New series of simple finite dimensional Lie algebras in characteristic 2 and 3.

Alexander N. Grishkov*
University of São Paulo (Brazil)
e-mail:grishkov@ime.usp.br

1 Introduction.

In this paper we have generalized the classical and Cartan simple Lie algebras in characteristic 2 . By \mathbf{F}_{m} we denote the finite field with 2^{m} elements and by $k\{X\}$ a vector k-space with a bases X, where k is an algebraicly closed field of characteristic 2 .

2 The classical simple Lie algebras.

Let V be k-space of dimension n. Then $g l(V)$ is the Lie algebra of all linear endomorphisms of V over k. We can realize $g l(V)$ as $V \otimes_{k} V^{*}$, where $V^{*}=\operatorname{Hom}_{k}(V, k)$ is the dual space to V. By definition, if $v, w \in V, \phi \in V^{*}$ then $(v \otimes \phi)(w)=\phi(w) v$. It is easy to see that

$$
\begin{equation*}
[v \otimes \phi, w \otimes \psi]=\phi(w) v \otimes \psi+\psi(v) w \otimes \phi \tag{1}
\end{equation*}
$$

Consider V and V^{*} as $g l(V)$-modules, where $\psi \cdot(v \otimes \phi)=\psi(v) \phi$. Then an homomorphism $\pi: V \otimes_{k} V^{*} \rightarrow g l(V)$ such that $\pi(v \otimes \phi)=v \otimes \phi$ as above, is an isomorphism of $g l(V)-$ modules, it follows from (1). By definition, $s l(V)=[g l(V), g l(V)]$ is the Lie algebra of k-morphisms with the trace 0 . Note that

$$
\begin{equation*}
v \otimes \phi \in \operatorname{sl}(V) \text { if and only if } \phi(v)=0 \tag{2}
\end{equation*}
$$

We consider $V \oplus g l(V) \oplus V^{*}$ as an algebra with multiplication law:

$$
\begin{equation*}
[V, V]=\left[V^{*}, V^{*}\right]=0,[g l(V), g l(V)] \subseteq g l(V),[v, \phi]=v \otimes \phi \tag{3}
\end{equation*}
$$

where $v \in V, \phi \in V^{*}$. This algebra with multiplication defined above is a simple Lie algebra of dimension $n^{2}+2 n$ and it is isomorphic to $\operatorname{sl}(V \oplus k v)$.

Let $f: V \times V \rightarrow k$ be a bilinear symmetric form on V. We denote by $s o(f)$ a Lie algebra $\left\{\phi \in g l(V) \mid f\left(v^{\phi}, w\right)=f\left(v, w^{\phi}\right), \forall v, w \in V\right\}$ and by $o(V)$ a Lie algebra $\{\phi \in$ $\left.s o(V) \mid f\left(v^{\phi}, v\right)=0, \forall v \in V\right\}$.

[^0]Now we construct some analogous of this classical Lie algebras. Let V be a \mathbf{F}_{m}-space of dimension n. Let $W=W(V)$ be a k-space with a bases $B(V)=\{v \mid v \in V\}$, then $\operatorname{dim}_{k} W(V)=2^{n m}$. By $\langle v, \phi\rangle$ where $\phi \in V^{*}$ we denote an element of $H o m_{k}(W, W)$ such that

$$
\begin{equation*}
w \cdot\langle v, \phi\rangle=\phi(w)(v+w), v, w \in V \tag{4}
\end{equation*}
$$

Note that $\langle v, \phi\rangle$ is linear by ϕ but is not linear by v.
Lemma 1 In notation above we get:

$$
[\langle v, \phi\rangle,\langle w, \psi\rangle]=\langle(v+w), \phi(w) \psi+\psi(v) \phi\rangle
$$

Proof. We have for any $u \in V$ by (4):

$$
\begin{aligned}
& u \cdot[\langle v, \phi\rangle,\langle w, \psi\rangle]=(u \cdot\langle v, \phi\rangle)\langle w, \psi\rangle+(u \cdot\langle w, \psi\rangle)\langle v, \phi\rangle= \\
& \phi(u)(u+v) \cdot\langle w, \psi\rangle+\psi(u)(u+w) \cdot\langle v, \phi\rangle= \\
& \phi(u) \psi(u+v)(u+v+w)+\psi(u) \phi(u+w)(u+v+w)= \\
& (\phi(u) \psi(v)+\psi(u) \phi(w))(v+w+u) .
\end{aligned}
$$

On the other hand by (4):

$$
u \cdot\langle(v+w), \phi(w) \psi+\psi(v) \phi\rangle=(\phi(u) \psi(v)+\psi(u) \phi(w))(v+w+u)
$$

By Lemma 1 the k-space

$$
\mathcal{G \mathcal { L }}(n, m)=k\left\{\langle v, \phi\rangle \mid v \in V, \phi \in V^{*}\right\}
$$

is a Lie algebra. We call this algebra an \mathbf{F}_{m}-analog of $g l(V)$ where V is a k-space of dimension n.

Definition 1 A Lie algebra L is almost restricted if for some Cartan subalgebra $H \subseteq L$ we have that a Lie algebra $T+L$ is restricted. Here T is 2-envelope for some toroidal subalgebra of H.

A restricted 2-algebra Lie is called of toroidal type if it has some toroidal Cartan subalgebra.

Recall that the classical Lie algebra $g l(V)$ is a restricted Lie algebra of toroidal type. The following theorem is an analogous of this fact.

Theorem 1 1. An algebra $\mathcal{G} \mathcal{L}(n, m)$ is a simple almost restricted Lie algebra of toroidal type, if $(n, m) \neq(1,1)$.
2. An algebra $\mathcal{G} \mathcal{L}(n, m)$ is restricted if and only if $m=1$.
3. $\operatorname{dim}_{k} \mathcal{G} \mathcal{L}(n, m)=n 2^{n m}$.
4. Toroidal range of $\mathcal{G} \mathcal{L}(n, m)$ is equal $n m$.

By (2) we can define an k-analog of $\operatorname{sl}(V)$ as a subalgebra of $\mathcal{G} \mathcal{L}(n, m)$ as follows:

$$
\begin{equation*}
\mathcal{S L}(n, m)=\{\langle v, \phi\rangle \in \mathcal{G} \mathcal{L}(n, m) \mid \phi(v)=0\} . \tag{5}
\end{equation*}
$$

A flag or V-flag \mathcal{F} is a chain of subspaces of V :

$$
\begin{equation*}
\{0\} \subset V_{1} \subset V_{2} \subset \ldots \subset V_{s} \subset V \tag{6}
\end{equation*}
$$

The main characteristic of \mathcal{F} is a vector $\mathbf{n}=\mathbf{n}(\mathcal{F})=\left(n_{1}, \ldots, n_{s}, n\right)$, where $n_{i}=\operatorname{dim}_{\mathbf{F}_{m}} V_{i}$, $n=\operatorname{dim}_{\mathbf{F}_{m}} V$. Note that $1<n_{1}<\ldots, n_{s}<n$. By denition $V-$ coflag or coflag is a $V^{*}-$ flag. For any $V-$ flag \mathcal{F} we can define the corresponding coflag $c o \mathcal{F}$ as follows:

$$
\begin{equation*}
\{0\} \subset^{*} V_{s} \subset \ldots \subset^{*} V_{1} \subset V^{*} \tag{7}
\end{equation*}
$$

where ${ }^{*} V_{i}=\left\{\phi \in V^{*} \mid \phi\left(V_{i}\right)=0\right\}$. Let \mathcal{G} be a V-flag: $\{0\} \subset W_{1} \subset \ldots \subset W_{t} \subset V$. We write $\mathcal{F} \leq \mathcal{G}$ if $s=t$ and $V_{i} \subseteq W_{i}, i=1, \ldots, s$. Note that in this case $\mathbf{n}=\mathbf{n}(\mathcal{F}) \leq \mathbf{m}=\mathbf{n}(\mathcal{G})$, which means that $n_{i} \leq m_{i}, i=1, \ldots, s$. Let $(\mathcal{F}, \mathcal{G})$ be a V-flag and coflag correspondingly such that $\operatorname{co\mathcal {F}} \leq \mathcal{G}$. In notation above it means that $\phi\left(V_{i}\right)=0$ for all $\phi \in W_{s-i+1}$, where $\mathcal{G}=\left\{\{0\} \subset W_{1} \subset \ldots \subset W_{s} \subset V^{*}\right\}$ We define

$$
\begin{equation*}
\mathcal{O}(\mathcal{F}, \mathcal{G})=\left\{\langle v, \phi\rangle \in \mathcal{G} \mathcal{L}(V) \mid v \notin V_{i} \text { hence } \phi \in W_{i}\right\} . \tag{8}
\end{equation*}
$$

Lemma $2 \mathcal{O}(\mathcal{F}, \mathcal{G})$ is a subalgebra of $\mathcal{G} \mathcal{L}(V)$.
Proof. Let $\langle v, \phi\rangle,\langle w, \psi\rangle \in \mathcal{O}(\mathcal{F}, \mathcal{G})$. By (1) $[\langle v, \phi\rangle,\langle w, \psi\rangle]=\langle(v+w), \xi\rangle$, where $\xi=$ $\phi(w) \psi+\psi(v) \phi$. Suppose that $v+w \notin V_{i}$. We need to prove that $\xi \in W_{i}$. If $v \notin V_{i}$ and $w \notin V_{i}$ then by (8) it means that $\phi, \psi \in W_{i}$, hence $\xi \in W_{i}$. If $v \in V_{i}$, then $w \notin V_{i}$ and $\psi \in W_{i}$. As $\operatorname{co\mathcal {F}} \leq \mathcal{G}$ then $\psi\left(V_{i}\right)=0$, hence $\xi=\phi(w) \psi \in W_{i}$.

Let $\mathbf{n}=\mathbf{n}(c o \mathcal{F})$ and $\mathbf{m}=\mathbf{n}(\mathcal{G})$ then in the situation above we have $\mathbf{n} \leq \mathbf{m}$. Note that the par (\mathbf{n}, \mathbf{m}) defines the par of flag and $\operatorname{coflag}(\mathcal{F}, \mathcal{G})$ uniquely. We will denote $\mathcal{O}(\mathcal{F}, \mathcal{G})$ by $\mathcal{O}(\mathbf{n}, \mathbf{m})$, where $\mathbf{n}=\mathbf{n}(\mathcal{F})$ and $\mathbf{m}=\mathbf{n}(\mathcal{G})$. Now define

$$
\begin{equation*}
\mathcal{S O}(\mathbf{n}, \mathbf{m})=\mathcal{O}(\mathbf{n}, \mathbf{m}) \cap \mathcal{G} \mathcal{L}(n, m) \tag{9}
\end{equation*}
$$

The following series of simple Lie algebras are new (?) series in characteristic 2 and 3.
Let V be a 3 -dimensional k-space and (v, w, u) be the unique (up to isomorphism) 3-linear antisymmetris k-form on V (form of determinant.) For any $v, w \in V$ we define $d_{v}^{w} \in V^{*}$ (dual space), where $d_{v}^{w}(u)=(v, w, u)$.

We denote
$\mathcal{E}_{1}(m)=W(V) \oplus \mathcal{S} \mathcal{L}(V), \mathcal{E}_{2}(m)=W(V)_{1} \oplus \mathcal{S} \mathcal{L}(V) \oplus W(V)_{-1}$,
where $W(V)_{1}$ and $W(V)_{2}$ are two copies of $W(V)$.
We define the structurs of anticommutative algebras on $\mathcal{E}_{1}(V)$ and $\mathcal{E}_{2}(V)$ by the following formules:
$[v, w]=\left\langle v+w, d_{v+w}^{w}\right\rangle, v, w \in V$.
$\left[V_{1}, V_{1}\right]=\left[V_{2}, V_{2}\right]=0,[v, w]=\left\langle v+w, d_{v+w}^{w}\right\rangle, v, \in V_{1} ., w \in V_{2}$.
Morever, consider $\mathcal{S} \mathcal{L}(V)$ as a subalgebra and V, V_{1}, V_{2} as $\mathcal{S} \mathcal{L}(V)$-modules.

Theorem 2 (i) $\mathcal{E}_{1}(m)^{2}$ is a simple Lie k-algebra if k has the characterstic 3.
(ii) $\mathcal{E}_{2}(m)^{2}$ is a simple Lie k-algebra if k has the characterstic 2.

Proof. First consider the case $\mathcal{E}_{1}(V)$. For $v, w, u \in V$ we have
$[[v, w], u]+[[w, u], v]+[[u, v], w]=$
$\left[\left\langle v+w, d_{v+w}^{v}\right\rangle, u\right]+\left[\left\langle w+u, d_{w+u}^{w}\right\rangle, v\right]+\left[\left\langle u+v, d_{u+v}^{u}\right\rangle, w\right]=$
$((v, v+w, u)+(w, w+u, v)+(u, u+v, w))(v+w+u)=3(v, w, u)(v+w+u)=0$.

3 2-analogs of Lie algebras of Cartan type.

The Lie algebras of Cartan type appear as Lie algebras of derivations of graduate algebra of truncated polynomiais. Let $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)$ be a vector with natural coordinates. Then $A(\mathbf{m})$ is an associative commutative k-algebra with generators $X_{n}=\left\{x_{1}^{(i)}, \ldots, x_{n}^{(i)} \mid i=1, \ldots\right\}$ and relations:

$$
\begin{equation*}
x^{(i)} \cdot x^{(j)}=\binom{i+j}{i} x^{(i+j)}, x_{i}^{\left(2^{m_{i}}\right)}=0, x \in\left\{x_{1}, \ldots, x_{n}\right\} . \tag{10}
\end{equation*}
$$

Then $W(\mathbf{m})=\operatorname{Der} A(\mathbf{m})$ is a generalizade Jacobson-Witt Lie algebra(see [?]). Note that $A(\mathbf{m})=\sum_{i=0} \oplus A(\mathbf{m})_{i}$ and $W(\mathbf{m})=\sum_{i=-1} \oplus W(\mathbf{m})_{i}$ are \mathbf{Z}-graded algebras where
$A(\mathbf{m})_{i}=\left\{x^{(a)}\left|a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{N}^{n},|a|=a_{1}+\ldots+a_{n}=i, x^{(a)}=x_{1}^{\left(a_{1}\right)} \ldots x_{n}^{\left(a_{n}\right)}\right\}\right.$,
$W(\mathbf{m})_{i}=\left\{a \frac{\partial}{\partial x_{i}}, i=1, \ldots, n, a \in A(\mathbf{m})_{i+1}\right\}$.
It is clear that a set $B(\mathbf{m})_{i}=\left\{x^{(a)} \| a \mid=i\right\}$ is a bases of $A(\mathbf{m})_{i}, i=0, \ldots$
We construct an 2-analog of $W(\mathbf{m})$ in the following way. As above we fix a \mathbf{F}_{m}-space V with a bases v_{1}, \ldots, v_{n}. For any $v=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in V$ we define an derivation ∂_{v} of $A(\mathbf{m})$ such that $\partial_{v}\left(x_{i}^{(j)}\right)=\alpha_{i} x_{i}^{(j-1)}$. By definition

$$
\mathcal{W}(m, \mathbf{m})=\sum_{i=-1}^{r} \oplus \mathcal{W}(m, \mathbf{m})_{i}
$$

where $\mathcal{W}(m, \mathbf{m})_{i}$ is a k-space with a bases $\left\{\left\langle\partial_{v}, a\right\rangle \mid v \in V, a \in B(\mathbf{m})_{i+1}\right\}$. Note that $B_{0}(\mathbf{m})=$ $\{1\}$ hence $\mathcal{W}(m, \mathbf{m})_{-1}=k\left\{\partial_{v} \mid v \in V\right\}$. A multiplication in $\mathcal{W}(m, \mathbf{m})$ is given by the following formulae:

$$
\begin{equation*}
\left[\left\langle\partial_{v}, a\right\rangle,\left\langle\partial_{w}, b\right\rangle\right]=\left\langle\partial_{v+w}, \partial_{v}(b) a+\partial_{w}(a) b\right\rangle \tag{11}
\end{equation*}
$$

Lemma 3 The algebra $\mathcal{W}(m, \mathbf{m})$ with the multiplicatiom law (11) is a simple Lie algebra.
Proof. We have by (11):

$$
\begin{aligned}
& p_{1}=\left[\left[\left\langle\partial_{v}, a\right\rangle,\left\langle\partial_{w}, b\right\rangle\right],\left\langle\partial_{u}, c\right\rangle\right]=\left[\left\langle\partial_{v+w}, \partial_{v}(b) a+\partial_{w}(a) b\right\rangle,\left\langle\partial_{u}, c\right\rangle\right]= \\
& \left\langle\partial_{v+w+u}, \partial_{v+w}(c)\left(\partial_{v}(b) a+\partial_{w}(a) b\right)+\partial_{u}\left(\partial_{v}(b) a+\partial_{w}(a) b\right) c\right\rangle= \\
& \left\langle\partial_{v+w+u}, \partial_{v}(c) \partial_{v}(b) a+\partial_{w}(c) \partial_{v}(b) a+\partial_{v}(c) \partial_{w}(a) b+\partial_{w}(c) \partial_{w}(a) b+\right. \\
& \left.\partial_{u}\left(\partial_{v}(b)\right) a c+\partial_{v}(b) \partial_{u}(a) c+\partial_{u}\left(\partial_{w}(a)\right) b c+\partial_{w}(a) \partial_{u}(b) c\right\rangle
\end{aligned}
$$

Analogously,

$$
\begin{aligned}
& p_{2}=\left[\left[\left\langle\partial_{w}, b\right\rangle,\left\langle\partial_{u}, c\right\rangle\right],\left\langle\partial_{v}, a\right\rangle\right]= \\
& \left\langle\partial_{v+w+u}, \partial_{w}(a) \partial_{w}(c) b+\partial_{u}(a) \partial_{w}(c) b+\partial_{w}(a) \partial_{u}(b) c+\partial_{u}(a) \partial_{u}(b) c+\right. \\
& \left.\partial_{v}\left(\partial_{w}(c)\right) a b+\partial_{w}(c) \partial_{v}(b) a+\partial_{v}\left(\partial_{u}(b)\right) a c+\partial_{u}(b) \partial_{v}(c) a\right\rangle \\
& p_{3}=\left[\left[\left\langle\partial_{u}, c\right\rangle,\left\langle\partial_{v}, a\right\rangle\right],\left\langle\partial_{w}, b\right\rangle\right]= \\
& \left\langle\partial_{v+w+u}, \partial_{u}(b) \partial_{u}(a) c+\partial_{v}(b) \partial_{u}(a) c+\partial_{u}(b) \partial_{v}(c) a+\partial_{v}(b) \partial_{v}(c) a+\right. \\
& \left.\partial_{w}\left(\partial_{u}(a)\right) b c+\partial_{u}(a) \partial_{w}(c) b+\partial_{w}\left(\partial_{v}(c)\right) a b+\partial_{v}(c) \partial_{w}(a) b\right\rangle
\end{aligned}
$$

It is obviously that $p_{1}+p_{2}+p_{3}=0 . \square$ Note. The algebra $\mathcal{W}(m, \mathbf{m})$ is not a new simple Lie algebra, really it is a Cartan algebra of Hamilton type.

We define $\mathcal{S W}(m, n)=\sum_{i=-1}^{r} \oplus \mathcal{S} \mathcal{W}(m, n)_{i}$ where

$$
\begin{equation*}
\mathcal{S W}(m, n)_{i}=\left\{\left\langle\partial_{v}, a\right\rangle \in \mathcal{W}\left(m, \mathbf{1}_{n}\right)_{i} \mid \partial_{v}(a)=\partial_{w}\left(\partial_{w}(a)\right)=0, \forall w \in V\right\} . \tag{12}
\end{equation*}
$$

Lemma $4 \mathcal{S W}(m, n)$ is a simple Lie subalgebra of $\mathcal{W}\left(m, \mathbf{1}_{n}\right)$. Moreover, $\mathcal{S W}\left(m, \mathbf{1}_{n}\right)_{-1}=$ $\mathcal{W}\left(m, \mathbf{1}_{n}\right)_{-1}, \mathcal{S} \mathcal{W}\left(m, \mathbf{1}_{n}\right)_{0}=\mathcal{S} \mathcal{L}(m, n)$ and $\operatorname{dim}_{k} \mathcal{S} \mathcal{W}\left(m, \mathbf{1}_{n}\right)=(n-1)\left(2^{n m}-1\right)$.

Proof. Let $\left\langle\partial_{v}, a\right\rangle,\left\langle\partial_{w}, b\right\rangle \in \mathcal{S W}(m, \mathbf{m})$. By (11) and (12) we need to prove that $\partial_{(v+w)}\left(\partial_{v}(b) a+\partial_{w}(a) b\right)=\partial_{u}\left(\partial_{u}\left(\partial_{v}(b) a+\partial_{w}(a) b\right)\right)=0$ for all $u \in V$.
We get

$$
\begin{aligned}
& \partial_{(v+w)}\left(\partial_{v}(b) a+\partial_{w}(a) b\right)=\partial_{v}\left(\partial_{v}(b)\right) a+\partial_{v}(b) \partial_{v}(a)+\partial_{w}\left(\partial_{v}(b)\right) a+\partial_{v}(b) \partial_{w}(a)+ \\
& \partial_{v}\left(\partial_{w}(a)\right) b+\partial_{w}(a) \partial_{v}(b)+\partial_{w}\left(\partial_{w}(a)\right) b+\partial_{w}(b) \partial_{w}(a)=0 .
\end{aligned}
$$

Analogously,

$$
\begin{aligned}
& \partial_{u}\left(\partial_{u}\left(\partial_{v}(b) a+\partial_{w}(a) b\right)\right)=\partial_{v}\left(\partial_{u}(b)\right) \partial_{u}(a)+\partial_{u}\left(\partial_{v}(b)\right) \partial_{u}(a)+ \\
& \partial_{w}\left(\partial_{u}(a)\right) \partial_{u}(b)+\partial_{u}\left(\partial_{w}(a)\right) \partial_{u}(b)=0 .
\end{aligned}
$$

Theorem 3 The simple Lie algebras $\mathcal{S W}(m, n)$ are new simple Lie algebras over an algebraicly closed field of characteristic 2 if $n>2$, moreover, $\mathcal{S W}(m, 3)=\mathcal{E}_{2}(m)$.

Note. All constructions above we can generalise in the following way. Let $\mathbf{s}(\mathbf{m})=$ $\left(s_{0}, s_{1}, \ldots, s_{n-1}\right), s_{i} \leq s_{i+1}, s_{n-1}=m$ and let

$$
V_{n}=\{0\} \subset V_{n-1} \subset \ldots \subset V_{1} \subset V, \operatorname{dim}_{k} V=n .
$$

Let v_{0}, \ldots, v_{n-1} be a bases of V such that v_{i}, \ldots, v_{n-1} is a bases of V_{i}. There exists unique chain of finite subfields

$$
\mathbf{F}_{s_{0}} \subseteq \mathbf{F}_{s_{1}} \subseteq \ldots \subseteq \mathbf{F}_{m}
$$

Denote $V(\mathbf{s}(\mathbf{m}))=\left\{v \in V \mid v=\alpha_{0} v_{0}+\ldots+\alpha_{n-1} v_{n-1}, \alpha_{i} \in \mathbf{F}_{i}.\right\}$ Then by definition $\mathcal{W}(\mathbf{s}(\mathbf{m}), \mathbf{m})=\left\{\left\langle\partial_{v}, a\right\rangle \mid v \in V(s(m)), a \in A(\mathbf{m}).\right\}$

4 Automorphism Groups of 2-analogs.

Let $L=\mathcal{G} \mathcal{L}(n, m)$ be Lie algebra of dimension $n 2^{n m}$. By Theorem 1 it is a 2 -algebra with toroidal Cartan subalgebra $H=k\left\{\left\langle\phi_{i}\right\rangle \mid i=1, \ldots, n\right\}$ and $\phi_{i} \in V^{*}$ such that $\phi_{i}\left(v_{j}\right)=0, i \neq$ $j, \phi_{i}\left(v_{i}\right)=1$ for some \mathbf{F}_{m}-basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V. We identify H and V^{*}. Let $G=\operatorname{Aut}_{k}(L)$ be an algebraic group of automorphism of L. Our purpers is to define the structure of G. Let $T=\operatorname{Stab}_{G}(H)$ and $Z=\left\{\xi \in T \mid h^{\xi}=h, \forall h \in H\right\}$. Note that $\mathcal{H}=\left\{h^{\left[2^{2}\right]} \mid h \in H, i=0,1, \ldots\right\}$ is a toroidal subalgebra of 2-envelope of L and 2-envelope of L isomorphic to $L_{1}=\mathcal{H}+L$. Let $0 \neq v \in V$ and $L_{v}=L_{\psi}=\left\{\langle v, \phi\rangle \mid \phi \in V^{*}\right\}=\left\{x \in L \mid[x, t]=\psi(t) x\right.$, forallt $\left.\in H=V^{*}\right\}$, where $\psi(t)=t(v) \in \mathbf{F}_{m}$. By definition $L_{v}^{0}=\left\{x \in L_{v} \mid v^{[2]}=0\right\}$.

Lemma $5 L_{v}^{0}=\{t(? ?)\}$
Let $m=1$ then L is a 2-algebra with toroidal Cartan subalgebra $H_{0}=H$ defined above. For any $i \in I_{n}=\{1, \ldots, n\}$ we define an other toroidal Cartan subalgebra $H_{j}=$ $\left\{\left\langle\phi_{i}\right\rangle+\left\langle v_{i}, \phi_{i}\right\rangle,\left\langle\phi_{k}\right\rangle \mid i=1, \ldots, j, k=j+1, \ldots, n\right\}$.

Proposition 1 Any toroidal Cartan subalgebra of $\mathcal{G} \mathcal{L}(n, 1)$ is conjugated to one of H_{0}, \ldots, H_{n}. Moreover, the Cartan subalgebras H_{i} and H_{j} are not conjugated if $i \neq j$.

Let $H=H_{n}$ and $L=H \oplus \sum_{v \in V \backslash\{0\}} \oplus L_{v}$ the corresponding Cartan decomposition. We can identify \mathbf{F}_{1}-space V with a set of all subsets of I_{n} such that for $v=a_{1} v_{1}+\ldots+a_{n} v_{n} \in V$ the corresponding subset $\sigma=\sigma(v)=\left\{i \mid a_{i}=1\right\}$. If $\sigma \subseteq I_{n}$ and $i \in \sigma, j \notin \sigma$ then by definition

$$
\sigma_{i}=\sum_{i \in \mu \subseteq \sigma}\left\langle\mu, \phi_{i}\right\rangle, \sigma^{j}=\sum_{\mu \subseteq \sigma \cup j}\left\langle\mu, \phi_{j}\right\rangle .
$$

Lemma $6 L_{\sigma}=k\left\{\sigma_{i}, \sigma^{j} \mid i \in \sigma, j \notin \sigma\right\}$.
Proof. It is clear that the elements $\left\{\sigma_{i}, \sigma^{j} \mid i \in \sigma, j \notin \sigma\right\}$ are liner independence. For $s_{i}=\left\langle\phi_{i}\right\rangle+\left\langle i, \phi_{i}\right\rangle$ we have, if $j, i \in \sigma$:

$$
\left[\sigma_{j}, s_{i}\right]=\sum_{i, j \in \mu \subseteq \sigma}\left(\left\langle\mu, \phi_{j}\right\rangle+\left\langle\mu \backslash i, \phi_{j}\right\rangle\right)+\delta_{i j} \sum_{i \in \mu \subseteq \sigma}\left\langle\mu \backslash i, \phi_{i}\right\rangle
$$

If $i \neq j$ hence $\left[\sigma_{j}, s_{i}\right]=\sum_{j \in \mu \subseteq \sigma}\left\langle\mu, \phi_{j}\right\rangle=\sigma_{j}$. If $i=j$ hence $\left[\sigma_{j}, s_{i}\right]=\sum_{i, j \in \mu \subseteq \sigma}\left\langle\mu, \phi_{j}\right\rangle=\sigma_{i}$.
Analogously, if $j \notin \sigma, i \in \sigma$ then

$$
\begin{aligned}
& {\left[\sigma^{j}, s_{i}\right]=\sum_{i \in \mu \subseteq \sigma \cup j}\left(\left\langle\mu, \phi_{j}\right\rangle+\left\langle\mu \backslash i, \phi_{j}\right\rangle\right)+} \\
& \delta_{i j} \sum_{\mu \subseteq \sigma}\left\langle\mu \triangle i, \phi_{i}\right\rangle=\sigma^{j} .
\end{aligned}
$$

The equalities $\left[\sigma_{j}, s_{i}\right]=\left[\sigma^{j}, s_{i}\right]=0$ if $i \notin \sigma$ are obviously.

[^0]: *Supported by FAPESP and CNPq (Brazil)

