Simple classical Lie algebras in characteristic 2 and their gradations, I.

A. N. Grishkov* M. Guerreiro[†]

June 20, 2002

1 Introduction

Let k be an algebraically closed field of characteristic p > 0. Let B be a Chevalley \mathbb{Z} -form of a finite dimensional complex simple Lie algebra. The Lie algebra $A = (B \otimes_{\mathbb{Z}} k)/Z$, where Z is the centre of $B \otimes_{\mathbb{Z}} k$, is called a classical Lie algebra over k. This is a universal definition of classical Lie algebras over k [Hu1]. Obviously, this definition is external with respect to the field k. If p > 3, then there exists an internal characterization of classical Lie algebras given by the following theorem.

Theorem 1.1. [Pr] A Lie algebra L over a field k of characteristic p > 3 is classical if and only if L has no elements a such that $(ad(a))^2 = 0$.

Definition 1.1. Let L be an algebra and $S \cong sl_2(k)$ be a subalgebra of Der L (the Lie algebra of derivations of L). We say that a pair (L, S) is **semisimple**

^{*}Supported by FAPEMIG as visitor to the Depto. de Matemática - UFV in February 1999

[†]Supported by FAPESP as visitor to IME-USP in February 2000

if L, as an S-module, is of the form

$$L = \sum_{i} \oplus S_i \oplus \sum_{j} \oplus V_j$$

where each V_j is an irreducible two dimensional S-module each S_i is a S-submodule of $M_2(k)$, where $M_2(k)$ is the space of 2 by 2 matrices with the following action of $sl_2(k)$: $x \cdot y = xy - yx$.

Now we can formulate the following conjecture.

Conjecture 1.1. A finite dimensional Lie algebra L over a field k is classical if and only if there exists a semisimple pair (L, S).

In this work we give the first steps towards proving this conjecture for the case where k has characteristic 2. We note that in characteristic p > 2 the algebra S is semisimple but if k has characteristic 2 then S is nilpotent.

Let V be a k-vector space of finite dimension n and f be a symmetric nondegenerate bilinear form on V. Consider the k-space $\{X \in End(V) \mid f(vX, v) = 0, \forall v \in V\}$ and denote it by B_{ℓ} if $n = 2\ell + 1$, by C_{ℓ} (D_{ℓ}) if $n = 2\ell$ and f(v, v) = 0, $\forall v \in V$ (resp. there exists $v \in V$ such that f(v, v) = 1). Note that B_{ℓ} , C_{ℓ} and D_{ℓ} are Lie algebras.

From now on we assume that $char \ k=2$. In Theorem 3.1 of this paper, we classify all semisimple pairs (L, S) where S belongs to a family of nilpotent algebras that we define in Section 3. As a corollary, we obtain a construction of the simple Lie algebras over a field of characteristic 2 of types $B_{2\ell}$, $C_{2\ell}$, E_7 and E_8 and some representations of these algebras.

2 Even sets

Definition 2.1. Let $I_n = \{1, ..., n\}$. We call $\mathfrak{a} \subset \mathcal{P}(I_n) = \{\sigma \mid \sigma \subseteq I_n\}$ an **even** set if for all $\sigma, \tau \in \mathfrak{a}$, we have $|\sigma| \equiv |\tau| \equiv 0$ and $|\sigma \cap \tau| \equiv 0$ mod 2.

We note that $\mathcal{P}(I_n)$ is an elementary abelian group with the operation $\sigma \triangle \tau = (\sigma \setminus \tau) \cup (\tau \setminus \sigma)$.

Lemma 2.1. If \mathfrak{a} is an even set, then so is $<\mathfrak{a}>$ (the group generated by \mathfrak{a}).

Proof. If \mathfrak{a} is even and $\sigma, \tau \in \mathfrak{a}$, then $|\sigma|, |\tau|, |\sigma \cap \tau|, |\sigma \setminus \tau|, |\tau \setminus \sigma|$ are all even numbers. Hence $|\sigma \triangle \tau| \equiv 0 \mod 2$. Now let also $\varphi \in \mathfrak{a}$, then $|\varphi \setminus \sigma| \equiv 0$ and $|\varphi \setminus \tau| \equiv 0 \mod 2$. But as $\varphi \cap \sigma = ((\varphi \cap \sigma) \setminus \tau) \cup (\varphi \cap \sigma \cap \tau)$ and $\varphi \cap \tau = ((\varphi \cap \tau) \setminus \sigma) \cup (\varphi \cap \tau \cap \sigma)$, then $|\varphi \cap \sigma| + |\varphi \cap \tau| \equiv |(\varphi \cap \sigma) \setminus \tau| + |(\varphi \cap \tau) \setminus \sigma| = |\varphi \cap (\sigma \triangle \tau)| \equiv 0 \mod 2$.

Definition 2.2. A subset $\sigma \subseteq I_n$ is called \mathfrak{a} -even if $|\mu \cap \tau| \equiv 0 \mod 2$ for all $\tau \in \mathfrak{a}$. A subset $B \subseteq \mathcal{P}(I_n)$ is called an \mathfrak{a} -even set if all its elements are \mathfrak{a} -even.

Now as an easy corollary of Lemma 2.1 we get:

Lemma 2.2. If $\sigma \subseteq I_n$ is \mathfrak{a} -even, then σ is $\mathfrak{a} >$ -even.

For an even set $\mathfrak{a} \subset \mathcal{P}(I_n)$, we introduce a commutative algebra $\tilde{S} = \tilde{S}(\mathfrak{a})$ with basis $\{e_i, h_i, f_i, h^{\sigma} \mid i \in I_n, \sigma \in <\mathfrak{a} > \backslash \emptyset\}$ and multiplication given by

$$e_i f_i = h_i,$$

 $e_i h^{\sigma} = e_i, \quad f_i h^{\sigma} = f_i, \quad \text{for } i \in \sigma,$ (1)

and zero for all other cases. Define $h^{\emptyset} = 0$.

Definition 2.3. A subset H of $\mathcal{P}(I_n)$ is **connected** if, for every partition $I_n = I \cup J$, there is $\sigma \in H$ such that $\sigma \cap I \neq \emptyset$ and $\sigma \cap J \neq \emptyset$.

3 Module Algebras

The definitions given in this section follow the ideas developed by Grishkov in [G1], [G2] where he describes a new way of writing a basis for Lie algebras by connecting them to a category of graded algebras.

Let $\mathfrak{a} \subset \mathcal{P}(I_n)$ be an even set. For $\mu \subseteq I_n$, denote $h_{\mu} = \sum_{i \in \mu} h_i$ and $h_{\emptyset} = 0$. It is easy to show that the algebra $\tilde{S}(\mathfrak{a})$ contains a central ideal I generated by $\{h^{\sigma} + h^{\tau} + h^{\sigma \triangle \tau} + h_{\sigma \cap \tau} \mid \sigma, \tau \in <\mathfrak{a} >\}$. We denote

$$S(\mathfrak{a}) = S = \tilde{S}(\mathfrak{a})/I. \tag{2}$$

Note that $h^{\sigma}+h^{\sigma}+h^{\emptyset}+h_{\sigma}\in I$, so $h_{\sigma}\in I$. Hence, in $S(\mathfrak{a})$, $h_{\sigma}=0$, since $h^{\emptyset}=0$.

For every \mathfrak{a} -even set σ , define an S-module Λ_{σ} whose basis is $\{(\sigma, \mu) \mid \mu \subseteq \sigma\}$ and the S-action is given by

$$(\sigma, \mu) e_{i} = (\sigma, \mu \cup i), \quad i \in \sigma \setminus \mu;$$

$$(\sigma, \mu) f_{i} = (\sigma, \mu \setminus i), \quad i \in \mu;$$

$$(\sigma, \mu) h_{i} = (\sigma, \mu), \quad i \in \sigma;$$

$$(\sigma, \mu) h^{\varphi} = \left(\frac{|\sigma \cap \varphi|}{2} + |\varphi \cap \mu|\right) (\sigma, \mu), \text{ for } \varphi \in \mathfrak{a},$$

$$(3)$$

and, by Lemma 2.2, for all other cases the action is zero.

To prove that this is the right definition for this S-module, it is sufficient to show that $(\sigma, \mu)I = 0$. Indeed, for $\varphi, \tau, \varphi \triangle \tau \in \mathfrak{a}$, we have

$$(\sigma, \mu) (h^{\varphi} + h^{\tau} + h^{\tau \triangle \varphi} + \sum_{i \in \varphi \cap \tau} h_i) =$$

$$(\sigma, \mu) ((|\varphi \cap \sigma| + |\sigma \cap \tau| + |(\tau \triangle \varphi) \cap \sigma|)/2 + |\varphi \cap \mu| + |\tau \cap \mu| + |(\tau \triangle \varphi) \cap \mu|$$

$$+ |\sigma \cap \varphi \cap \tau|) = ((|\varphi \cap \sigma \cap \tau| + |(\varphi \setminus \tau) \cap \sigma|)/2 + (|\sigma \cap \tau \cap \varphi| +$$

$$+ |(\tau \setminus \varphi) \cap \sigma|)/2 + (|(\tau \setminus \varphi) \cap \sigma| + |(\varphi \setminus \tau) \cap \sigma|)/2 + |\varphi \cap \mu \cap \tau| +$$

$$+ |(\varphi \setminus \tau) \cap \mu| + |\tau \cap \mu \cap \varphi| + |(\tau \setminus \varphi) \cap \mu| + |(\tau \setminus \varphi) \cap \mu|$$

$$+ |(\varphi \setminus \tau) \cap \mu| + |\sigma \cap \varphi \cap \tau|) (\sigma, \mu)$$

$$= (|\varphi \cap \sigma \cap \tau| + |(\varphi \setminus \tau) \cap \sigma| + |(\tau \setminus \varphi) \cap \sigma| + |\sigma \cap \varphi \cap \tau|) (\sigma, \mu)$$

$$= |(\varphi \triangle \tau) \cap \sigma| (\sigma, \mu) = 0, \text{ since } \sigma, \varphi \triangle \tau \in \mathfrak{a}.$$

Then $(\sigma, \mu) I = 0$, as required.

Now let $\Delta = \{0\} \cup \mathfrak{a}$.

Definition 3.1. An algebra A is called a Δ -algebra if $A = \sum_{\alpha \in \Delta} \oplus A_{\alpha}$ and, for every $\alpha \neq \beta \in \mathfrak{a}$, we have $A_{\alpha}A_{\beta} \subseteq A_{\alpha \wedge \beta}$, $A_0^2 \subseteq A_0$, $A_0A_{\alpha} \subseteq A_{\alpha}$, $A_{\alpha}A_{\alpha} \subseteq A_0 + A_{\emptyset}$ and $A_0A_{\emptyset} = 0$.

Define a commutative Δ -graded algebra Λ as follows. As a k-space, Λ is

$$\Lambda = \Lambda_0 \bigoplus \sum_{\sigma \in \mathfrak{g}} \oplus \Lambda_{\sigma}, \text{ where } \Lambda_0 = S(\mathfrak{g}).$$
 (4)

Moreover, $S = S(\mathfrak{a})$ is a subalgebra of Λ and, by (3), each Λ_{σ} is an S-module. For $\sigma \neq \tau \in \mathfrak{a}$, the multiplication is given by

$$(\sigma, \mu)(\tau, \varphi) = (\sigma \triangle \tau, (\mu \setminus \tau) \cup (\varphi \setminus \sigma)), \text{ if } \mu \cap \varphi = \emptyset, \ \mu \cup \varphi \supset \sigma \cap \tau. \tag{5}$$

$$(\sigma, \mu) (\sigma, \varphi) = \begin{cases} e_i, & \mu \cap \varphi = i, \ \mu \cup \varphi = \sigma, \\ f_i, & \mu \cap \varphi = \emptyset, \ \mu \cup \varphi = \sigma \setminus i, \\ h^{\sigma} + h_{\varphi} + (\emptyset, \emptyset), \ \mu \cap \varphi = \emptyset, \ \mu \cup \varphi = \sigma, \end{cases}$$
(6)

and all other products are zero.

Note that in the last case of (6), since $h_{\varphi} + h_{\mu} = h_{\sigma} = 0$, then

$$(\sigma, \mu) (\sigma, \varphi) = h^{\sigma} + h_{\varphi} + (\emptyset, \emptyset) = (\sigma, \varphi) (\sigma, \mu) = h^{\sigma} + h_{\mu} + (\emptyset, \emptyset).$$

Proposition 3.1. Let $\mathfrak{a} \subset \mathcal{P}(I_n)$ be an even set and Λ be the algebra defined before. Then

$$Z(\Lambda) = \{h_{\mu} \mid \mu \subseteq I_n, \mu \text{ is } \mathfrak{a} - even\}.$$

Proof. Let $h = \sum_{i=1}^{n} \alpha_i h_i \in Z(\Lambda)$ with $\alpha_1, \ldots, \alpha_n \in k$. Then $[(\sigma, \sigma), h] = \left(\sum_{i \in \sigma} \alpha_i\right) (\sigma, \sigma) = 0$ so that

$$\sum_{i \in \sigma} \alpha_i = 0, \qquad \forall \ \sigma \in \mathfrak{a}. \tag{7}$$

Let us consider (7) as a linear system with coefficients in the field $\mathbf{F}_2 = \mathbf{Z}/2\mathbf{Z}$. Then there exists a basis $\{v_1, \dots, v_m\}$ of solutions of this system defined over \mathbf{F}_2 . This means that

$$v_i = (v_{i1}, \dots, v_{in}), \quad v_{ij} \in \mathbf{F}_2, \ i = 1, \dots, m.$$

For each i, denote $\mu_i = \{j \in I_n | v_{ij} = 1\}$ and $h_{\mu} = \sum_{i \in \mu} h_i$. From (7), it follows that $\sum_{j \in \sigma} v_{ij} = \sum_{j \in \sigma \cap \mu_i} v_{ij} = |\sigma \cap \mu_i| = 0$. Hence μ_1, \ldots, μ_m are all \mathfrak{a} -even sets and $h_{\mu_1}, \ldots, h_{\mu_m}$ is a basis of $Z(\Lambda)$.

Recall the definition of the product of two Δ -algebras. Let $A=\sum_{\alpha\in\Delta}\oplus A_\alpha$ and $B=\sum_{\alpha\in\Delta}\oplus B_\alpha$ be two Δ -algebras. Then $A\Box B=\sum_{\alpha\in\Delta}\oplus A_\alpha\otimes B_\alpha$ is a Δ -algebra with multiplication $[\,\cdot\,,\,\cdot\,]$ given by

$$[a_{\alpha}\otimes b_{\alpha},\,a_{\beta}\otimes b_{\beta}]\,=\,\sum_{\gamma\in\Delta}\,c_{\gamma}\otimes d_{\gamma}\,,\qquad \text{if}\ \ a_{\alpha}a_{\beta}\,=\,\sum_{\gamma\in\Delta}\,c_{\gamma}\,,\,\,b_{\alpha}b_{\beta}\,=\,\sum_{\gamma\in\Delta}\,d_{\gamma}.$$

Proposition 3.2. Let \mathfrak{a} be an even set, $\Lambda = \Lambda(\mathfrak{a})$ and $\Delta = \{0\} \cup \mathfrak{a}$. Let $M = M_0 \oplus \sum_{\sigma \in \mathfrak{a}} \oplus M_{\sigma}$ be a commutative Δ -algebra. Then the algebra $L = \Lambda \square M$ is a Lie algebra if and only if M satisfies the following Δ -identities:

$$a_{\sigma}b_{\tau} \cdot c_{\lambda} = 0,$$
 $|\sigma \cap \lambda \cap \tau| > 1, \ \sigma \neq \tau \neq \lambda \neq \sigma \neq \tau \triangle \lambda,$ (8)

$$a_{\sigma}b_{\tau} \cdot c_{\lambda} = a_{\sigma} \cdot b_{\tau}c_{\lambda}, \qquad |\sigma \cap \tau \cap \lambda| = 1, \sigma \neq \tau \neq \lambda \neq \sigma \neq \tau \triangle \lambda,$$
 (9)

$$a_{\sigma}b_{\tau}\cdot c_{\lambda} + b_{\tau}c_{\lambda}\cdot a_{\sigma} + c_{\lambda}a_{\sigma}\cdot b_{\tau} = 0, |\sigma\cap\tau\cap\lambda| = 0, \sigma\neq\tau\neq\lambda\neq\sigma\neq\tau\triangle\lambda, (10)$$

$$(a_{\sigma}b_{\sigma})_{0}c_{\tau} = (a_{\sigma}b_{\sigma})_{\emptyset}c_{\tau} = 0, \qquad \qquad \sigma \neq \tau, \ |\sigma \cap \tau| > 2, \qquad (11)$$

$$(a_{\sigma}b_{\sigma})_{\emptyset}c_{\tau} = 0, \ (a_{\sigma}b_{\sigma})_{0}c_{\tau} = a_{\sigma}c_{\tau} \cdot b_{\sigma}, \qquad \qquad \sigma \neq \tau, \ |\sigma \cap \tau| = 2,$$
 (12)

$$a_{\sigma}c_{\tau} \cdot b_{\sigma} = a_{\sigma} \cdot c_{\tau}b_{\sigma} + (a_{\sigma}b_{\sigma})_{\emptyset}c_{\tau}, \qquad |\sigma \cap \tau| = 0, \qquad (13)$$

$$(a_{\sigma}b_{\tau} \cdot c_{\lambda})_{0} = (a_{\sigma} \cdot b_{\tau}c_{\lambda})_{0}, \qquad \lambda = \sigma \triangle \tau, \qquad (14)$$

$$(ab)_0c + \left(\frac{|\tau|}{2} + 1\right)(ca)_0b + (ca)_{\emptyset}b = 0, \qquad a, b, c \in M_{\tau}, \ |\tau| > 2,$$
 (15)

$$(ab)_0 c = (cb)_0 a, (ca)_\emptyset b = 0,$$
 $a, b, c \in M_\tau, |\tau| = 4,$ (16)

$$(ab)_0 c + (bc)_0 a = (ac)_\emptyset b,$$
 $a, b, c \in M_\tau, |\tau| = 2,$ (17)

$$(a_0 x)y = a_0(xy), \qquad \forall x, y \in M, \qquad (18)$$

$$(a_{\sigma}b_{\sigma})_0 c_{\tau} = 0, \qquad |\sigma| > 4, \qquad (19)$$

$$(a_{\sigma}b_{\tau} \cdot c_{\lambda})_{\emptyset} + (b_{\tau}c_{\lambda} \cdot a_{\sigma})_{\emptyset} + (c_{\lambda}a_{\sigma} \cdot b_{\tau})_{\emptyset} = 0, \qquad \sigma = \lambda \triangle \tau, \quad (20)$$

$$(ab)_{\emptyset}c + (ac)_{\emptyset}b = (ab)_{0}c + (ac)_{0}b,$$
 $a, b, c \in M_{\sigma}, |\sigma| = 2,$ (21)

$$a_{\emptyset} \cdot (b_{\sigma}c_{\tau}) = (a_{\emptyset}b_{\sigma}) \cdot c_{\tau}, \qquad \qquad \sigma \neq \tau, \ \sigma \neq \emptyset \ or \ \tau \neq \emptyset, \quad (22)$$

$$(a_{\emptyset}b_{\sigma} \cdot c_{\sigma})_{\emptyset} + (b_{\sigma}c_{\sigma})_{\emptyset} \cdot a_{\emptyset} + (c_{\sigma}a_{\emptyset} \cdot b_{\sigma})_{\emptyset} = 0 \qquad \forall \sigma, \quad (23)$$

$$a_{\sigma}b_0 \cdot c_0 = a_{\sigma} \cdot b_0 c_0, \qquad \qquad \sigma \neq \emptyset, \quad (24)$$

$$(a_{\sigma}b_{\sigma})_0 \cdot c_0 = (a_{\sigma}c_0 \cdot b_{\sigma})_0, \qquad \qquad \sigma \neq \emptyset, \quad (25)$$

$$(a_{\sigma}c_{0} \cdot b_{\sigma})_{\emptyset} = (b_{\sigma}c_{0} \cdot a_{\sigma})_{\emptyset}, \qquad \qquad \sigma \neq \emptyset, \quad (26)$$

$$(a_{\tau} x) y + (a_{\tau} y) x + a_{\tau} (x y) = 0 x, y \in M_{\emptyset}, (27)$$

$$(a_{\emptyset}b_{\sigma} \cdot c_{\sigma})_{0} = (a_{\emptyset}c_{\sigma} \cdot b_{\sigma})_{0}, \qquad \qquad \sigma \neq \emptyset. \tag{28}$$

Proof. Suppose that $L = \Lambda \square M$ is a Lie algebra.

Let $a=(\sigma,\mu)\otimes a_{\sigma},\ b=(\tau,\varphi)\otimes b_{\tau},\ c=(\lambda,\psi)\otimes c_{\lambda}$ be elements in L. Set $t_1=[[a,b],c],\ t_2=[[b,c],a],\ t_3=[[a,c],b]$. By Jacobi's identity we must have $t_1+t_2+t_3=0$. Thus, if $\mu=\sigma,\ \varphi=\emptyset,\ \psi=(\lambda\backslash\sigma)\cup i,\ i\in\sigma\cap\tau\cap\lambda$, then we have $t_1=[(\sigma\Delta\tau,\sigma\setminus\tau)\otimes a_{\sigma}b_{\tau},(\lambda,(\lambda\setminus\sigma)\cup i))\otimes c_{\lambda}]=(\sigma\Delta\tau\Delta\lambda,\ ((\sigma\Delta\lambda)\setminus\tau)\cup i)\otimes (a_{\sigma}b_{\tau})c_{\lambda}=0$, because $t_2=[[(\sigma,\sigma)\otimes a_{\sigma},(\lambda,(\lambda\setminus\sigma)\cup i)\otimes c_{\lambda}],(\tau,\emptyset)\otimes b_{\tau}]=0$ since $\sigma\cap((\lambda\setminus\sigma)\cup i)=i\neq\emptyset$ as $i\in\sigma$ (so identity (5) does not apply) and $t_3=[[(\tau,\emptyset)\otimes b_{\tau},(\lambda,(\lambda\backslash\sigma)\cup i)\otimes c_{\lambda}],(\sigma,\sigma)\otimes a_{\sigma}]=0$, as there exists $j\in(\sigma\cap\tau\cap\lambda)\setminus i$ and $j\notin(\lambda\setminus\sigma)\cup i$. Therefore, $(a_{\sigma}b_{\tau})c_{\lambda}=0$ and this proves (8).

Now if $\mu = \sigma$, $\varphi = \emptyset$ and $\psi = (\lambda \setminus \sigma) \cup i$, $i = \sigma \cap \tau \cap \lambda$, then we have $t_1 = [(\sigma \triangle \tau, \sigma \setminus \tau) \otimes a_{\sigma} b_{\tau}, (\lambda, (\lambda \setminus \sigma) \cup i)) \otimes c_{\lambda}] = (\sigma \triangle \tau \triangle \lambda, ((\sigma \triangle \lambda) \setminus \tau) \cup i) \otimes a_{\sigma} b_{\tau} \cdot c_{\lambda},$ $t_2 = [[(\tau \triangle \lambda, ((\lambda \setminus \sigma) \cup i) \setminus \tau)) \otimes b_{\tau} c_{\lambda}, (\sigma, \sigma) \otimes a_{\sigma}] = (\tau \triangle \lambda \triangle \sigma, ((\sigma \triangle \lambda) \setminus \tau) \cup i) \otimes b_{\tau} c_{\lambda} \cdot a_{\sigma} \text{ and } t_3 = [[(\sigma, \sigma) \otimes a_{\sigma}, (\lambda, (\lambda \setminus \sigma) \cup i) \otimes c_{\lambda}], (\tau, \emptyset) \otimes b_{\tau}] = 0, \text{ since } i \in \sigma.$ This proves (9).

If $\mu = \sigma$, $\varphi = \emptyset$, $\psi = \tau \cap \lambda$ then $t_1 = (\sigma \triangle \tau \triangle \lambda, \sigma \setminus (\tau \triangle \lambda)) \otimes a_{\sigma} b_{\tau} \cdot c_{\lambda}$, $t_2 = (\sigma \triangle \tau \triangle \lambda, \sigma \setminus (\tau \triangle \lambda)) \otimes b_{\tau} c_{\lambda} \cdot a_{\sigma}$, $t_3 = (\sigma \triangle \tau \triangle \lambda, \sigma \setminus (\tau \triangle \lambda)) \otimes a_{\sigma} c_{\lambda} \cdot b_{\tau}$. Hence

 $t_1 + t_2 + t_3 = 0$ implies (10).

For $\mu = \tau = \lambda = \sigma$, $\varphi = \psi = \emptyset$, we have $t_1 = [h^{\sigma} + (\emptyset, \emptyset) \otimes (ab)_0, (\sigma, \emptyset) \otimes c] = (\sigma, \emptyset) \otimes (ab)_0 c + (ab)_{\emptyset} c$; $t_2 = [h^{\sigma} + (\emptyset, \emptyset) \otimes (ac)_0, (\sigma, \emptyset) \otimes b] = (\sigma, \emptyset) \otimes (ac)_0 b + (ac)_{\emptyset} b$ and $t_3 = [[(\sigma, \emptyset) \otimes b, (\sigma, \emptyset) \otimes c], (\sigma, \sigma) \otimes a] = 0$. This proves (21).

For (23) and (28), by (5) and (6), $t_1 = [[(\emptyset, \emptyset) \otimes a_{\emptyset}, (\sigma, \sigma) \otimes b_{\sigma}], (\sigma, \emptyset) \otimes c_{\sigma}] = ((a_{\emptyset}b_{\sigma})c_{\sigma})_{0} \otimes h^{\sigma} + ((a_{\emptyset}b_{\sigma})c_{\sigma})_{\emptyset} \otimes (\emptyset, \emptyset), t_{2} = [[(\emptyset, \emptyset) \otimes a_{\emptyset}, (\sigma, \emptyset) \otimes c_{\sigma}], (\sigma, \sigma) \otimes b_{\sigma}] = ((a_{\emptyset}c_{\sigma})b_{\sigma})_{0} \otimes h^{\sigma} + ((a_{\emptyset}c_{\sigma})b_{\sigma})_{\emptyset} \otimes (\emptyset, \emptyset) \text{ and } t_{3} = [[(\sigma, \sigma) \otimes b_{\sigma}, (\sigma, \emptyset) \otimes c_{\sigma}], (\emptyset, \emptyset) \otimes a_{\emptyset}] = (b_{\sigma}c_{\sigma})_{\emptyset}a_{\emptyset} \otimes (\emptyset, \emptyset). \text{ Hence, as our algebra is Δ-graded, we get } (a_{\emptyset}b_{\sigma} \cdot c_{\sigma})_{\emptyset} + (b_{\sigma}c_{\sigma})_{\emptyset} \cdot a_{\emptyset} + (c_{\sigma}a_{\emptyset} \cdot b_{\sigma})_{\emptyset} = 0 \text{ and } (a_{\emptyset}b_{\sigma} \cdot c_{\sigma})_{0} = (a_{\emptyset}c_{\sigma} \cdot b_{\sigma})_{0}, \text{ as required.}$

For (25) and (26), by (3) and (6), for $i \in \sigma$, $t_1 = [[(\sigma, \sigma) \otimes a_{\sigma}, (\sigma, i) \otimes b_{\sigma}], f_i \otimes c_0] = ((a_{\sigma}b_{\sigma})_0c_0)_0 \otimes h_i$; $t_2 = [[(\sigma, \sigma) \otimes a_{\sigma}, f_i \otimes c_0], (\sigma, i) \otimes b_{\sigma}] = ((a_{\sigma}c_0)b_{\sigma})_0 \otimes (h^{\sigma} + h_i) + ((a_{\sigma}c_0)b_{\sigma})_{\emptyset} \otimes (\emptyset, \emptyset)$ and $t_3 = [[(\sigma, i) \otimes b_{\sigma}, f_i \otimes c_0], (\sigma, \sigma) \otimes a_{\sigma}] = ((b_{\sigma}c_0)a_{\sigma})_0 \otimes (h^{\sigma} + \sum_{i \in \sigma} h_i) + ((b_{\sigma}c_0)a_{\sigma})_{\emptyset} \otimes (\emptyset, \emptyset)$ and the identities follow because of the grading of the algebra. The proof of the other identities are left as an easy exercise to the reader.

Lemma 3.1. Let $\mathfrak{a} \subset \mathcal{P}(I_n)$ be an even set such that $\emptyset \notin \mathfrak{a}$ and $\Delta = \{0\} \cup \mathfrak{a}$. Let \mathcal{M} be the variety of Δ -algebras satisfying identities (8) to (28). Let $M \in \mathcal{M}$ be a simple algebra (containing no graded ideals). If $\mathfrak{M} = \{\sigma \in \mathfrak{a} \mid M_{\sigma} \neq 0\}$, then

- (a) for all $\sigma \in \mathfrak{M}$, we have $|\sigma| = 2$ or 4.
- (b) If $\sigma \neq \tau \in \mathfrak{M}$ and $\sigma \cap \tau \neq \emptyset$ then $\sigma \triangle \tau \in \mathfrak{M}$.
- (c) \mathfrak{M} is connected.

Proof. Note that, by (18), M_0 is commutative and associative. Moreover M_0 is in the associative centre of the algebra M. (By definition, the associative centre of an algebra A is the set $C(A) = \{a \in A \mid (a, A, A) = (A, a, A) = (A, A, a) = 0\}$, where $(x, y, z) = xy \cdot z - x \cdot yz$.) If M_0 is not semisimple,

then M_0 contains an element a such that $a^2=0$. But in this case, aM is a nilpotent ideal. If M_0 is semisimple, but not simple, then there exist two orthogonal idempotent elements e_1 and e_2 such that $e_i e_j = \delta_{ij} e_i$. In this case, $e_i M$ are proper ideals of M. Hence M_0 is simple and $M_0 = k s$ with $s^2 = s$.

We define a symmetric bilinear form (,) on the algebra M as follows:

$$(s, s) = 1,$$

$$(a_{\sigma}, b_{\sigma}) = \alpha, \text{ if } (a_{\sigma} b_{\sigma})_{0} = \alpha s,$$

$$(a_{\sigma}, b_{\tau}) = 0, \text{ for } \sigma \neq \tau.$$

$$(29)$$

By (14) and (18), this form is invariant (xy, z) = (x, yz) and non trivial, hence it is non-degenerate. But $(a_{\sigma}, b_{\sigma}) = 0$ if $|\sigma| > 4$, by (19). Therefore, $M_{\sigma} = 0$ when $|\sigma| > 4$. Thus, (a) is proved.

Now if $\sigma, \tau \in \mathfrak{M}$ and $\sigma \cap \tau \neq \emptyset$, $\sigma \neq \tau$, then by (12) $a_{\sigma} b_{\tau} \cdot c_{\sigma} = a_{\sigma} c_{\sigma} \cdot b_{\tau}$, since $|\sigma|$, $|\tau| \leq 4$ and $|\sigma \cap \tau| = 2$. If $M_{\sigma} M_{\tau} = 0$ and $a_{\sigma} c_{\sigma} = \alpha s + k_{\emptyset}$, then $0 = a_{\sigma} b_{\tau} \cdot c_{\sigma} = a_{\sigma} c_{\sigma} \cdot b_{\tau} = \alpha s b_{\tau} + k_{\emptyset} b_{\tau}$, that is, $\alpha s b_{\tau} = k_{\emptyset} b_{\tau}$. As the bilinear form is non-degenerate, $\alpha \neq 0$ for all $b_{\tau} \in M_{\tau}$, but by (12) $(a_{\sigma} c_{\sigma})_{\emptyset} \cdot b_{\tau} = 0$. Hence $k_{\emptyset} b_{\tau} = 0$, a contradiction. Therefore, $M_{\sigma} M_{\tau} \neq 0$ and $\sigma \triangle \tau \in \mathfrak{M}$. This proves (b). Part (c) is obvious as M is a simple algebra.

We observe that if M is simple, then $L = \Lambda \square M$ is not necessarily a simple algebra, but L/Z(L) is a simple algebra, where Z(L) is the center of L.

In order to define a symmetric invariant bilinear form on $L = \Lambda \square M$, we need the corresponding form on the algebra Λ as follows.

Proposition 3.3. For the Δ -graded algebra $\Lambda = \Lambda_0 \bigoplus \sum_{\sigma \in \mathfrak{a}} \oplus \Lambda_{\sigma}$ defined in (4), where $\Lambda_0 = S(\mathfrak{a})$, a symmetric bilinear form is given by

$$((\emptyset, \emptyset), (\emptyset, \emptyset)) = ((\sigma, \mu), (\sigma, \overline{\mu})) = (e_i, f_i) = 1, \text{ for } \mu \subseteq \sigma,$$

$$(h^{\sigma}, h^{\tau}) = \frac{|\sigma \cap \tau|}{2},$$

$$(h^{\sigma}, h_i) = |\sigma \cap i|$$

$$(30)$$

and in all other cases the bilinear form is zero, is invariant. The kernel of this bilinear form is $N(\Lambda) = Z(\Lambda)$.

Thus if the algebra M has a bilinear form then $L = \Lambda \square M$ also does and it is given by

$$\left(\sum \lambda_i \otimes m_i, \sum \mu_j \otimes n_j\right) = \sum (\lambda_i, \mu_j) \left(m_i, n_j\right). \tag{31}$$

Moreover, the kernel $N(\Lambda \square M) = N(\Lambda) \square M + \Lambda \square N(M)$.

For each subset $P \subseteq \mathcal{P}(I_n)$ denote $\overline{P}(I_n) = \{ \sigma \subseteq I_n \mid I_n \setminus \sigma \in P \}$.

Lemma 3.2. Under the same hypotheses of Lemma 3.1, for $\mathfrak{a} \subset \mathcal{P}(I_n)$ and $M \in \mathcal{M}, \ \mathfrak{M} = \{\sigma \in \mathfrak{a} \mid M_{\sigma} \neq 0\}$ is one of the following sets:

(i)
$$\{(2i-1, 2i, 2j-1, 2j) | 1 \le i < j \le \ell\} = \mathcal{C}_{2\ell}$$

(ii)
$$\{(2i-1, 2i, 2j-1, 2j), (2i-1, 2i) | 1 \le i < j \le \ell\} = \mathcal{B}_{2\ell}$$

(iii)
$$\{ (1234), (1256), (1357), (3456), (2457), (2367), (1467) \} = \mathcal{E}_7,$$

(iv)
$$\mathcal{E}_7 \cup \{ \overline{\sigma} \mid \sigma \in \mathcal{E}_7, \ \overline{\sigma} = I_8 \setminus \sigma \} = \mathcal{E}_8$$
.

Proof. Recall that $\mathfrak a$ and $\mathfrak M$ are subsets of $\mathcal P(I_n)$. Since $\mathfrak M$ is connected, Lemma 3.1 holds. Set $\mathfrak M_2 = \{\sigma \in \mathfrak M \mid |\sigma| = 2\}$ and $\mathfrak M_4 = \{\sigma \in \mathfrak M \mid |\sigma| = 4\}$. We use induction on $n \geq 2$. For n = 2, $\mathfrak M = \{(12)\} = \mathcal B_2$. Let n > 2.

1) Suppose that $\mathfrak{M}_2 \neq \emptyset$.

First we claim that if $I = \bigcup_{\tau \in \mathfrak{M}_2} \tau \neq I_n$, then $I_n = I \cup J$ (with $J = I_n \setminus I$) and, for every $\sigma \in \mathfrak{M}_4$, $\sigma \subseteq I$ or $\sigma \subseteq J$. Indeed, if $\sigma \not\subseteq I$ but $\sigma \cap I \neq \emptyset$, then there exists $\tau \in \mathfrak{M}_2$ such that $\sigma \cap \tau \neq \emptyset$ meaning that $\tau \subset \sigma$. Thus, $\sigma \triangle \tau = \sigma \setminus \tau \in \mathfrak{M}_2$ and $\sigma \setminus \tau \subseteq J$, contradicting the definition of I.

However, $I=\bigcup_{\tau\in\mathfrak{M}_2}\tau\neq I_n$ implies that \mathfrak{M} is not connected, a contradiction. Hence, $I_n=\bigcup_{\tau\in\mathfrak{M}_2}\tau$.

Now it is clear that $\tau \cap \mu = \emptyset$, for all $\tau \neq \mu \in \mathfrak{M}_2$. Therefore, in this case, we have $\mathfrak{M} = \mathcal{B}_{2\ell}$.

2) For $\mathfrak{M} = \mathfrak{M}_4$, if n > 4 then $n \ge 6$ and, without loss of generality, we have $\mathfrak{N} = \{(1234), (1256), (3456)\} \subseteq \mathfrak{M}_4$. (For n = 4, $\mathfrak{M} = \{(1234)\}$.)

A subset $\mathcal{X} \subset \mathcal{P}(I_n)$ is called *n*-maximal if, for every $\xi \in I_n$ such that $|\xi| \equiv 0 \mod 2$, or $\xi \in \mathcal{X}$ or there is $\eta \in \mathcal{X}$ such that $|\xi \cap \eta| \equiv 1 \mod 2$.

It is clear that \mathfrak{N} is 6-maximal and, in this case, $\mathfrak{N} = \mathfrak{M} = \mathcal{C}_{2\cdot 3}$. Let n=7. Then \mathfrak{N} is not 7-maximal and there are exactly four other elements $\varphi \in \mathcal{P}(I_7)$ such that $|\varphi|=4$ and $|\varphi \cap \sigma|\equiv 0 \mod 2$, for all $\sigma \in \mathfrak{N}$, namely, $\varphi \in \{(1357), (2457), (2367), (1467)\}$. Hence, for n=7, $\mathfrak{M} = \mathcal{E}_7$.

Let n=8. Suppose that $\mathcal{E}_7 \subset \mathfrak{M}$ and that $\{\sigma \subset I_8 \mid \sigma \notin \mathcal{E}_7, \ |\sigma \cap \mu| \equiv 0 \mod 2 \text{ for all } \mu \in \mathcal{E}_7\} = \overline{\mathcal{E}_7} = \{\overline{\sigma} \mid \sigma \in \mathcal{E}_7, \overline{\sigma} = I_8 \setminus \sigma\}.$ Hence, $\overline{\mathcal{E}_7} \cap \mathfrak{M} \neq \emptyset$ and $\mathfrak{M} = \mathcal{E}_8 = \overline{\mathcal{E}_7} \cup \mathcal{E}_7$. If $\mathcal{E}_7 \not\subset \mathfrak{M}$, then $\mathfrak{M} = C_8$.

Let n > 8. If $\mathcal{E}_7 \subseteq \mathfrak{M}$ then $\mathcal{E}_8 \subseteq \mathfrak{M}$. Now let $\sigma \in \mathfrak{M}$ be such that $\sigma \cap I_8 \neq \emptyset$ and $\sigma \not\subset I_8$. As $|\sigma \cap \tau| \equiv 0 \mod 2$ for all $\tau \in \mathcal{E}_8$, then $\sigma \cap I_8$ is \mathcal{E}_8 -even. But for all $\sigma \subset I_8$, σ is \mathcal{E}_8 -even if and only if $\sigma \in \mathcal{E}_8$, contradicting with $\sigma \not\subset I_8$. Hence, $\mathcal{E}_7 \not\subseteq \mathfrak{M}$. From this we have that, for all $\sigma \neq \tau \in \mathfrak{M}$ (with $\sigma \cap \tau \neq \emptyset$) and all $\psi \in \mathfrak{M} \setminus \{\sigma, \tau, \sigma \triangle \tau\}$, $\psi \cap \sigma = \emptyset$ or $\psi \cap \tau = \emptyset$ or $\psi \cap (\sigma \triangle \tau) = \emptyset$. This yields $\mathfrak{M} = \mathcal{C}_{2\ell}$.

Theorem 3.1. Let M be a Δ -algebra as in Lemma 3.2. Then M has basis $\{s, a_{\sigma} \mid s \in M_0, \sigma \in \mathfrak{M}\}$, with multiplication rules given by

$$s^2 = s$$
, $s a_{\sigma} = a_{\sigma}$, $a_{\sigma}^2 = s$, for $s \in M_0$, $\sigma \in \mathfrak{M}$, $a_{\sigma} a_{\tau} = a_{\sigma \triangle \tau}$, if $\sigma \triangle \tau \in \mathfrak{M}$,

and all other products are zero.

Proof. Let $(\ ,\)$ be the non-degenerate symmetric bilinear form which was introduced in Lemma 3.1. Recall that $\emptyset \notin \mathfrak{a}$.

Let $\sigma \in \mathfrak{M}_4$. If $a \in M_{\sigma}$ with $a^2 = 0$, then there exists $b \in M_{\sigma}$ such that

(a, b) = 1 (that is, ab = s). Thus by (16), $0 = a^2 \cdot b = ab \cdot a = s \cdot a = a$. Hence dim $M_{\sigma} = 1$, as any vector space V, with dim V > 1, contains a vector v such that (v, v) = 0. Denote $a = a_{\sigma}$ if $a^2 = s$.

Let $\sigma \in \mathfrak{M} \setminus \mathfrak{M}_4$, $|\sigma| = 2$. Suppose that $a^2 = 0$ for every $a \in M_{\sigma}$. Since the bilinear form is non-degenerate, there exists $b \in M_{\sigma}$ such that ab = s. However, by identity (17), $a = ab \cdot a = b \cdot a^2 = 0$, a contradiction. Thus, there exists $a \in M_{\sigma}$ such that $a^2 = s$ and, for $b \in M_{\sigma}$, by (17), we have $b = a^2 \cdot b = ab \cdot a = \alpha a$, with $\alpha \in k$ (as $\emptyset \notin \mathfrak{a}$). Hence, $M_{\sigma} = k a$, for $a^2 = s$.

Now fix an element $a_{\sigma} \in M_{\sigma}$, $\sigma \in \mathfrak{M}$, such that $a_{\sigma}^2 = s$. For $\sigma \neq \tau \in \mathfrak{M}$, with $\sigma \cap \tau \neq \emptyset$, we have by (14), $(a_{\sigma}a_{\tau})_0^2 = (a_{\sigma}a_{\tau} \cdot (a_{\sigma}a_{\tau}))_0 = (a_{\sigma}(a_{\tau}(a_{\sigma}a_{\tau})))_0 = (a_{\sigma}(a_{\tau}a_{\sigma}))_0 = (a_{\sigma}a_{\sigma})_0 = s$, as by (12), $a_{\tau}(a_{\sigma}a_{\tau}) = a_{\tau}^2 a_{\sigma}$. Hence, $a_{\sigma}a_{\tau} = a_{\sigma \triangle \tau}$.

Suppose that $\sigma, \tau \in \mathfrak{M} \setminus \mathfrak{M}_4$ are such that $\sigma \cap \tau = \emptyset$. Then $\sigma \cup \tau = \mu \in \mathfrak{M}_4$ and $a_{\sigma}a_{\mu} = a_{\tau}$. Hence, by (12), $a_{\tau}a_{\sigma} = a_{\sigma}a_{\mu} \cdot a_{\sigma} = a_{\sigma}^2a_{\mu} = a_{\mu}$.

4 Representations

Let \mathfrak{a} be an even set (with $\emptyset \notin \mathfrak{a}$) and $\Delta = \{0\} \cup \mathfrak{a}$. Let $M = M_0 \oplus \sum_{\sigma \in \mathfrak{a}} \oplus M_{\sigma}$ be a simple Δ -algebra and $B \subseteq \mathcal{P}(I_n)$ be an \mathfrak{a} -even set such that $B \triangle \mathfrak{a} \subseteq B$.

Definition 4.1. A k-space $V = V_0 \oplus \sum_{\mu \in B} \oplus V_{\mu}$ is called a M-module if there exist a linear map $m: V \times M \longrightarrow V$ such that $V_{\mu}M_{\sigma} \subseteq V_{\mu \triangle \sigma}$, for $\mu \neq \sigma$, $V_{\sigma}M_{\sigma} \subseteq V_0 + V_{\emptyset}$, $V_{\emptyset}M_0 = 0$, and the algebra $\tilde{M} = M \oplus V$, with multiplication

$$(m_1 + v_1) \cdot (m_2 + v_2) = m_1 m_2 + v_1 m_2 + v_2 m_1,$$

satisfies the identities (3)-(28).

In this section we study the irreducible M-modules.

Suppose that V is irreducible as an M-module. Set $V' = V_0 \oplus \sum_{\emptyset \neq \mu \in B} \oplus V_{\mu}$. We start with some general rules and remarks on the M-action.

Rule A. M_0 acts as identity on V' and trivially on V_{\emptyset} .

Indeed, let $W=\{v_{\sigma} \mid \sigma \neq \emptyset, \ v_{\sigma} \cdot s=0\}$. Clearly W is a submodule of V, as for any $v_{\sigma} \in W$, for all $\tau \in \mathfrak{M}$, $(v_{\sigma}a_{\tau})s=(v_{\sigma} \cdot s)a_{\tau}=0$, using identity (18). Hence, W=0, as V is irreducible, and $v_{\sigma} \cdot s \neq 0$, for all $\sigma \neq \emptyset$. Letting $w_{\sigma}=v_{\sigma} \cdot s$ we get, by (24), $w_{\sigma} \cdot s=v_{\sigma} \cdot s^2=v_{\sigma} \cdot s=w_{\sigma}$. If $w_{\sigma} \neq v_{\sigma}$, then $(w_{\sigma}-v_{\sigma}) \cdot s=0$, a contradiction. Hence, $v_{\sigma} \cdot s=v_{\sigma}$, for all $\sigma \neq \emptyset$, as required. We have $V_{\emptyset}M_{0}=0$, by definition of M. Thus, Rule A is proved.

Now let $\mu \in B$, $\sigma \in \mathfrak{M}$ be such that $\mu \neq \sigma$ and choose $0 \neq v_{\mu} \in V$.

Rule B. If $\mu \cap \sigma \neq \emptyset$ then $|\mu \cap \sigma| \leq 2$ and $v_{\mu} \cdot a_{\sigma} \neq 0$.

Indeed, if $|\mu \cap \sigma| > 2$ then, by identity (11), $v_{\mu} = v_{\mu} \cdot a_{\sigma}^2 = (v_{\mu} a_{\sigma}) a_{\sigma} = 0$, a contradiction. For $|\mu \cap \sigma| = 2$, by identity (12), $(v_{\mu} a_{\sigma}) a_{\sigma} = v_{\mu} \cdot a_{\sigma}^2 = v_{\mu} \neq 0$, hence $v_{\mu} a_{\sigma} \neq 0$.

NOTATION: In the sequel we use the following notation for $\sigma \in \mathfrak{M}$:

$$V_{\sigma} = V_{i}, \quad v_{\sigma} = v_{i}, \quad a_{\sigma} = a_{i} \quad \text{when } \sigma = (2i - 1, 2i),$$

 $V_{\sigma} = V_{ij}, \quad v_{\sigma} = v_{ij}, \quad a_{\sigma} = a_{ij}, \quad \text{when } \sigma = (2i - 1, 2i, 2j - 1, 2j).$

We define a conjugation on I_{2n} and on $\mathcal{P}(I_n)$ by

$$\bar{i} = \begin{cases} 2j, & \text{if } i = 2j - 1. \\ 2j - 1, & \text{if } i = 2j. \end{cases}$$

It is clear that conjugation is an involution.

Theorem 4.1. Let M be a simple Δ -algebra as defined above and V be an irreducible M-module. Then:

1. if $\mathfrak{M} = \mathcal{C}_{2\ell}$ then 1.1. $V = \langle v_0, v_{ij} | 1 \leq i \neq j \leq \ell \rangle$, where $0 \neq v_0 \in V_0$ and $v_{ij} = v_0 \cdot a_{ij}$, for all $1 \leq i \neq j \leq \ell$ (adjoint module) or

1.2. $V=< v_i \mid 1 \leq i \leq \ell >$, where $0 \neq v_1 \in V_1$ and $v_j=v_1 \cdot a_{1j}$ for $2 \leq j \leq \ell$ (standard module) or

- 1.3. $V = \langle v_{\lambda} \in Sp \mid \sharp \{i_j \in \lambda \mid i_j \equiv 0 \mod 2\} \equiv 0 \mod 2 >$, where $Sp = \{v_{\lambda} \mid \lambda = (i_1 i_2 \cdots i_{\ell}), \text{ with } i_j \in \{2j-1, 2j\}, \text{ for } 1 \leq j \leq \ell\}$ and $v_{\lambda} \cdot a_{\sigma} = v_{\lambda \triangle \sigma} \text{ for all } \sigma \in \mathcal{C}_{2\ell} \text{ (spinor module)}.$
 - 2. If $\mathfrak{M} = \mathcal{B}_{2\ell}$ then
- 2.1. $V = \langle v_0, v_i, v_{ij} | 1 \le i \ne j \le \ell \rangle$, where $0 \ne v_0 \in V_0$, $v_i = v_0 \cdot a_i$ and $v_{ij} = v_0 \cdot a_{ij}$, for all $1 \le i \ne j \le \ell$ (adjoint module) or
- 2.2. $V = \langle v_i, \lambda | 1 \leq i \leq \ell \rangle$, where $0 \neq v_1 \in V_1$, $v_j = v_1 \cdot a_{1j}$ for $2 \leq j \leq \ell$ and $\lambda = (v_i a_i)_{\emptyset}$ (standard module).
- 3. If $\mathfrak{M} = \mathcal{E}_7$ then $V = \langle v_{\mu} | \mu \in \overline{\mathcal{E}_7}(I_7) \rangle$, where $v_{\mu} a_{\sigma} = v_{\mu \triangle \sigma}$ for all $\mu \in \overline{\mathcal{E}_7}(I_7)$, $\sigma \in \mathcal{E}_7$.
- 4. If $\mathfrak{M} = \mathcal{E}_8$ then $V = \langle v_0, v_{\sigma} | \sigma \in \mathcal{E}_8 \rangle$ where $0 \neq v_0 \in V_0$, $v_0 \cdot a_{\sigma} = v_{\sigma}$ and $v_{\sigma} \cdot a_{\mu} = v_{\sigma \triangle \mu}$, for all $\sigma, \mu \in \mathcal{E}_8$ (standard module).

The proof of this theorem is given in the following subsections.

4.1 M-modules for $\mathfrak{M} = \mathcal{C}_{2\ell}$

For $\mathfrak{M} = \mathcal{C}_{2\ell} = \{(2i-1, 2i, 2j-1, 2j) | 1 \leq i < j \leq \ell\}$, by Theorem 3.1, a simple Δ -algebra M has a basis $\{s, a_{\sigma} | s \in M_0, \sigma \in \mathfrak{M}\}$. Let V be an irreducible M-module and $B = \{\mu \subseteq I_n | V_{\mu} \neq 0\}$.

Case I: Suppose that $\mathfrak{M} \cap B \neq \emptyset$.

Let $\sigma \in \mathfrak{M} \cap B$ and choose $0 \neq v_{\sigma} \in V_{\sigma}$. Then, by (16), $(v_{\sigma}a_{\sigma})_{0}a_{\sigma} = v_{\sigma}(a_{\sigma}a_{\sigma})_{0} = v_{\sigma} \neq 0$ Hence, there exists $0 \neq v_{0} \in V_{0}$. Define

$$v_0 \cdot a_{ij} \stackrel{def}{=} v_{ij}, \text{ for all } 1 \le i \ne j \le \ell.$$
 (32)

In this way, we have by (18),

$$v_{ij} \cdot a_{jk} = (v_0 a_{ij}) a_{jk} = v_0 (a_{ij} a_{jk}) = v_0 a_{ik} = v_{ik}, \text{ for } 1 \le i \ne j \ne k \le \ell,$$

 $v_{ij} \cdot a_{pk} = (v_0 a_{ij}) a_{pk} = v_0 (a_{ij} a_{pk}) = 0, \text{ for } \{i, j\} \cap \{p, k\} = \emptyset.$

Therefore, $\{v_0, v_{ij} \mid 1 \leq i \neq j \leq \ell\}$ is a basis of the *M*-module *V*.

Case II: Suppose that $\mathfrak{M} \cap B = \emptyset$ (implying $V_0 = 0$ and $V_{\emptyset} = 0$).

- II.1) Suppose that there exists $\mu \in B$ with $|\mu| = 2$.
 - a) If $\mu = (12) \in B$, then let $0 \neq v_1 \in V_1$. Define

$$v_1 \cdot a_{1j} \stackrel{\text{def}}{=} v_j \neq 0, \text{ for } 2 \leq j \leq \ell.$$
 (33)

Now for $1 \leq i < j \leq k \leq \ell$, using identity (8), we have $v_i \cdot a_{jk} = v_i(a_{ij}a_{jk}) = 0$. From this and by (10), $v_i \cdot a_{ij} = (v_1a_{1i})a_{ij} = v_1(a_{1i}a_{ij}) + (v_1a_{ij})a_{1i} = v_1a_{1j} = v_j$. Hence, $\{v_i \mid 1 \leq i \leq \ell\}$ is a basis of the M-module V.

- b) For $\ell > 2$, by definition of B, $\mu = (13) \notin B$. For $\ell = 2$, this is simply a renumbering of case a).
- II.2) Suppose that $|\mu| > 2$, for all $\mu \in B$.

We claim that $(2i-1,2i) \not\subset \mu$, for all $1 \leq i \leq \ell$. Indeed, without loss of generality, suppose that $(1,2) \subseteq \mu$. If $\sigma_{1i} = (1,2,2i-1,2i)$, then, by Rule B, $|\sigma_{1i} \cap \mu| \leq 2$. Note that $\sigma_{1i} \neq \mu$, as $\mathfrak{M} \cap B = \emptyset$. Now if, for all $i = 2, \ldots, \ell$, $|\sigma_{1i} \cap \mu| = 2$, then $\mu = (1,2)$ a contradiction and the claim is proved.

Now let $2i-1 \in \mu$ (or $2i \in \mu$). Then $|\sigma_{ij} \cap \mu| = 2$ implies $|(2j-1,2j) \cap \mu|$ = 1, for all $j = 1, ..., \ell$. Hence, after a suitable renumbering, we may suppose that $\mu = (1357 \cdots 2\ell - 1) \in B$. Thus, for all $\sigma \in \mathfrak{M}$,

$$v_{\mu} \cdot a_{\sigma} = v_{\mu \triangle \sigma}, \text{ as } |\mu \cap \sigma| = 2.$$
 (34)

Therefore, V must be contained in:

$$Sp = \{v_{\lambda} \mid \lambda = (i_1 i_2 \cdots i_{\ell}), \text{ with } i_j \in \{2j - 1, 2j\}, \text{ for } 1 \le j \le \ell\}.$$

Now consider the following subspaces of Sp:

$$\begin{split} Sp_+ &= & \{\, v_\lambda \in Sp \,| \, \sharp \{i_j \in \lambda \,|\, i_j \equiv 0 \mod 2 \} \equiv 0 \mod 2 \,\}\,, \\ Sp_- &= & \{\, v_\lambda \in Sp \,| \, \sharp \{i_j \in \lambda \,|\, i_j \equiv 0 \mod 2 \} \equiv 1 \mod 2 \,\}\,. \end{split}$$

Note that Sp_+ and Sp_- are invariant and irreducible under the action of M, for $\mathfrak{M}=\mathcal{C}_{2\ell}$, as by (34), a_{σ} exchanges pairs of even or odd numbers in each λ .

Moreover, there is an isomorphism $\Phi: Sp_+ \longrightarrow Sp_-$ such that $(i_1 i_2 \cdots i_\ell) \longmapsto (\overline{i_1} i_2 \cdots i_\ell)$ which commutes with the M-action.

4.2 Representations for $\mathfrak{M}=\mathcal{B}_{2\ell}$

For $\mathfrak{M} = \mathcal{B}_{2\ell} = \{(2i-1, 2i, 2j-1, 2j), (2i-1, 2i) | 1 \leq i < j \leq \ell\}$, by Theorem 3.1, a simple Δ -algebra M has a basis $\{s, a_{\sigma}, b_{\tau} | s \in M_0, \sigma \in \mathfrak{M}_4, \tau \in \mathfrak{M} \setminus \mathfrak{M}_4\}$. Let V be an irreducible M-module.

Case I: Suppose $\mathfrak{M} \cap B \neq \emptyset$.

I.1) If there exists $0 \neq v_0 \in V_0$, then define, for $1 \leq i \neq j \neq k \leq \ell$,

$$v_i \stackrel{def}{=} v_0 \cdot a_i, \qquad v_{ij} \stackrel{def}{=} v_0 \cdot a_{ij}.$$

Thus, using the identities of Proposition 3.2, we get:

i) by (25),
$$(v_i a_i)_0 = ((v_0 a_i) a_i)_0 = v_0 (a_i a_i)_0 = v_0 s = v_0$$
.

ii) By (26),
$$(v_i a_i)_{\emptyset} = ((v_0 a_i) a_i)_{\emptyset} = v_0 (a_i a_i)_{\emptyset} = 0$$
.

iii) By (18), we have for $1 \le i \ne j \ne p \ne k \le \ell$

$$v_{i} \cdot a_{j} = (v_{0}a_{i})a_{j} = v_{0}a_{ij} = v_{ij},$$

$$v_{i} \cdot a_{ij} = (v_{0}a_{i})a_{ij} = v_{0}(a_{i}a_{ij}) = v_{0}a_{j} = v_{j},$$

$$v_{ij} \cdot a_{i} = (v_{0}a_{ij})a_{i} = v_{0}(a_{ij}a_{i}) = v_{0}a_{j} = v_{j},$$

$$v_{ij} \cdot a_{jk} = (v_{0}a_{ij})a_{jk} = v_{0}(a_{ij}a_{jk}) = v_{0}a_{ik} = v_{ik},$$

$$v_{ij} \cdot a_{pk} = (v_{0}a_{ij})a_{pk} = v_{0}(a_{ij}a_{pk}) = 0.$$
(35)

Note that $v_{ij}=0$ implies $v_j=0$, hence $v_0=0$, a contradiction. Therefore, $\{v_0, v_i, v_{ij} | 1 \le i \ne j \le \ell\}$ is a basis of the M-module V.

I.2) For $V_0=0$, let $\sigma\in\mathfrak{M}\cap B$ be such that $|\sigma|=2$. Without loss of generality, let $v_1\in V_1$. By Rule B, define $v_i\stackrel{def}{=}v_1\,a_{1i}\neq 0$, for $1\leq i\leq \ell$. Moreover, $(v_1a_1)_0=0$ and $(v_1a_1)_\emptyset=\lambda_1$.

Again without loss of generality, if $v_1a_2 \stackrel{def}{=} v_{12} \neq 0$, then, by (12), $v_{12} \cdot a_1 = v_{12} \cdot (a_{12} \cdot a_2) = (v_{12} a_{12})_0 \cdot a_2) = 0$, as $V_0 = 0$. But this contradicts Rule B. Therefore, this case does not occur.

Thus, we can suppose that $v_ia_j=0$, for all $1\leq i\neq j\leq \ell$. By Rule B, we can define $v_ia_{ij}\stackrel{def}{=}v_j\neq 0$. We also have $(v_ia_i)_\emptyset=\lambda_i$. By (12), $\lambda_ia_{pq}=0$, for $i\notin\{p,q\}$. By (13), $\lambda_ia_j=(v_ia_i)_\emptyset\,a_j=v_ia_j\cdot a_i+v_i\cdot a_i\,a_j=v_i\cdot a_{ij}=v_j$. Hence $\lambda=\lambda_i$ for all $1\leq i\leq \ell$ and $\lambda\,a_i=v_i$. Therefore, $\{v_i,\;\lambda\,|\,1\leq i\leq \ell\}$ is a basis of the M-module V.

Case II: Suppose $\mathfrak{M} \cap B = \emptyset$ (hence $V_0 = 0$ and $V_{\emptyset} = 0$).

In this case, any $\mu \in B$ is such that $|\mu| > 2$ and $(2i - 1, 2i) \not\subset \mu$. Hence, as in Case II.2 of Section 4.1, $\mu = (1357 \cdots 2\ell - 1) \in B$ but $(12) \in \mathcal{B}_{2l}$ and $|(12) \cap \mu| = 1$, contradiction. So this case does not occur.

4.3 Representations for $\mathfrak{M} = \mathcal{E}_7$

Let $\mathfrak{M} = \{ (1234), (1256), (3456), (1357), (2457), (2367), (1467) \}$ and V be an irreducible M-module.

Case I: Suppose that there exists $\mu \in \mathfrak{M} \cap B$.

I.1) For $V_0 \neq 0$, choose $0 \neq v_0 \in V_0$ and define $v_0 \cdot a_{\sigma} \stackrel{def}{=} v_{\sigma}$, for $\sigma \in \mathfrak{M}$. Hence, for any $\tau \in \mathfrak{M}$, by (18), we have

$$v_{\sigma} \cdot a_{\tau} = (v_0 a_{\sigma}) a_{\tau} = v_0 (a_{\sigma} a_{\tau}) = v_0 a_{\sigma \triangle \tau} = v_{\sigma \triangle \tau}.$$

Therefore, in this case, $\{v_0, \, v_\sigma \, | \, \sigma \in \mathcal{E}_7\}$ is a basis of the M-module V.

II.2) If $V_0=0$ then, by (12), $0=(v_\sigma a_\sigma)_0 a_\tau=(v_\sigma a_\tau) a_\sigma=v_{\sigma\triangle\tau} a_\sigma$, contradicting Rule B. So this case does not occur.

Case II: Suppose that $\mathfrak{M} \cap B = \emptyset$.

First we claim that if $\mu \in B$, then $|\mu| = 3$.

- i) If $\mu = (ij)$ then $|\mu \cap \sigma| = 0$ or 2, for all $\sigma \in \mathfrak{M}$. Thus $\mu \subseteq (1234) \cap (1256) \cap (1357) = \{1\}$, a contradiction. Hence, $|\mu| \geq 3$.
- ii) Without loss of generality, we can suppose that $1 \in \mu$. Then, as $\mathfrak{M} \cap B = \emptyset$, $|(1234) \cap \mu| = (1j)$, $j \neq 1$. If j = 2 then $3, 4 \notin \mu$ and $|(1256) \cap \mu| = (12)$, implying that $5, 6 \notin \mu$. Hence, $|\mu| \leq 3$. We argue analogously for j = 3 or

j = 4. Hence, by i) and ii) the claim is proved.

Now simple calculations show that $B = \overline{\mathcal{E}_7}(I_7)$ and, therefore, V has a basis $\{v_\mu \mid \mu \in \overline{\mathcal{E}_7}(I_7)\}$, with M-action given by $v_\mu a_\sigma = v_{\mu \triangle \sigma}$.

4.4 Representations for $\mathfrak{M} = \mathcal{E}_8$

Let $\mathfrak{M} = \mathcal{E}_8 = \mathcal{E}_7 \cup \overline{\mathcal{E}_7}(I_8)$. Note that for every $\tau \in I_8$, we have or $\tau \in \mathcal{E}_8$ or $|\sigma \cap \tau| \equiv 1 \mod 2$ for some $\sigma \in \mathcal{E}_8$. This means that $B \subset \mathfrak{M} = \mathcal{E}_8$.

1) If there exists $0 \neq v_0 \in V_0$ then, as in Case I of Section 4.3, define $v_0 \cdot a_\sigma \stackrel{def}{=} v_\sigma$, for $\sigma \in \mathfrak{M}$. Hence, for any $\mu \in \mathfrak{M}$, by (18), we have

$$v_{\sigma} \cdot a_{\mu} = (v_0 a_{\sigma}) a_{\mu} = v_0 (a_{\sigma} a_{\mu}) = v_0 a_{\sigma \triangle \mu} = v_{\sigma \triangle \mu}.$$

Therefore, in this case, $\{v_0, v_\sigma \mid \sigma \in \mathcal{E}_8\}$ is a basis of the *M*-module *V*.

2) If $V_0 = 0$ then, by (12), $0 = (v_{\sigma}a_{\sigma})_0 a_{\tau} = (v_{\sigma}a_{\tau})a_{\sigma} = v_{\sigma \triangle \tau}a_{\sigma}$, contradicting Rule B. So this case does not occur.

5 Conclusion and final comments.

It is not difficult to prove that the Lie algebras obtained from the \triangle -algebras in the Theorem 3.1 by multiplying them by the corresponding algebra Λ (see (4)) are the classical Lie algebras or its central extensions. Moreover, as simple \triangle -algebras have invariant bilinear forms then the corresponding Lie algebras also admit such forms.

In order to calculate the center of a Lie algebra $L = M \square \Lambda$ corresponding to a given Δ -algebra $M \in \mathcal{M}$, we need the following result.

Proposition 5.1. Let M be a Δ -algebra in $\mathcal{M} = \mathcal{M}(\mathfrak{a})$, where \mathfrak{a} is an even set as before. Let $Ann_M(M) = \{x \in M \mid xM = 0\}$ and $L = M(\mathfrak{a}) \square \Lambda$ be the

corresponding Lie algebra. Then

$$Z(L) = \Lambda \square Ann_M(M) + Z(\Lambda) \otimes M_0$$
,

where $Z(\Lambda) = \{h_{\mu} \mid \mu \subseteq I_n, \mu \text{ is } \mathfrak{a} - even\}.$

Proof. All statements of this proof are obvious or follow from Proposition 3.1. \square For example, the Lie algebra $L = M(\mathcal{E}_8) \square \Lambda$ has a basis

$$\{e_1, f_1, \ldots, e_7, f_7, h_1, h_2, h_5, h^{\sigma_1}, h^{\sigma_2}, h^{\sigma_3}; (\mu, \sigma) \mid \mu \subseteq \sigma \in \mathcal{E}_8\},\$$

where $\{e_1, f_1, \ldots, e_7, f_7, h_1, h_2, h_5, h^{\sigma_1}, h^{\sigma_2}, h^{\sigma_3}\}$ is a basis of the algebra $S = \tilde{S}(\mathcal{E}_8)/I$ defined by (3) and $\sigma_1 = (1234), \sigma_2 = (1256), \sigma_3 = (1357)$. Recall that in S we have

$$h^{\sigma} + h^{\mu} + h^{\sigma \triangle \mu} + h_{\sigma \cap \mu} = 0, \tag{36}$$

for every $\sigma, \mu \in \mathcal{E}_8$, where $h_{\tau} = \sum_{i \in \tau} h_i$. The multiplication in this basis of L is given by formulas (3), (5) and (6). For example,

$$[(1357, 13), (3478, 7)] = (1458, 1),$$

$$[(1256, 2), (1256, 156)] = h^{\sigma} + h_1 + h_5 + h_6 = h^{\sigma} + h_2,$$

since, by (36), $h_6 = h_\sigma + h_1 + h_2 + h_5 = h_1 + h_2 + h_5$, where $\sigma = (1256)$.

Note that $B = \{ \mu \in I_7 \mid \mu \text{ is } \mathcal{E}_7 - \text{even} \} = \mathcal{E}_7 \cup \overline{\mathcal{E}_7}(I_7)$. From this and by Proposition 5.1 we have that Z(L) = k h, where $h = h_2 + h_3 + h_5$.

It is clear that dim L=133, dim L/Z(L)=132 and L/Z(L) is a simple Lie algebra of type E_7 . Note that for the $M(\mathcal{E}_7)$ -module V constructed in Theorem 4.1, with basis $\{v_{\mu} \mid \mu \in \overline{\mathcal{E}}_7(I_7)\}$ we can construct the L-module $W=V \square \Lambda$ of dimension 56. But W is not a L/Z(L)-module, since $V h=V \neq 0$.

The modules $V = V_0 \oplus \sum_{\sigma \in B} \oplus V_{\sigma}$ of \triangle -algebras which we constructed in Section 4 correspond to the following modules over the corresponding simple Lie algebra L.

- a) If L if of type $C_{2\ell}$ or $B_{2\ell}$ and $|\sigma|=2$, for all $\sigma\in B$, then V corresponds to the standard module.
 - b) If $B = \mathcal{C}_{2\ell}$ or $\mathcal{B}_{2\ell}$, then V corresponds to the adjoint module.
- c) If L is of type $C_{2\ell}$ and $|\sigma| = \ell$, for all $\sigma \in B$, then V corresponds to a spinor module.

This gives us a useful construction of spinor modules over a simple Lie algebra L of type $C_{2\ell}$. In this case such a Lie algebra has basis

$$\{e_i, f_i, h_j, h^k, (\sigma, \mu) \mid i = 1, ..., 2\ell; j = 1, 2, 3, 5, ..., 2\ell - 1; k = 2, ..., \ell; \mu \subseteq \sigma \in \mathcal{C}_{2\ell}\},\$$

with multiplication rules given by

$$[e_i, f_i] = h_i$$
, where $h_i = h_1 + h_2 + h_{2p-1}$, if $i = 2p > 2$,

$$[e_i, h^j] = e_i, [f_i, h^j] = f_i, \text{ if } i \in \{1, 2, 2j - 1, 2j\},$$

 $[(\sigma,\mu), h^i] = (\sigma,\mu), \text{ if } \sigma \cap (1,2,2i-1,2i) \neq \emptyset \text{ and } |\mu \cap (1,2,2i-1,2i)| = 0 \text{ or } 2.$

$$[(\sigma, \mu), h_i] = (\sigma, \mu), \text{ if } i \in \sigma.$$

$$[(\sigma, \mu), (\sigma, \sigma \setminus \mu)] = \begin{cases} h^j + h_{\mu}, & \text{for } \sigma = (1, 2, 2j - 1, 2j); \\ h^j + h^k + h_{\mu}, & \text{for } \sigma = (2j - 1, 2j, 2k - 1, 2k). \end{cases}$$

Here, as above, $h_{2p}=h_1+h_2+h_{2p-1}$, if p>1. The other products are given by the formulas (5), (6) or are equal to zero. Moreover, Z(L)=kh, where $h=\sum_{i=1}^{\ell}h_{2i-1}$.

The spinor module W has a basis

$$\{(\beta, \alpha) \mid \alpha \subseteq \beta \in \mathcal{M}_{\ell}\}$$

where

$$\mathcal{M}_{\ell} = \{ \mu = (i_1, ..., i_l) \mid i_j \in \{2j-1, 2j\} \text{ and } |\{i \in \mu \mid i \equiv 0 \pmod{2}\}| \equiv 0 \pmod{2} \}.$$

The action of L is given by

$$(\beta, \alpha)e_{i} = (\beta, \alpha \cup i), \text{ if } i \in \beta \setminus \alpha,$$

$$(\beta, \alpha)f_{i} = (\beta, \alpha \setminus i), \text{ if } i \in \alpha,$$

$$(\beta, \alpha)h_{i} = (\beta, \alpha), \text{ if } i \in \beta,$$

$$(\beta, \alpha)h^{i} = (\beta, \alpha), \text{ if } (1, 2, 2i - 1, 2i) \cap \alpha = 0 \text{ or } 2,$$

$$(\beta, \alpha)(\sigma, \mu) = (\beta \triangle \sigma, \alpha \setminus \sigma \cup \mu \setminus \beta), \text{ if } \beta \cap \sigma \subseteq \alpha \cup \mu \text{ and } \mu \cap \alpha = \emptyset.$$

$$(37)$$

All the other products are zero. Observe that, for any (non adjoint) irreducible M-module V, we have $(V \square \Lambda) Z(L) \neq 0$.

Note that Theorem 3.1 is not true if we omit the condition $\emptyset \notin \mathfrak{a}$. But we can formulate the following conjecture.

Conjecture 5.1. Let M be an arbitrary simple finite dimensional \triangle -algebra which satisfies all identities (8)-(28) and $M_{\emptyset}^2 = 0$. Then the corresponding Lie algebra $L = M \square \Lambda$ is a simple Lie algebra of type $B_{2\ell}$, C_{ℓ} , $D_{2\ell+1}$, E_7 or E_8 .

References

- [G1] Grishkov, A.N., A new approach to classification of simple finite dimensional Lie algebras, Webs and Quasigroups, Tver, 1991, 51-77.
- [G2] Grishkov, A.N., Lie algebras with triality.(submitted)
- [Hu1] Humphreys, J.E., Introduction to Lie Algebras and Representation Theory. 3rd Edition, Revised, Springer-Verlag, New York, 1980.
- [Pr] PREMET A., Lie Algebras without strong degeneration. Math.USSR-Sb. 57(1987),151-164.