M_{\sigma}^{0}$, $c_{\lambda} \in M_{\sigma \triangle \tau}^{0}$, we have $(a_{\tau} b_{\sigma} \cdot c_{\lambda})_{0} = (b_{\sigma} \cdot a_{\tau} c_{\lambda})_{0} = 0$.
- (b) Now we prove that $(M_{\sigma}M_{\sigma}^{0})M_{\tau} \subseteq M_{\tau}^{0}$, for all $\tau \in \mathfrak{a}$. We need to prove that $(((b_{\sigma}c_{\sigma})_{\emptyset}a_{\tau})d_{\tau})_{0} = 0$ for all $a_{\tau} \in M_{\tau}$, $b_{\sigma} \in M_{\sigma}^{0}$, $c_{\sigma} \in M_{\sigma}$, $d_{\tau} \in M_{\tau}$. We have two cases:
- (b.1) $\sigma \neq \tau$. If $|\sigma \cap \tau| = 2$, we have by (7) that $(((b_{\sigma} c_{\sigma})_{\emptyset} a_{\tau})d_{\tau})_{0} = 0$. If $|\sigma \cap \tau| = 0$ then, by (8) and (9), $(((b_{\sigma} c_{\sigma})_{\emptyset} a_{\tau})d_{\tau})_{0} = ((b_{\sigma} a_{\tau} \cdot c_{\sigma})d_{\tau})_{0} + ((c_{\sigma} a_{\tau} \cdot b_{\sigma})d_{\tau})_{0} = (b_{\sigma} a_{\tau} \cdot c_{\sigma} d_{\tau})_{0} + (b_{\sigma} \cdot (c_{\sigma} a_{\tau} \cdot d_{\tau}))_{0} = (b_{\sigma} \cdot a_{\tau} (c_{\sigma} d_{\tau}))_{0} = 0$.
- (b.2) $\sigma = \tau$. If $| \sigma | = 2$, then by (11) we have $(((b_{\sigma} c_{\sigma})_{\emptyset} a_{\sigma})d_{\sigma})_{0} = ((b_{\sigma} a_{\sigma})_{0} c_{\sigma})d_{\sigma})_{0} + ((c_{\sigma} a_{\sigma})_{0} b_{\sigma})d_{\sigma})_{0} \subseteq k (b_{\sigma} d_{\sigma})_{0} = 0$, as $b_{\sigma} \in M_{\sigma}^{0}$. If $| \sigma | = 4$, then by (10) $(((b_{\sigma} c_{\sigma})_{\emptyset} a_{\sigma})d_{\sigma})_{0} = 0$.

This proves the lemma.

By Lemma 2.1, if M is simple then I=0 and, for each $\sigma \neq \emptyset$, $M_{\sigma}^{0}=0$.

Lemma 2.2. For M simple as defined above and $\sigma \in \mathfrak{a}$ we have

- 1. If $|\sigma| = 4$ then $M_{\sigma} = k a_{\sigma}$ where $a_{\sigma}^2 = s$.
- 2. If $|\sigma| = 2$ then
- 2.1) $M_{\sigma} = k a_{\sigma}$, where $(a_{\sigma}^2)_0 = s$, or
- 2.2) $M_{\sigma} = k a_{\sigma} \oplus k b_{\sigma}$, where $(a_{\sigma}^2)_0 = (b_{\sigma}^2)_0 = s$ and $(a_{\sigma} b_{\sigma})_0 = 0$ or
- 2.3) $M_{\sigma} = k a_{\sigma} \oplus k b_{\sigma}$, where $(a_{\sigma} b_{\sigma})_{0} = s$ and $(a_{\sigma}^{2})_{0} = (b_{\sigma}^{2})_{0} = 0$.

Proof. Let $|\sigma|=4$ and $a_{\sigma}\in M_{\sigma}$. By Lemma 2.1, there exists $b_{\sigma}\in M_{\sigma}$ such that $(a_{\sigma}\,b_{\sigma})_0=s$, then we have on the one hand $(a_{\sigma}\,b_{\sigma})_0\,a_{\sigma}=a_{\sigma}$ and on the other hand, by (10), $(a_{\sigma}\,b_{\sigma})_0\,a_{\sigma}=(a_{\sigma}\,a_{\sigma})_0\,b_{\sigma}=\alpha\,b_{\sigma}$, if $(a_{\sigma}\,a_{\sigma})_0=\alpha\,s$. Hence $a_{\sigma}=\alpha\,b_{\sigma}$. If $c\in M_{\sigma}$ and $(b\,c)_0=\gamma\,s$, then by (10), $c=(a\,b)_0\,c=(b\,c)_0\,a=\gamma\,a$. Hence $\dim M_{\sigma}=1$ and we have proved part 1.

Now let $|\sigma| = 2$.

- (a) There exists $a \in M_{\sigma}$ such that $(a^2)_0 = s$. If dim $M_{\sigma} = 1$, then we have case 2.1. Suppose that there exists $b \in M_{\sigma} \setminus k a$. If $(a \, b)_0 = \alpha s \neq 0$ then we can replace b by $b + \alpha a = \tilde{b}$ and we get $(\tilde{b} \, a)_0 = 0$. Hence we can suppose that b satisfies $(a \, b)_0 = 0$.
- (a.1) Suppose that for all $a \in M_{\sigma}$ such that $(a \, b)_0 = 0$ we have $(b^2)_0 = 0$. By Lemma 2.1, there exists $c \in M_{\sigma}$ such that $(c \, b)_0 = s$. We can suppose that $(c \, a)_0 = 0$ (by replacing c by $c + \alpha a = \tilde{c}$ as before). Now, using identity (11), we get $(ab)_{\emptyset} c = (cb)_0 a + (ac)_0 b = a$, $(bc)_{\emptyset} a = (ba)_0 c + (ca)_0 b = 0$ and $(bc)_{\emptyset} c = (bc)_0 c + (cc)_0 b = c$. Hence, $[(ab)_{\emptyset}, (bc)_{\emptyset}] c = a \neq 0$, contradicting the fact that M_{\emptyset} is abelian.
- (a.2) There exists $b \in M_{\sigma}$ such that $(b^2)_0 = s$ and $(a b)_0 = 0$. If dim $M_{\sigma} = 2$ then we have part 2.2.

Suppose that $\dim M_{\sigma} > 2$. By Lemma 2.1, there exists $c \in M_{\sigma}$ such that $(a c)_0 = (b c)_0 = 0$.

- (a.3) If $(c^2)_0 = s$ then by (11), $(ac)_{\emptyset} c = (cc)_0 a = a$, $(ab)_{\emptyset} c = 0$ and $(ab)_{\emptyset} a = b$. Hence $[(ac)_{\emptyset}, (ab)_{\emptyset}] c = b \neq 0$, contradicting the fact that M_{\emptyset} is abelian.
- (a.4) Suppose that for all $c \in M_{\sigma}$ such that $(ac)_0 = (bc)_0 = 0$ we have $(c^2)_0 = 0$. By Lemma 2.1, there exists $d \in M_{\sigma}$ such that $(d^2)_0 = 0$ and $(cd)_0 = s$. Then, by identity (11), $(ab)_{\emptyset} a = b$, $(ab)_{\emptyset} d = 0$ and $(ac)_{\emptyset} d = a$. Hence $[(ab)_{\emptyset}, (ac)_{\emptyset}] d \neq 0$ and again we contradict the fact that M_{\emptyset} is abelian.
- (b) For all $a \in M_{\sigma}$, $(a^2)_0 = 0$. By Lemma 2.1, there exist $a, b \in M_{\sigma}$ such that $(a^2)_0 = (b^2)_0 = 0$ and $(ab)_0 = s$. If dim $M_{\sigma} = 2$, then we have case 2.3.

If dim $M_{\sigma} > 2$, then by Lemma 2.1 there exist $c, d \in M_{\sigma}$ such that $(ac)_0 = (ad)_0 = (bc)_0 = (bd)_0 = (c^2)_0 = (d^2)_0 = 0$ and $(cd)_0 = s$. In this case, by (11), $(ab)_{\emptyset} a = a$ and $(ac)_{\emptyset} d = a$. Hence $[(ab)_{\emptyset}, (ac)_{\emptyset}] d = a \neq 0$, contradicting the fact that M_{\emptyset} is abelian. This proves the lemma.

Lemma 2.3. Let $\mathfrak{a} \subset \mathcal{P}(I_n)$ be an even set and $\Delta = \{0\} \cup \mathfrak{a}$. Let \mathcal{M} be the variety of Δ -algebras satisfying the list of identities of Proposition 3.1 [GG]. If $M \in \mathcal{M}$ is a simple Δ -algebra (containing no graded ideals), then $\mathfrak{M} = \{\sigma \in \mathfrak{a} \mid M_{\sigma} \neq 0\}$ is connected and is one of the following sets:

(i)
$$\{(2i-1, 2i, 2j-1, 2j) | 1 \le i < j \le \ell\} = \mathcal{D}_{2\ell}$$
,

(ii)
$$\{(2i-1, 2i, 2j-1, 2j), (2i-1, 2i) | 1 \le i < j \le \ell\} = \mathcal{B}_{2\ell}$$
,

$$(iii) \; \left\{\, (1234),\, (1256),\, (1357),\, (3456),\, (2457),\, (2367),\, (1467)\,\right\} \; = \; \mathcal{E}_7 \,,$$

(iv)
$$\mathcal{E}_7 \cup \{ \overline{\sigma} \mid \sigma \in \mathcal{E}_7, \ \overline{\sigma} = I_8 \setminus \sigma \} = \mathcal{E}_8$$
.

Proof. The proof of this lemma in [GG] is based on the following facts:

- (1) for all $\sigma \in \mathfrak{M}$, we have $|\sigma| = 2$ or 4.
- (2) If $\sigma \neq \tau \in \mathfrak{M}$ and $\sigma \cap \tau \neq \emptyset$ then $\sigma \triangle \tau \in \mathfrak{M}$.

The item (2) may be proved as in [GG]. Let us prove item (1). Suppose that $\sigma \in \mathfrak{M}$ and $|\sigma| > 4$. Thus, by (12), $(M_{\sigma} M_{\sigma})_0 M_{\sigma} = 0$, hence $(M_{\sigma} M_{\sigma})_0 = 0$ and $M_{\sigma} = M_{\sigma}^0$. But by Lemma 2.1, $M_{\sigma}^0 = 0$.

Theorem 2.1. Let $M \in \mathcal{M}$ be a simple Δ -algebra such that $M_{\emptyset} \neq 0$ and $M_{\emptyset}^2 = 0$. Then $\mathfrak{M} = \mathcal{B}_{2\ell}$ and M has a basis

$$\{ s, d_{ij}, a_i, b_i, \lambda \mid 1 \le i < j \le \ell \}$$

with one of the following set of multiplication rules:

$$d_{ij} d_{jk} = d_{ik}, d_{ij} a_{j} = b_{i},$$

$$d_{ij} b_{j} = a_{i}, a_{i} b_{j} = d_{ij},$$

$$(a_{i} b_{i})_{\emptyset} = \lambda, \lambda a_{i} = b_{i}, (16)$$

$$\lambda b_{i} = a_{i}, (d_{ij}^{2})_{0} = s,$$

$$(a_{i}^{2})_{0} = (b_{i}^{2})_{0} = s$$

or

$$d_{ij} d_{jk} = d_{ik},$$

$$d_{ij} a_i = a_j,$$

$$d_{ij} b_j = b_i,$$

$$a_i b_j = d_{ij},$$

$$(d_{ij}^2)_0 = s,$$

$$\lambda a_i = a_i,$$

$$\lambda b_i = b_i,$$

$$(17)$$

where $M_{(2i-1,2i,2j-1,2j)} = k d_{ij}$, $M_{(2i-1,2i)} = k a_i \oplus k b_i$ and $M_{\emptyset} = k \lambda$.

We will denote by $\mathcal{D}_{2\ell+1}$ the Δ -algebra M with multiplication rules given by (16) and by $\mathcal{C}_{2\ell+1}$ the one with multiplication rules given by (17).

Proof. If $\mathfrak{M} = \mathcal{B}_{2\ell} = \{(2i-1, 2i, 2j-1, 2j), (2i-1, 2i) | 1 \le i < j \le \ell\}$, then by Lemma 2.2 for $\sigma = (2i-1, 2i) \in \mathfrak{M}$ we have three cases

(a)
$$M_{\sigma} = k a_{\sigma}$$
, where $(a_{\sigma}^2)_0 = s$, or

(b)
$$M_{\sigma} = k a_{\sigma} \oplus k b_{\sigma}$$
, where $(a_{\sigma}^2)_0 = (b_{\sigma}^2)_0 = s$ and $(a_{\sigma} b_{\sigma})_0 = 0$ or

(c)
$$M_{\sigma} = k \, a_{\sigma} \oplus k \, b_{\sigma}$$
, where $(a_{\sigma} \, b_{\sigma})_0 = s$ and $(a_{\sigma}^2)_0 = (b_{\sigma}^2)_0 = 0$.

Let us consider each case.

(a) For $|\sigma|=2$, by identity (11), we have $(a_{\sigma} a_{\sigma})_{\emptyset} a_{\sigma}=2 (a_{\sigma}^2)_{0} a_{\sigma}=0$ and by (7), for $|\sigma|=|\tau|=2$ with $\sigma \cap \tau=\emptyset$ $(a_{\sigma} a_{\sigma})_{\emptyset} a_{\tau}=2 a_{\sigma} a_{\tau} \cdot a_{\sigma}=0$. If $|\sigma|=2$ and $|\sigma \cap \tau|=2$ with $\sigma \neq \tau$, then by (7) $(a_{\sigma} a_{\sigma})_{\emptyset} c_{\tau}=0$. Therefore, $(a_{\sigma} a_{\sigma})_{\emptyset} \in Z(M)=0$. Let $\mu \in \mathfrak{M}$ such that $M_{\mu}=k d$ and $\sigma \subseteq \mu$, $\tau=\mu \setminus \sigma$. Denote $b_{\tau}=d a_{\sigma}$. If $c \in M_{\tau}$ then, by (7), $d c \cdot d=c(d d)_{0}=c$. But $d c \in M_{\sigma}=k a_{\sigma}$. Thus $c=d c \cdot d=\alpha a_{\sigma} d=\alpha b_{\tau}$ and $M_{\tau}=k b_{\tau}$. In this case, M is the algebra obtained in [GG].

(b) Let $d = d_{12} \in M_{(1234)}$ and denote

$$b_2 = d b_1,$$
 $a_2 = d a_1,$ $a_1 a_2 = \alpha d,$ $b_2 b_1 = \beta d$

By (7),
$$d b_2 = d \cdot d b_1 = (d d)_0 b_1 = b_1$$
 and $d a_2 = d \cdot d a_1 = (d d)_0 a_1 = a_1$.

Now, by (9), we have $(b_2 b_2)_0 = (d b_1 \cdot b_2)_0 = (d \cdot b_1 b_2)_0 = (d b_2 \cdot b_1)_0 = s$. Hence, $\beta = 1$. Moreover, $(a_2 a_2)_0 = (d a_1 \cdot a_2)_0 = (d a_2 \cdot a_1)_0 = (d \cdot a_1 a_2)_0 = s$. Hence, $\alpha = 1$.

Again by (9), $(b_2 a_2)_0 = (d b_1 \cdot a_2)_0 = (d \cdot b_1 a_2)_0 = (d a_2 \cdot b_1)_0 = 0$. Hence, $b_1 a_2 = 0$. Analogously, $a_1 b_2 = 0$.

Now denote $\tau = (a_1 \, a_1)_{\emptyset}$, $\xi = (b_1 \, b_1)_{\emptyset}$, $\lambda = (a_1 \, b_1)_{\emptyset}$. For $c \in M_{(12)}$, by identity (11), we have $(a_1 \, a_1)_{\emptyset} \, c = 2(a_1 \, c)_0 \, a_1 = 0$.

By (8), for $c \in M_{(2i-1,2i)}$, $i \neq 1$, we have $(a_1 \, a_1)_{\emptyset} \, c = 2a_1 \, c \cdot a_1 = 0$. Hence, $(a_1 \, a_1)_{\emptyset} \in Z(M) = 0$ and analogously $(a_i \, a_i)_{\emptyset} = (b_i \, b_i)_{\emptyset} = 0$.

Moreover, by (11), $\lambda a_1 = (a_1 b_1)_{\emptyset} a_1 = (a_1 a_1)_0 b_1 = b_1$ and analogously $\lambda b_1 = a_1$. By (7), $\lambda a_2 = (a_1 b_1)_{\emptyset} a_2 = b_1 a_2 \cdot a_1 = d a_1 = b_2$ and in the same way $\lambda b_2 = a_2$.

Now we denote $b_i=d_{i1}\,b_1$ and $a_i=d_{i1}\,a_1$. As above, we can prove that $b_i\,b_j=a_i\,a_j=d_{ij}\,,\ a_i\,b_j=0$ and $(a_i\,a_i)_\emptyset=(b_i\,b_i)_\emptyset=0$ and $(a_i\,b_i)_\emptyset=\lambda$. In

this case, we have the multiplication rules given by (16).

(c) Let $d=d_{12}\in M_{(1234)}$ be such that $d^2=s$ and denote

$$a_2 = d a_1,$$
 $b_2 = d b_1,$ $a_1 b_2 = \alpha d,$ $a_1 a_2 = \gamma d,$ $a_2 b_1 = \beta d,$ $b_1 b_2 = \tau d,$

As in case (b), by (7), we have $d a_2 = d \cdot d a_1 = (d d)_0 a_1 = a_1$ and $d b_2 = d \cdot d b_1 = (d d)_0 b_1 = b_1$.

Now, by (9), we have $(a_2 a_2)_0 = (d a_1 \cdot a_2)_0 = (d a_2 \cdot a_1)_0 = (a_1 a_1)_0 = 0$, $(b_2 b_2)_0 = 0$. Again by (9), $(a_2 b_2)_0 = (d a_1 \cdot b_2)_0 = (d b_2 \cdot a_1)_0 = (b_1 a_1)_0 = s$.

Now for $c \in M_{(12)}$, by identity (11), we have $(a_1 a_1)_{\emptyset} c = 2(a_1 c)_0 a_1 = 0$ and by (8), for $c \in M_{(2i-1,2i)}$, $i \neq 1$, we have $(a_1 a_1)_{\emptyset} c = 2a_1 c \cdot a_1 = 0$. Hence, $(a_i a_i)_{\emptyset} = (b_i b_i)_{\emptyset} \in Z(M) = 0$.

By (11) we have $(a_1 b_1)_{\emptyset} a_1 = (a_1 b_1)_0 a_1 = a_1$ and, by (7), $(a_1 b_1)_{\emptyset} a_2 = a_2 b_1 \cdot a_1 = d a_1 = a_2$.

¿From this, analogously to the previous case, for $\lambda = (a_1 \, b_1)_{\emptyset}$ we get $\lambda \, a_i = a_i$ and $\lambda \, b_i = b_i$.

Now for $d_{ij} \in M_{(2i-1,2i,2j-1,2j)}$, it is clear, by (7), (8) and the fact that $|\sigma| \leq 4$, that $\lambda d_{ij} = (a_1 b_1)_{\emptyset} d_{ij} = 0$

Theorem 2.2. Let M be a Δ -algebra as in Theorem 2.1 and V be an irreducible M-module. Then

1. $M = \mathcal{D}_{2\ell+1}$ and

1.1. $V = \langle v_1, \dots, v_{\ell}, \xi, \mu \rangle$, where $v_i \in V_{(2i-1,2i)}$, $\xi, \mu \in V_{\emptyset}$ and

$$v_i d_{ij} = v_j,$$
 $(v_i a_i)_{\emptyset} = \xi,$ $(v_i b_i)_{\emptyset} = \mu,$
$$\xi a_i = v_i,$$
 $\mu b_i = v_i,$ $\lambda \mu = \xi, \quad \lambda \xi = \mu$ (18)

and all the other products are zero.

1.2. V is the adjoint module.

2.
$$M = C_{2\ell+1}$$

2.1. $V = \langle v_1, \dots, v_{\ell}, \tau, \mu \rangle$, where $v_i \in V_{(2i-1,2i)}$, $\tau, \mu \in V_{\emptyset}$ and

$$v_i d_{ij} = v_j,$$
 $(v_i a_i)_{\emptyset} = \tau,$ $(v_i b_i)_{\emptyset} = \mu,$
$$\tau b_i = \mu a_i = v_i,$$
 $\lambda \tau = \tau,$ $\lambda \mu = \mu$ (19)

and all the other products are zero.

2.2. V is the adjoint module.

Proof. 1. Let $V_0 \neq 0$ and $v_0 \in V_0$. Define

$$v_{ij} = v_0 d_{ij}, \quad v_i = v_0 a_i, \quad w_i = v_0 b_i, \quad (v_i b_i)_{\emptyset} = \mu_i \quad (w_i a_i)_{\emptyset} = \xi_i.$$
 (20)

By (14) we have $(v_i a_i)_0 = (v_0 a_i \cdot a_i)_0 = v_0 (a_i a_i)_0 = v_0$. Thus, by (8) and (11), we have that $\mu = \mu_1 = \cdots = \mu_\ell = \xi_1 = \cdots = \xi_\ell$ and $\mu_i a_i = (v_i b_i)_\emptyset a_i = (v_i a_i)_0 b_i + (a_i b_i)_0 v_i = v_0 b_i = w_i$ and analogously $\mu b_i = v_i$.

Hence V has a basis $\{v_0, v_{ij}, v_i, w_i, \mu \mid i \leq i, j \leq \ell\}$ and V is the adjoint M-module.

Now suppose that $V_0 = 0$ and take V_{μ} , $\mu \neq 0$. As $| \mu \cap (2i - 1, 2i) | = 0$ or 2, then $(2i - 1, 2i) \subseteq \mu$ or $\mu \cap (2i - 1, 2i) = \emptyset$ for all $1 \leq i \leq \ell$. Suppose $(1,2) \subseteq \mu$. If $(2i - 1, 2i) \subseteq \mu$, i > 2, then $\sigma_{1i} = (1,2,2i-1,2i) \subseteq \mu$ and, by (12), $V_{\mu} = s V_{\mu} = (d_{1i} d_{1i})_0 V_{\mu} = 0$, a contradiction. Hence, $\mu = (12)$. Let $0 \neq v_1 \in V_{(12)}$ and denote

$$v_i = v_1 d_{1i},$$
 $(v_i b_i)_{\emptyset} = \tau_i$ $(v_i a_i)_{\emptyset} = \mu_i.$ (21)

Now by (6), we have $v_i d_{ij} = v_1 d_{1i} \cdot d_{ij} = v_1 d_{ij} \cdot d_{1i} + v_1 \cdot d_{1i} d_{ij} = v_1 d_{1j} = v_j$.

By (11), $\mu_i a_i = (v_i a_i)_{\emptyset} a_i = (v_i a_i)_{0} a_i + (a_i a_i)_{0} v_i = v_i$ and $\mu_i b_i = (v_i a_i)_{\emptyset} b_i = (v_i b_i)_{0} a_i + (a_i b_i)_{0} v_i = 0$. Analogously, $\tau_i a_i = 0$ and $\tau_i b_i = w_i$.

Moreover, by (8), $\mu_i a_j = (v_i a_i)_{\emptyset} a_j = v_i a_j \cdot a_i + v_i \cdot a_i a_j = v_i d_{ij} = v_j$.

Analogously, we prove that $\mu_i b_j = 0$, $\tau_i b_j = w_i$, $\tau_i a_j = 0$. Hence $\mu = \mu_1 = \cdots = \mu_\ell$ and $\tau = \tau_1 = \cdots = \tau_\ell$. Furthermore, by (13), $\lambda \mu = (a_1 b_1)_{\emptyset} \mu = 0$

 $(a_1 \mu \cdot b_1)_{\emptyset} + (a_1 \cdot \mu b_1)_{\emptyset} = (v_1 b_1)_{\emptyset} = \tau$ and, analogously, $\lambda \tau = \mu$. Hence $V = \langle v_1, \dots, v_{\ell}, \tau, \mu \rangle$, is the standard M-module.

2. Suppose $V_0 \neq 0$. As in case 1, we can prove that V is the adjoint Mmodule. Thus, let $V_0 = 0$. Again as in case 1 we can prove that there exists $\mu = (12)$ such that $V_{\mu} \neq 0$. Denote, as in the previous case,

$$v_i = v_1 d_{1i}, \qquad (v_i a_i)_{\emptyset} = \mu_i \qquad (v_i b_i)_{\emptyset} = \tau_i \qquad v_i d_{ij} = v_j.$$
 (22)

By (11), $\mu_i a_i = (v_i a_i)_{\emptyset} a_i = (v_i a_i)_{0} a_i + (a_i a_i)_{0} v_i = 0$ and $\mu_i b_i = v_i$, $\tau_i a_i = v_i$, $\tau_i b_i = 0$.

By (8), $\mu_i \, a_j = (v_i \, a_i)_{\emptyset} \, a_j = v_i \, a_j \cdot a_i + v_i \cdot a_i \, a_j = 0$, $\mu_i \, b_j = (v_i \, a_i)_{\emptyset} \, b_j = v_i \, b_j \cdot a_i + v_i \cdot a_i \, b_j = v_i \, d_{ij} = v_j$. Analogously, $\tau_i \, a_j = v_i$, $\tau_i \, b_j = 0$. Hence $\mu = \mu_1 = \cdots = \mu_\ell$ and $\tau = \tau_1 = \cdots = \tau_\ell$. Furthermore, by (13), $\lambda \mu = (a_1 \, b_1)_{\emptyset} \, \mu = (a_1 \, \mu \cdot b_1)_{\emptyset} + (a_1 \cdot \mu \, b_1)_{\emptyset} = (a_1 \, v_1)_{\emptyset} = \mu$ and, analogously, $\lambda \tau = \tau$.

Recall some well known facts about quadratic forms over an algebraically closed field of characteristic 2 and its corresponding Lie algebras. Let V be a n-dimensional k-space and $f: V \times V \longrightarrow k$ be a non degenerated symmetric bilinear form. This means that f(x,y) = f(y,x), for all $x, y \in V$ and f(x,V) = 0 implies x = 0. A non degenerated symmetric bilinear form f is called symplectic if f(x,x) = 0 and orthogonal otherwise. A vector space V has a unique orthogonal form f and in some basis $\{v_1, \ldots, v_n\}$ the form can be written as

$$f(v, w) = \sum_{i=1}^{n} x_i y_i$$

where $v = \sum_{i=1}^{n} x_i v_i$ and $w = \sum_{i=1}^{n} y_i v_i$.

A vector space V does not have a symplectic form if dim V is odd and has a unique symplectic form if dim $V=2\ell$. In this last case, the form can be written, in an appropriate basis $\{v_1,\ldots,v_\ell,w_1,\ldots,w_\ell\}$, as follows

$$f(v,w) = \sum_{i=1}^{\ell} (x_i t_i + y_i z_i)$$

where
$$v = \sum_{i=1}^{\ell} (x_i v_i + y_i w_i)$$
 and $w = \sum_{i=1}^{\ell} (z_i v_i + t_i w_i)$.

Let End(V) be the associative algebra of all linear transformations of V. Consider the following sets

$$S(f) = \{a \in End(V) | f(va, w) = f(v, wa), \forall v, w \in V\},\$$

$$O(f) = \{ a \in End(V) \mid f(va, v) = 0, \ \forall v \in V \}.$$

It is clear that $O(f) \subseteq S(f)$. For f orthogonal, we denote $D_{\ell} = O(f)$ when $\dim V = 2\ell$ and $B_{\ell} = O(f)$ when $\dim V = 2\ell + 1$. For f symplectic, $C_{\ell} = O(f)$.

Theorem 2.3. In the notation above we have

- 1. [S(f), S(f)] = O(f).
- $2. \ \ Z(S(f)) \, = \, 0 \ \ \text{if} \ \dim V = 2\ell + 1 \ \ \text{and} \ \ Z(O(f)) \, = \, 1 \ \ \text{if} \ \dim V = 2\ell \, .$
- 3. O(f)/Z(O(f)) is simple if $\dim V > 2$ and $\dim V \neq 4$.
- 4. C_{ℓ} is a 2-algebra.
- 5. B_{ℓ} and D_{ℓ} are not 2-algebras and S(f) is the 2-envelope of B_{ℓ} (D_{ℓ}) in End(V).
 - 6. $\dim C_{\ell} = 2\ell^2 \ell$, $\dim B_{\ell} = 2\ell^2 + \ell$ and $\dim D_{\ell} = 2\ell^2 \ell$.

Theorem 2.4. Let M be a simple Δ -algebra in a Δ -variety \mathcal{M} as described above and $L = M \Box \Lambda$ be the corresponding Lie algebra. Then

- 1. $L = C_{2\ell}$ if M has a basis $\{s, a_{ij} | 1 \le i < j \le \ell\}$, where $a_{ij} \in M_{(2i-1,2i,2j-1,2j)}$.
- 2. $L = B_{2\ell}$ if M has a basis $\{s, a_{ij}, a_i | 1 \le i < j \le \ell\}$, where $a_{ij} \in M_{(2i-1,2i,2j-1,2j)}$, $a_i \in M_{(2i-1,2i)}$.
- 3. $L = D_{2\ell+1}$ or $C_{2\ell+1}$ if M has a basis $\{s, a_{ij}, a_i, b_i, \lambda \mid 1 \leq i < j \leq \ell\}$, where $a_{ij} \in M_{(2i-1,2i,2j-1,2j)}$ and the multiplication rules are given by (16) or (17).
 - 4. L is a Lie algebra of type E_7 or E_8 , if $\mathfrak{M}=\sigma\,|\,M_\sigma\neq0\}=\mathcal{E}_7$ or \mathcal{E}_8 .

Proof. 1. By Theorem???? [GG], a Δ -algebra M has a module V with a basis $\{v_1,\ldots,v_\ell\}$, $v_i\in V_{(2i-1,2i)}$. This M-module admits an M-invariant bilinear form given by $(v_i,v_j)=\delta_{ij}$. Note that if a M-module $V=V_0\oplus\sum\oplus V_\sigma$ admits an M-invariant symmetric bilinear form f, then the corresponding L-module $W=V\Box\Lambda$ admits a L-invariant symmetric bilinear form as follows:

$$\tilde{f}(v \otimes x, w \otimes y) = f(v, w)(x, y), \qquad v, w \in V, x, y \in \Lambda$$

Moreover, \tilde{f} is symplectic (orthogonal) if and only if the restriction of f to $V_0 \oplus V_\emptyset$ is symplectic (orthogonal). In our case, $V_0 \oplus V_\emptyset = 0$ hence this form is non degenerated and symplectic. As $\dim W = 4\ell$ and $\dim L = 8\ell^2 - 2\ell$, we have that $L = C_{2\ell}$.

2. and 3. In all this cases M has a module V with a basis $\{v_1, \ldots, v_\ell, \mu, \tau\}$ described in Theorem 2.2, with $v_i \in V_{(2i-1,2i)}$. The M-module V admits an M-invariant bilinear form given by $(v_i, v_j) = \delta_{ij}$ and $(\lambda, \mu) = 0$, $(\lambda, \lambda) = (\mu, \mu) = 1$, if M has multiplication rules defined by (16) or $(v_i, v_j) = \delta_{ij}$ and $(\lambda, \mu) = 1$, $(\lambda, \lambda) = (\mu, \mu) = 0$, if M has multiplication rules defined by (17).

In the first case, the corresponding L-invariant bilinear form on the L-module $W=V\Box\Lambda$ is orthogonal and, in the second case, it is symplectic. As dim $L=8\ell^2+6\ell+1$, then $L=D_{2\ell+1}$ in the first and $L=C_{2\ell+1}$, in the second case.

4. We prove this statement in the case \mathcal{E}_8 . The case \mathcal{E}_7 is corollary of this.

By definition, a Lie algebra L over a field k of characteristic 2 is a Lie algebra of type E_8 if there exists a **Z**-form $\mathcal{L}_{\mathbf{Z}}$ of the Lie algebra \mathcal{L} over the field \mathbf{C} of all complex numbers such that $L = \mathcal{L}_{\mathbf{Z}} \otimes_{\mathbf{Z}} k$.

Let \mathcal{L} be the Lie algebra of type E_8 over \mathbf{C}] constructed in [G3] with a basis

$$\{e_1, f_1, \ldots, e_8, f_8, h_1, \ldots, h_8, (\sigma, \mu), \mu q \sigma \in \mathcal{E}_8\}$$

and multiplication rules stated by Theorem 1 [G3].

Let $\mathcal{L}_{\mathbf{Z}}$ be a **Z**-module with generators $\{e_i, f_i, h_i, i = 1, \dots, 8, (\sigma, \mu), h^{\sigma} =$

$$\frac{1}{2}(\sum_{i\in\sigma}h_i),\ \mu\subseteq\sigma\in\mathcal{E}_8\}.$$

Note that $[\mathcal{L}_{\mathbf{Z}}, \mathcal{L}_{\mathbf{Z}}] \subseteq \mathcal{L}_{\mathbf{Z}}$, since for $\varphi \cap \psi = \emptyset$, $\varphi \cup \psi = \sigma$ we have, by Theorem 1 [G3], that

$$(\sigma, \varphi)(\sigma, \psi) = (-1)^{|\psi|+1} (\sum_{i \in \psi} h_i - \sum_{j \in \varphi} h_j)/2 = (-1)^{|\psi|+1} (h^{\sigma} - \sum_{j \in \varphi} h_j),$$

$$(\sigma, \mu)h^{\tau} = \frac{1}{2}(|\mu \cap \tau| - |\overline{\mu} \cap \tau|)(\sigma, \mu), \text{ where } \overline{\mu} = \sigma \setminus \mu.$$
 (23)

But $(\mid \mu \cap \tau \mid - \mid \overline{\mu} \cap \tau \mid) = (\mid \sigma \cap \tau \mid -2 \mid \overline{\mu} \cap \tau \mid) \equiv \mid \sigma \cap \tau \mid \equiv 0 \pmod{2}$. Hence $(\sigma, \mu)h^{\tau} \in \mathcal{L}_{\mathbf{Z}}$.

Now we prove that $L \cong \mathcal{L}_{\mathbf{Z}} \otimes_{\mathbf{Z}} k$. Define $\xi : L \longrightarrow \mathcal{L}_{\mathbf{Z}} \otimes_{\mathbf{Z}} k$ given by $\xi(e_i) = e_i$, $\xi(f_i) = f_i$, $\xi(\sigma, \mu) = (\sigma, \mu)$, $\xi(h_i) = h_i$ $\xi(h^{\sigma}) = h^{\sigma}$. (Note that although the notation for the elements being the same, they are in two different algebras.)

To prove that ξ is an algebra isomorphism, it is enough to prove that $\xi((\sigma, \mu)h^{\varphi}) = [\xi(\sigma, \mu), \xi(h^{\varphi})]$ (*). By (2),

$$\xi((\sigma, \mu) h^{\varphi}) = \left(\frac{|\sigma \cap \varphi|}{2} + |\varphi \cap \mu|\right) \, \xi((\sigma, \mu))$$

and by (23)

$$\xi((\sigma,\mu))\,\xi(h^{\varphi})\,=\,\frac{1}{2}(\mid\mu\cap\varphi\mid\,-\,\mid\overline{\mu}\cap\varphi\mid)\xi((\sigma,u)).$$

But $\frac{1}{2}(\mid \mu \cap \varphi \mid - \mid \overline{\mu} \cap \varphi \mid) = -\frac{1}{2}(\mid \mu \cap \varphi \mid + \mid \overline{\mu} \cap \varphi \mid) + \mid \mu \cap \varphi \mid = -\frac{1}{2}(\mid \varphi \cap \varphi \mid + \mid \mu \cap \varphi \mid) = -\frac{1}{2}(\mid \varphi \cap \varphi \mid) + \mid \psi \cap \varphi \mid$ and the equality (*) holds.

References

- [G1] Grishkov, A.N., A new approach to classification of simple finite dimensional Lie algebras. Webs and Quasigroups, Tver, 1991, 51-77.
- [G2] Grishkov, A.N., A Lie algebras with triality.,(submitted)
- [G3] Grishkov, A.N., The authomorphisms group of the multiplicative Cartan decomposition of the Lie algebra E_8 . Int. Journal of Algebra and Computation, (to appear).
- [GG] Grishkov, A.N., Guerreiro, M., Simple classical Lie algebras in characteristic 2 and their graduations. (submitted)
- [Hu1] Humphreys, J.E., Introduction to Lie Algebras and Representation Theory. 3rd Edition, Revised, Springer-Verlag, New York, 1980.
- [Pr] PREMET A., Lie Algebras without strong degeneration. Math.USSR-Sb. 57(1987),151-164.