
0.1 Homotopic maps induce the same map in cohomology

Let f , g : M → N be smooth maps between smooth manifolds. A (smooth) homotopy between f

and g is a smooth map F : M × [0, 1] → N such that

{
F (p, 0) = f(p)
F (p, 1) = g(p)

for p ∈ M . If there exists a homotopy between f and g, we say that they f and g are homotopic.

0.1.1 Proposition Let f , g be homotopic maps. Then the induced maps in cohomology

f∗, g∗ : Hk
dR(N) → Hk

dR(M)

are equal.

The proof of this propositon is given below. First, we need to make some remarks. For t ∈ [0, 1],
consider the inclusions it given by

it(p) = (p, t)

for p ∈ M , and consider the natural projection π : M × [0, 1] → M given by π(p, t) = p. Then,
obviously,

π ◦ it = idM

implying that
i∗t π

∗ = id in Ωk(M) and Hk
dR(M).

We consider the projection t : M × [0, 1] → [0, 1]. Then there exists a “vertical” vector field ∂
∂t

and a 1-form dt. Note that ker dπ is spanned by ∂
∂t

.

0.1.2 Lemma Let ω ∈ Ωk(M × [0, 1]). Then we can write

(0.1.3) ω = ζ + dt ∧ η

where ζ ∈ Ωk(M× [0, 1]) has the property that it vanishes if some of its arguments belongs to ker dπ,
and η ∈ Ωk−1(M × [0, 1]) has the same property.

Proof. Set η = i ∂

∂t

ω and ζ = ω − dt ∧ η. Since

i ∂

∂t

η = i ∂

∂t

i ∂

∂t

ω = 0,

it is clear that η has the claimed property. Similarly,

i ∂

∂t

ζ = i ∂

∂t

ω − i ∂

∂t

(dt ∧ η)

= η − i ∂

∂t

dt ∧ η + dt ∧ i ∂

∂t

η

= η − η + 0

= 0,

as desired. ¤

We define the homotopy operator

Hk : Ωk(M × [0, 1]) → Ωk−1(M)
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by the formula

(Hkω)p(v1, . . . , vk−1) =

∫ 1

0
η(p,t)(dit(v1), . . . , dii(vk−1)) dt,

where ω is decomposed as in (0.1.3) and p ∈ M , v1, . . . , vk−1 ∈ TpM . Note that Hk is “integration
along the fiber of π”. For simplicity, we henceforth drop the subscript and just write H for the
homotopy operator.

Proof of Propostion 0.1.1. Let ω ∈ Hk
dR(M × [0, 1]). We first claim that

(0.1.4) dHω + Hdω = i∗1ω − i∗0ω.

The proof is by direct computation: since this is a pointwise identity, we can work in a coordinate
system. Let (U, x1, . . . , xn) be a coordinate system in M . Then (U × [0, 1], x1 ◦ π, . . . , xn ◦ π, t) is
a coordinate system in M × [0, 1] and we can write

ω|U×[0,1] =
∑

I

aIdxI + dt ∧
∑

J

bJdxJ

where ai, bJ are smooth functions on U × [0, 1] and I, J are increasing multi-indices. In U × [0, 1],
we have:

Hω =
∑

J

(∫ 1

0
bJdt

)
dxJ ,

dHω =
∑

J,i

(∫ 1

0

∂bJ

∂xi

dt

)
dxi ∧ dxJ ,

dω =
∑

I,i

∂aI

∂xi

dxi ∧ dxI +
∑

I

∂aI

∂t
dt ∧ dxI − dt ∧

∑

J,i

∂bJ

∂xi

dxi ∧ dxJ ,

Hdω =
∑

I

(∫ 1

0

∂aI

∂t
dt

)
dxI −

∑

J,i

(∫ 1

0

∂bJ

∂xi

dt

)
dxi ∧ dxJ .

It follows that

dHω + Hdω|p =
∑

I

(∫ 1

0

∂aI

∂t
(p, t) dt

)
dxI

=
∑

I

(aI(p, 1) − aI(p, 0))dxI

= i∗1ω − i∗0ω|p,

as claimed.
Suppose now that F : M × [0, 1] → N is a homotopy between f and g. Let α be a closed k-form

in N representing the cohomology class [α] ∈ HK
dR(N). Applying identity (0.1.4) to ω = F ∗α yields

dHF ∗α + HF ∗dα = i∗1F
∗α − i∗0F

∗α.

Since dα = 0 and F ◦ i0 = f , F ◦ i1 = g, we get

d (HF ∗α) = g∗α − f∗α.

Hence g∗α and f∗α are cohomologous. ¤
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0.2 Hairy ball theorem

Consider Euclidean space Rn+1 with coordinates (x0, x1, . . . , xn) and the unit sphere ι : Sn → Rn+1.
Consider the n-form in Rn+1

ω =
n∑

i=0

(−1)i xi dx0 ∧ · · · ∧ d̂xi ∧ · · · dxn.

Note that ω vanishes only at the origin. In particular,

(0.2.1) α = ι∗ω =
n∑

i=0

(−1)i (xi ◦ ι) d(x0 ◦ ι) ∧ · · · ̂d(xi ◦ ι) ∧ · · · d(xn ◦ ι)

is a nowhere vanishing n-form on Sn, hence it defines an orientation there. Of course,

dω = (n + 1)dx0 ∧ dx1 ∧ · · · ∧ dxn

and ∫

Sn

α =

∫

Sn

ω =

∫

B̄n

dω = (n + 1)vol(B̄n) > 0

(where the orientation of Sn is induced from B̄n) so α is not exact by Stokes theorem. Thus [α] 6= 0
in Hn

dR(Sn).

In the sequel, we consider n = 2m.

0.2.2 Theorem Let X be a smooth vector field on S2m. Then there exists p ∈ S2m such that
Xp = 0. In other words, every smooth vector field on an even-dimensional sphere has a zero.

Proof. Suppose, on the contrary, that X never vanishes. By rescaling, we may assume that X

is a unit vector field with respect to the metric induced from Euclidean space. Set

Ft : S2m → S2m, Ft(p) = cos t x + sin t X(p).

It is clear that Ft defines a homotopy between the identity map and the antipodal map of S2m:

F0 = idS2m and Fπ = −idS2m .

Note that

F ∗

π (xi ◦ ι) = −xi ◦ ι.

It follows that

F ∗

πα = (−1)2m+1α = −α.

On the other hand,

F ∗

0 α = α,

and by Proposition 0.1.1, [F ∗

0 α] = [F ∗

πα], which contradicts the fact that [α] 6= 0. ¤

0.2.3 Remark The theorem can be extended to the case of continuous vector fields by using an
approximation result.
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0.3 The smooth Brouwer fixed point theorem

Let B̄n be the closed ball in Rn, and denote its boundary by ∂B̄n; of course, ∂B̄n is diffeomorphic
to Sn−1. We first prove

0.3.1 Lemma There exists no smooth retraction r : B̄n → ∂B̄n (that is, there exists no smooth
map r : B̄n → ∂B̄n whose restriction to ∂B̄n is the identity).

Proof. The case n = 1 is easy as the closed interval B̄1 is connected and its boundary is
disconnected. Assume n ≥ 2 and suppose, to the contrary, that such a retraction r exists. Recall
that n-form α defined in (0.2.1). Since r is the identity along ∂B̄n,

∫

∂B̄n

r∗α =

∫

∂B̄n

α 6= 0.

On the other hand, by Stokes theorem,

∫

∂B̄n

r∗α =

∫

B̄n

dr∗α =

∫

B̄n

r∗dα = 0,

since dα = 0, which is a contradiction. ¤

0.3.2 Theorem Let f : B̄n → B̄n be a smooth map. Then there exists p ∈ B̄n such that f(p) = p.
In other words, every smooth self-map of the closed n-ball admits a fixed point.

Proof. Suppose, on the contrary, that f(x) 6= x for all x ∈ B̄n. The half-line originating at x

and going through f(x) meets ∂B̄n at a unique point; call it r(x). It is easy to see that this defines
a smooth retraction r : B̄n → ∂B̄n which is prohibited by Lemma 0.3.1. ¤

0.3.3 Remark The theorem is not true in the case of the open ball Bn, as is easily seen.
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