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1 Introduction

Let k£ be an algebraically closed field of characteristic p > 0. Let B be a
Chevalley Z-form of a finite dimensional complex simple Lie algebra. The Lie
algebra A = (B ®gz k)/Z, where Z is the centre of B ®g k, is called a classical
Lie algebra over k. This is a universal definition of classical Lie algebras over
k [Hul]. Obviously, this definition is external with respect to the field k. If
p > 3, then there exists an internal characterization of classical Lie algebras

given by the following theorem.

Theorem 1.1. [Pr/ A Lie algebra L over a field k of characteristic p > 3 is

classical if and only if L has no elements a such that (ad(a))>=0.

Definition 1.1. Let L be an algebra and S = sly(k) be a subalgebra of Der L

(the Lie algebra of derivations of L ). We say that a pair (L, S) is semisimple
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if L, as an S-module, is of the form

L=) @&Sae)> aV
i J

where each V; is an trreducible two dimensional S-module each S; is a S-
submodule of Ms(k), where Ms(k) is the space of 2 by 2 matrices with the fol-

lowing action of sly(k): -y = zy — yz.
Now we can formulate the following conjecture.

Conjecture 1.1. A finite dimensional Lie algebra L over a field k is classical

if and only if there exists a semisimple pair (L, S).

In this work we give the first steps towards proving this conjecture for the case
where k£ has characteristic 2. We note that in characteristic p > 2 the algebra

S is semisimple but if £ has characteristic 2 then S is nilpotent.

Let V be a k-vector space of finite dimension n and f be a symmetric non-
degenerate bilinear form on V. Consider the k-space {X € End(V) | f(vX,v) =
0, Vv € V} and denote it by B, if n =2¢+ 1, by C, (D;) if n = 2¢ and
f(v,v) =0, Vv €V (resp. there exists v € V such that f(v,v) =1). Note that

By, Cy and D, are Lie algebras.

From now on we assume that char k£ = 2. In Theorem 3.1 of this paper,
we classify all semisimple pairs (L, S) where S belongs to a family of nilpotent
algebras that we define in Section 3. As a corollary, we obtain a construction of
the simple Lie algebras over a field of characteristic 2 of types Byy, Cy, E7 and

Ey and some representations of these algebras.

2 Even sets

Definition 2.1. Let I, = {1,...,n}. We call a C P(I,) = {o|o C I,} an

even set if for all o,7 € a, we have |o| =|7| =0 and [cN7| =0 mod 2.
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We note that P(I,) is an elementary abelian group with the operation
oAT = (e\7T)U(T\0).
Lemma 2.1. If a is an even set, then so is < a > (the group generated by a).
Proof. If a is even and o, 7 € a, then |o|, |7], [cNT|, |o\ 7|, |7\ o| are all
even numbers. Hence |[0cA7| =0 mod 2. Now let also ¢ € a, then |p\o|=0
and |¢\7|=0 mod2. Butas pnNo = ((pNo)\7)U(pNonr) and

N7 = ((pN7)\o)U(pNTN0), then |pNo|+|enT| = |(pNa)\7|+[(0NT)\o| =
lpN(eAT)[ =0 mod 2. O

Definition 2.2. A subset 0 C I, is called a-even if |[pN 7| =0 mod 2 for
all 7 € a. A subset B C P(I,) is called an a-even set if all its elements are

a-even.

Now as an easy corollary of Lemma 2.1 we get:

Lemma 2.2. If 0 C I, is a-even, then o is < a >-even.

For an even set a C P(I,), we introduce a commutative algebra S = S(a)
with basis {e;, h;, fi, h% |1 € I,, 0 €< a>\0} and multiplication given by
eifi = hi,
e;h’ =e;, fih® = f;, fori e o, (1)
and zero for all other cases. Define h? = 0.

Definition 2.3. A subset H of P(I,) is connected if, for every partition
I, = ITUJ, thereis o € H such that cNI#0 and cNJ #£0.

3 Module Algebras

The definitions given in this section follow the ideas developed by Grishkov
in [G1], [G2] where he describes a new way of writing a basis for Lie algebras

by connecting them to a category of graded algebras.
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Let a C P(I,) be an even set. For p C I, denote h, = Z h; and hy = 0.
Sn
It is easy to show that the algebra S (a) contains a central ideal I generated by

{h" + B 4+ 2T 4 honr |0, T €< a >}. We denote
S(a) =8 = S(a)/I. (2)

Note that h® + h° + h® + h, € I,so h, € I. Hence, in S(a), h, = 0, since
h = 0.
For every a-even set o, define an S-module A, whose basisis {(o, ) | C o}

and the S-action is given by

(o, W) ei = (o, pUi), €0\

(o, ) fi = (o, u\i), 1€ p;

(0’, :U') hz = (Oa ,U,), (S g; (3)
N
(o, W) h? = ('UQ(M + Ieoﬂu\) (0, ), for p €a,

and, by Lemma 2.2, for all other cases the action is zero.
To prove that this is the right definition for this S-module, it is sufficient to

show that (o, u)I = 0. Indeed, for ¢, 7, /AT € a, we have

(0, ) (h# + 7 + B2 + Y~ hy) =
(0, 1) ((|<pﬂal+\UﬂTIZE:TETAw)ﬂOI)/?wL\smul+\Tﬂu|+l(TA90)ﬂu|
+  enent)=(lenontl + [(e\7)Nal)/2 + (lonTNe|+
[(T\@)nal) /2 + ((T\p)no| + [(p\T)Na])/2 + [enpnT| +
(e \7)Npl + [Tnunel + [(T\ @) Nul + [(T\e) Nyl

(e\T)Np| + lonenT|) (o, p)

+ o+ o+

(lpnont + (p\7)Na|l + [T\ p)Naol + lonenTl) (o, 1)

(A1) N ol (o, p) =0, since o, pAT € a.

Then (o, u) I =0, as required.

Now let A = {0} Ua.



Definition 3.1. An algebra A is called a A-algebra if A = Z ® A, and,

acA
for every a # B € a, we have Ay Asg C Aang, A3 C Ay, Ay As C A,,

Ay Ag CT Ay + Ay and Ag Ay = 0.
Define a commutative A-graded algebra A as follows. As a k-space, A is

A=MED @A, where A = S(a). (4)

oca

Moreover, S = S(a) is a subalgebra of A and, by (3), each A, is an S-module.

For 0 # 7 € a, the multiplication is given by

(0, ) (1, ) = (AT, (p\T)U(p\0)), f pNe =0, pUpDdonr. (5)
€, uNe =1 pUep=o,
(o, 1) (0, 9) = 4 fi, uNe =0, pUep=o0c\1i, (6)
h? + hy, + (0,0), pNe=0, pUp=0,
and all other products are zero.

Note that in the last case of (6), since h, + h, = h, = 0, then
(0, ) (0, 0) =B + hy + (0,0) = (0, ) (0, ) =h" + hy + (0,0).

Proposition 3.1. Let a C P(I,) be an even set and A be the algebra defined
before. Then
Z(A) = {hy|pn C I, pis a — even}.

Proof. Let h = Y a;h; € Z(A) with as,...,a, € k. Then [(0,0),h] =
=1

(Z ai) (0,0) = 0 so that

t€o

Za,:o, Vocé€a. (7)

€0
Let us consider (7) as a linear system with coefficients in the field Fy = Z/27Z.

Then there exists a basis {v1,...,v,} of solutions of this system defined over

F, . This means that
’UZ‘:(’UH,...,UZ'”), UijEFQ,i:L...,m.
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For each i, denote y; = {j € I,|v;; = 1} and h, = Zhi‘ From (7), it
Sgn
follows that Zvij = Z vij =| oNu |= 0. Hence py,...,uy, are all

j€Eo JeETNW;
a-even sets and hy,,...,h,, is a basis of Z(A). O

Recall the definition of the product of two A-algebras. Let A = Z DA,
acA
and B = Z@Ba be two A-algebras. Then AOB = Z@Aa ® B, is a

a€A a€A
A-algebra with multiplication [-, -] given by

[aa®baia’ﬁ®bﬁ]zzcy®d7, if aaafB:ZC'Y’bab/j:Zd’)“

7€EA vEA YEA
Proposition 3.2. Let a be an even set, A = A(a) and A = {0}Ua. Let M =
My®Y ,co®M, be a commutative A-algebra. Then the algebra L = AOM s

a Lie algebra if and only if M satisfies the following A-identities:
asb; - cy = 0, loNANT|>1, 0 T # X# 0 #TAN, (8)

ayb; - cx = a, - brcy, loNTNA =10 #T#AX# 0 #TAN, 9)

aoby -y + brcy-a, + Crao b, =0,|0NTNAN =0,0 #7 # X # 0 #7AN (10)

(aobs)oc; = (asbs)gc; = 0, oc#T, loNT|> 2, (11)
(a5bs)oc; = 0, (agbs)ocr = agcr - by, c#T, loNT| =2, (12)
ayCr by = Gy - Crby + (agby)ocr, lonT|=0, (13)
(asbr - cx)o = (as - brcy)o, A =o0ArT, (14)
(ab)oc + <‘72——| + 1) (ca)ob + (ca)pb = 0, a,b,c € M., |r| > 2, (15)
(ab)oc = (cb)oa, (ca)gb = 0, a,b,c € M., |t| =4, (16)
(ab)oc + (bc)oa = (ac)gb, a,b,c € M., |1] =2, (17)
(apz)y = ap(zy), Vz,y€e M, (18)
(agby)oc: = 0, lo| > 4, (19)



(aoby - ex)p + (brcx - ao)p + (crao - by)g = O, o= \AT, (20)
(ab)oc + (ac)gh = (ab)oc + (ac)ob, , abce M, |o|=2, (21)
ap - (byc;) = (aghy) - 1, o#T,0#0 orT#0, (22)
(agbo - Co)o + (boo)o - ap + (coap - bp)p = 0 Voo, (23)
aybo - o = ay - boco o#0, (24)
(asbs)o - co = (asco - bs)o, o#0, (25
(asco - bs)o = (bsCo - o), o#0, (26)
(arz)y + (a-y)z + a- (zy) =0 T,y € My, (27)
(agbs - co)o = (apCs - bs)o o#0. (28)

Proof. Suppose that L. = AOM is a Lie algebra.

Let a = (o, 1) ® a5, b= (7,0) ® by, ¢ = (A, 9) ® cx be elements in L. Set
t1 = [[a,b],¢], ta = [[b,c],a], ts = [[a,c]|,b]. By Jacobi’s identity we must have
ti+to+t3=0. Thus,if p=0, p =0, » = (A\\o)Ui, i € oNTNA, then we have
ty =[(cAT,0\T) ® asb:, (A, A\ o) U1)) ®cr] = (cATAN, (AN \T)Ui) ®
(asbr)en = 0, because ta = [[(0,0) ® as, (N\,(A\ o) U1) ® cy], (1,0) ® b,] = 0
since cN((A\o)Ui) =i #0 as i € o (so identity (5) does not apply) and
ts = [[(7,0)®b;, (A, (A\\o)Ui)®cy], (0,0)®a,] = 0, as there exists j € (eNTNA)\¢
and j & (A\ o) Ui. Therefore, (a,b;)cy =0 and this proves (8).

Nowif p =0, p =0 and » = (A\o)Ui, i = o N7NA, then we have
t1 = [(c AT, 0\T)@asb;, (A, (A\0)Ui))@cy] = (6ATAN, (6 AN\T)Ui)Qasb,-cy,
to = [[(TAXN, (A\ o) Ui\ 7)) ®brcp, (0,0) ® ay] = (TAXAC, ((cAN)\T)U1) ®
brcx-a, and t3 = [[(0,0) @ as, (A, (A\ o) Ui)@ecyl, (1,0) ®b;] = 0, since i € 0.
This proves (9).

If pu=o0, o=0,v%=7NA\ then t; = (cATAN o\ (TAN)) ® a,b, - ¢y,
to = (cATAN, 0\ (TAN)®brCy-ay , t3 = (CATAN 0\ (TAN)) ®ascy-b, . Hence



t; + ty + t3 = 0 implies (10).

For y=7=X=o0, p =1 =0, we have t; = [h° + (0,0) ® (ab)o, (7,0) ®c] =
(0,0)®(ab)oc+ (ab)ge; to = [R7+(0, D)@ (ac)o, (0,0)®b] = (0,0)@(ac)ob+ (ac)gb
and t3 = [[(0,0) ® b, (0,0) ® ¢], (0,0) ® a] = 0. This proves (21).

For (23) and (28), by (5) and (6), t1 = [[(0,0) ® ag, (0,0) ® by], (0,0) @ ¢,] =
((agbo)co)o ® A7 + ((asbo)co)o © (0,0), t2 = [[(0,0) ® ag, (0,0) ® c5],(0,0) ®
bs] = ((apcs)bs)o ® h7 + ((apcs)bs)o @ (0,0) and t3 = [[(0,0) ® by, (0,0) ®
o], (0,0) ® ag] = (bycy)pap @ (0, 0). Hence, as our algebra is A-graded, we get
(apby - co)o + (boCs)p - ag + (coap-by)g = 0 and (agh, - c;)o = (agc, - by)o, as
required.

For (25) and (26), by (3) and (6), for i € o, t; = [[(0,0) ® ay, (0,7) @ b,], f; ®
co] = ((asbs)oo)o ® hi; ta = [[(0,0) ® ag, fi ® col, (0,7) ® bs] = ((asco)bs)o ®
(h? + hi) + ((asco)bs)o ® (0,0) and t3 = [[(0,1) ® b,, fi ® col, (0,0) ® a,] =
((br0)ag)o® (A7 +> i, hi) + ((boco)as)p® (D, 0) and the identities follow because
of the grading of the algebra. The proof of the other identities are left as an easy

exercise to the reader. O

Lemma 3.1. Let a C P(I,) be an even set such that ) ¢ a and A = {0} Ua.
Let M be the variety of A-algebras satisfying identities (8) to (28). Let M € M
be a simple algebra (containing no graded ideals). If M = {o € a| M, # 0},
then

(a) for all o € M, we have |o| =2 or 4.

(b)If o7 €M and o NT #D then oAT € M.

(c) M is connected.

Proof. Note that, by (18), M, is commutative and associative. Moreover M,
is in the associative centre of the algebra M . (By definition, the associative
centre of an algebra A is the set C(A) = {a € A|(a, A, A) = (A, a, A) =

(A, A, a) = 0}, where (z,y,2) = zy-2z — x-yz.) If My is not semisimple,



then M, contains an element a such that a? = 0. But in this case, aM is
a nilpotent ideal. If M, is semisimple, but not simple, then there exist two

orthogonal idempotent elements e; and e, such that e;e; = d;je;. In this case,

e;M are proper ideals of M. Hence M, is simple and M, = ks with s = s.
We define a symmetric bilinear form ( , ) on the algebra M as follows:
(s, s) = 1,
(ag, by) = a, if (ayb,)0 = as, (29)

(ag, b;) = 0, for o # 7.

By (14) and (18), this form is invariant (zy, z) = (z, yz) and non trivial, hence
it is non-degenerate. But (a,, b,) = 0 if |o| >4, by (19). Therefore, M, = 0
when |o| > 4. Thus, (a) is proved.

Now if o, 7 € M and o N7 # 0, 0 # 7, then by (12) ay b, ¢y = ay ¢y - b,
since |o|, |[7| <4 and [oN7|=2. If M, M, =0 and a,c, = as + ky, then
0=a,b, ¢, = ay¢y - b, = asb, + kgb,, that is, asb, = kgb, . As the bilinear
form is non-degenerate, a # 0 for all b, € M,, but by (12) (aycs)p b, = 0.
Hence kgb, = 0, a contradiction. Therefore, M, M, # 0 and o/A7 € 9. This

proves (b). Part (c) is obvious as M is a simple algebra. O

We observe that if M is simple, then L = AOM is not necessarily a simple

algebra, but L/Z(L) is a simple algebra, where Z(L) is the center of L.

In order to define a symmetric invariant bilinear form on L = AOM , we

need the corresponding form on the algebra A as follows.

Proposition 3.3. For the A-graded algebra A = Ao @ > .. DA, defined in (4),

gca

where Ay = S(a), a symmetric bilinear form is given by

((0,0),(0,0) = ((o, ), (0, B) = (e, fi) = 1, for pCo,
loNT|

(hoa hT) = T’ (30)

(R, b)) = |oni|



and in all other cases the bilinear form is zero, is invariant. The kernel of this

bilinear form is N(A) = Z(A).

Thus if the algebra M has a bilinear form then L = AOM also does and it

is given by
D _A@mi Yy mon) =Y (N p) (min). (31)

Moreover, the kernel N(AOM) = N(A)OM + AON(M).

For each subset P C P(I,) denote P(I,) = {oc C I,|I,\ o € P}.
Lemma 3.2. Under the same hypotheses of Lemma 3.1, for a C P(I,) and
M eM, M = {o€a|M,#0} is one of the following sets:

(i) {20 —1,2i,2]—1,25) |1 <i<j <t} =Cy,

(i) {(26—1, 23,2 —1,27), (20 —1,20)|1<i<j<l} = By,

(111) {(1234), (1256), (1357), (3456), (2457), (2367), (1467) } = &7,

(M)) £7U{6|0'€£7, o = Ig\O'} = &.

Proof. Recall that a and 90U are subsets of P(I,). Since 9 is connected,
Lemma 3.1 holds. Set My = {o € M||o| =2} and My = {oc € M||o| = 4}.

We use induction on n > 2. For n =2, MM = {(12)} = By. Let n > 2.

1) Suppose that MMy # 0.

First we claim that if I = | J 7# I,, then I, = TUJ (with J = I,\1)
and, for every 0 € My, o C }evgi o CJ. Indeed, if c €I but oNI # 0,
then there exists 7 € MM, such that o N7 # () meaning that 7 C o. Thus,

oAT = o\ 7€My and o\ 7 C J, contradicting the definition of I.

However, I = U 7 # I, implies that 9 is not connected, a contradiction.
TEM,
Hence, I, = U T.
TEM>

Now it is clear that 7N =0, for all 7 # u € M, . Therefore, in this case,
we have IM = By,.
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2) For 9 = My, if n > 4 then n > 6 and, without loss of generality, we
have DM = {(1234), (1256), (3456)} C M, . (For n =4, M = {(1234)}.)

A subset X C P(I,) is called n-maximal if, for every £ € I, such that
|£]=0 mod 2, or £ € X or there is n € X such that |£Nn/=1 mod 2.

It is clear that 9 is 6-maximal and, in this case, 9t = M = Cy3. Let
n = 7. Then M is not 7-maximal and there are exactly four other elements
@ € P(I7) such that |p| =4 and |pNo| =0 mod 2, for all 0 € N, namely,
@ € {(1357), (2457), (2367), (1467)} . Hence, for n =7, M = &;.

Let n = 8. Suppose that & C M and that {oc C Lo € &, loNu| =0
mod 2 forall p€ &} =& = {c|lo€ &, =1I\o} Hence, &NIM #
and M = & = EUE . If & ¢ M, then M = Cs.

Let n > 8. If & C 9 then & C M. Now let o € M be such that oNlg #
and 0 ¢ Is. As |oN7|=0 mod 2 for all 7 € &, then o NI is E-even. But
for all 0 C Ig, o is &g-even if and only if o € &, contradicting with o ¢ Ig.
Hence, & ¢ 9. From this we have that, for all o # 7 € M (with o N7 # )
and all Y € M\ {o, 7, cAT}, vNo =0 or vyN7 =0 or vN(cAT) = 0.
This yields 9 = Coy .

O

Theorem 3.1. Let M be a A-algebra as in Lemma 8.2. Then M has basis

{3, ay | s € My, 0 € M}, with multiplication rules given by
2

s°=s, Sa, = a,, a2 =s, fors€ My, o €M,

Oy O = QgAr, if oAT € N,
and all other products are zero.

Proof. Let ( , ) be the non-degenerate symmetric bilinear form which was

introduced in Lemma 3.1. Recall that () ¢ a.

Let 0 € 9My. If a € M, with a® = 0, then there exists b € M, such that
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(a, b) = 1 (that is, ab = s). Thus by (16), 0 = a*-b = ab-a = s-a = a.
Hence dim M, = 1, as any vector space V , with dim V' > 1, contains a vector
v such that (v, v) = 0. Denote a = a, if a? = s.

Let o0 € MM\ My, |o] = 2. Suppose that a®> = 0 for every a € M, . Since
the bilinear form is non-degenerate, there exists b € M, such that ab = s.
However, by identity (17), a = ab-a = b-a?> = 0, a contradiction. Thus,
there exists a € M, such that «*> = s and, for b € M,, by (17), we have
b=a*>b=ab-a=caa,with a€k (as 0 €a). Hence, M, = ka, for a®> =s.

Now fix an element a, € M,, o € 9M, such that a> = s. For o # 7 € IM,
with oN7 # 0, we have by (14), (asa,)s = (asa,-(asa,))o = (as(ar(asa;)))o =
(a(@200))o = (a000)o = 5, as by (12), a,(a,a,) = aa,. Hence, a,a, =
Qo AT -

Suppose that o, 7 € MM\ M, are such that cN7=0. Then cUT = p € My

and a,a, = a,. Hence, by (12), a,a, = asa,-a, = aa, = a,. O

4 Representations

Let a be an even set (with ) € a) and A ={0}Ua. Let M = My @ ZEBMO.

gea

be a simple A-algebra and B C P([,) be an a-even set such that B Aa C B.

Definition 4.1. A k-space V = V5 & Z ®V,, is called a M-module if there
neB

erist a linear map m : V. x M — V such that V, M, C Vyry, for p # o,
VoM, CVy+ Vi, VoMy = 0, and the algebra M = M &V , with multiplication
(m1 + ’Ul) . (m2 + UQ) = mime + viMy + Vomy,

satisfies the identities (3)- (28).

In this section we study the irreducible M-modules.
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Suppose that V' is irreducible as an M-module. Set V' = V; ® Z oV, .

0#uEB
We start with some general rules and remarks on the AM-action.

Rule A. M, acts as identity on V' and trivially on Vj.

Indeed, let W = {v,|0 # 0, vy-s = 0}. Clearly W is a submodule of V',
as for any v, € W, for all 7 € M, (v,a,;)s = (v, - s)a, = 0, using identity (18).
Hence, W = 0, as V is irreducible, and v, - s # 0, for all o # (). Letting
W, = Vs + 8 we get, by (24), wy 8 = vy 8% = v, -8 = w,. If w, # v,, then
(wy —v,)-s = 0, a contradiction. Hence, v, -s = v, , for all o # (), as required.
We have Vj My = 0, by definition of M. Thus, Rule A is proved. O

Now let 1 € B, 0 € 9 be such that p # o and choose 0 #v, € V.

Rule B. If pNo # 0 then |pNo| <2 and v,-a, # 0.

Indeed, if |pNo| > 2 then, by identity (11), v, = v,-a2 = (vua,)a, = 0, a
contradiction. For |[pNa| =2, by identity (12), (vua,)a, = v, a2 = v, # 0,
hence v,a, # 0. O
NOTATION: In the sequel we use the following notation for o € 9:

Vo =Viy vy =v;, a, =a; when o= (2i—1, 2i),

Vo = Vij, vs = vij, ay = a;5, when o = (2i—1, 2i, 25 — 1, 2j).
We define a conjugation on Iy, and on P(I,) by

27, if §=25—1.

.|
Il

25 —1, if 1 =2j.
It is clear that conjugation is an involution.
Theorem 4.1. Let M be a simple A-algebra as defined above and V be an
irreducible M-module. Then:
1. if M = Cyp then 1.1. V =< vy, v;5 |1 <i#j<L€>, where 0 # vy €V}
and v;j = vy - ag, forall 1 <i# j </ (adjoint module) or
1.2. V. =< |1 <i< 0>, where 0 # v, € Vi and v; = vy - ay; for

2 < j < (standard module) or
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1.3. V. =< vy € Sp|t{i; € A|i; = 0 mod 2} = 0 mod 2 >, where
Sp = {ua| X = (i1 -+ 4p), with i; € {25 — 1,25}, for 1 < j < ¢} and
Ux - Gy = Uape for all o € Cop (spinor module).

2. If I = Byy then

2.1. 'V =<, v, vij|1 <i#7<€>, where 0 #vyg € V, v; = vp-a
and v;j = vy - ag, forall 1 <i# j </ (adjoint module) or

22. V =< v, M1 < i< {l>, where 0 # vy € Vi, vj = vy -ay; for
2<j<t and XA = (via;)g (standard module).

S If M = & then V =< v, |p € E(I;) >, where v,a, = vupne for all
€& (I, o€é&.

4. If M = & then V =< vy, v, |0 € Eg > where 0 # vy € Vi, V905 = Vs

and vy -y = Vopy, for all o, € E (standard module).

The proof of this theorem is given in the following subsections.

4.1 M-modules for 9 = Cy

For M = Cyp = {(20 —1,2i,25 —1,25)|1 < i < j </}, by Theorem 3.1,
a simple A-algebra M has a basis {s, a,|s € My, 0 € 9M}. Let V be an
irreducible M-module and B = {¢ C I,,|V, #0}.

Case I: Suppose that M N B # 0.

Let 0 € M N B and choose 0 # v, € V,. Then, by (16), (v,as)00s =

Vs (arty)o = v, # 0 Hence, there exists 0 # vy € V. Define
def . .
Vo - Qi = Uiy, for all 1 <z 75 ] < L. (32)
In this way, we have by (18),

Vij - ik = (Voij)ajr = vo(aiar) = Vot = Vi, for 1<i#j#k <UL,

Vij - Qpp = (anij)apk = UO(aijapk) =0, for {iaj} N {p,k} = 0.
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Therefore, {vg, v;;|1 < i# j </} is a basis of the M-module V.
Case II: Suppose that 9N B = @ (implying V5 = 0 and Vj = 0).
I1.1) Suppose that there exists p € B with |u| = 2.

a) If = (12) € B, then let 0 # v; € V. Define
vy - ay def v; # 0, for 2<j5<¢. (33)

Now for 1 < i < j <k < /¢, using identity (8), we have v;-a;x = v;(a;;a;,) = 0.
From this and by (10), v; - a;; = (via1;)ai; = vi(aiai;) + (viaij)a = viay; =
v;. Hence, {v; |1 <i </} is a basis of the M-module V.

b) For ¢ > 2, by definition of B, p = (13) € B. For ¢ = 2, this is simply a
renumbering of case a).

I1.2) Suppose that |u| > 2, for all u € B.

We claim that (2i — 1,27) ¢ p, for all 1 < i < £. Indeed, without loss of
generality, suppose that (1,2) C u. If oy; = (1,2,2i — 1,24), then, by Rule B,
| o N | < 2. Note that oy; # p,as MN B = 0. Now if, for all 1 =2,...,¢,
| o; N p | = 2,then p=(1,2) a contradiction and the claim is proved.

Now let 2i—1 € p (or 2i € p). Then | oy;Np | = 2 implies | (25—1,25)Np |
= 1, for all j =1,...,¢. Hence, after a suitable renumbering, we may suppose

that p = (1357---2¢ —1) € B. Thus, for all o € M,
Uy Gy = Vppg, &S |pNo|=2. (34)
Therefore, V must be contained in:
Sp = {vx| A = (iriy -+ ig), withi; € {2j —1, 25}, for 1< j < £}.

Now consider the following subspaces of Sp:

Sp, = {veSp|t{ijeAr]i;=0 mod2}=0 mod2},
Sp. = {vaeSp|t{i;€A|i;=0 mod2} =1 mod?2}.

Note that Sp, and Sp_ are invariant and irreducible under the action of M,

for M = Cy, as by (34), a, exchanges pairs of even or odd numbers in each \.
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Moreover, there is an isomorphism ® : Sp, — Sp_ such that (i1 iy --- i) —

(4149 - - - i¢) which commutes with the M-action.

4.2 Representations for 9t = By

For M = By = {(2 - 1,2i,2j — 1,25), (26 —1,2)|1 <i < j <}, by
Theorem 3.1, a simple A-algebra M has a basis {s, a,, b, |s € My, 0 € My, T €
M\ M,}. Let V' be an irreducible M-module.

Case I: Suppose IMNB # 0.

[.1) If there exists 0 # vy € Vp, then define, for 1 <i#j# k<1,

def def
Vi = Vo - Qg Vij = Vo - Qg5 -

Thus, using the identities of Proposition 3.2, we get:

i) by (25), (via;)o = ((voa;)as;)o = wvo(a;a;)o = vos = vg.
ii) By (26), (viai)g = ((voai)ai)g = wvo(a;a;)g = 0.

iii) By (18), we have for 1 <i# j#p#k </

;i - G = (voa;)a; = voa;; = vij,

vi-ai; = (voa;)ay; = vo(aiai) = voa; = vj,

vij-ai = (voaij)a; = vo(aija;) = vea; = v;, (35)
Vij - Qjk = (anz’j)a]‘k = Uo(aijajk) = Vi = Vig,

Vij - Ak = (Voaij)apr = vo(aijapr) = 0.

Note that v;; = 0 implies v; = 0, hence vy = 0, a contradiction. Therefore,
{vo, vi, vij |1 <i# j <t} is a basis of the M-module V.
[.2) For Vj = 0, let 0 € 9M N B be such that | o |= 2. Without loss of
generality, let v; € V;. By Rule B, define v; def viay # 0, for 1 <1 < /4.
Moreover, (via1)g = 0 and (via1)p = A .

Again without loss of generality, if vias = vig # 0, then, by (12), vi3-a; =
v1g - (@12 - a3) = (vi2a12)o - az) = 0, as Vy = 0. But this contradicts Rule B.

Therefore, this case does not occur.
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Thus, we can suppose that v;a; = 0, for all 1 <7 # j </. By Rule B, we
can define v;a;; def v; # 0. We also have (v;a;)g = Ai. By (12), A\apy = 0,
for ¢ & {p,q}. By (13), Nia; = (viai)pa; = viaj-a; + v;-a;a; = v;-a;j = v;.
Hence A= \; forall 1 <i</¢ and Aa; = v;. Therefore, {v;, \|1<i </} is
a basis of the M-module V.

Case II: Suppose MN B = () (hence Vo = 0 and Vj = 0).
In this case, any p € B is such that |g| > 2 and (27 — 1,2i) ¢ p. Hence,
as in Case II.2 of Section 4.1, p = (1357---2¢ — 1) € B but (12) € By and

|(12) N p| = 1, contradiction. So this case does not occur.

4.3 Representations for M = &;

Let 9 = {(1234), (1256), (3456), (1357), (2457), (2367), (1467)} and V be
an irreducible M-module.
Case I: Suppose that there exists p € 9N B.

de

I.1) For Vi # 0, choose 0 # vy € Vi and define vy - a, lef v, , for o € M.

Hence, for any 7 € 9, by (18), we have

Vo * Q7 = (an'a)a’r = UO(aaaT) = VolopArr = VoAr -

Therefore, in this case, {vy, v, |0 € &} is a basis of the M-module V.
I1.2) If V5 = 0 then, by (12), 0 = (vsa0)oa, = (V,0;)0; = VyarGy, CONtra-
dicting Rule B. So this case does not occur.

Case II: Suppose that 9MN B = 0.

First we claim that if 4 € B, then |u| = 3.
i) If p = (ij) then |[pNo|=0 or 2, forall o € M. Thus p C (1234) N (1256) N
(1357) = {1}, a contradiction. Hence, |u| > 3.
ii) Without loss of generality, we can suppose that 1 € . Then, as 9NB = 0,
1(1234) N p| = (15), j#1. If 5 =2 then 3,4 ¢ p and |(1256) N p| = (12),

implying that 5,6 ¢ u. Hence, |u| < 3. We argue analogously for j = 3 or
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j = 4. Hence, by i) and ii) the claim is proved.
Now simple calculations show that B = &;(I;) and, therefore, V has a basis

{v,|p € E(I7)}, with M-action given by v, a, = vy, -

4.4 Representations for 9t = &

Let M = & = & U&;(I3). Note that for every 7 € Iy, we have or 7 € & or

loN7|=1 mod 2 for some o € & . This means that B C MM = &.

1) If there exists 0 # vy € Vp then, as in Case I of Section 4.3, define

Vg * Qg el vy, for o € M. Hence, for any u € 9, by (18), we have
Vo - Gy = (Volo)ay = v9(Gry) = Voloau = Vony -

Therefore, in this case, {vy, v, |0 € &} is a basis of the M-module V.
2) If Vo = 0 then, by (12), 0 = (v,6,)0a; = (Vo@;)ay = VyarG, , CONtra-

dicting Rule B. So this case does not occur.

5 Conclusion and final comments.

It is not difficult to prove that the Lie algebras obtained from the A-algebras in
the Theorem 3.1 by multiplying them by the corresponding algebra A (see (4))
are the classical Lie algebras or its central extensions. Moreover, as simple /-
algebras have invariant bilinear forms then the corresponding Lie algebras also

admit such forms.

In order to calculate the center of a Lie algebra L = MOA corresponding to

a given A-algebra M € M, we need the following result.

Proposition 5.1. Let M be a A-algebra in M = M(a), where a is an even
set as before. Let Anny (M) = {x € M |zM = 0} and L = M(a)OA be the
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corresponding Lie algebra. Then
Z(L) = AOAnny (M) + Z(A) @ My,
where Z(A) = {h,|pn C I, pis a — even}.

Proof. All statements of this proof are obvious or follow from Proposition 3.1. [

For example, the Lie algebra L = M (Eg)0A has a basis
{61: fla' -+ €7, f7a hla h2a h57 hala h’02: hUS; (NaU) ‘ M Coe gS}a

where { ey, fi,..., e7, fz, h1, ho, hs, A%, h°2, h?3} is a basis of the algebra S =
S(&s)/I defined by (3) and oy = (1234), 05 = (1256), o3 = (1357) . Recall that
in S we have

R + h* + R7AF 4 hyn, = 0, (36)

for every o, u € &, where h, = Z h; . The multiplication in this basis of L is
1ET

given by formulas (3), (5) and (6). For example,
(1357, 13), (3478, 7)] = (1458, 1),

(1256, 2), (1256, 156)] = h” + hy + hs + he = h® + ha,

since, by (36), he = hy, + h1 + ho + hs = hy + hy + hs, where 0 = (1256).

Note that B = {u € I;|pis & —even} = & U & (I;). From this and by
Proposition 5.1 we have that Z(L) = kh, where h = hy + h3 + hs .

It is clear that dim L = 133, dim L/Z(L) = 132 and L/Z(L) is a simple
Lie algebra of type FE7. Note that for the M(&7)-module V' constructed in
Theorem 4.1, with basis {v, | p € £(I7)} we can construct the L-module W =
VOA of dimension 56. But W is not a L/Z(L)-module, since Vh = V # 0.

The modules V =V, & ZUE 5 ®V, of A-algebras which we constructed in
Section 4 correspond to the following modules over the corresponding simple Lie

algebra L.
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a) If L if of type Cy or By and |o| =2, for all o € B, then V' corresponds

to the standard module.
b) If B = Cy or By, then V corresponds to the adjoint module.

c) If L is of type Cy and |o| = ¢, for all 0 € B, then V' corresponds to a
spinor module.

This gives us a useful construction of spinor modules over a simple Lie algebra

L of type Cy . In this case such a Lie algebra has basis
{ew fishj, hF, (o ) [i=1,...,26; 5 =1,2,3,5,..., 20— 1;k =2, ... 4; u C 0 € Cor},
with multiplication rules given by
lei, fil = hi, where h; = hy + ho + hop 1, if i =2p > 2,
e, W] =€, [fi,W]=f;, if ie{1,2,2j—1,25},
[(o, 1), '] = (o, ), ifo N (1,2,2i —1,2) # @and | N (1,2,2i — 1,24)| = 0or2.

[(07 :u’)ahZ] = (O-a /'[’)a if 1 €0
hi + hy, for o = (1,2,25 — 1,25);
hi + h* + h,, for o = (25— 1,252k — 1,2k).

(o, 1), (0,0 \ )] =

Here, as above, ho, = hy + hy + hgp 1, if p > 1. The other products are given

by the formulas (5), (6) or are equal to zero. Moreover, Z(L) = kh, where

12
h = Z hQZ’_l .
=1

The spinor module W has a basis

{(B,0) | @ € B e M}

where

Me={p=(i1,....,%) | i; € {2j—1, 2j} and |{i € p | i = 0 (mod 2)}| = 0 (mod2)}.
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The action of L is given by

B,a)e; = (B,aUld), if i € 8\ «,

B,a)fi = (B,a\1), if i € a,

(B,)hi = (B,a), if i € B, (37)
(B,a)h" = (B,a), if (1,2,2i —1,2))Na =0 or 2,

(B,0)(o,1) = (BAog,a\oUp\B), if BNoCaUpuand pna=0.

All the other products are zero. Observe that, for any (non adjoint) irreducible

M-module V| we have (VOA) Z(L) # 0.

Note that Theorem 3.1 is not true if we omit the condition @) ¢ a. But we can

formulate the following conjecture.

Conjecture 5.1. Let M be an arbitrary simple finite dimensional /\-algebra
which satisfies all identities (8)-(28) and Mg = 0. Then the corresponding Lie

algebra L = MOA is a simple Lie algebra of type Bag, Cy, Doy 1, E7 or Es.
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