
New series of simple finite dimensional Lie algebras in
characteristic 2 and 3.

Alexander N.Grishkov∗

University of São Paulo (Brazil)

e-mail:grishkov@ime.usp.br

1 Introduction.

In this paper we have generalized the classical and Cartan simple Lie algebras in character-
istic 2. By Fm we denote the finite field with 2m elements and by k{X} a vector k−space
with a bases X, where k is an algebraicly closed field of characteristic 2.

2 The classical simple Lie algebras.

Let V be k−space of dimension n. Then gl(V ) is the Lie algebra of all linear endomorphisms
of V over k. We can realize gl(V ) as V ⊗k V

∗, where V ∗ = Homk(V, k) is the dual space to
V. By definition, if v, w ∈ V, φ ∈ V ∗ then (v ⊗ φ)(w) = φ(w)v. It is easy to see that

[v ⊗ φ,w ⊗ ψ] = φ(w)v ⊗ ψ + ψ(v)w ⊗ φ. (1)

Consider V and V ∗ as gl(V )−modules, where ψ · (v⊗φ) = ψ(v)φ. Then an homomorphism
π : V ⊗k V

∗ → gl(V ) such that π(v ⊗ φ) = v ⊗ φ as above, is an isomorphism of gl(V )−
modules, it follows from (1). By definition, sl(V ) = [gl(V ), gl(V )] is the Lie algebra of
k−morphisms with the trace 0. Note that

v ⊗ φ ∈ sl(V ) if and only ifφ(v) = 0. (2)

We consider V ⊕ gl(V )⊕ V ∗ as an algebra with multiplication law:

[V, V ] = [V ∗, V ∗] = 0, [gl(V ), gl(V )] ⊆ gl(V ), [v, φ] = v ⊗ φ, (3)

where v ∈ V, φ ∈ V ∗. This algebra with multiplication defined above is a simple Lie algebra
of dimension n2 + 2n and it is isomorphic to sl(V ⊕ kv).

Let f : V × V → k be a bilinear symmetric form on V. We denote by so(f) a Lie
algebra {φ ∈ gl(V )|f(vφ, w) = f(v, wφ),∀v, w ∈ V } and by o(V ) a Lie algebra {φ ∈
so(V )|f(vφ, v) = 0,∀v ∈ V }.
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Now we construct some analogous of this classical Lie algebras. Let V be a Fm−space
of dimension n. Let W = W (V ) be a k−space with a bases B(V ) = {v|v ∈ V }, then
dimkW (V ) = 2nm. By 〈v, φ〉 where φ ∈ V ∗ we denote an element of Homk(W,W ) such that

w · 〈v, φ〉 = φ(w)(v + w), v, w ∈ V. (4)

Note that 〈v, φ〉 is linear by φ but is not linear by v.

Lemma 1 In notation above we get:

[〈v, φ〉, 〈w,ψ〉] = 〈(v + w), φ(w)ψ + ψ(v)φ〉.

Proof. We have for any u ∈ V by (4):

u · [〈v, φ〉, 〈w,ψ〉] = (u · 〈v, φ〉)〈w,ψ〉+ (u · 〈w,ψ〉)〈v, φ〉 =
φ(u)(u+ v) · 〈w,ψ〉+ ψ(u)(u+ w) · 〈v, φ〉 =
φ(u)ψ(u+ v)(u+ v + w) + ψ(u)φ(u+ w)(u+ v + w) =
(φ(u)ψ(v) + ψ(u)φ(w))(v + w + u).

On the other hand by (4):

u · 〈(v + w), φ(w)ψ + ψ(v)φ〉 = (φ(u)ψ(v) + ψ(u)φ(w))(v + w + u).

�
By Lemma 1 the k−space

GL(n,m) = k{〈v, φ〉|v ∈ V, φ ∈ V ∗}

is a Lie algebra. We call this algebra an Fm-analog of gl(V ) where V is a k−space of
dimension n.

Definition 1 A Lie algebra L is almost restricted if for some Cartan subalgebra H ⊆ L
we have that a Lie algebra T + L is restricted. Here T is 2-envelope for some toroidal
subalgebra of H.

A restricted 2-algebra Lie is called of toroidal type if it has some toroidal Cartan
subalgebra.

Recall that the classical Lie algebra gl(V ) is a restricted Lie algebra of toroidal type.
The following theorem is an analogous of this fact.

Theorem 1 1. An algebra GL(n,m) is a simple almost restricted Lie algebra of toroidal
type, if (n,m) 6= (1, 1).

2. An algebra GL(n,m) is restricted if and only if m = 1.
3. dimkGL(n,m) = n2nm.
4. Toroidal range of GL(n,m) is equal nm.
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By (2) we can define an k-analog of sl(V ) as a subalgebra of GL(n,m) as follows:

SL(n,m) = {〈v, φ〉 ∈ GL(n,m)|φ(v) = 0}. (5)

A flag or V−flag F is a chain of subspaces of V :

{0} ⊂ V1 ⊂ V2 ⊂ ... ⊂ Vs ⊂ V. (6)

The main characteristic of F is a vector n = n(F) =(n1, ..., ns, n), where ni = dimFmVi,
n = dimFmV. Note that 1 < n1 < ..., ns < n. By denition V−coflag or coflag is a V ∗−flag.
For any V−flag F we can define the corresponding coflag coF as follows:

{0} ⊂∗ Vs ⊂ ... ⊂∗ V1 ⊂ V ∗, (7)

where ∗Vi = {φ ∈ V ∗|φ(Vi) = 0}. Let G be a V−flag: {0} ⊂ W1 ⊂ ... ⊂ Wt ⊂ V. We write
F ≤ G if s = t and Vi ⊆ Wi, i = 1, ..., s. Note that in this case n = n(F) ≤ m = n(G),
which means that ni ≤ mi,i = 1, ..., s. Let (F ,G) be a V−flag and coflag correspondingly
such that coF ≤ G. In notation above it means that φ(Vi) = 0 for all φ ∈ Ws−i+1, where
G = {{0} ⊂ W1 ⊂ ... ⊂ Ws ⊂ V ∗} We define

O(F ,G) = {〈v, φ〉 ∈ GL(V )|v 6∈ Vi henceφ ∈ Wi}. (8)

Lemma 2 O(F ,G) is a subalgebra of GL(V ).

Proof. Let 〈v, φ〉, 〈w,ψ〉 ∈ O(F ,G). By (1) [〈v, φ〉, 〈w,ψ〉] = 〈(v + w), ξ〉, where ξ =
φ(w)ψ + ψ(v)φ. Suppose that v + w 6∈ Vi. We need to prove that ξ ∈ Wi. If v 6∈ Vi and
w 6∈ Vi then by (8) it means that φ, ψ ∈ Wi, hence ξ ∈ Wi. If v ∈ Vi, then w 6∈ Vi and
ψ ∈ Wi. As coF ≤ G then ψ(Vi) = 0, hence ξ = φ(w)ψ ∈ Wi. �

Let n = n(coF) and m = n(G) then in the situation above we have n ≤ m. Note that
the par (n,m) defines the par of flag and coflag (F ,G) uniquely. We will denote O(F ,G)
by O(n,m), where n = n(F) and m = n(G). Now define

SO(n,m) = O(n,m) ∩ GL(n,m). (9)

The following series of simple Lie algebras are new (?) series in characteristic 2 and 3.
Let V be a 3-dimensional k−space and (v, w, u) be the unique (up to isomorphism)

3-linear antisymmetris k−form on V (form of determinant.) For any v, w ∈ V we define
dwv ∈ V ∗(dual space), where dwv (u) = (v, w, u).

We denote
E1(m) = W (V )⊕ SL(V ), E2(m) = W (V )1 ⊕ SL(V )⊕W (V )−1,
where W (V )1 and W (V )2 are two copies of W (V ).
We define the structurs of anticommutative algebras on E1(V ) and E2(V ) by the following

formules:
[v, w] = 〈v + w, dwv+w〉, v, w ∈ V.
[V1, V1] = [V2, V2] = 0, [v, w] = 〈v + w, dwv+w〉, v,∈ V1., w ∈ V2.
Morever, consider SL(V ) as a subalgebra and V, V1, V2 as SL(V )−modules.
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Theorem 2 (i) E1(m)2 is a simple Lie k−algebra if k has the characterstic 3.
(ii) E2(m)2 is a simple Lie k−algebra if k has the characterstic 2.

Proof. First consider the case E1(V ). For v, w, u ∈ V we have
[[v, w], u] + [[w, u], v] + [[u, v], w] =
[〈v + w, dvv+w〉, u] + [〈w + u, dww+u〉, v] + [〈u+ v, duu+v〉, w] =
((v, v + w, u) + (w,w + u, v) + (u, u+ v, w))(v + w + u) = 3(v, w, u)(v + w + u) = 0.

3 2-analogs of Lie algebras of Cartan type.

The Lie algebras of Cartan type appear as Lie algebras of derivations of graduate algebra
of truncated polynomiais. Let m =(m1, ...,mn) be a vector with natural coordinates. Then

A(m) is an associative commutative k−algebra with generators Xn = {x(i)
1 , ..., x

(i)
n |i = 1, ...}

and relations:

x(i) · x(j) =

(
i+ j
i

)
x(i+j), x

(2mi )
i = 0, x ∈ {x1, ..., xn}. (10)

Then W (m) =DerA(m) is a generalizade Jacobson-Witt Lie algebra(see [?]). Note that
A(m) =

∑
i=0⊕A(m)i and W (m) =

∑
i=−1⊕W (m)i are Z−graded algebras where

A(m)i = {x(a)|a = (a1, ..., an) ∈ Nn, |a| = a1 + ...+ an = i, x(a) = x
(a1)
1 ...x

(an)
n },

W (m)i = {a ∂
∂xi
, i = 1, ..., n, a ∈ A(m)i+1}.

It is clear that a set B(m)i = {x(a)||a| = i} is a bases of A(m)i, i = 0, ....
We construct an 2-analog of W (m) in the following way. As above we fix a Fm−space

V with a bases v1, ..., vn. For any v = (α1, ..., αn) ∈ V we define an derivation ∂v of A(m)

such that ∂v(x
(j)
i ) = αix

(j−1)
i . By definition

W(m,m) =
r∑

i=−1

⊕W(m,m)i,

whereW(m,m)i is a k−space with a bases {〈∂v, a〉|v ∈ V, a ∈ B(m)i+1}. Note that B0(m) =
{1} henceW(m,m)−1 = k{∂v|v ∈ V }. A multiplication inW(m,m) is given by the following
formulae:

[〈∂v, a〉, 〈∂w, b〉] = 〈∂v+w, ∂v(b)a+ ∂w(a)b〉. (11)

Lemma 3 The algebra W(m,m) with the multiplicatiom law (11) is a simple Lie algebra.

Proof. We have by (11):

p1 = [[〈∂v, a〉, 〈∂w, b〉], 〈∂u, c〉] = [〈∂v+w, ∂v(b)a+ ∂w(a)b〉, 〈∂u, c〉] =
〈∂v+w+u, ∂v+w(c)(∂v(b)a+ ∂w(a)b) + ∂u(∂v(b)a+ ∂w(a)b)c〉 =
〈∂v+w+u, ∂v(c)∂v(b)a+ ∂w(c)∂v(b)a+ ∂v(c)∂w(a)b+ ∂w(c)∂w(a)b+
∂u(∂v(b))ac+ ∂v(b)∂u(a)c+ ∂u(∂w(a))bc+ ∂w(a)∂u(b)c〉
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Analogously,

p2 = [[〈∂w, b〉, 〈∂u, c〉], 〈∂v, a〉] =
〈∂v+w+u, ∂w(a)∂w(c)b+ ∂u(a)∂w(c)b+ ∂w(a)∂u(b)c+ ∂u(a)∂u(b)c+
∂v(∂w(c))ab+ ∂w(c)∂v(b)a+ ∂v(∂u(b))ac+ ∂u(b)∂v(c)a〉

p3 = [[〈∂u, c〉, 〈∂v, a〉], 〈∂w, b〉] =
〈∂v+w+u, ∂u(b)∂u(a)c+ ∂v(b)∂u(a)c+ ∂u(b)∂v(c)a+ ∂v(b)∂v(c)a+
∂w(∂u(a))bc+ ∂u(a)∂w(c)b+ ∂w(∂v(c))ab+ ∂v(c)∂w(a)b〉

It is obviously that p1 + p2 + p3 = 0. � Note. The algebra W(m,m) is not a new simple
Lie algebra, really it is a Cartan algebra of Hamilton type.

We define SW(m,n) =
∑r

i=−1⊕SW(m,n)i where

SW(m,n)i = {〈∂v, a〉 ∈ W(m,1n)i|∂v(a) = ∂w(∂w(a)) = 0, ∀w ∈ V }. (12)

Lemma 4 SW(m,n) is a simple Lie subalgebra of W(m,1n). Moreover, SW(m,1n)−1 =
W(m,1n)−1, SW(m,1n)0 = SL(m,n) and dimkSW(m,1n) = (n− 1)(2nm − 1).

Proof. Let 〈∂v, a〉, 〈∂w, b〉 ∈ SW(m,m). By (11) and (12) we need to prove that
∂(v+w)(∂v(b)a+ ∂w(a)b) = ∂u(∂u(∂v(b)a+ ∂w(a)b)) = 0 for all u ∈ V.
We get

∂(v+w)(∂v(b)a+ ∂w(a)b) = ∂v(∂v(b))a+ ∂v(b)∂v(a) + ∂w(∂v(b))a+ ∂v(b)∂w(a)+
∂v(∂w(a))b+ ∂w(a)∂v(b) + ∂w(∂w(a))b+ ∂w(b)∂w(a) = 0.

Analogously,

∂u(∂u(∂v(b)a+ ∂w(a)b)) = ∂v(∂u(b))∂u(a) + ∂u(∂v(b))∂u(a)+
∂w(∂u(a))∂u(b) + ∂u(∂w(a))∂u(b) = 0.

�

Theorem 3 The simple Lie algebras SW(m,n) are new simple Lie algebras over an alge-
braicly closed field of characteristic 2 if n > 2, moreover, SW(m, 3) = E2(m).

Note. All constructions above we can generalise in the following way. Let s(m) =
(s0, s1, ..., sn−1), si ≤ si+1, sn−1 = m and let

Vn = {0} ⊂ Vn−1 ⊂ ... ⊂ V1 ⊂ V, dimkV = n.

Let v0, ..., vn−1 be a bases of V such that vi, ..., vn−1 is a bases of Vi. There exists unique
chain of finite subfields

Fs0 ⊆ Fs1 ⊆ ... ⊆ Fm

Denote V (s(m)) = {v ∈ V |v = α0v0 + ... + αn−1vn−1, αi ∈ Fi.} Then by definition
W(s(m),m) = {〈∂v, a〉|v ∈ V (s(m)), a ∈ A(m).}
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4 Automorphism Groups of 2-analogs.

Let L = GL(n,m) be Lie algebra of dimension n2nm. By Theorem 1 it is a 2-algebra with
toroidal Cartan subalgebra H = k{〈φi〉|i = 1, ..., n} and φi ∈ V ∗ such that φi(vj) = 0, i 6=
j, φi(vi) = 1 for some Fm−basis {v1, ..., vn} of V. We identify H and V ∗. Let G = Autk(L)
be an algebraic group of automorphism of L. Our purpers is to define the structure of G. Let
T = StabG(H) and Z = {ξ ∈ T |hξ = h, ∀h ∈ H}. Note that H = {h[2i]|h ∈ H, i = 0, 1, ...}
is a toroidal subalgebra of 2-envelope of L and 2-envelope of L isomorphic to L1 = H + L.
Let 0 6= v ∈ V and Lv = Lψ = {〈v, φ〉|φ ∈ V ∗} = {x ∈ L|[x, t] = ψ(t)x, forallt ∈ H = V ∗},
where ψ(t) = t(v) ∈ Fm. By definition L0

v = {x ∈ Lv|v[2] = 0}.

Lemma 5 L0
v = {t(??)}

Let m = 1 then L is a 2-algebra with toroidal Cartan subalgebra H0 = H defined
above. For any i ∈ In = {1, ..., n} we define an other toroidal Cartan subalgebra Hj =
{〈φi〉+ 〈vi, φi〉, 〈φk〉|i = 1, ..., j, k = j + 1, ..., n}.

Proposition 1 Any toroidal Cartan subalgebra of GL(n, 1) is conjugated to one of H0, ..., Hn.
Moreover, the Cartan subalgebras Hi and Hj are not conjugated if i 6= j.

Let H = Hn and L = H ⊕
∑

v∈V \{0}⊕Lv the corresponding Cartan decomposition. We can
identify F1−space V with a set of all subsets of In such that for v = a1v1 + ...+anvn ∈ V the
corresponding subset σ = σ(v) = {i|ai = 1}. If σ ⊆ In and i ∈ σ, j 6∈ σ then by definition

σi =
∑
i∈µ⊆σ

〈µ, φi〉, σj =
∑
µ⊆σ∪j

〈µ, φj〉.

Lemma 6 Lσ = k{σi, σj|i ∈ σ, j 6∈ σ}.

Proof. It is clear that the elements {σi, σj|i ∈ σ, j 6∈ σ} are liner independence. For
si = 〈φi〉+ 〈i, φi〉 we have, if j, i ∈ σ :

[σj, si] =
∑

i,j∈µ⊆σ(〈µ, φj〉+ 〈µ \ i, φj〉) + δij
∑

i∈µ⊆σ〈µ \ i, φi〉.

If i 6= j hence [σj, si] =
∑

j∈µ⊆σ〈µ, φj〉 = σj. If i = j hence [σj, si] =
∑

i,j∈µ⊆σ〈µ, φj〉 = σi.
Analogously, if j 6∈ σ, i ∈ σ then

[σj, si] =
∑

i∈µ⊆σ∪j(〈µ, φj〉+ 〈µ \ i, φj〉)+
δij

∑
µ⊆σ〈µ

a
i, φi〉 = σj.

The equalities [σj, si] = [σj, si] = 0 if i 6∈ σ are obviously. �
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