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Abstract

Despite of the wide range of applications of deformation theory,
here, we are mainly concerned with the moduli problems, however the
author must mention that this theory has applications in sigularity
theory, conformal field theory, superstringtheory and complex dynam-
ics.

The problem of moduli dates back to Riemman, when trying to find
the number of parameters of the space of conformal equivalence classes
of compact one-dimensional complex manifolds of genus g , namely
Mg. Riemann proved that Mg could be discribed by a ”continuum”
of 3g − 3, 1 and 0 parameters for the cases, respectively, g ≥ 2, g = 1
and g = 0. Nowadays, we call these number of parameters the moduli
of a give space.

The complex space Mg was extensively studied in the following
years by Riemann, Teichmüller, Rauch, Ahlfors and Bers, culminat-
ing in the creation of the theory of quasi-conformal maps and Te-
ichmüller theory. After these developments, Grothendieck extended
the Teichmüller theory to a more categorial context (without the us-
ing of quasi-conformal maps). However the problem was solved in the
geometrical algebraic just in 1969, when Deligne and Mumford proved
that the moduli variety Mg of non-singular complex algebraic curves
of genus g is, in fact, a quasi-projective variety of dimension 3g − 3.
So, we may ask:”... and what about the higher dimensional case ?”
and thiis is the moduli problem.

In the differential complex geometric setting, the problem of mod-
uli consist in finding a ”natural” complex analytic structure (maybe
with singularities) for the space of isomorphic classes of a given even
dimensional compact oriented manifold. More generally, this problem
can be extended to the context of schemes and quasi-coherent sheaves
with some minor changes.

In this article, however, we focus mainly on the theory developed
Kodaira, Spencer and Kuranishi on local deformations (deformation
on the germ of a fixed point). The author should mention too that
the theory can be developed globally. For the global setting there are
three major approachs: Mumford’s geometric invariant theory, Artin’s
algebraic stacks and Griffiths’ theory of period matrix domains.
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1 Kodaira and Spencer first steps in the theory

Along the article all manifolds and spaces are assumed to be paracompact
and connected. Furthermore, unless mentioned, we shall assume that the
spaces being deformed are always compact.

First we need to define what’s a deformation. We should think of a
deformation as a continuous variation of a given compact oriented real even-
dimensional manifold as in the case of a bundle. So we should first define
the notion of a family of manifolds varying ”continuously”.

The ”continuous” variation of a manifold can be stated formally as sim-
pleness of a map. the first two definitions turns out to be equivalent in
the assumptions of a deformation, while the ”flatness” is a generalization
for complex spaces, allowing the fibers to have singularities. Under the
assumption that the fibers are smooth, submersion and ”flatness” are as-
sumed by specialists to coincide, though the author does not guarantee this
equivalence.

Definition 1. An analytic proper surjective morphism between complex
spaces f : X � Y is called simple if one of the following three holds:

• The morphism is a submersion, when the complex spaces are complex
manifolds;

• The morphism is locally trivial, i.e, there exists a fixed complex space
X0, such that for every point f(x) ∈ Y , there exists an open neighbor-
hood U such that the following diagram commutes in the category of
topological spaces (or smooth manifolds, for the smooth case).

U ×Y X0 X

U Y

• The morphism is flat, i.e., (f ])x : OY,f(x) → OX,x is flat for all points
x ∈ X.

Definition 2. An analytic family of complex spaces (or analytic deformation
of complex spaces) is a proper surjective simple morphism of complex spaces
$ : M � P.

P is called the parameter space and ,for a fixed point 0 ∈P, M ×P ∗ =
$−1(t) = Mt is called a deformation of M0

M ×P ∗ M

∗ P0
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Remark 1. The fibers of a proper morphism are always compact, hence Mt

is always a compact manifold. Furthermore, we could have weaken the notion
of properness by demanding just the fibers being compact, however these two
notions turn out to be equivalent if $ is closed and P is compactly generated
Hausdorff.

Moreover, for categorial aspects, properness is equivalent to universally
closed when M is Hausdorff and P is locally compact Hausdorff, which is
the case in question.

At first a deformation seems to be a kind of isotopy on some ambient
space, but this is totally incorrect, since the fibers are always diffeomorphic
by the following theorem.

Theorem 1. ( Ehsresmann’s fibration theorem) A proper surjective sub-
mersion between smooth manifolds f : M � N is a locally trivial fibration.

Proof. (Sketch) We have by the inverse function theorem that locally f is
a projection. Covering by such charts, we can define a global transversal
vector field by patching ( ∂

∂tk
)i the horizontal vector fields on Ui with a

partition of unity. Using this approach in f−1(U) we can cover it by finitely
many charts satisfying the previous condition, then projecting the charts
and picking the intersection gives the necessary neighborhood that satisfies
the locally triviality.

Remark 2. In Ehresmann’s fibration theorem, the properness of the map is
not dispensable in any case. For non-compact fibers a neighborhood resem-
bling a ”tube” around a fixed fiber could collapses when going to the top” of
the fiber as in a draw of a cone.

Now that we have defined what’s a deformation, it’s reasonable to ask:”What’s
”∂Mt

∂t (t)”?”. The answer is simple and follows from the following observa-
tion.

Let U = {Ui} be a covering of M with coordinates wi = (z1i , z
2
i , ..., z

n
i , t1, t2, ..., tm) =

(zi(t), t) such that $(wi) = t. Then, defining fij as the change of coordi-
nates between Uj and Ui in the first coordinate vector zi, we have that in
Uij = Ui ∩ Uj

fij(wj) = zi

holds, therefore, in Uijk,

zi = fij(fjk(wk))

, then differentiating by t is a good guess to know how the holomorphic
structure depends on t ∈P

∂wl
i

∂tq
=
∂f lik(wk)

∂tq
=
∂f lij(fjk, t)

∂tq
=
∂f lij
∂tq

+
∑
r

∂f lij
∂f rjk

∂f rjk
∂tq

=
∂f lij
∂tq

+
∑
r

∂zli
∂zrj

∂f rjk
∂tq
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Writing this as a vector field∑
l

∂f lik(wk)

∂tq
∂

∂zli
=

∑
l

∂f lij
∂tq

∂

∂zli
+
∑
r,l

∂f rjk
∂tq

∂zli
∂zrj

∂

∂zli
=

∑
l

∂f lij
∂tq

∂

∂zli
+
∑
r

∂f rjk
∂tq

∂

∂zri

Hence θqik =
∑

l
∂f l

ik(wk)
∂tq

∂
∂zli

would be a good guess. In fact, by the previous

equality, it turns out to satisfy the cocyle condition

θqik = θqij + θqjk

, therefore we have the following map.

Definition 3. KSt : TP,t −→ H1(Mt, TMt), such that it’s C-linear and
KS( ∂

∂tq ) = [θqij ] for all p, is called the Kodaira-Spencer map. We can write

it globally in a fancier way: KS : TP −→ R1$∗(TM /P).

Remark 3. Notice that TM /P is well defined by

0→ TM /P → TM → $∗TP → 0

since every vector field on M can be projected to P by $∗.

Moreover, the Kodaira-Spencer map, turns out to be so natural that it
arises in a long exact sequence of sheaves.

Proposition 1. The Kodaira-Spencer map is equal to the map induced by
the long exact sequence of sheaves

0→ $∗TM /P → $∗TM → $∗$
∗TP ∼= TP −→ R1$∗(TM /P)

Proof. (Sketch) Firstly, it’s known that R1$∗(TM /P) is canonically isomor-
phic to $∗H

1(M , TM /P) (because both are universal cohomological func-
tors), therefore it’s enough to compute the long exact sequence of

0→ TM /P → TM → $∗TP → 0

induced by the usual Čech cohomology. But the map

H0(M , $∗TP)→ H1(M , TM /P)

is given by (f( ∂
∂tk

))ij = δ(((ξl)l))ij = ((ξi − ( ∂
∂tk

)i) − (ξj − ( ∂
∂tk

)j))ij =

(( ∂
∂tk

)j − ( ∂
∂tk

)i)) = (
∑

l(
∂
∂tk

)jf
l
ij(wj)

∂
∂zli

)ij = θkij , such that d$(ξ) = ∂
∂tk

.

Remark 4. acyclic The proposition above shows that using the fact that, for
a locally finite covering U , there is a ”canonical” morphism H1(U , TM ) →
H

(0,1)

∂
(M) (see [Manetti] at page 8), it’s possible to describe the Kodaira-

Spencer map as KS(γ) = [−∂ξ], such that d$(ξ) = γ. Furthermore, the
later can be seen as an obstruction to the lifting of vector fields in a holo-
morphic way.
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2 In a fancier categorial setting

In the categorial setting, the moduli problem can be stated more natu-
rally by defining the moduli functor.

An will be the category of complex spaces.

Definition 4. We define a presheaf

F : Anop −→ Set

, such that F (S) is the set of equivalence classes of analytic families parametrized
by S ∈ An.

Following the Grothendieck’s approach to the functor of points, a nice
question to do in this case would be to ask if the moduli functor F is repre-
sentable by some object M . But what is exactly the meaning of this?

If F ∼= Hom(−,M ) for some M ∈ An, then there exists a natural
transformation (in this case, an isomorphism)

α : F ⇒ Hom(−,M )

Therefore the morphism α(S) : F (S)→ Hom(S,M ) sends each equivalence
class [f : X � S] to a morphism ϕ : S → M . Hence, for the case S = ∗,
we have F (∗) ∼= Hom(∗,M ) ∼= Forget(M ), which means that complex
spaces are in bijective corresponce to points in M . Then finding such M is
equivalent to finding a complex analytic structure to the space of all complex
spaces.

So, for instance, if M = Mg is the space of all non-singular complex
algebraic curves of a given genus g, then α could be defined by

α(S)([f : X � Y ])(s) = Xs

.
The above observations motivates the following definition

Definition 5. The presheaf F is called a fine moduli functor if is repre-
sentable, i.e, F ∼= Hom(−,M ) = hM for some M ∈ An. In this case, M
is called a fine moduli space.

The previous definition seems a good one. However, it turns out that
almost all moduli problems cannot have a fine moduli space. The problem
is the non-trivial automorphism of the fibers, so if, for instance, a complex
manifold has any biholomorphism which is not the identity, the fine moduli
space of the complex structures over it will not exist.

We can illustrate the above obstruction by the following example. Let’s
find for instance the fine moduli space V of all real vector spaces of dimension
1. We know that V = ∗, such that the point corresponds to R. But what
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are the deformation of a real vector space of dimension 1? The answer is
simple: it’s a line bundle.

Until now, things are going well, but since R has non-trivial automor-
phisms, for instance multiplication by −1, we can form the Möbius band
(real tautological line bundle) γ1. Therefore α(S1)(γ1) ∈ Hom(γ1, ∗) = ∗,
then α(S1)(γ1) = α(S1)(R × S1). But α(S1) is a bijection, so the Möbius
band would be parallelizable, an absurd.

So, even for the most stupid moduli problem, the fine moduli space does
not exist. This motivates the next definition.

Definition 6. The presheaf F is called a coarse moduli functor ids there
exists an object M ∈ An and a natural transformation α⇒ hM , such that

• α is the reflector of F in the of representable presheaves;

• α(∗) is a bijection for any ∗ ∈ An with a point as the underlying
topological space.

In this case, M is called a coarse moduli space.

Coarse moduli space turns out to exits in most of the cases, but it still
not the better definition. Nowadays, the notion of moduli stack is the one
used to describe a moduli problem. Roughly explaining, a moduli stack is a
presheaf with values in grupoids, such that it’s a sheaf that ”behaves” as a
”space”.

Now, let’s interpret the Kodaira-Spencer map in categorial terms. For
this, we need to talk about infinitesimal deformation, then our category will
not be An, but instead we will need to use germs of complex spaces.

Definition 7. Let ∗/An be the co-slice category, where ∗ is a point and a
initial object (for instance Specan(C)). We define the category Germs(An)
of germs of complex spaces to the ”localization” of the category ∗/An, where
morphisms in ∗/An are considered equivalent when they coincide in a neigh-
borhood of ∗.

Remark 5. One should f : ∗ → X ∈ Germs(An) as a skyscraper sheaf
with underlying topological space X and a sheaf OX,x above the point f(∗) =
x. Hence, we will denote a germ by (X,x). Furthermore, the category
Germs(An) is clearly equivalent to the category of C-analytic algebras.

We are only interested in deformations of a fixed initial complex space,
so it’s reasonable to change to moduli functor F and consider similar func-
tor A(X,x) : Germs(An) → Grpd, such that A(S, s) is the category of
deformations

(X,x) ↪→ (Y, y) � (S, s)

such that the special fiber Ys is isomorphic to (X,x).
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Remark 6. The functor A(X,x), indeed, has its values in Grpd, since any
morphism between deformation will be finite, therefore using the caracteriza-
tion of flatness by changing the base, it’s possible to define an isomorphism
of the special fibers. This says that special fibers being isomorphic is equiv-
alent to a morphism between deformations been an isomorphism. But since
the special fiber dos not change in our case, we have that the morphisms are
alwys isomorphisms.

Now, let T 1(X,x) = [A(X,x)(Specan(C[t]/(t2)))], where the bracket ”[, ]”
means the set of equivalence classes. Then we define the Kodaira-Spencer
map in a more general form.

Definition 8. Let $ : (Y, y) � (S, s) be a deformation of germs. The
Kodaira-Spencer map

KS : T(S,s) ∼= Hom((S, s), Specan(C[t]/(t2))) −→ T 1(X,x)

is defined by KS(φ) = [φ∗$]

Actually, these two definitions coincides in the smooth case and that the
above map is the same thing as v 7→ vϕ(t), where ϕ(t) is an invariant of
the deformation as we shall see later. By the previous interpretation of the
Kodaira-spencer map, we can see that deformations over Specan(C[t]/(t2))
corresponds to first order deformations.

Analogously, we can define higher order deformations.

Definition 9. An n-th order deformation is any analytic family over Specan(C[t]/(tn+1))

The n-th order deformation will correspond to [ϕn] ∈ Hn(M, TM ), where
ϕ(t) is a (0, 1)- form that we will see later.

3 Local deformation in the setting of Kodaira-
Spencer and Kuranishi

In the theory of Kodaira-Spencer and Kuranishi, deformation is taken
in a sufficiently small polydisk of Cm around the origin D = Dε. Now, let
U0 = {Ui} be a covering of M = M0. If ε is sufficiently small, we can treat
Ui ×D as a covering of M , such that (ζ(zi, t), t) are coordinate charts in
Ui×{t}. Now, we want to know how is the complex structure in Mt. There
are two approaches to this problem: by the almost complex structure or by
the complex structure itself. We shall begin with the second one.

For t = 0, we know that f being holomorphic on Ui is equivalent to

∂f

∂zik
= 0

for all k. But what’s the condition for non-zero t in terms of ∂
∂zik

?
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Usually, in the literature ([Kod], [UenoShim ], for instance) it’s as-
sumed that if ”t is close enough to 0” then

∂ζj(zi, t)

∂zik
=

∑
l

ϕ(t)lij
∂

∂zli

holds. Therefore, we will assume this fact and explain, why it holds in the
case of Riemann surfaces.

In general, we can treat ϕ(t) =
∑

k,l ϕ
i
kl(t)

∂
∂zki
⊗ dzli as a section of

A (0,1)(TM ). For the case of Riemann surfaces, instead of ϕ, we use the
notation µ and call this section of TM⊗KM a Beltrami differential if ||µ||∞ ≤
1 holds. Given a 2-dimensional smooth manifolds with local coordinates
(x, y) and metric ds2, finding a complex structure is the same to finding
isothermal coordinates (u, v), such that ds2 = ρ(du2+dv2). But this problem
reduce to

ds2 = ρ|dw2|2 = ρ| ∂
∂z
|2|dz +

∂w
∂z
∂w
∂z

dz|2

, where z = x + iy and w = u + iv. Therefore finding a complex structure
is equivalent to find a diffeomorphic solution to the Beltrami differential
equation

∂w

∂z
= µ

∂w

∂z

, which had be proven to be solvable for the case of Beltrami differentials
(||µ||∞ ≤ 1). This explains the assumption for the case n = 1.

Now let’s answer when a function is holomorphic in Ui × {t}.

Proposition 2. A smooth function on Mt is holomorphic on an open set
iff

(∂ − ϕ(t))f = 0

holds.

Proof. f being holomorphic on Ui × {t} is equivalent to

∂f

∂ζi(zi, t)
k

= 0

for all k. But (∂ − ϕ(t))f = 0 is equivalent to

∂f

∂zik
−
∑
l

ϕi
kl(t)

∂f

∂zli
= 0

for all k. Now, expanding in terms of ζki and using the caracterization

∂ζj(zi, t)

∂zik
=

∑
l

ϕ(t)lij
∂

∂zli
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we arrive to the equation

∑
s

∂f

∂ζi
s (
∂ζi

s

∂zil
−
∑
k

ϕi
lk(t)

∂ζi
s

∂zki
) = 0

for all l. But the second term is equals to a multiplication by an invertible
matriz for t close enough to 0.

Remark 7. Notice that, by the previous proposition, ϕ(t) determines en-
tirely the complex structure of Mt, since it determines its sheaf of holomor-
phic functions.

We should mention to that ϕ(t) satisfies the Maurer-Cartan equation up
to a normalization. We will see later that this equation is equivalent to the
integrability of the almost complex structure given by ϕ(t). So, in our case,
we are just saying that a complex structure is integrable.

Proposition 3. ϕ(t) satisfies the Maurer-Cartan equation

∂ϕ(t)− 1

2
[ϕ(t), ϕ(t))]

We now follow the first approach, we view the complex structure throught
the tangent bundle point of view: dealing with the almost complex struc-
ture J(t) of Mt. We know that a complex structure on M corresponds to a

splitting TC = T
(1,0)
t ⊕ T (0,1)

t . So it’s natural to measure the ”error” of the
deviation of this splitting for small t. More specifically, we want to know

how big is T
(0,1)
t ∩ T (1,0)

0 .
In the literature ([Huy], for instance), the following approach is done: if

t is closer enough to 0, the restriction of canonical projection pr(0,1)|
T

(0,1)
t

:

T
(0,1)
t → T (0,1) defines an isomorphism, so we can define

ϕ(t) = pr(1,0) ◦ (pr(0,1)|
T

(0,1)
t

)−1 : T (0,1) −→ T (1,0)

and it satisfies (1 + ϕ(t))(v) ∈ T (0,1)
t for all v ∈ T (0,1) according to [Huy].

It’easy to check that (1 + ϕ(t))(v) ∈ T (0,1)
t for all v is equivalent to defining

ϕ(t) as ϕ(t) = pr(1,0) ◦ (pr(0,1)|
T

(0,1)
t

)−1 : T (0,1) −→ T (1,0).

The map ϕ can be expanded in power series around 0

ϕ(t) =
∑
i

tiϕi

, such that ϕ0 = 0 (because J(0) = J). The author must mention, too, that
ϕ1 is the Kodaira-Spencer map. Now we must know when we can integrate
the almost complex structure to a well defined complex structure. This is
given by the following theorem.
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Theorem 2. Given a smooth manifold M with an almost complex structure
J , then J is integrable iff [T (0,1)M,T (0,1)M ] ⊂ T (0,1).

However, it turns out that the integrability condition is equivalent to the
Maurer-Cartan equation.

Proposition 4. The integrability of J(t) is equivalent to the equation

∂ϕ(t) + [ϕ(t), ϕ(t)] = 0

This motivates our following definition

Definition 10. An infinitesimal deformation of M0 is a section ϕ(t) of
A (0,1)(TM ) that satisfies the Maurer-Cartan equation. Namely,

ϕ(t) =
∑
k,l

ϕi
kl(t)

∂

∂zik
⊗ dzli

on Ui.

A natural question that can arise is when a given element of the coholo-
mogy class [ϕ1] ∈ can be integrated to a ϕ(t). By the power series expansion
around 0, the integrability conditions turns into the equation

∂ϕj = −
∑

0<i<j

[ϕi, ϕj−i]

, such that ∂ϕ1 = 0. Therefore a natural obstruction to the existence of the
second order deformation is to the form [ϕ1, ϕ1] be ∂-closed. Therefore we
have the following corollary.

Corrolary 1. A cohomology class ξ ∈ H1(M, TM ), such that [ξ, ξ] ∈ H1(M, TM )
does not vanish, cannot be extended to a ϕ(t).

The author must mention that each ϕi correspond to a deformation of
i-th order of M . With this in mind, we have to following generalization of
the above corollary.

Theorem 3. A first order deformation $ : M � Spec(C[t]/(t2)) can be
extended to a third order deformation iff (KS)( ∂

∂t) = η satisfies [η, η] = 0.

Actually, these two approachs of defining ϕ(t) can be unified by consid-
ering a one parameter family of diffeomorphisms of M and expanding the
new coordinates in power series around 0. We will not follow this approach,
but, for the interested one, we refer to [Huy].
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4 The Kuranishi family

We will now define the important notion of a Kuranishi family. A Ku-
ranishi family corresponds in some sense to a neighborhood of the moduli
space of complex structures of a given manifold M .

Definition 11. An analytic family $ : M � P is complete at the point
0 ∈ P if any other family π : V � W with Vs ∼= M0 satisfies, for a
neighborhood U of s, the following diagram

M ×P U M

U P

f

g

for some g, such that g(s) = 0 and f(Vs) = M0. If (dg)s in unique for
all g satisfying the above property, then the family is called semi-universal
or versal at the point 0. Moreover, if g is unique then the family is called
universal.

Remark 8. The universality condition is equivalent to the representability
of the functor A(M0,0) is equivalent to a ”local” existence of a fine moduli
space in some sense.

The following difficult theorem is very useful for the characterization of
universal families.

Theorem 4. If a family $ : M � P is complete at every point around
a neighborhood of 0, versal at 0 and H0(M, TM ) = 0, then the family is
universal at 0.

Remark 9. Even if H0(M, TM ) 6= 0, the family may have a universal fam-
ily. For instance, the family of n-dimensional complex tori is universal at
every point.

It’s possible to give characterizations of versality and completness in
terms of the Kodaira-Spencer map.

Theorem 5. If KSt is surjective, then the family is complete at t. Fur-
thermore, a family is versal at 0 iff it’s complete in a neighborhood of 0 and
KS0 is an isomorphism.

Definition 12. A Kuranishi family $ : M � P is a complete family at
every point of P and versal at 0. In this case, P is called the Kuranishi
space.

Now we give shall ”construct” locally the coarse moduli space of the
complex structures on the manifold M . However, before this, we need the
following theorem.
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Theorem 6. If $ : M � P is a Kuranishi family, then a finite subgroup
G ⊂ Autan(M) acts on a neighborhood U of 0, such that 0 is the unique
fixed point of the action.

Proof. (Sketch) Extending f0 ∈ G to the diagram in a neighborhood U of 0

M ×P U M

U P

f

g

, we’ve got that g(0) = 0, so 0 is a fixed point. Furthermore, by the
universality, g is uniquely determined at 0. Now, let V =

⋂
g∈G g(U). Then

the family $−1(V ) � V satisfies the condition.

By the previous theorem, if G = Autan(M) is finite, then in a small
neighborhood U of 0, we can assume that G acts on U , therefore U/G
corresponds to differento complex structures close to the one of M . So,
in some sense, U/G a neighborhood of the coarse moduli space of M . If
furthermore, H0(M, TM ) = 0 holds, then by the upper-semicontinuity of
the cohomology groups, we have in a neighborhood of 0 that H0(Mt, TMt) =
0. In general, if a deformation is a Kuranishi family on 0, then it will
be a Kuranishi family for every point t close to 0. So, assuming these
two supositions, we would have a universal family in a neighborhood of 0,
therefore U/G would correspond to a neighborhood of the parameter space
of the fine moduli space.

To finish this article we state the two main theorem, for which the proof
requires convergence of the power series defined by ϕ(t) and solves the ob-
struction for creating ϕ(t) a given. But, before this, we must defined the so
called number of moduli.

Definition 13. A given compact complex manifold M = M0 has a number of
moduli if it has a deformation $ : M � D which is complete and effectivelly
parametrized, i.e, the Kodaira-Spencer map does not vanish in any non-zero
vector at 0 . In this case, m(M) = dimCD is called the number of moduli.

This motivates the following conjecture

Conjecture 1. If the moduli number is defined, then m(M) = dimCH1(M, TM ).

In order to solve the conjecture, theorems of existence regarding the
number of moduli have been created. We now give the first weaker version
of the existence theorem.

Theorem 7. ( Theorem of Existence) A compact complex manifold M with
vanishing H2(M, TM ) has deformation such that KS0 is an isomorphism.

Now, we state the following stronger theorem proved by Kuranishi.
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Theorem 8. For every compact complex manifold M there exists a complete
deformation at 0.In this case, the parameter space can have singularities.

In the end, the conjectured turned to be false. Mumford found a counter
example in 1962 ,using a 3-dimensional complex manifold. Later , in 1967,
Kas found a complex elliptic suface that violates the conjecture.
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[God] R. Godement, Topologie algebrique et theorie des faisceaux,
Actualites scientifiques et industrielles, Hermann, 1998.

[GroTeich I] A. Grothendieck, Techniques de construction en géométrie
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