
A.7 Vector fields

Let M be a smooth manifold. A vector field on M is a map X : M → TM such that X(p) ∈ TpM
for p ∈M . Sometimes, we also write Xp instead of X(p). As we have seen, TM carries a canonical
manifold structure, so it makes sense to call X is a smooth vector field if the map X : M → TM
is smooth. Hence, a smooth vector field on M is a smooth assignment of tangent vectors at the
various points of M . From another point of view, recall the natural projection π : TM → M ; the
requirement that X(p) ∈ TpM for all p is equivalent to having π ◦X = idM .

More generally, let f : M → N be a smooth mapping. Then a vector field along f is a map
X : M → TN such that X(p) ∈ Tf(p)N for p ∈ M . The most important case is that in which
f is a smooth curve γ : [a, b] → N . A vector field along γ is a map X : [a, b] → TN such that
X(t) ∈ Tγ(t)N for t ∈ [a, b]. A typical example is the tangent vector field γ̇.

Let X be a vector field on M . Given a smooth function f ∈ C∞(U) where U is an open subset
of M , the directional derivative X(f) : U → R is defined to be the function p ∈ U 7→ Xp(f).
Further, if (x1, . . . , xn) is a coordinate system on U , we have already seen that { ∂

∂x1
|p, . . . ,

∂
∂xn

|p}
is a basis of TpM for p ∈ U . It follows that there are functions ai : U → R such that

(A.7.1) X|U =

n∑

i=1

ai
∂

∂xi
.

A.7.2 Proposition Let X be a vector field on M . Then the following assertions are equivalent:
a. X is smooth.
b. For every coordinate system (U, (x1, . . . , xn)) of M , the functions ai defined by (A.7.1) are

smooth.
c. For every open set V of M and f ∈ C∞(V ), the function X(f) ∈ C∞(V ).

Proof. Suppose X is smooth and let { ∂
∂x1

|p, . . . ,
∂

∂xn
|p} be a coordinate system on U . Then X|U

is smooth and ai = dxi ◦X|U is also smooth.
Next, assume (b) and let f ∈ C∞(V ). Take a coordinate system (U, (x1, . . . , xn)) with V ⊂ U .

Then, by using (b) and the fact that ∂f
∂xi

is smooth,

X(f)|U =
n∑

i=1

ai
∂f

∂xi
∈ C∞(U).

Since V can be covered by such U , this proves (c).
Finally, assume (c). For every coordinate system (U, (x1, . . . , xn)) ofM , we have a corresponding

coordinate system (π−1(U), x1 ◦ π, . . . , xn ◦ π, dx1, . . . , dxn) of TM . Then

(xi ◦ π) ◦X|U = xi and dxi ◦X|U = X(xi)

are smooth. This proves that X is smooth. �

In particular, the proposition shows that the coordinate vector fields ∂
∂xi

associated to a local
chart are smooth. The arguments in the proof also show that if X is a vector field on M satisfying
X(f) = 0 for every f ∈ C∞(V ) and every open V ⊂ M , then X = 0. This remark forms the
basis of our next definition, and is explained by noting that in the local expression (A.7.1) for a
coordinate system defined on U ⊂ V , the functions ai = dxi ◦X|U = X(xi) = 0.

Next, let X and Y be smoth vector fields on M . Their Lie bracket [X,Y ] is defined to be the
unique vector field on M that satisfies

(A.7.3) [X,Y ](f) = X(Y (f)) − Y (X(f))
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for every f ∈ C∞(M). By the remark in the previous paragraph, such a vector field is unique if
it exists. In order to prove existence, consider a coordinate system (U, (x1, . . . , xn)). Then we can
write

X|U =

n∑

i=1

ai
∂

∂xi
and Y |U =

n∑

j=1

bj
∂

∂xj

for ai, bj ∈ C∞(U). If [X,Y ] exists, we must have

(A.7.4) [X,Y ]|U =
n∑

i=1

(

ai
∂bj
∂xi

− bi
∂aj

∂xi

)
∂

∂xj
,

because the coefficients of [X,Y ]|U in the local frame { ∂
∂xj

}n
j=1 must be given by [X,Y ](xj) =

X(Y (xj)) − Y (X(xj)). We can use formula A.7.4 as the definition of a vector field on U ; note
that such a vector field is smooth and satisfies property (A.7.3) for functions in C∞(U). We finally
define [X,Y ] globally by covering M with domains of local charts: on the overlap of two charts,
the different definitions coming from the two charts must agree by the above uniqueness result; it
follows that [X,Y ] is well defined.

A.7.5 Proposition Let X, Y and Z be smooth vector fields on M . Then

a. [Y,X] = −[X,Y ].
b. If f , g ∈ C∞(M), then

[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X.

c. [[X,Y ], Z] + [[Y,Z],X] + [[Z,X], Y ] = 0. (Jacobi identity)

We omit the proof of this propostion which is simple and only uses (A.7.3). Note that (A.7.3)
combined with the commutation of mixed second partial derivatives of a smooth function implies
that [ ∂

∂xi
, ∂

∂xj
] = 0 for coordinate vector fields associated to a local chart.

Let f : M → N be a diffeomorphism. For every smooth vector field X on M , the formula
df ◦ X ◦ f−1 defines a smooth vector field on N which we denote by f∗X. More generally, if
f : M → N is a smooth map which needs not be a diffeomorphism, smooth vector fields X on M
and Y on N are called f -related if df ◦ X = Y ◦ f . The proof of the next propostion is an easy
application of (A.7.3).

A.7.6 Proposition Let f : M → M ′ be smooth. Let X, Y be smooth vector fields on M , and let
X ′, Y ′ be smooth vector fields on M ′. If X and X ′ are f -related and Y and Y ′ are f -related, then
also [X,Y ] and [X ′, Y ′] are f -related.

Flow of a vector field

Next, we discuss how to “integrate” vector fields. Let X be a smooth vector field on M . An integral
curve of X is a smooth curve γ in M such that

γ̇(t) = X(γ(t))

for all t in the domain of γ.

In order to study existence and uniqueness questions for integral curves, we consider local
coordinates. So suppose γ : (a, b) → M is a smooth curve in M , 0 ∈ (a, b), γ(0) = p, (U,ϕ =
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(x1, . . . , xn)) is a local chart around p, X is a smooth vector field in M and X|U =
∑

i ai
∂

∂xi
for

ai ∈ C∞(U). Then γ is an integral curve of X on γ−1(U) if and only if

(A.7.7)
dγi

dr

∣
∣
∣
t
= (ai ◦ ϕ

−1)(γ1(t), . . . , γn(t))

for i = 1, . . . , n and t ∈ γ−1(U), where γi = xi ◦ γ. Equation (A.7.7) is a system of first order
ordinary differential equations for which existence and uniqueness theorems are known. These,
translated into manifold terminology yield the following proposition.

A.7.8 Proposition Let X be a smooth vector field on M . For each p ∈M , there exists a (possibly
infinite) interval (a(p), b(p)) ⊂ R and a smooth curve γp : (a(p), b(p)) →M such that:
a. 0 ∈ (a(p), b(p)) and γp(0) = p.
b. γp is an integral curve of X.
c. γp is maximal in the sense that if µ : (c, d) → M is a smooth curve satisfying (a) and (b),

then (c, d) ⊂ (a(p), b(p)) and µ = γp|(c,d).

Let X be a smooth vector field on M . Put

Dt = { p ∈M | t ∈ (a(p), b(p)) }

and define Xt : Dt →M by setting

Xt(p) = γp(t).

Note that we have somehow reversed the rôles of p and t with this definition. The collection of Xt

for all t is called the flow of X.

A.7.9 Example Take M = R2 and X = ∂
∂r1

. Then Dt = R2 for all t ∈ R and Xt(a1, a2) =

(a1 + t, a2) for (a1, a2) ∈ R2. Note that if we replace R2 by the punctured plane R2 \ {(0, 0)}, the
sets Dt become proper subsets of M . ⋆

A.7.10 Theorem a. For each p ∈M , there exists an open neighborhood V of p and ǫ > 0 such
that the map

(−ǫ, ǫ) × V →M, (t, p) 7→ Xt(p)

is well defined and smooth.
b. The domain dom(Xs ◦Xt) ⊂ Ds+t and Xs+t|dom(Xs◦Xt) = Xs ◦Xt. Further, dom(Xs ◦Xt) =
Xs+t if st > 0.

c. Dt is open for all t, ∪t>0Dt = M and Xt : Dt → D−t is a diffeomorphism with inverse X−t.

Proof. Part (a) is a local result and is simply the smooth dependence of solutions of ordinary
differential equations on the intial conditions. We prove part (b). First, we remark the obvious
fact that, if p ∈ Dt, then s 7→ γp(s + t) is an integral curve of X with initial condition γp(t) and
maximal domain (a(p) − t, b(p) − t); therefore (a(p) − t, b(p) − t) = (a(γp(t)), b(γp(t))). Next, let
p ∈ dom(Xs ◦Xt). This means that p ∈ dom(Xt) = Dt and γp(t) = Xt(p) ∈ dom(Xs) = Ds. Then
s ∈ (a(γp(t)), b(γp(t))), so s+ t ∈ (a(γp(t))+ t, b(γp(t))+ t) = (a(p), b(p)), that is p ∈ Ds+t. Further,
Xs+t(p) = γp(s + t) = γγp(t)(s) = Xs(Xt(p)) and we have already proved the first two assertions.
Next, assume that s, t > 0 (the case s, t ≤ 0 is similar); we need to show that Ds+t ⊂ dom(Xs◦Xt).
But this follows from reversing the argument above as p ∈ Ds+t implies that s + t ∈ (a(p), b(p)),
and this implies that t ∈ (a(p), b(p)) and s = (s+ t) − t ∈ (a(p) − t, b(p) − t) = (a(γp(t)), b(γp(t))).
Finally, we prove part (c). The statement about the union follows from part (a). Note that
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D0 = M . Fix t > 0 and p ∈ Dt; we prove that p is an interior point of Dt and Xt is smooth on a
neighborhood of p (the case t < 0 is analogous). Indeed, since γp([0, t]) is compact, part (a) yields
an open neighborhood W0 of this set and ǫ > 0 such that (s, q) ∈ (−ǫ, ǫ) ×W0 7→ Xs(q) ∈ M is
well defined and smooth. Take an integer n > 0 such that t/n < ǫ and put α1 = X t

n
|W0

. Then,

define inductively Wi = α−1
i (Wi−1) ⊂ Wi−1 and αi = X t

n
|Wi−1 for i = 2, . . . , n. It is clear that

αi is smooth and Wi is an open neighborhood of γp(
n−i
n
t) for all i. In particular, Wn is an open

neighborhood of p in W . Moreover,

α1 ◦ α2 ◦ · · · ◦ αn|Wn = (X t
n
)n|Wn = Xt|Wn

by the last assertion of part (b), so Xt is smooth on Wn. Now Dt is open and Xt is smooth on Dt.
It is obvious that the image of Xt is D−t. Since X−t is also smooth on D−t, it follows from part
(b) that Xt and X−t are inverses one of the other and this completes the proof of the theorem. �

The Frobenius theorem

Let M be a smooth manifold of dimension n. A distribution D of rank (or dimension) k is a choice
of k-dimensional subspace Dp ⊂ TpM for each p ∈ M . A distribution D of rank k is called smooth
if for every p ∈M there exists an open neighborhood U of p and k smooth vector fields X1, . . . ,Xk

on U such that Dq equals the span of X1(q), . . . ,Xk(q) for every q ∈ U . A vector field X is said
to belong to (or lie in) the distribution D (and we write X ∈ D) if X(p) ∈ Dp for p ∈ M . A
distribution D is called involutive if X, Y ∈ D implies that [X,Y ] ∈ D. A submanifold N of M is
called an integral manifold of a distribution D if TpN = Dp for p ∈ N .

If X is a nowhere zero smooth vector field on M , then of course the line spanned by Xp in TpM
for p ∈ M defines a smooth distribution on M . In this special case, Proposition A.7.8 guarantees
the existence and uniqueness of maximal integral submanifolds. Our next intent is to generalize this
result to arbitrary smooth distributions. A necessary condition is given in the following proposition.
The contents of the Frobenius theorem is that the condition is also sufficient.

A.7.11 Proposition A smooth distribution D on M admitting integral manifolds through any
point of M must be involutive.

Proof. Given smooth vector fields X, Y ∈ D and p ∈ M , we need to show that [X,Y ]p ∈ Dp.
By assumption, there exists an integral manifold N passing thorugh p. By shrinking N , we may
further assume that N is embedded. Denote by ι the inclusion of N into M . Then dιι−1(p) :

Tι−1(p)N → TpM is an isomorphism onto Dp. Therefore there exist vector fields X̃ and Ỹ on N

which are ι-related to resp. X and Y . Due Theorem A.4.6, X̃ and Ỹ are smooth, so by using
Proposition A.7.6 we finally get that [X,Y ]p = dι([X̃, Ỹ ]ι−1(p)) ∈ Dp. �

It is convenient to use the following terminology in the statement of the Frobenius theorem.
A coordinate system (U,ϕ = (x1, . . . , xn)) of a smooth manifold M of dimension m will be called
cubic if ϕ(U) is an open cube centered at the origin of Rm, and it will be called centered at a point
p ∈ U if ϕ(p) = 0.

A.7.12 Theorem (Frobenius, local version) Let D be a smooth distribution of rank k on a
smooth manifold of dimension n. Suppose that D is involutive. Then, given p ∈ M , there exists
an integral manifold of D containing p. More precisely, there exists a cubic coordinate system
(U,ϕ = (x1, . . . , xn)) centered at p such that the “slices”

xi = constant for i = k + 1, . . . , n
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are integral manifolds of D. Further, if N ⊂ U is a connected integral manifold of D, then N is
an open submanifold of one of these slices.

Proof. We proceed by induction on k. Suppose first that k = 1. Choose a smooth vector field
X ∈ D defined on a neighborhood of p such that Xp 6= 0. It suffices to construct a coordinate
system (U,ϕ = (x1, . . . , xn)) around p such that X|U = ∂

∂x1
|U . Indeed, it is easy to get a coordinate

system (V,ψ = (y1, . . . , yn)) centered at p such that ∂
∂y1

= Yp. The map

σ(t, a2, . . . , an) = Xt(ψ
−1(0, a2, . . . , an))

is well defined and smooth on (−ǫ, ǫ) ×W for some ǫ > 0 and some neighborhood W of the origin
in Rn−1. We immediately see that

dσ

(
∂

∂r1

∣
∣
∣
0

)

= Xp =
∂

∂y1

∣
∣
∣
p

and dσ

(
∂

∂ri

∣
∣
∣
0

)

=
∂

∂yi

∣
∣
∣
p

for i = 2, . . . , n.

By the inverse function theorem, σ is a local diffeomorphism at 0, so its local inverse yields the
desired local chart ϕ.

We next assume the theorem is true for distributions of rank k − 1 and prove it for a given
distribution D of rank k. Choose smooth vector fields X1, . . . ,Xn spanning D on a neighborhood
Ṽ of p. The result in case k = 1 yields a coordinate system (V, y1, . . . , yn) centered at p such that
V ⊂ Ṽ and X1|V = ∂

∂y1
|V . Define the following smooth vector fields on V :

Y1 = X1

Yi = Xi −Xi(y1)X1 for i = 2, . . . , k

Plainly, Y1, . . . , Yk span D on V . Let S ⊂ V be the slice y1 = 0 and put

Zi = Yi|S for i = 2, . . . , k.

Since

(A.7.13) Yi(y1) = Xi(y1) −Xi(y1)X1(y1)
︸ ︷︷ ︸

=1

= 0 for i = 2, . . . , k,

we have Zi(q) ∈ TqS for q ∈ S, so Z2, . . . , Zk span a smooth distribution D′ of rank k − 1 on S;
we next check that D′ is involutive. Since Zi and Yi are related under the inclusion S ⊂ V , also
[Zi, Zj ] and [Yi, Yj ] are so related. Eqn. (A.7.13) gives that [Yi, Yj ](y1) = 0, so, on V

[Yi, Yj] =

k∑

ℓ=1

cijkYℓ

for cijk ∈ C∞(V ). Hence

[Zi, Zj ] =

k∑

ℓ=1

cijk|SZℓ,

as we wished. By the inductive hypothesis, there exists a coordinate system (w2, . . . , wn) on some
neighborhood of p in S such that the slices wi = constant for i = k + 1, . . . , n define integral
manifolds of D′.
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Let π : V → S be the linear projection relative to (y1, . . . , yn). Set

x1 = y1,

xi = wi ◦ π for i = 2, . . . , n.

It is clear that there exists an open neighborhood U of p in V such that (U,ϕ = (x1, . . . , xn)) is a
cubic coordinate system of M centered at p. Now the first assertion in the statement of the theorem
follows if we prove that Yi(xj) = 0 on U for i = 1, . . . , k and j = k + 1, . . . , n, for this will imply
that ∂

∂x1
|q, . . . ,

∂
∂xk

|q is a basis of Dq for every q ∈ U . In order to do that, note that

∂xj

∂y1
=

{
1, if j = 1,
0, if j = 2, . . . , n

on U . Hence

Y1 = X1 =
∂

∂y1
=

n∑

j=1

∂xj

∂y1

∂

∂xj
=

∂

∂x1
,

so Y1(xj) = 0 or j > k. Next, take i ≤ k and j > k. Owing to the involutivity of D,

[Y1, Yi] =
k∑

ℓ=1

ciℓYℓ

for some cik ∈ C∞(U). Therefore

∂

∂x1
(Yi(xj)) = Y1(Yi(xj)) − Yi(Y1(xj)) = Y1(Yi(xj)) =

k∑

ℓ=2

ciℓYℓ(xj),

which, for fixed x2, . . . , xn, is a system of k − 1 homogeneous linear ordinary differential equations
in the functions Yℓ(xj) of the variable x1. Of course, the initial condition x1 = 0 corresponds to
S ∩ U along which we have

Yi(xj) = Zi(xj) = Zi(wj) = 0,

where the latter equatility follows from the fact that Zi lies in D′ and wj = constant for j > k
define integral manifolds of D′. By the uniqueness theorem of solutions of ordinary differential
equations, Yi(xj) = 0 on U .

Finally, suppose that N ⊂ U is a connected integral manifold of D. Let ι denote the inclusion of
N into U let and π : Rn → Rk×Rn−k be the projection. Then d(π◦ϕ◦ι)q(TqN) = d(π◦π)q(Dq) = 0
for q ∈ U . By connectedness of N , π ◦ ϕ ◦ ι is a constant function on N . Thus N is contained in
one of the slices xi = constant for i = k+ 1, . . . , n, say S. The inclusion of N into M is continuous
(since N is a submanifold of M) and has image contained in S; since S is embedded in M , the
inclusion of N into S is continuous and thus smooth by Theorem A.4.6. Since N is a submanifold
of M , this inclusion is also an immersion. Of course, dimN = dimS, so this inclusion is indeed a
local diffeomorphism. Hence N is an open submanifold of S. �

A.7.14 Theorem Integral manifolds of involutive distributions are quasi-embedded submanifolds.
More precisely, suppose that f : M → N is smooth, P is an integral manifold of an involutive
distribution D on M , and f(M) ⊂ P . Consider the induced map f0 : M → P that satisfies
ι ◦ f0 = f , where ι : P → N is the inclusion. Then f0 is continuous (and hence smooth by
Theorem A.4.6).
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Proof. Let U be an open subset of P , q ∈ U and p ∈ f−1
0 (q). It suffices to prove that p is an

interior point of f−1
0 (U). By the local version of the Frobenius theorem (A.7.12), there exists a

cubic coordinate system (V,ψ = (x1, . . . , xn)) of N centered at q such that the slices

(A.7.15) xi = constant for i = k + 1, . . . , n

are the integral manifolds of D in V . Also, we can shrink V so that V ∩ U is exactly the slice

(A.7.16) xk+1 = · · · = xn = 0.

We have that f−1(V ) an open neighborhood of q inM ; let W be its connected component containing
p. Of course, W is open. It is enough to show that f0(W ) ⊂ V ∩ U , or which is the same, f(W )
is contained in (A.7.16). Since f(W ) is connected, it is contained in a component of V ∩ P with
respect to the relative topology. Since f(W ) meets (A.7.16) at least at the point q, it suffices
to show that the components of V ∩ P in the relative topology are contained in the slices of the
form (A.7.15). Let C be a component of V ∩ P with respect to the relative topology; note that C
need not be connected in the topology of P , but, by second-countability of P , C is a countable union
of connected integral manifolds of D in V , each of which is contained in a slice of the form (A.7.15).
Let π : V → Rn−k be given by π(r) = (xk+1(r), . . . , xn(r)). It follows that π(C) is a countable
connected subset of Rn−k; hence, it is a single point. �

A maximal integral manifold of a distribution D on a manifold M is a connected integral
manifold N of D such that every connected integral manifold of D which intersects N is an open
submanifold of N .

A.7.17 Theorem (Frobenius, global version) Let D be a smooth distribution on M . Suppose
that D is involutive. Then through any given point of M there passes a unique integral manifold
of D.

Proof. Let dimM = n and dimD = k. Given p ∈ M , define N to be the set of all points
of M reachable from p by following piecewise smooth curves whose smooth arcs are everywhere
tangent to D. By the local version A.7.12 and the σ-compactness of its topology, M can be covered
by countably many cubic coordinate systems (Ui, x

i
1, . . . , x

i
n) such that the integral manifolds of D

in Ui are exactly the slices

(A.7.18) xi
j = constant for j = k + 1, . . . , n.

Note that a slice of the form (A.7.18) that meets N must be contained in N , and that N is covered
by such slices. We equip N with the finest topology with respect to which the inclusions of all
such slices are continuous. We can also put a differentiable structure on N by declaring that such
slices are open submanifolds of N . We claim that this turns N into a connected smooth manifold of
dimension k. N is clearly connected since it is path-connected by construction. N is also Hausdorff,
because M is Hausdorff and the inclusion of N into M is continuous. It only remains to prove that
N is second-countable. It suffices to prove that only countably many slices of Ui meet N . For this,
we need to show that a single slice S of Ui can only meet countably many slices of Uj . For this
purpose, note that S ∩Uj is an open submanifold of S and therefore consists of at most countably
many components, each of which being a connected integral manifold of D and hence lying entirely
in a slice of Uj. Now it is clear that N is an integral manifold of D through p.

Next, let N ′ be another connected integral manifold of D meeting N at a point q. Given q′ ∈ N ′,
there exists a piecewise smooth curve integral curve of D joining q to q′ since connected manifolds
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are path-connected. Due to q ∈ N , this curve can be juxtaposed to a piecewise smooth curve
integral curve of D joining p to q. We get q′ ∈ N and this proves that N ′ ⊂ N . Since N ′ is a
submanifold of M , the inclusion of N ′ into M is continuous. By Theorem A.7.14, the inclusion of
N ′ into N is smooth. Hence N ′ is an open submanifold of N .

Finally, suppose that N ′ is in addition to the above a maximal integral manifold. The above
argument shows that N ⊂ N ′ and N is an open submanifold of N ′. It follows that the identity
map N → N ′ is a diffeomorphism and this proves the uniqueness of N . �
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