0.1 Homotopic maps induce the same map in cohomology

Let $f, g: M \rightarrow N$ be smooth maps between smooth manifolds. A (smooth) homotopy between f and g is a smooth map $F: M \times[0,1] \rightarrow N$ such that

$$
\left\{\begin{array}{l}
F(p, 0)=f(p) \\
F(p, 1)=g(p)
\end{array}\right.
$$

for $p \in M$. If there exists a homotopy between f and g, we say that they f and g are homotopic.
0.1.1 Proposition Let f, g be homotopic maps. Then the induced maps in cohomology

$$
f^{*}, g^{*}: H_{\mathrm{dR}}^{k}(N) \rightarrow H_{\mathrm{dR}}^{k}(M)
$$

are equal.
The proof of this propositon is given below. First, we need to make some remarks. For $t \in[0,1]$, consider the inclusions i_{t} given by

$$
i_{t}(p)=(p, t)
$$

for $p \in M$, and consider the natural projection $\pi: M \times[0,1] \rightarrow M$ given by $\pi(p, t)=p$. Then, obviously,

$$
\pi \circ i_{t}=\operatorname{id}_{M}
$$

implying that

$$
i_{t}^{*} \pi^{*}=\mathrm{id} \quad \text { in } \Omega^{k}(M) \text { and } H_{\mathrm{dR}}^{k}(M) .
$$

We consider the projection $t: M \times[0,1] \rightarrow[0,1]$. Then there exists a "vertical" vector field $\frac{\partial}{\partial t}$ and a 1 -form $d t$. Note that ker $d \pi$ is spanned by $\frac{\partial}{\partial t}$.
0.1.2 Lemma Let $\omega \in \Omega^{k}(M \times[0,1])$. Then we can write

$$
\begin{equation*}
\omega=\zeta+d t \wedge \eta \tag{0.1.3}
\end{equation*}
$$

where $\zeta \in \Omega^{k}(M \times[0,1])$ has the property that it vanishes if some of its arguments belongs to $\operatorname{ker} d \pi$, and $\eta \in \Omega^{k-1}(M \times[0,1])$ has the same property.

Proof. Set $\eta=i_{\partial t}^{\partial t} \omega$ and $\zeta=\omega-d t \wedge \eta$. Since

$$
i_{\frac{\partial}{\partial t}} \eta=i_{\frac{\partial}{\partial t}} i_{\frac{\partial}{\partial t}} \omega=0
$$

it is clear that η has the claimed property. Similarly,

$$
\begin{aligned}
i_{\frac{\partial}{\partial t}} \zeta & =i_{\frac{\partial}{\partial t} \omega-i_{\partial \partial}(d t \wedge \eta)} \\
& =\eta-i_{\frac{\partial}{\partial t}} d t \wedge \eta+d t \wedge i_{\frac{\partial}{\partial t}} \eta \\
& =\eta-\eta+0 \\
& =0,
\end{aligned}
$$

as desired.
We define the homotopy operator

$$
H_{k}: \Omega^{k}(M \times[0,1]) \rightarrow \Omega^{k-1}(M)
$$

by the formula

$$
\left(H_{k} \omega\right)_{p}\left(v_{1}, \ldots, v_{k-1}\right)=\int_{0}^{1} \eta_{(p, t)}\left(d i_{t}\left(v_{1}\right), \ldots, d i_{i}\left(v_{k-1}\right)\right) d t
$$

where ω is decomposed as in (0.1.3) and $p \in M, v_{1}, \ldots, v_{k-1} \in T_{p} M$. Note that H_{k} is "integration along the fiber of π ". For simplicity, we henceforth drop the subscript and just write H for the homotopy operator.

Proof of Propostion 0.1.1. Let $\omega \in H_{\mathrm{dR}}^{k}(M \times[0,1])$. We first claim that

$$
\begin{equation*}
d H \omega+H d \omega=i_{1}^{*} \omega-i_{0}^{*} \omega . \tag{0.1.4}
\end{equation*}
$$

The proof is by direct computation: since this is a pointwise identity, we can work in a coordinate system. Let $\left(U, x_{1}, \ldots, x_{n}\right)$ be a coordinate system in M. Then $\left(U \times[0,1], x_{1} \circ \pi, \ldots, x_{n} \circ \pi, t\right)$ is a coordinate system in $M \times[0,1]$ and we can write

$$
\left.\omega\right|_{U \times[0,1]}=\sum_{I} a_{I} d x_{I}+d t \wedge \sum_{J} b_{J} d x_{J}
$$

where a_{i}, b_{J} are smooth functions on $U \times[0,1]$ and I, J are increasing multi-indices. In $U \times[0,1]$, we have:

$$
\begin{gathered}
H \omega=\sum_{J}\left(\int_{0}^{1} b_{J} d t\right) d x_{J}, \\
d H \omega=\sum_{J, i}\left(\int_{0}^{1} \frac{\partial b_{J}}{\partial x_{i}} d t\right) d x_{i} \wedge d x_{J}, \\
d \omega=\sum_{I, i} \frac{\partial a_{I}}{\partial x_{i}} d x_{i} \wedge d x_{I}+\sum_{I} \frac{\partial a_{I}}{\partial t} d t \wedge d x_{I}-d t \wedge \sum_{J, i} \frac{\partial b_{J}}{\partial x_{i}} d x_{i} \wedge d x_{J}, \\
H d \omega=\sum_{I}\left(\int_{0}^{1} \frac{\partial a_{I}}{\partial t} d t\right) d x_{I}-\sum_{J, i}\left(\int_{0}^{1} \frac{\partial b_{J}}{\partial x_{i}} d t\right) d x_{i} \wedge d x_{J} .
\end{gathered}
$$

It follows that

$$
\begin{aligned}
d H \omega+\left.H d \omega\right|_{p} & =\sum_{I}\left(\int_{0}^{1} \frac{\partial a_{I}}{\partial t}(p, t) d t\right) d x_{I} \\
& =\sum_{I}\left(a_{I}(p, 1)-a_{I}(p, 0)\right) d x_{I} \\
& =i_{1}^{*} \omega-\left.i_{0}^{*} \omega\right|_{p}
\end{aligned}
$$

as claimed.
Suppose now that $F: M \times[0,1] \rightarrow N$ is a homotopy between f and g. Let α be a closed k-form in N representing the cohomology class $[\alpha] \in H_{\mathrm{dR}}^{K}(N)$. Applying identity (0.1.4) to $\omega=F^{*} \alpha$ yields

$$
d H F^{*} \alpha+H F^{*} d \alpha=i_{1}^{*} F^{*} \alpha-i_{0}^{*} F^{*} \alpha
$$

Since $d \alpha=0$ and $F \circ i_{0}=f, F \circ i_{1}=g$, we get

$$
d\left(H F^{*} \alpha\right)=g^{*} \alpha-f^{*} \alpha
$$

Hence $g^{*} \alpha$ and $f^{*} \alpha$ are cohomologous.

0.2 Hairy ball theorem

Consider Euclidean space \mathbf{R}^{n+1} with coordinates $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ and the unit sphere $\iota: S^{n} \rightarrow \mathbf{R}^{n+1}$. Consider the n-form in \mathbf{R}^{n+1}

$$
\omega=\sum_{i=0}^{n}(-1)^{i} x_{i} d x_{0} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots d x_{n}
$$

Note that ω vanishes only at the origin. In particular,

$$
\begin{equation*}
\alpha=\iota^{*} \omega=\sum_{i=0}^{n}(-1)^{i}\left(x_{i} \circ \iota\right) d\left(x_{0} \circ \iota\right) \wedge \cdots \widehat{\left(x_{i} \circ \iota\right)} \wedge \cdots d\left(x_{n} \circ \iota\right) \tag{0.2.1}
\end{equation*}
$$

is a nowhere vanishing n-form on S^{n}, hence it defines an orientation there. Of course,

$$
d \omega=(n+1) d x_{0} \wedge d x_{1} \wedge \cdots \wedge d x_{n}
$$

and

$$
\int_{S^{n}} \alpha=\int_{S^{n}} \omega=\int_{\bar{B}^{n}} d \omega=(n+1) \operatorname{vol}\left(\bar{B}^{n}\right)>0
$$

(where the orientation of S^{n} is induced from \bar{B}^{n}) so α is not exact by Stokes theorem. Thus $[\alpha] \neq 0$ in $H_{\mathrm{dR}}^{n}\left(S^{n}\right)$.

In the sequel, we consider $n=2 m$.
0.2.2 Theorem Let X be a smooth vector field on $S^{2 m}$. Then there exists $p \in S^{2 m}$ such that $X_{p}=0$. In other words, every smooth vector field on an even-dimensional sphere has a zero.

Proof. Suppose, on the contrary, that X never vanishes. By rescaling, we may assume that X is a unit vector field with respect to the metric induced from Euclidean space. Set

$$
F_{t}: S^{2 m} \rightarrow S^{2 m}, \quad F_{t}(p)=\cos t x+\sin t X(p)
$$

It is clear that F_{t} defines a homotopy between the identity map and the antipodal map of $S^{2 m}$:

$$
F_{0}=\mathrm{id}_{S^{2 m}} \quad \text { and } \quad F_{\pi}=-\mathrm{id}_{S^{2 m}}
$$

Note that

$$
F_{\pi}^{*}\left(x_{i} \circ \iota\right)=-x_{i} \circ \iota .
$$

It follows that

$$
F_{\pi}^{*} \alpha=(-1)^{2 m+1} \alpha=-\alpha
$$

On the other hand,

$$
F_{0}^{*} \alpha=\alpha
$$

and by Proposition 0.1.1, $\left[F_{0}^{*} \alpha\right]=\left[F_{\pi}^{*} \alpha\right]$, which contradicts the fact that $[\alpha] \neq 0$.
0.2.3 Remark The theorem can be extended to the case of continuous vector fields by using an approximation result.

0.3 The smooth Brouwer fixed point theorem

Let \bar{B}^{n} be the closed ball in \mathbf{R}^{n}, and denote its boundary by $\partial \bar{B}^{n}$; of course, $\partial \bar{B}^{n}$ is diffeomorphic to S^{n-1}. We first prove
0.3.1 Lemma There exists no smooth retraction $r: \bar{B}^{n} \rightarrow \partial \bar{B}^{n}$ (that is, there exists no smooth map $r: \bar{B}^{n} \rightarrow \partial \bar{B}^{n}$ whose restriction to $\partial \bar{B}^{n}$ is the identity).

Proof. The case $n=1$ is easy as the closed interval \bar{B}^{1} is connected and its boundary is disconnected. Assume $n \geq 2$ and suppose, to the contrary, that such a retraction r exists. Recall that n-form α defined in (0.2.1). Since r is the identity along $\partial \bar{B}^{n}$,

$$
\int_{\partial \bar{B}^{n}} r^{*} \alpha=\int_{\partial \bar{B}^{n}} \alpha \neq 0 .
$$

On the other hand, by Stokes theorem,

$$
\int_{\partial \bar{B}^{n}} r^{*} \alpha=\int_{\bar{B}^{n}} d r^{*} \alpha=\int_{\bar{B}^{n}} r^{*} d \alpha=0,
$$

since $d \alpha=0$, which is a contradiction.
0.3.2 Theorem Let $f: \bar{B}^{n} \rightarrow \bar{B}^{n}$ be a smooth map. Then there exists $p \in \bar{B}^{n}$ such that $f(p)=p$. In other words, every smooth self-map of the closed n-ball admits a fixed point.

Proof. Suppose, on the contrary, that $f(x) \neq x$ for all $x \in \bar{B}^{n}$. The half-line originating at x and going through $f(x)$ meets $\partial \bar{B}^{n}$ at a unique point; call it $r(x)$. It is easy to see that this defines a smooth retraction $r: \bar{B}^{n} \rightarrow \partial \bar{B}^{n}$ which is prohibited by Lemma 0.3.1.
0.3.3 Remark The theorem is not true in the case of the open ball B^{n}, as is easily seen.

