New series of simple finite dimensional Lie algebras in characteristic 2 and 3.

Alexander N. Grishkov^{*}

University of São Paulo (Brazil)

e-mail:grishkov@ime.usp.br

1 Introduction.

In this paper we have generalized the classical and Cartan simple Lie algebras in characteristic 2. By \mathbf{F}_m we denote the finite field with 2^m elements and by $k\{X\}$ a vector k-space with a bases X, where k is an algebraicly closed field of characteristic 2.

2 The classical simple Lie algebras.

Let V be k-space of dimension n. Then gl(V) is the Lie algebra of all linear endomorphisms of V over k. We can realize gl(V) as $V \otimes_k V^*$, where $V^* = Hom_k(V, k)$ is the dual space to V. By definition, if $v, w \in V, \phi \in V^*$ then $(v \otimes \phi)(w) = \phi(w)v$. It is easy to see that

$$[v \otimes \phi, w \otimes \psi] = \phi(w)v \otimes \psi + \psi(v)w \otimes \phi.$$
(1)

Consider V and V^{*} as gl(V)-modules, where $\psi \cdot (v \otimes \phi) = \psi(v)\phi$. Then an homomorphism $\pi : V \otimes_k V^* \to gl(V)$ such that $\pi(v \otimes \phi) = v \otimes \phi$ as above, is an isomorphism of gl(V)-modules, it follows from (1). By definition, sl(V) = [gl(V), gl(V)] is the Lie algebra of k-morphisms with the trace 0. Note that

$$v \otimes \phi \in sl(V)$$
 if and only if $\phi(v) = 0.$ (2)

We consider $V \oplus gl(V) \oplus V^*$ as an algebra with multiplication law:

$$[V,V] = [V^*, V^*] = 0, \ [gl(V), gl(V)] \subseteq gl(V), \ [v,\phi] = v \otimes \phi,$$
(3)

where $v \in V$, $\phi \in V^*$. This algebra with multiplication defined above is a simple Lie algebra of dimension $n^2 + 2n$ and it is isomorphic to $sl(V \oplus kv)$.

Let $f: V \times V \to k$ be a bilinear symmetric form on V. We denote by so(f) a Lie algebra $\{\phi \in gl(V) | f(v^{\phi}, w) = f(v, w^{\phi}), \forall v, w \in V\}$ and by o(V) a Lie algebra $\{\phi \in so(V) | f(v^{\phi}, v) = 0, \forall v \in V\}$.

^{*}Supported by FAPESP and CNPq (Brazil)

Now we construct some analogous of this classical Lie algebras. Let V be a \mathbf{F}_m -space of dimension n. Let W = W(V) be a k-space with a bases $B(V) = \{v | v \in V\}$, then $dim_k W(V) = 2^{nm}$. By $\langle v, \phi \rangle$ where $\phi \in V^*$ we denote an element of $Hom_k(W, W)$ such that

 $w \cdot \langle v, \phi \rangle = \phi(w)(v+w), \, v, w \in V.$ (4)

Note that $\langle v, \phi \rangle$ is linear by ϕ but is not linear by v.

Lemma 1 In notation above we get:

 $[\langle v, \phi \rangle, \langle w, \psi \rangle] = \langle (v+w), \phi(w)\psi + \psi(v)\phi \rangle.$

Proof. We have for any $u \in V$ by (4):

$$\begin{split} u \cdot [\langle v, \phi \rangle, \langle w, \psi \rangle] &= (u \cdot \langle v, \phi \rangle) \langle w, \psi \rangle + (u \cdot \langle w, \psi \rangle) \langle v, \phi \rangle = \\ \phi(u)(u+v) \cdot \langle w, \psi \rangle + \psi(u)(u+w) \cdot \langle v, \phi \rangle = \\ \phi(u)\psi(u+v)(u+v+w) + \psi(u)\phi(u+w)(u+v+w) = \\ (\phi(u)\psi(v) + \psi(u)\phi(w))(v+w+u). \end{split}$$

On the other hand by (4):

$$u \cdot \langle (v+w), \phi(w)\psi + \psi(v)\phi \rangle = (\phi(u)\psi(v) + \psi(u)\phi(w))(v+w+u).$$

By Lemma 1 the k-space

$$\mathcal{GL}(n,m) = k\{\langle v, \phi \rangle | v \in V, \phi \in V^*\}$$

is a Lie algebra. We call this algebra an \mathbf{F}_m -analog of gl(V) where V is a k-space of dimension n.

Definition 1 A Lie algebra L is almost restricted if for some Cartan subalgebra $H \subseteq L$ we have that a Lie algebra T + L is restricted. Here T is 2-envelope for some toroidal subalgebra of H.

A restricted 2-algebra Lie is called of **toroidal type** if it has some toroidal Cartan subalgebra.

Recall that the classical Lie algebra gl(V) is a restricted Lie algebra of toroidal type. The following theorem is an analogous of this fact.

Theorem 1 1. An algebra $\mathcal{GL}(n,m)$ is a simple almost restricted Lie algebra of toroidal type, if $(n,m) \neq (1,1)$.

- 2. An algebra $\mathcal{GL}(n,m)$ is restricted if and only if m = 1.
- 3. $dim_k \mathcal{GL}(n,m) = n2^{nm}$.
- 4. Toroidal range of $\mathcal{GL}(n,m)$ is equal nm.

By (2) we can define an k-analog of sl(V) as a subalgebra of $\mathcal{GL}(n,m)$ as follows:

$$\mathcal{SL}(n,m) = \{ \langle v, \phi \rangle \in \mathcal{GL}(n,m) | \phi(v) = 0 \}.$$
(5)

A flag or V-flag \mathcal{F} is a chain of subspaces of V:

$$\{0\} \subset V_1 \subset V_2 \subset \dots \subset V_s \subset V. \tag{6}$$

The main characteristic of \mathcal{F} is a vector $\mathbf{n} = \mathbf{n}(\mathcal{F}) = (n_1, ..., n_s, n)$, where $n_i = \dim_{\mathbf{F}_m} V_i$, $n = \dim_{\mathbf{F}_m} V$. Note that $1 < n_1 < ..., n_s < n$. By denition V-coflag or coflag is a V^* -flag. For any V-flag \mathcal{F} we can define the corresponding coflag $co\mathcal{F}$ as follows:

$$\{0\} \subset^* V_s \subset \dots \subset^* V_1 \subset V^*, \tag{7}$$

where ${}^*V_i = \{\phi \in V^* | \phi(V_i) = 0\}$. Let \mathcal{G} be a V-flag: $\{0\} \subset W_1 \subset ... \subset W_t \subset V$. We write $\mathcal{F} \leq \mathcal{G}$ if s = t and $V_i \subseteq W_i$, i = 1, ..., s. Note that in this case $\mathbf{n} = \mathbf{n}(\mathcal{F}) \leq \mathbf{m} = \mathbf{n}(\mathcal{G})$, which means that $n_i \leq m_i, i = 1, ..., s$. Let $(\mathcal{F}, \mathcal{G})$ be a V-flag and coflag correspondingly such that $co\mathcal{F} \leq \mathcal{G}$. In notation above it means that $\phi(V_i) = 0$ for all $\phi \in W_{s-i+1}$, where $\mathcal{G} = \{\{0\} \subset W_1 \subset ... \subset W_s \subset V^*\}$ We define

$$\mathcal{O}(\mathcal{F},\mathcal{G}) = \{ \langle v, \phi \rangle \in \mathcal{GL}(V) | v \notin V_i \text{ hence } \phi \in W_i \}.$$
(8)

Lemma 2 $\mathcal{O}(\mathcal{F},\mathcal{G})$ is a subalgebra of $\mathcal{GL}(V)$.

Proof. Let $\langle v, \phi \rangle, \langle w, \psi \rangle \in \mathcal{O}(\mathcal{F}, \mathcal{G})$. By (1) $[\langle v, \phi \rangle, \langle w, \psi \rangle] = \langle (v+w), \xi \rangle$, where $\xi = \phi(w)\psi + \psi(v)\phi$. Suppose that $v+w \notin V_i$. We need to prove that $\xi \in W_i$. If $v \notin V_i$ and $w \notin V_i$ then by (8) it means that $\phi, \psi \in W_i$, hence $\xi \in W_i$. If $v \in V_i$, then $w \notin V_i$ and $\psi \in W_i$. As $co\mathcal{F} \leq \mathcal{G}$ then $\psi(V_i) = 0$, hence $\xi = \phi(w)\psi \in W_i$. \Box

Let $\mathbf{n} = \mathbf{n}(co\mathcal{F})$ and $\mathbf{m} = \mathbf{n}(\mathcal{G})$ then in the situation above we have $\mathbf{n} \leq \mathbf{m}$. Note that the par (\mathbf{n}, \mathbf{m}) defines the par of flag and coflag $(\mathcal{F}, \mathcal{G})$ uniquely. We will denote $\mathcal{O}(\mathcal{F}, \mathcal{G})$ by $\mathcal{O}(\mathbf{n}, \mathbf{m})$, where $\mathbf{n} = \mathbf{n}(\mathcal{F})$ and $\mathbf{m} = \mathbf{n}(\mathcal{G})$. Now define

$$\mathcal{SO}(\mathbf{n}, \mathbf{m}) = \mathcal{O}(\mathbf{n}, \mathbf{m}) \cap \mathcal{GL}(n, m).$$
(9)

The following series of simple Lie algebras are new (?) series in characteristic 2 and 3.

Let V be a 3-dimensional k-space and (v, w, u) be the unique (up to isomorphism) 3-linear antisymmetris k-form on V (form of determinant.) For any $v, w \in V$ we define $d_v^w \in V^*$ (dual space), where $d_v^w(u) = (v, w, u)$.

We denote

 $\mathcal{E}_1(m) = W(V) \oplus \mathcal{SL}(V), \ \mathcal{E}_2(m) = W(V)_1 \oplus \mathcal{SL}(V) \oplus W(V)_{-1},$

where $W(V)_1$ and $W(V)_2$ are two copies of W(V).

We define the structure of anticommutative algebras on $\mathcal{E}_1(V)$ and $\mathcal{E}_2(V)$ by the following formules:

 $[v, w] = \langle v + w, d_{v+w}^w \rangle, v, w \in V.$ $[V_1, V_1] = [V_2, V_2] = 0, [v, w] = \langle v + w, d_{v+w}^w \rangle, v, \in V_1., w \in V_2.$ Morever, consider $\mathcal{SL}(V)$ as a subalgebra and V, V_1, V_2 as $\mathcal{SL}(V)$ -modules. **Theorem 2** (i) $\mathcal{E}_1(m)^2$ is a simple Lie k-algebra if k has the characteristic 3. (ii) $\mathcal{E}_2(m)^2$ is a simple Lie k-algebra if k has the characteristic 2.

Proof. First consider the case $\mathcal{E}_1(V)$. For $v, w, u \in V$ we have [[v, w], u] + [[w, u], v] + [[u, v], w] = $[\langle v + w, d_{v+w}^v \rangle, u] + [\langle w + u, d_{w+u}^w \rangle, v] + [\langle u + v, d_{u+v}^u \rangle, w] =$ ((v, v + w, u) + (w, w + u, v) + (u, u + v, w))(v + w + u) = 3(v, w, u)(v + w + u) = 0.

3 2-analogs of Lie algebras of Cartan type.

The Lie algebras of Cartan type appear as Lie algebras of derivations of graduate algebra of truncated polynomials. Let $\mathbf{m} = (m_1, ..., m_n)$ be a vector with natural coordinates. Then $A(\mathbf{m})$ is an associative commutative k-algebra with generators $X_n = \{x_1^{(i)}, ..., x_n^{(i)} | i = 1, ...\}$ and relations:

$$x^{(i)} \cdot x^{(j)} = \begin{pmatrix} i+j\\i \end{pmatrix} x^{(i+j)}, \ x_i^{(2^{m_i})} = 0, x \in \{x_1, ..., x_n\}.$$
(10)

Then $W(\mathbf{m}) = DerA(\mathbf{m})$ is a generalizade Jacobson-Witt Lie algebra(see [?]). Note that $A(\mathbf{m}) = \sum_{i=0} \oplus A(\mathbf{m})_i$ and $W(\mathbf{m}) = \sum_{i=-1} \oplus W(\mathbf{m})_i$ are **Z**-graded algebras where $A(\mathbf{m})_i = \{x^{(a)}|a = (a_1, ..., a_n) \in \mathbf{N}^n, |a| = a_1 + ... + a_n = i, x^{(a)} = x_1^{(a_1)}...x_n^{(a_n)}\},$ $W(\mathbf{m})_i = \{a_{\partial x_i}, i = 1, ..., n, a \in A(\mathbf{m})_{i+1}\}.$

It is clear that a set $B(\mathbf{m})_i = \{x^{(a)} | |a| = i\}$ is a bases of $A(\mathbf{m})_i$, i = 0, ...

We construct an 2-analog of $W(\mathbf{m})$ in the following way. As above we fix a \mathbf{F}_m -space V with a bases $v_1, ..., v_n$. For any $v = (\alpha_1, ..., \alpha_n) \in V$ we define an derivation ∂_v of $A(\mathbf{m})$ such that $\partial_v(x_i^{(j)}) = \alpha_i x_i^{(j-1)}$. By definition

$$\mathcal{W}(m,\mathbf{m}) = \sum_{i=-1}^{r} \oplus \mathcal{W}(m,\mathbf{m})_i$$

where $\mathcal{W}(m, \mathbf{m})_i$ is a k-space with a bases $\{\langle \partial_v, a \rangle | v \in V, a \in B(\mathbf{m})_{i+1}\}$. Note that $B_0(\mathbf{m}) = \{1\}$ hence $\mathcal{W}(m, \mathbf{m})_{-1} = k\{\partial_v | v \in V\}$. A multiplication in $\mathcal{W}(m, \mathbf{m})$ is given by the following formulae:

$$[\langle \partial_v, a \rangle, \langle \partial_w, b \rangle] = \langle \partial_{v+w}, \partial_v(b)a + \partial_w(a)b \rangle.$$
(11)

Lemma 3 The algebra $\mathcal{W}(m, \mathbf{m})$ with the multiplication law (11) is a simple Lie algebra. **Proof.** We have by (11):

$$p_{1} = [[\langle \partial_{v}, a \rangle, \langle \partial_{w}, b \rangle], \langle \partial_{u}, c \rangle] = [\langle \partial_{v+w}, \partial_{v}(b)a + \partial_{w}(a)b \rangle, \langle \partial_{u}, c \rangle] = \langle \partial_{v+w+u}, \partial_{v+w}(c)(\partial_{v}(b)a + \partial_{w}(a)b) + \partial_{u}(\partial_{v}(b)a + \partial_{w}(a)b)c \rangle = \langle \partial_{v+w+u}, \partial_{v}(c)\partial_{v}(b)a + \partial_{w}(c)\partial_{v}(b)a + \partial_{v}(c)\partial_{w}(a)b + \partial_{w}(c)\partial_{w}(a)b +$$

Analogously,

$$p_{2} = [[\langle \partial_{w}, b \rangle, \langle \partial_{u}, c \rangle], \langle \partial_{v}, a \rangle] = \langle \partial_{v+w+u}, \partial_{w}(a)\partial_{w}(c)b + \partial_{u}(a)\partial_{w}(c)b + \partial_{w}(a)\partial_{u}(b)c + \partial_{u}(a)\partial_{u}(b)c + \\\partial_{v}(\partial_{w}(c))ab + \partial_{w}(c)\partial_{v}(b)a + \partial_{v}(\partial_{u}(b))ac + \partial_{u}(b)\partial_{v}(c)a \rangle p_{3} = [[\langle \partial_{u}, c \rangle, \langle \partial_{v}, a \rangle], \langle \partial_{w}, b \rangle] =$$

 $\begin{array}{l} \langle \partial_{v+w+u}, \partial_u(b)\partial_u(a)c + \partial_v(b)\partial_u(a)c + \partial_u(b)\partial_v(c)a + \partial_v(b)\partial_v(c)a + \partial_v(b)\partial_v(c)a + \partial_w(\partial_u(a))bc + \partial_u(a)\partial_w(c)b + \partial_w(\partial_v(c))ab + \partial_v(c)\partial_w(a)b \rangle \end{array}$

It is obviously that $p_1 + p_2 + p_3 = 0$. \Box Note. The algebra $\mathcal{W}(m, \mathbf{m})$ is not a new simple Lie algebra, really it is a Cartan algebra of Hamilton type.

We define $\mathcal{SW}(m,n) = \sum_{i=-1}^{r} \oplus \mathcal{SW}(m,n)_i$ where

$$\mathcal{SW}(m,n)_i = \{ \langle \partial_v, a \rangle \in \mathcal{W}(m,\mathbf{1}_n)_i | \partial_v(a) = \partial_w(\partial_w(a)) = 0, \, \forall w \in V \}.$$
(12)

Lemma 4 $\mathcal{SW}(m,n)$ is a simple Lie subalgebra of $\mathcal{W}(m,\mathbf{1}_n)$. Moreover, $\mathcal{SW}(m,\mathbf{1}_n)_{-1} = \mathcal{W}(m,\mathbf{1}_n)_{-1}$, $\mathcal{SW}(m,\mathbf{1}_n)_0 = \mathcal{SL}(m,n)$ and $\dim_k \mathcal{SW}(m,\mathbf{1}_n) = (n-1)(2^{nm}-1)$.

Proof. Let $\langle \partial_v, a \rangle, \langle \partial_w, b \rangle \in \mathcal{SW}(m, \mathbf{m})$. By (11) and (12) we need to prove that $\partial_{(v+w)}(\partial_v(b)a + \partial_w(a)b) = \partial_u(\partial_u(\partial_v(b)a + \partial_w(a)b)) = 0$ for all $u \in V$. We get

$$\partial_{(v+w)}(\partial_v(b)a + \partial_w(a)b) = \partial_v(\partial_v(b))a + \partial_v(b)\partial_v(a) + \partial_w(\partial_v(b))a + \partial_v(b)\partial_w(a) + \partial_v(\partial_w(a))b + \partial_w(a)\partial_v(b) + \partial_w(\partial_w(a))b + \partial_w(b)\partial_w(a) = 0.$$

Analogously,

$$\partial_u(\partial_u(\partial_v(b)a + \partial_w(a)b)) = \partial_v(\partial_u(b))\partial_u(a) + \partial_u(\partial_v(b))\partial_u(a) + \partial_u(\partial_v(b))\partial_u(b) + \partial_u(\partial_w(a))\partial_u(b) = 0.$$

r		
L		
L		
L		

Theorem 3 The simple Lie algebras SW(m, n) are new simple Lie algebras over an algebraicly closed field of characteristic 2 if n > 2, moreover, $SW(m, 3) = \mathcal{E}_2(m)$.

Note. All constructions above we can generalise in the following way. Let $\mathbf{s}(\mathbf{m}) = (s_0, s_1, ..., s_{n-1}), s_i \leq s_{i+1}, s_{n-1} = m$ and let

$$V_n = \{0\} \subset V_{n-1} \subset \ldots \subset V_1 \subset V, \dim_k V = n.$$

Let $v_0, ..., v_{n-1}$ be a bases of V such that $v_i, ..., v_{n-1}$ is a bases of V_i . There exists unique chain of finite subfields

$$\mathbf{F}_{s_0} \subseteq \mathbf{F}_{s_1} \subseteq ... \subseteq \mathbf{F}_m$$

Denote $V(\mathbf{s}(\mathbf{m})) = \{ v \in V | v = \alpha_0 v_0 + ... + \alpha_{n-1} v_{n-1}, \alpha_i \in \mathbf{F}_i \}$ Then by definition $\mathcal{W}(\mathbf{s}(\mathbf{m}), \mathbf{m}) = \{ \langle \partial_v, a \rangle | v \in V(s(m)), a \in A(\mathbf{m}) \}$

4 Automorphism Groups of 2-analogs.

Let $L = \mathcal{GL}(n, m)$ be Lie algebra of dimension $n2^{nm}$. By Theorem 1 it is a 2-algebra with toroidal Cartan subalgebra $H = k\{\langle \phi_i \rangle | i = 1, ..., n\}$ and $\phi_i \in V^*$ such that $\phi_i(v_j) = 0, i \neq j, \phi_i(v_i) = 1$ for some \mathbf{F}_m -basis $\{v_1, ..., v_n\}$ of V. We identify H and V^* . Let $G = Aut_k(L)$ be an algebraic group of automorphism of L. Our purpers is to define the structure of G. Let $T = Stab_G(H)$ and $Z = \{\xi \in T | h^{\xi} = h, \forall h \in H\}$. Note that $\mathcal{H} = \{h^{[2^i]} | h \in H, i = 0, 1, ...\}$ is a toroidal subalgebra of 2-envelope of L and 2-envelope of L isomorphic to $L_1 = \mathcal{H} + L$. Let $0 \neq v \in V$ and $L_v = L_{\psi} = \{\langle v, \phi \rangle | \phi \in V^*\} = \{x \in L | [x, t] = \psi(t)x, for all t \in H = V^*\},$ where $\psi(t) = t(v) \in \mathbf{F}_m$. By definition $L_v^0 = \{x \in L_v | v^{[2]} = 0\}$.

Lemma 5 $L_v^0 = \{t(??)\}$

Let m = 1 then L is a 2-algebra with toroidal Cartan subalgebra $H_0 = H$ defined above. For any $i \in I_n = \{1, ..., n\}$ we define an other toroidal Cartan subalgebra $H_j = \{\langle \phi_i \rangle + \langle v_i, \phi_i \rangle, \langle \phi_k \rangle | i = 1, ..., j, k = j + 1, ..., n\}.$

Proposition 1 Any toroidal Cartan subalgebra of $\mathcal{GL}(n, 1)$ is conjugated to one of $H_0, ..., H_n$. Moreover, the Cartan subalgebras H_i and H_j are not conjugated if $i \neq j$.

Let $H = H_n$ and $L = H \oplus \sum_{v \in V \setminus \{0\}} \oplus L_v$ the corresponding Cartan decomposition. We can identify \mathbf{F}_1 -space V with a set of all subsets of I_n such that for $v = a_1v_1 + \ldots + a_nv_n \in V$ the corresponding subset $\sigma = \sigma(v) = \{i | a_i = 1\}$. If $\sigma \subseteq I_n$ and $i \in \sigma$, $j \notin \sigma$ then by definition

$$\sigma_i = \sum_{i \in \mu \subseteq \sigma} \langle \mu, \phi_i \rangle, \ \sigma^j = \sum_{\mu \subseteq \sigma \cup j} \langle \mu, \phi_j \rangle.$$

Lemma 6 $L_{\sigma} = k\{\sigma_i, \sigma^j | i \in \sigma, j \notin \sigma\}.$

Proof. It is clear that the elements $\{\sigma_i, \sigma^j | i \in \sigma, j \notin \sigma\}$ are liner independence. For $s_i = \langle \phi_i \rangle + \langle i, \phi_i \rangle$ we have, if $j, i \in \sigma$:

$$[\sigma_j, s_i] = \sum_{i, j \in \mu \subseteq \sigma} (\langle \mu, \phi_j \rangle + \langle \mu \setminus i, \phi_j \rangle) + \delta_{ij} \sum_{i \in \mu \subseteq \sigma} \langle \mu \setminus i, \phi_i \rangle.$$

If $i \neq j$ hence $[\sigma_j, s_i] = \sum_{j \in \mu \subseteq \sigma} \langle \mu, \phi_j \rangle = \sigma_j$. If i = j hence $[\sigma_j, s_i] = \sum_{i,j \in \mu \subseteq \sigma} \langle \mu, \phi_j \rangle = \sigma_i$. Analogously, if $j \notin \sigma$, $i \in \sigma$ then

$$\begin{split} [\sigma^j, s_i] &= \sum_{i \in \mu \subseteq \sigma \cup j} (\langle \mu, \phi_j \rangle + \langle \mu \setminus i, \phi_j \rangle) + \\ \delta_{ij} \sum_{\mu \subseteq \sigma} \langle \mu \bigwedge i, \phi_i \rangle = \sigma^j. \end{split}$$

The equalities $[\sigma_j, s_i] = [\sigma^j, s_i] = 0$ if $i \notin \sigma$ are obviously. \Box