
1 ∂̄-lema de Poicaré

Antes de começarmos a demonstração do lema acima, é importante relembrar
que, dada uma integral imprópria do tipo

∫

A

f(w)
w−z0

dw ∧ dw, onde A é um
aberto que contém o ponto z0 em C e f não possui singularidades em C, o
valor principal de Cauchy é definido como:

∫

A

f(w)

w − z0
dw ∧ dw := lim

r→0

∫

A\B(z0,r)

f(w)

w − z0
dw ∧ dw,

onde B(z0, r) ⊂ C denota a bola aberta de raio r > 0 centrada em z0.

Proposição 1.1. (Primeiro Resultado) Sejam a ∈ C, U uma vizinhança
aberta de a e ǫ > 0 tal que U contém o fecho de B(a, ǫ), ou seja, B(a, ǫ) ⊂ U .
Então, se α = fdz̄ ∈ A0,1(U), a função:

g(z) :=
1

2πi

∫

B(a,ǫ)

f(w)

w − z
dw ∧ dw

satisfaz: α = ∂̄g, ou seja, ∂g
∂z̄

= f .

Demonstração. Seja z0 um ponto arbitrário de B(a, ǫ). Definindo δ := ǫ −
|z0 − a|, vale que B(z0, δ) ⊂ B(a, ǫ). Então, podemos tomar uma função
corte como:

Ψz0(z) :=















1 , |z − z0| ≤
δ
4 ;

exp
(

16
3δ2

)

exp

(

− 1

( δ
2
)
2
−|z−z0|2

)

, δ4 < |z − z0| <
δ
2 ;

0 , |z − z0| ≥
δ
2 .

Para esta função vale que o suporte de Ψz0 está contido em B(z0,
δ
2).

Definindo as funções f1 := Ψz0 · f e f2 := (1 − Ψz0) · f , temos que
f = f1 + f2 e podemos definir as funções:

gk(z) :=
1

2πi

∫

B(a,ǫ)

fk(w)

w − z
dw ∧ dw, k = 1, 2.

Para vermos que a função g1 está bem definida, devemos lembrar primeiro
que podemos estender a integração a todo o plano complexo C, pois o suporte
da função Ψz0 já está contido no domínio de integração B(a, ǫ). Temos,
então:

g1(z) :=
1

2πi

∫

C

f1(w)

w − z
dw ∧ dw.

Tomando w − z = x + iy, com z fixo, temos dw = dx + idy. Fazendo a
mudança de variáveis: x = r cosφ e y = r sinφ, obtemos que dw ∧ dw =
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−2irdr ∧ dφ. Então, segue que:

g1(z) =
1

2πi

∫∫

C

f1(z + reiφ)

reiφ
(−2ir)drdφ,

= −
1

π

∫∫

C

f1(z + reiφ)e−iφdrdφ. (1)

Mostrando que a função g1 está bem definida.
Temos que a função g2 é dada através do valor principal de Cauchy:

1

2πi

∫

B(a,ǫ)

f2(w)

w − z
dw ∧ dw =

1

2πi
lim
r→0

∫

B(a,ǫ)\B(z,r)

f2(w)

w − z
dw ∧ dw.

Logo para z ∈ B(z0,
δ
4), temos que a região de integração não possui singu-

laridades e a função f2 se anula em uma vizinhança suficientemente pequena
de z. Isso mostra que a função g2 está bem definida em B(z0,

δ
4). Desta

maneira, mostramos que a função:

g(z) := g1(z) + g2(z) =
1

2πi

∫

B(a,ǫ)

f(w)

w − z
dw ∧ dw

está bem definida em B(z0,
δ
4) ⊂ B(a, ǫ), onde z0 é um ponto arbitrário de

B(a, ǫ). Isso mostra que a função g está bem definida para todo z ∈ B(a, ǫ).
Devido a função Ψz0 , temos que f2(z) = 0 para todo z ∈ B(z0,

δ
4).

Logo, temos que, para z ∈ B(z0,
δ
4), vale que a função 1

w−z
é holomorfa se

w 6∈ B(z0,
δ
4) e, portanto, ∂̄ 1

w−z
= 0. Temos, então, que:

∂g2

∂z̄
(z) =

1

2πi

∫

B(a,ǫ)
f2(w)

∂

∂z̄

(

1

w − z

)

dw ∧ dw = 0, z ∈ B(z0,
δ

4
),

pois f2 se anula em B(z0,
δ
4) e ∂̄ 1

w−z
se anula fora de B(z0,

δ
4).

Como a função f1 não se anula como a função f2 em B(z0,
δ
4), partimos

da expressão (1) aplicando o operador ∂̄:

∂g1

∂z̄
(z) = −

1

π

∫∫

C

∂

∂z̄

(

f1(z + reiφ)
)

e−iφdrdφ

= −
1

π

∫∫

C







∂f1

∂w✟
✟
✟
✟

✟
✟✟✯

0
∂(z + reiφ)

∂z̄
+

∂f1

∂w̄✘✘✘✘✘✘✘✿1∂(z̄ + re−iφ)

∂z̄






e−iφdrdφ

= −
1

π

∫∫

C

∂f1

∂w̄
e−iφdrdφ

=
1

2πi

∫

B(a,ǫ)

∂f1

∂w̄
·

1

w − z
dw ∧ dw. (2)
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Temos que o lado direito da igualdade em (2) é dado pelo valor principal
de Cauchy:

1

2πi
lim
r→0

∫

B(a,ǫ)\B(z,r)

∂f1

∂w̄
·

1

w − z
dw ∧ dw, (3)

como:

d

(

f1(w)

w − z
dw

)

= −

[

∂f1

∂w̄
·

1

w − z
+ f1(w)

∂

∂w̄

(

1

w − z

)]

dw ∧ dw

e por 1
w−z

ser holomorfa no domínio de integração, vale que (3) é escrita
como:

−
1

2πi
lim
r→0

∫

B(a,ǫ)\B(z,r)
d

(

f1

w − z
dw

)

.

Utilizando esse resultado e através do teorema de Stokes temos que:

∂̄g1(z) = −
1

2πi
lim
r→0

∫

B(a,ǫ)\B(z,r)
d

(

f1

w − z
dw

)

= −
1

2πi
lim
r→0

∫

∂[B(a,ǫ)\B(z,r)]

f1(w)

w − z
dw.

Como o suporte de f1 está inteiramente contido em B(a, ǫ), temos que a
integral sobre a borda de B(a, ǫ) no sentido anti-horário se anula, restando
somente a integral sobre a borda de B(z, r) no sentido horário. Então, tro-
cando o sentido de integração com o sinal na frente da integral, resulta que:

∂̄g1(z) =

[

1

2πi
lim
r→0

∫

∂B(z,r)

f1(w)

w − z
dw

]

=

[

1

2π
lim
r→0

∫ 2π

0

f1(z + reiφ)

reiφ
reiφdφ

]

=

[

1

2π

∫ 2π

0
f1(z + lim

r→0
reiφ)dφ

]

=

[

1

2π
f1(z)

∫ 2π

0
dφ

]

= f1(z).

A proposição segue do fato que:

∂̄g(z) = ∂̄g1(z) + ∂̄g2(z) = ∂̄g1(z).

Proposição 1.2. Sejam a = (a1, a2, . . . , an) ∈ C
n, U uma vizinhança de

a em C
n, ǫ = (ǫ1, . . . , ǫn) com ǫi > 0 para i = 1, . . . , n tal que Dǫ(a) =

{(z1, . . . , zn) | |zi−ai| < ǫi} é um polidisco cujo fecho está contido em U , ou
seja, Dǫ(a) ⊂ U . Então, se α ∈ Ap,q(U) é ∂̄-fechada e q > 0, então existe
uma forma β ∈ Ap,q−1(Dǫ(a)) tal que α = ∂̄β em Dǫ(a).
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Demonstração. Seja, então, α ∈ Ap,q(U) denotado da seguinte maneira:

α =
∑

I,J

fIJdzI ∧ dz̄J ,

onde I denota um multi-índice crescente: (i1, i2, . . . , ip), com i1 < i2 < · · · <
ip e J um multi-índice crescente: (j1, j2, . . . , jq), com j1 < j2 < · · · < jq.
Podemos escrever α como:

α =
∑

I

dzI ∧

(

∑

J

fIJdz̄J

)

=
∑

I

dzI ∧ αI ,

onde αI =
∑

J fIJdz̄J ∈ A0,q(U).
Como:

∂̄α =
∑

i,I,J

∂fIJ

∂z̄i
dz̄i ∧ dzI ∧ dz̄J = (−1)p

∑

I

dzI ∧





∑

i,J

∂fIJ

∂z̄i
dz̄i ∧ dz̄J





e as formas com multi-índices I diferentes são linearmente independentes,
vale que:

∂̄α = 0 ⇔ ∂̄αI = 0, ∀I, (4)

mostrando que αI também é ∂̄-fechada. Temos também que:

α = ∂̄





∑

I,L

gILdzI ∧ dz̄L



⇔ αI = ∂̄

(

(−1)p
∑

L

gILdz̄L

)

, ∀I. (5)

O interessante das relações (4) e (5) é que a demonstração do teorema é
reduzida a demonstração de que para cada αI ∂̄-fechada existe uma forma
γI ∈ A0,q−1(Dǫ(a)) tal que αI = ∂̄γI . Devido a isso, daqui para frente, nos
referiremos a α como uma forma em A0,q(U).

Seja k ∈ {1, . . . , n} o menor inteiro positivo tal que dz̄i não ocorre em
α =

∑

J fJdz̄J para i > k. Caso k seja igual a n, não existem elementos
dz̄i para i > n. Pela definição de k e estarmos utilizando um multi-índice
crescente, temos que dz̄k aparece em α como dz̄j1 ∧ dz̄j2 ∧ · · · ∧ dz̄jq−1

∧ dz̄k
sempre que k pertence ao muti-índice J . Desta maneira, podemos escrever:

α =
∑

[J(k∈J)]

fJdz̄J +
∑

[J(k 6∈J)]

fJdz̄J

=
∑

[J(k∈J)]

fJdz̄J\{k} ∧ dz̄k +
∑

[J(k 6∈J)]

fJdz̄J

= ω1 ∧ dz̄k + ω2,
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onde ω1 :=
∑

[J(k∈J)] fJdz̄J\{k} e ω2 :=
∑

[J(k 6∈J)] fJdz̄J não dependem de
nenhum elemento dz̄j com j ≥ k.

O argumento a seguir será utilizado de maneira recursiva logo adiante e
o caso em que k = n será considerado ao mesmo tempo em que o desenvol-
veremos para o caso em que k < n (para utilizarmos a recursividade).

Vamos definir o operador ∂̄i atuando sobre uma forma arbitrária ρ perten-
cente a A0,q−1(U), dada por ρ =

∑

K hKdz̄K , como ∂̄iρ :=
∑

K
∂̄hK

∂z̄i
dz̄i∧dz̄K ,

onde K denota um multi-índice crescente: (k1, k2, . . . , kq−1), com k1 < k2 <

· · · < kq−1.
Para o caso em que k < n, vale que α não depende dos elementos

dz̄k+1, . . . , dz̄n. Portanto, como α =
∑

J fJdz̄J é ∂̄-fechada, através de
∂̄α = 0 concluímos que ∂̄iα = 0 para todo i > k pois os elementos que
dependem de dz̄i são linearmente independentes com os demais na equação
∂̄α = 0. Isso leva-nos a concluir que ∂̄fJ

∂z̄i
= 0 para i > k, ou seja, fJ é uma

função holomorfa nas variáveis zk+1, . . . , zn. Devemos ressaltar aqui que a
mesma discussão não se aplica ao caso k = n.

Denotando (z1, . . . , zn) por z, temos agora que, através da proposição
1.1, vale que as funções:

gJ(z) :=
1

2πi

∫

B(ak,ǫk)

fJ(z1, . . . , zk−1, w, zk+1, . . . , zn)

w − zk
dw ∧ dw

são tais que: ∂gJ (z)
∂z̄k

= fJ(z) com z ∈ Vk, onde Vk é o conjunto formado pelos
valores das variáveis z1, . . . , zk−1, zk+1, . . . , zn em U e zk ∈ B(ak, ǫk). Para
o caso em que k = n temos que as funções gJ são diferenciáveis em todas
as variáveis e, para o caso k < n, além da diferenciabilidade em todas as
variáveis, temos também que gJ são holomorfas nas variáveis zk+1, . . . , zn.

Seja γk := −(−1)q−1
∑

[J(k∈J)] gJdz̄J\{k}, temos que γk ∈ A0,q−1(Vk).
Para o caso em que k < n tomando i > k, vale que:

∂̄iγk(z) = −(−1)q−1
∑

[J(k∈J)]

∂gJ(z)

∂z̄i
dz̄i ∧ dz̄J\{k} = 0, z ∈ Vk, (6)

pois gJ são holomorfas nessas variáveis. Para o caso k = n não há o que se
constatar. Para ambos os casos, temos que:

∂̄kγk(z) = −(−1)q−1
∑

[J(k∈J)]

∂gJ(z)

∂z̄k
dz̄k ∧ dz̄J\{k}

= −(−1)q−1
∑

[J(k∈J)]

fJ(−1)q−1dz̄J\{k} ∧ dz̄k

= −ω1 ∧ dz̄k. (7)

Definindo-se βk := α + ∂̄γk, temos que βk ∈ A0,q(Vk). Vale também que
βk é uma forma ∂̄-fechada, pois α o é e ∂̄2 = 0. Além disso, temos que
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βk = ω1 ∧ dz̄k + ω2 +
∑

i ∂̄iγk, que através de (6) e (7) resulta em βk =
ω2 +

∑

i<k ∂̄iγk. Através desta última igualdade, vemos que βk não depende
de dz̄l para l ≥ k. Para o caso k = n, concluímos que βk = βn não depende
de dz̄n.

É importante ressaltar que o procedimento realizado acima partindo de
α levou à construção do elemento βk que, pela arbitrariedade de α, pode não
depender de dz̄l para l ≥ k′ com k′ < k, ou seja, para um caso específico,
poderíamos obter βk não dependente de dz̄l para l ≥ k−4, por exemplo. Mas
no caso mais geral possível, em que α depende dos elementos dz̄1, . . . , dz̄k,
temos a garantia de que βk depende somente de dz̄1, . . . , dz̄k−1.

O procedimento supracitado pode ser realizado novamente partido da
forma βk e assim obtermos uma forma βk−1 = βk+∂̄γk−1 = α+∂̄γk+∂̄γk−1 ∈
A0,q(Vk−1) que também será ∂̄-fechada e não dependerá de dz̄l para l ≥ k−1,
no caso mais geral possível. Podemos realizar esse processo quantas vezes
quisermos. No entanto, temos que lembrar que após a realização de um
número m de vezes partindo de α, teremos obtido, para o caso mais geral
possível, um objeto β(k−m) que dependerá dos elementos dz̄1, . . . , dz̄k−m−1 e
quando k −m− 1 = q, teremos que βq+1 será da forma:

βq+1(z) = h(z)dz̄1 ∧ · · · ∧ dz̄q.

Realizando o procedimento pela última vez, temos que, definindo

g(z) :=
1

2πi

∫

B(aq ,ǫq)

h(z1, . . . , zq−1, w, zq+1, . . . , zn)

w − zq
dw ∧ dw,

vale que, pela proposição 1.1, ∂g(z)
∂z̄q

= h(z) com z ∈ Vq onde Vq é definido de
maneira análoga à anterior.

Teremos que γq := −(−1)q−1gdz̄1∧· · ·∧dz̄q−1 e analogamente a (6), para
i > q, vale: ∂̄iγq(z) = 0. Para esta última aplicação do procedimento, temos
que, para i < q, vale:

∂̄iγq(z) = −(−1)q−1 ∂g

∂z̄i
(z)dz̄i ∧ dz̄1 ∧ · · · ∧ dz̄q−1 = 0,

pois 1 ≤ i ≤ q − 1. E, analogamente a (7), temos que:

∂̄qγq(z) = −(−1)q−1 ∂g

∂z̄q
(z)dz̄q ∧ dz̄1 ∧ · · · ∧ dz̄q−1

= −(−1)q−1h(z)(−1)q−1dz̄1 ∧ · · · ∧ dz̄q−1 ∧ dz̄q

= −βq+1.

Por fim, temos que βq := βq+1 + ∂̄γq = 0 e como recursivamente temos
que βl = βl+1 + ∂̄γl, vale que:

βq = α+
k
∑

i=q

∂̄γi = 0,
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e, portanto, segue que α = ∂̄γ, na qual γ = −
(

∑k
i=q γi

)

e γ ∈ A0,q−1(Dǫ(a)),

como queríamos demonstrar.
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