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1 Introduction

This paper is a continuation of [GG]. Here we prove Conjecture 5.1 [GG]. Recall

some notations and definition of [GG].

Definition 1.1. Let I, = {1,...,n}. We call a C P(I,) = {o|o C I,} an

even set if for all 0,7 € a, we have |o| =|7| =0 and [cN7| =0 mod 2.

We note that P(I,) is an elementary abelian group with the operation
oAT = (o \T)U(t\ o). For a C P(I,), < a > denotes the group gener-

ated by a.

Definition 1.2. A subset H of P(I,) is connected if, for every partition
I, = TUJ, thereis o € H such that cNI#0 and cNJ #0.

Definition 1.3. A subset o C I, is called a-even if |[pN 7| =0 mod 2 for
all T € a. A subset B C P(I,) is called an a-even set if all its elements are

a-even.
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For an even set a C P(I,), we construct an algebra S = S(a) with basis

{e;, hi fiy h7| i € I,, 0 €< a>} and multiplication given by
eifi = hi, eh” =e;, fih” = [i, fori€ o, (1)

and zero for any other cases. Denote h, = Z hi, hg = 0.
€W
It is easy to show that the algebra S (a) contains a central ideal I generated

by {h% + I + h°®T + honr |0, T €< a>}. We denote S(a) = S = S(a)/I.
For every a-even set o, define an S-module A, whose basisis {(o, ) | C o}

and the S-action is given by

(o, w)ei = (o, pUi), €0\

(O-’M)fi = (Uau\i)’ 1€ 5

(Ua lu) hz = (Ga ,LL), 1€ g, (2)
N
(0, W) h* = ('02(’O| + Iwﬂu\> (o, ), for p €a,

and for any other cases the action is zero.

Now let A = {0} Ua.

Definition 1.4. An algebra A is called a A-algebra if A = Z ® A, and,

a€cA
for every a # B € a, we have Ay Ag C Annp, A2 C Ay, AgAs C A,,

Ay Ay CT Ay + Agp and Ag Ay = 0.
Define a commutative A-graded algebra A as follows. As a k-space, A is

A=MED @A, where A = S(a). (3)
oca

Moreover, S = S(a) is a subalgebra of A and, by (2), each A, is an S-module.

For o # 7 € a, the multiplication is given by

(0, n) (1, 0) = (AT, (p\T)U (p\0)), if uNp=0, pUpDdonT. (4



€ pe =1t pUyp=o,
(0, 1) (0, ) = fi, puNe =0, pUep=o0o\1, (5)
h + 3 e hi + (0,0), pne=0, pUp=o0,

and all other products are zero.

Recall the definition of the product of two A-algebras. Let A = Z DA,
aEA
and B = Z@Ba be two A-algebras. Then AOB = Z@Aa ® B, is a

a€EA acA
A-algebra with multiplication [-, -] given by

[aa®ba,a5®b5]:zc7®d7, if aaaﬁ:zcv’babﬁzzdv-

YEA YEA YEA
Proposition 1.1. Let a be an even set, < a > be the group generated by a,

A=A(<a>) and A = {0}Ua. Let M = My®> . .. ®M, be a commutative

oca

A-algebra. Then the algebra L = AOM is a Lie algebra if and only if M
satisfies a list of A-identities given in Proposition 3.1 [GG].

We recall some of the A-identities which will be used in this paper. o AT #



pash, < cx + brex-a, + cxay b, =0,|cNTNA=0,0 A7 #X# 0 # TAN, (6)

(asbo)ocs = 0, (aobo)ycs = 0, (agbe)ots = tpcs -b
(7)

asCr - by = a5 - €y + (agby)gcsr lonT| =1
(8)

(agbr - ex)o = (aq - brer)o, A=0o\
(9)

(ab)oc = (cb)oa, (ca)gb = 0, a,b,c € M, |t| =
(10)

(ab)oc + (bc)oa = (ac)pb, a,b,c € M., |r| ="
(11)

(asbs)oc; = 0, lo| >
(12)

or (agby - ¢o)p + (bsCs)p - ag + (coag - by)g = 0 v
(13)

(aabU)O “Cy = (%CO . b0)07 o#
(14)
(15)

We observe that L. = AOM is not necessarily a simple algebra, even though M
is simple, but L/Z(L) is simple, where Z(L) is the center of L.

2 Novo artigo

Let a be an even connected set, < a > be the group generated by a, and
A = {0}Ua. Let M be the variety of A-algebras satisfying the list of identities

of Proposition 3.1 [GG]. Let M = My® > . &M, & My be a commutative

oca



A-algebra in M. In [GG] (see Theorem 3.1 [GG]) we classified the simple A-
algebras of the variety M, for which My = 0. Now we consider the case when
0 # My is abelian.

Recall the S-module A = Ay@ > ., ®A,, where Ay = S(a) and the

corresponding Lie algebra L = MOA.

In the final section of [GG], we remarked that Theorem 3.1 [GG] is not true

if we omit the condition () ¢ a and we formulated the following conjecture.

Conjecture 2.1. Let M be an arbitrary simple finite dimensional /\-algebra
which satisfies all the list of identities of Proposition 3.1 [GG] and Mj = 0.
Then the corresponding Lie algebra L = MOA is a simple Lie algebra of type
Bse, Co, Dogir, E7 or Eg.

For each ) # o € a, define M? = {z € M,|zM, C My} = {z €

M, [ (xMy)o = O}
Lemma 2.1. [ = Z oM @Z(MUM(?) is an ideal in M.

oca\d vea
Proof. (a) First we prove that M,M? C M9,  for all ¢ # 7 € a. Indeed,
by (9), for a, € M;, b, € M2, ¢y € M2, _, we have (a,b,-cy)o = (by-a;Cy)o =
0.

(b) Now we prove that (M,M%)M, C M?, for all 7 € a. We need to prove
that (((b, ¢, )par)d,)o = 0 for all a, € M,, b, € M2, ¢, € M,, d, € M,. We
have two cases:

(b.l) o #7.1If |oNnT|=2, we have by (7) that (((b, ¢s)par)d;)o = 0. If
| N7 |=0 then, by (8) and (9), (((bs ¢o)p ar)d;)o = ((by ar - ¢y )dr)o + ((¢co ar -
bs)dr)o = (boar - codr)o + (bs - (coar-dr))o = (bs - ar(codr))o = 0.

(b2) o =71. If | 0 |= 2, then by (11) we have (((b, ¢,)pas)ds)o =
((by a6 )0 Co)ds)o + ((¢o @5)obs)ds)o C k (body)o = 0,88 b, € M2. If |0 |= 4,
then by (10) (((by ¢s)g as)ds)o = 0.



This proves the lemma. 0

By Lemma 2.1, if M is simple then I =0 and, for each o # §, M? = 0.

Lemma 2.2. For M simple as defined above and o € a we have
1. If | o |=4 then M, = ka, where a> = s.
2. If | o |=2 then

2.1) M, = kay, where (a2)g = s, or

[

2.2) M, = ka, ®kb,, where (a2)o = (b2)o = s and (a, b,)o = 0 or

g

2.8) M, = ka, ® kb, , where (a,b,)0 = s and (a2)y = (b2)o = 0.

Proof. Let | 0 |=4 and a, € M,. By Lemma 2.1, there exists b, € M, such
that (ay by)o = s, then we have on the one hand (a, by)oa, = a, and on the
other hand, by (10), (@, bs)o@c = (G5 Gs)obs = @b, , if (asa,)0 = as. Hence
a, = ab,. If c€ M, and (bc)g = 7vs, then by (10), ¢ = (ab)oc = (bc)oa =
va. Hence dim M, = 1 and we have proved part 1.

Now let | o |=2.

(a) There exists a € M, such that (a®); = s. If dim M, = 1, then we have
case 2.1. Suppose that there exists b € M, \ ka. If (ab)g = as # 0 then we
can replace b by b + aa = b and we get (ba), = 0. Hence we can suppose
that b satisfies (ab)y = 0.

(a.1) Suppose that for all @ € M, such that (ab)y = 0 we have (b?)y = 0.
By Lemma 2.1, there exists ¢ € M, such that (c¢b)y = s. We can suppose that
(ca)y = 0 (by replacing ¢ by ¢ + aa = ¢ as before). Now, using identity (11),
we get (ab)gc = (cb)oa + (ac)yb = a, (bc)ga = (ba)gc + (ca)ob = 0 and
(be)ge = (be)oc + (cc)ob = c. Hence, [(ab)g, (bc)g]c = a # 0, contradicting
the fact that M, is abelian.

(a.2) There exists b € M, such that (b*)y = s and (ab)y = 0. If dim M, =

2 then we have part 2.2.



Suppose that dim M, > 2. By Lemma 2.1, there exists ¢ € M, such that
(ac)y = (be)g = 0.

(a.3) If (c?)p = s then by (11), (ac)gc = (cc)pa = a, (ab)gec = 0 and
(ab)pa = b. Hence [(ac)y, (ab)glc = b # 0, contradicting the fact that My is
abelian.

(a.4) Suppose that for all ¢ € M, such that (ac)g = (bc)g = 0 we have
(%) = 0. By Lemma 2.1, there exists d € M, such that (d?), = 0 and
(cd)o = s. Then, by identity (11), (ab)ga = b, (ab)gd = 0 and (ac)pd = a.
Hence [(ab)y, (ac)p]d # 0 and again we contradict the fact that M is abelian.

(b) For all a € M, , (a?)o = 0. By Lemma 2.1, there exist a, b € M, such
that (a*)y = (b*)p = 0 and (ab)y = s. If dim M, = 2, then we have case 2.3.

If dimM, > 2, then by Lemma 2.1 there exist ¢, d € M, such that
(ac)y = (ad)y = (bc)o = (bd)o = (*)o = (d*)o = 0 and (cd)p = s. In this
case, by (11), (ab)pa = a and (ac)gd = a. Hence [(ab)g, (ac)p]d = a # 0,
contradicting the fact that Mj is abelian. This proves the lemma. O
Lemma 2.3. Let a C P(I,) be an even set and A = {0} Ua. Let M be the
variety of A-algebras satisfying the list of identities of Proposition 3.1 [GG]. If
M € M is a simple A-algebra (containing no graded ideals), then M = {o €

a| M, # 0} is connected and is one of the following sets:
(1) {(20—1,2i,2j -1, 2j) |1 <i <j <L} = Dy,
(ii) {(2i—1,2i,2j—1,2)), (2i—1,2)|1<i<j<l} =By,
(i7i) {(1234), (1256), (1357), (3456), (2457), (2367), (1467) } = &,

(M)) 57U{6|O'Eg7, o = 18\0'} = &.

Proof. The proof of this lemma in [GG] is based on the following facts:
(1) for all o € M, we have |o| =2 or 4.

2)If o#7 €M and oNT #D then o AT € M.



The item (2) may be proved as in [GG]. Let us prove item (1). Suppose that
o €M and | o |[>4. Thus, by (12), (M, My)o M, = 0, hence (M, M)y = 0
and M, = M?. But by Lemma 2.1, M2 = 0. O

Theorem 2.1. Let M € M be a simple A-algebra such that My # 0 and
M; =0. Then M = By and M has a basis

S7di'7a’i7bi7/\ 1SZ<]S£
J

with one of the following set of multiplication rules:

dij djk = di, dij a; = b;,
dij bj = ay, a; bj = dija
(a'i bi)@ = A, Aa; = b, (16)
)\bz = Qa;, (dfj)o = S,

or

dij djk = di, dij a; = aj,

dij bj = bi, a; bj = dij:
a; by = s + A, (d?j)o =S, (17)
Aa; = aj, Ab; = by,

where M(Zi—l,Zi,Zj—1,2j) = kdij, M(2i—1,2i) = kai @kbz and MQ) =k

We will denote by Dy, the A-algebra M with multiplication rules given

by (16) and by Capyq the one with multiplication rules given by (17).

Proof. If 9 = By = {(2i—1, 2i, 2j — 1, 2j), (2i—1, 2i)|1< i< j < £}, then
by Lemma 2.2 for 0 = (2i — 1, 2i) € 9 we have three cases

(a) M, = ka,, where (a%)y = s, or



(b) M, = ka, ® kb, , where (a2)y = (b2)o = s and (ay b,)o = 0 or

() M, = ka, ® kb, where (a,b,)o = s and (a2)y = (b2)o = 0.

Let us consider each case.

(a) For | o |=2, by identity (11), we have (a, as)pa, = 2 (a?)oa, = 0 and
by (7), for | o |=|7 |=2 with oN7T = 0 (a,a,)pa, = 2a,a;-a, = 0.
If |oc|=2and | oN7 |= 2 with 0 # 7, then by (7) (a,a,)pc, = 0.
Therefore, (a,a,)p € Z(M)=0. Let pu € 9 such that M, = kd and o C p,
7 =p\o. Denote b, = da,. If ¢ € M, then, by (7), de-d = ¢(dd)y = c.
But dc € M, = ka,. Thus ¢ = dc-d = aa,d = ab, and M, = kb,. In
this case, M is the algebra obtained in [GG].

(b) Let d = di2 € M(1234) and denote
b2 = dbl, o = dal, a1 a9 = ad, b2b1 = ﬂd

By (7), dby = d-db; = (dd)oby = by and das = d-da; = (dd)pa; = a;.

Now, by (9), we have (bobo)o = (db1-bs)o = (d-biba)o = (dbs-b1)o = 5.
Hence, § = 1. Moreover, (asas)y = (dai-az)o = (day-a1)o = (d-a1az)y = s.
Hence, a = 1.

Again by (9), (b2ag)o = (dby-az)o = (d-b1az)o = (daz-b1)o = 0. Hence,
by as = 0. Analogously, a; b, = 0.

Now denote 7 = (a1 a1)p, & = (b1b1)g, A = (a1b1)p. For ¢ € M), by
identity (11), we have (aya1)pc = 2(a;¢)pa; = 0.

By (8), for ¢ € M(3;—12i), 1 # 1, we have (a1 a1)pc = 2a,¢-a; = 0. Hence,
(a1 a1)p € Z(M) =0 and analogously (a; a;)g = (b;b;)g = 0.

Moreover, by (11), Aa; = (a1b1)pa; = (a1a1)oby = by and analogously
Aby = ay1. By (7), Aag = (a1 b1)gas = bias-a; = da; = by and in the same
way Aby = ao.

Now we denote b; = d;; by and a; = d;;a;. As above, we can prove that

bi bj = a;a; = dij, a; b]' = 0 and (ai ai)@ = (bz bz)q) = 0 and (ai bz)(}) = A. In

9



this case, we have the multiplication rules given by (16).

(c) Let d = dio € M(1234) be such that d?> = s and denote

g — dCLl, b2 = dbl, CleQ = ad,

alagzvd, agblzﬁd, b1b2:7’d,

As in case (b), by (7), we have day = d-da; = (dd)oa; = a; and dby =
d-dby = (dd)oby = by .

Now, by (9), we have (azaz)o = (dai-as)y = (das-a1)g = (a1a1)e = 0,
(baba)o = 0. Again by (9), (azba)o = (dai-ba)o = (dbe-a1)g = (brar)y = s.

Now for ¢ € Mgy, by identity (11), we have (ajai)gc = 2(a1c)oa; = 0
and by (8), for ¢ € M(2i_1,i, 1 # 1, we have (a;a1)gc = 2a;c-a; = 0. Hence,
(@ia;)p = (bibi)g € Z(M) =0.

By (11) we have (aibi)ga; = (a1b1)oar = ay and, by (7), (a1b1)gas =
as by - a; = day = as.

¢ From this, analogously to the previous case, for A = (a1 b1)p we get Aa; =
a; and Ab; = b;.

Now for d;; € M(3i_1,2i2j-1,2j) , it is clear, by (7), (8) and the fact that | o |< 4,
that Ad;; = (a1b1)pdi; = 0 O
Theorem 2.2. Let M be a A-algebra as in Theorem 2.1 and V' be an irreducible
M-module. Then

1. M = Dgg_f_l and

1.1V =<wy,...,v5 & 1>, where v; € Vigi—1,2:), & € Vp and
v; dij = vy, (vi ai)p = &, (vi bi)o = p,
§a; = v, pbi = vi, Ap=§ AE=up (18)

and all the other products are zero.

1.2. 'V s the adjoint module.
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2. M = CQ(.|_1

2.1. V. =<wy,...,vpT, 0>, where v; € Vig; 12i, T, € Vg and

V; dz’j = vy, (Uz' ai)(o =T, (Uz' bi)(l) = W,

Tb; = pa; =v;, AT =T, A= p (19)

and all the other products are zero.

2.2. 'V s the adjoint module.

Proof. 1. Let Vy # 0 and vy € V;. Define
Vij = Vo dij, Vi =V, wi=vob;, (vibi)g=p; (wia)p=8&. (20)

By (14) we have (v;a;)0 = (voai-a;)o = vo (a;a;)0 = vo. Thus, by (8) and (11),
we have that p = g = --- = =& = --- =& and pia; = (vib)ga; =
(via;)ob; + (a;bi)ov; = vob; = w; and analogously pb; = v;.

Hence V' has a basis {vo, v, vi,wi, p|% < 4,7 < £} and V is the adjoint
M-module.

Now suppose that Vp = 0 and take V,, u #0. As | pn (21 —1,2:) |=0
or 2, then (20 —1,2) C p or pN(2i—1,25) =0 for all 1 < ¢ < {. Suppose
(1,2) C p. If (26 —1,24) C p, i > 2, then oy, = (1,2,2i — 1,24) C p and,
by (12), V,, = sV, = (dy;d1i)oV, = 0, a contradiction. Hence, p = (12). Let

0 # v; € V{12) and denote
V; = U1 dlia (’Ui bz)q) =T; (Uz' ai)@ = W - (21)

Now by (6), we have v;di; = vidy;-dij = v1dyj-dyi + v1-didij = vidyj = v;.
By (11), i a; = (Uz' ai)@ a; = (Ui az’)o a; + (ai Clz')o v; = v; and pi by =

(via;)gb; = (vibi)oa; + (a;b;)ov; = 0. Analogously, 7;a; = 0 and 7;b; = w; .
Moreover, by (8), uia; = (viai)pa; = via;-a; + v -a;a; = v;d;jj = vj.
Analogously, we prove that pu;b; = 0, 7;0; = w;, 1;0; = 0. Hence p =

p1 =---=pug and 7 =7 = --- = 7,. Furthermore, by (13), Ay = (a1 b1)gp =

11



(arpn-b1)g + (a1 - ub1)g = (v1b1)g = 7 and, analogously, A7 = . Hence
V =<wy,...,vp 7,0 >, is the standard M-module.

2. Suppose Vy # 0. As in case 1, we can prove that V' is the adjoint M-
module. Thus, let Vy = 0. Again as in case 1 we can prove that there exists

p = (12) such that V, # 0. Denote, as in the previous case,
V; = U1 dlia (Ui CLZ')Q) = W; (’UZ' bz)(D =T; (7 dij = vj. (22)

By (11), mia; = (via)oa; = (vig)oa; + (a;ai)ovi = 0 and pib; = v,
Tia; = v;, 7,0, = 0.

By (8), pia; = (via)pa; = viaj-a; + vi-a;a; = 0, p;b; = (v;ia;)pb; =
vibj-a; +vi-a;b; = v;d;; = v;. Analogously, 7,a; = v;, 7,b; = 0. Hence p =
pp =---=pg and 7 =7 = --- = 71,. Furthermore, by (13), Au = (a1 b1)op =
(a1 p-b1)g + (a1 - pb)g = (a1 v1)g = p and, analogously, A\t = 7. O

Recall some well known facts about quadratic forms over an algebraically
closed field of characteristic 2 and its corresponding Lie algebras. Let V' be a
n-dimensional k-space and f : V XV — k be a non degenerated symmet-
ric bilinear form. This means that f(z,y) = f(y,z), for all =,y € V and

f(z,V) =0 implies x = 0. A non degenerated symmetric bilinear form f is

called symplectic if f(z,z) = 0 and orthogonal otherwise. A vector space V
has a unique orthogonal form f and in some basis {vi,...,v,} the form can be
written as

f(’U,’LU) = Z TilYi
=1

n n
where v = E z;v; and w = E Yi Vj -
i=1 i=1

A vector space V' does not have a symplectic form if dimV is odd and has a
unique symplectic form if dim V' = 2¢. In this last case, the form can be written,

in an appropriate basis {v1,..., v, w1,-..,w}, as follows

¢
flo,w) = ) (witi + yiz)

=1

12



¢ ;
where v = Z (xiv; + y;w;) and w= Z (ziv; + tyw;) .

i=1 i=1
Let End(V) be the associative algebra of all linear transformations of V.

Consider the following sets
S(f) = {a€ End(V)]| f(va,w) = f(v,wa), Yv,w eV},

O(f) = {a € End(V)| f(va,v) = 0, Vv e V}.

It is clear that O(f) C S(f). For f orthogonal, we denote D, = O(f) when
dimV =2¢ and By, = O(f) when dimV = 2/+ 1. For f symplectic, C, =
o(f)-
Theorem 2.3. In the notation above we have

1. [S(f), S(N)] = O(f).

2. Z(S(f)) =0 if dimV =20+1 and Z(O(f)) = 1 if dimV = 2¢.

3. O(f)/Z(0O(f)) is simple if dimV > 2 and dimV # 4.

4. Cy is a 2-algebra.

5. By and Dy are not 2-algebras and S(f) is the 2-envelope of By (Dy)
in End(V).

6. dimCy, =20*—¢, dimB, = 20> + /¢ and dim D, = 20> — ¢ .
Theorem 2.4. Let M be a simple A-algebra in a A-variety M as described
above and L = MOA be the corresponding Lie algebra. Then

1. L = Cy if M has a basis {s,a;;|1 < i < j < L}, where a;; €
M 2i-1,2i2j-1,2j) -

2. L = By if M has a basis {s, a;j, a;|1 < i < j < £}, where a;; €
M2i—12i2j-12j) » @i € M(2i—1,2) -

8. L = Dypy1 or Cypq if M has a basis {s, a;j, a;, bj, A1 <@ < j </},
where a;; € Mgi—1,2i2j-1,2j) and the multiplication rules are given by (16) or (17).

4. L is a Lie algebra of type E; or Eg, if M = o| M, #0} = & or &.

13



Proof. 1. By Theorem???? [GG|, a A-algebra M has a module V' with a basis
{vi,..., v}, v; € Vi2i—1,2i) - This M-module admits an M-invariant bilinear
form given by (v;,v;) = d;;. Note that if a M-module V = V@) @V, admits
an M-invariant symmetric bilinear form f, then the corresponding L-module

W = VOA admits a L-invariant symmetric bilinear form as follows:

foez, wey) = f(v, w) (z, y), v,weV, z,yeA

Moreover, f is symplectic (orthogonal) if and only if the restriction of f to
Vo @ Vp is symplectic (orthogonal). In our case, V5 @ Vp = 0 hence this form
is non degenerated and symplectic. As dimW = 4/ and dim L = 8¢* — 2/, we
have that L = Cy.

2. and 3. In all this cases M has a module V' with a basis {vy,..., v, pu, 7}
described in Theorem 2.2, with v; € V(g;_1,2;) . The M-module V admits an M-
invariant bilinear form given by (v;,v;) =0d;; and (A, ) = 0, (\,A) = (p, p) =
1, if M has multiplication rules defined by (16) or (v;,v;) = d;; and (A, pu) = 1,
(M A) = (g, ) = 0,if M has multiplication rules defined by (17).

In the first case, the corresponding L-invariant bilinear form on the L-module
W = VOA is orthogonal and, in the second case, it is symplectic. As dim L =
82+ 6+ 1,then L = Dy in the first and L = Cyyq, in the second case.

4. We prove this statement in the case £ . The case &; is corollary of this.

By definition, a Lie algebra L over a field k£ of characteristic 2 is a Lie
algebra of type Fg if there exists a Z-form Lz of the Lie algebra L over the
field C of all complex numbers such that L = Lz ®z k.

Let £ be the Lie algebra of type Eg over C | constructed in [G3] with a
basis

{ew, fi,..., e fo, hi,..., hs, (0, 1), pgo € &g}
and multiplication rules stated by Theorem 1 [G3].

Let Lz be a Z- module with generators {e;, f;, hy, i1 =1,...,8, (o,1), h% =
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1€T

Note that [Lz, Lz] C Lz, since for pNy =0, pU) = o we have, by Theorem

1 [G3], that
(0,0)(0,0) = |¢|+1 Zh _Zh )/2 = (— |¢|+1 Zh
i€y jep jep
1
(o, mh" = S(lun7| = [EAT[)(o,p), where =0\ p. (23)
But (|un7t| —|an7])=((ocnt| =2 |an7|)=lon7|=0(mod 2).

Hence (o,u)h™ € Lgz.
Now we prove that L = Lz ®z k. Define £ : L — Lz ®z k given by
g(ez) = €;, f(fl) = fi7 6(0-) ,LL) = (Ga N)a g(hz) = hz f(h‘o—) = h(f. (NOte tha‘t

although the notation for the elements being the same, they are in two diferent

algebras.)

To prove that ¢ is an algebra isomorphism, it is enough to prove that &((o, p)h?) =

(o, ), €] (). By (2),
el 1) = (252 + o) e )
and by (23)
E((o.m) &) = (0|~ | EN e DE((o.u).

But $(lune | — |Enel) = —3(une| +mane )+ [une|= —5(
oNp| + |ung|= @ + | N p| and the equality (*) holds.
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