0.1 Homotopic maps induce the same map in cohomology

Let $f, g: M \to N$ be smooth maps between smooth manifolds. A (smooth) homotopy between f and g is a smooth map $F: M \times [0,1] \to N$ such that

$$\left\{ \begin{array}{rrr} F(p,0) &=& f(p) \\ F(p,1) &=& g(p) \end{array} \right. \label{eq:F}$$

for $p \in M$. If there exists a homotopy between f and g, we say that they f and g are homotopic.

0.1.1 Proposition Let f, g be homotopic maps. Then the induced maps in cohomology

$$f^*, g^* : H^k_{\mathrm{dR}}(N) \to H^k_{\mathrm{dR}}(M)$$

are equal.

The proof of this propositon is given below. First, we need to make some remarks. For $t \in [0, 1]$, consider the inclusions i_t given by

$$i_t(p) = (p, t)$$

for $p \in M$, and consider the natural projection $\pi : M \times [0,1] \to M$ given by $\pi(p,t) = p$. Then, obviously,

$$\pi \circ i_t = \mathrm{id}_M$$

implying that

$$i_t^* \pi^* = \mathrm{id}$$
 in $\Omega^k(M)$ and $H^k_{\mathrm{dB}}(M)$

We consider the projection $t: M \times [0,1] \to [0,1]$. Then there exists a "vertical" vector field $\frac{\partial}{\partial t}$ and a 1-form dt. Note that ker $d\pi$ is spanned by $\frac{\partial}{\partial t}$.

0.1.2 Lemma Let $\omega \in \Omega^k(M \times [0,1])$. Then we can write

$$(0.1.3)\qquad \qquad \omega = \zeta + dt \wedge \eta$$

where $\zeta \in \Omega^k(M \times [0,1])$ has the property that it vanishes if some of its arguments belongs to ker $d\pi$, and $\eta \in \Omega^{k-1}(M \times [0,1])$ has the same property.

Proof. Set $\eta = i_{\frac{\partial}{\partial t}}\omega$ and $\zeta = \omega - dt \wedge \eta$. Since

$$i_{\frac{\partial}{\partial t}}\eta = i_{\frac{\partial}{\partial t}}i_{\frac{\partial}{\partial t}}\omega = 0,$$

it is clear that η has the claimed property. Similarly,

$$\begin{split} i_{\frac{\partial}{\partial t}}\zeta &= i_{\frac{\partial}{\partial t}}\omega - i_{\frac{\partial}{\partial t}}(dt \wedge \eta) \\ &= \eta - i_{\frac{\partial}{\partial t}}dt \wedge \eta + dt \wedge i_{\frac{\partial}{\partial t}}\eta \\ &= \eta - \eta + 0 \\ &= 0, \end{split}$$

as desired.

We define the homotopy operator

$$H_k: \Omega^k(M \times [0,1]) \to \Omega^{k-1}(M)$$

by the formula

$$(H_k\omega)_p(v_1,\ldots,v_{k-1}) = \int_0^1 \eta_{(p,t)}(di_t(v_1),\ldots,di_i(v_{k-1})) dt,$$

where ω is decomposed as in (0.1.3) and $p \in M, v_1, \ldots, v_{k-1} \in T_p M$. Note that H_k is "integration along the fiber of π ". For simplicity, we henceforth drop the subscript and just write H for the homotopy operator.

Proof of Proposition 0.1.1. Let $\omega \in H^k_{dB}(M \times [0,1])$. We first claim that

(0.1.4)
$$dH\omega + Hd\omega = i_1^*\omega - i_0^*\omega.$$

The proof is by direct computation: since this is a pointwise identity, we can work in a coordinate system. Let (U, x_1, \ldots, x_n) be a coordinate system in M. Then $(U \times [0, 1], x_1 \circ \pi, \ldots, x_n \circ \pi, t)$ is a coordinate system in $M \times [0, 1]$ and we can write

$$\omega|_{U \times [0,1]} = \sum_{I} a_{I} dx_{I} + dt \wedge \sum_{J} b_{J} dx_{J}$$

where a_i, b_J are smooth functions on $U \times [0, 1]$ and I, J are increasing multi-indices. In $U \times [0, 1]$, we have:

$$H\omega = \sum_{J} \left(\int_{0}^{1} b_{J} dt \right) dx_{J},$$
$$dH\omega = \sum_{J,i} \left(\int_{0}^{1} \frac{\partial b_{J}}{\partial x_{i}} dt \right) dx_{i} \wedge dx_{J},$$
$$d\omega = \sum_{I,i} \frac{\partial a_{I}}{\partial x_{i}} dx_{i} \wedge dx_{I} + \sum_{I} \frac{\partial a_{I}}{\partial t} dt \wedge dx_{I} - dt \wedge \sum_{J,i} \frac{\partial b_{J}}{\partial x_{i}} dx_{i} \wedge dx_{J},$$
$$Hd\omega = \sum_{I} \left(\int_{0}^{1} \frac{\partial a_{I}}{\partial t} dt \right) dx_{I} - \sum_{J,i} \left(\int_{0}^{1} \frac{\partial b_{J}}{\partial x_{i}} dt \right) dx_{i} \wedge dx_{J}.$$

It follows that

$$dH\omega + Hd\omega|_{p} = \sum_{I} \left(\int_{0}^{1} \frac{\partial a_{I}}{\partial t}(p,t) dt \right) dx_{I}$$
$$= \sum_{I} (a_{I}(p,1) - a_{I}(p,0)) dx_{I}$$
$$= i_{1}^{*} \omega - i_{0}^{*} \omega|_{p},$$

as claimed.

Suppose now that $F: M \times [0,1] \to N$ is a homotopy between f and g. Let α be a closed k-form in N representing the cohomology class $[\alpha] \in H^K_{\mathrm{dR}}(N)$. Applying identity (0.1.4) to $\omega = F^* \alpha$ yields

$$dHF^*\alpha + HF^*d\alpha = i_1^*F^*\alpha - i_0^*F^*\alpha.$$

Since $d\alpha = 0$ and $F \circ i_0 = f$, $F \circ i_1 = g$, we get

$$d\left(HF^*\alpha\right) = g^*\alpha - f^*\alpha.$$

Hence $g^*\alpha$ and $f^*\alpha$ are cohomologous.

2

0.2 Hairy ball theorem

Consider Euclidean space \mathbf{R}^{n+1} with coordinates (x_0, x_1, \dots, x_n) and the unit sphere $\iota : S^n \to \mathbf{R}^{n+1}$. Consider the *n*-form in \mathbf{R}^{n+1}

$$\omega = \sum_{i=0}^{n} (-1)^{i} x_{i} dx_{0} \wedge \dots \wedge \widehat{dx_{i}} \wedge \dots dx_{n}.$$

Note that ω vanishes only at the origin. In particular,

(0.2.1)
$$\alpha = \iota^* \omega = \sum_{i=0}^n (-1)^i (x_i \circ \iota) d(x_0 \circ \iota) \wedge \cdots \widehat{d(x_i \circ \iota)} \wedge \cdots d(x_n \circ \iota)$$

is a nowhere vanishing *n*-form on S^n , hence it defines an orientation there. Of course,

$$d\omega = (n+1)dx_0 \wedge dx_1 \wedge \dots \wedge dx_n$$

and

$$\int_{S^n} \alpha = \int_{S^n} \omega = \int_{\bar{B}^n} d\omega = (n+1) \operatorname{vol}(\bar{B}^n) > 0$$

(where the orientation of S^n is induced from \bar{B}^n) so α is not exact by Stokes theorem. Thus $[\alpha] \neq 0$ in $H^n_{dB}(S^n)$.

In the sequel, we consider n = 2m.

0.2.2 Theorem Let X be a smooth vector field on S^{2m} . Then there exists $p \in S^{2m}$ such that $X_p = 0$. In other words, every smooth vector field on an even-dimensional sphere has a zero.

Proof. Suppose, on the contrary, that X never vanishes. By rescaling, we may assume that X is a unit vector field with respect to the metric induced from Euclidean space. Set

$$F_t: S^{2m} \to S^{2m}, \quad F_t(p) = \cos t \, x + \sin t \, X(p).$$

It is clear that F_t defines a homotopy between the identity map and the antipodal map of S^{2m} :

$$F_0 = \mathrm{id}_{S^{2m}}$$
 and $F_\pi = -\mathrm{id}_{S^{2m}}$.

Note that

$$F_{\pi}^*(x_i \circ \iota) = -x_i \circ \iota.$$

It follows that

$$F_{\pi}^*\alpha = (-1)^{2m+1}\alpha = -\alpha.$$

On the other hand,

$$F_0^* \alpha = \alpha$$

and by Proposition 0.1.1, $[F_0^*\alpha] = [F_\pi^*\alpha]$, which contradicts the fact that $[\alpha] \neq 0$.

0.2.3 Remark The theorem can be extended to the case of continuous vector fields by using an approximation result.

0.3 The smooth Brouwer fixed point theorem

Let \bar{B}^n be the closed ball in \mathbb{R}^n , and denote its boundary by $\partial \bar{B}^n$; of course, $\partial \bar{B}^n$ is diffeomorphic to S^{n-1} . We first prove

0.3.1 Lemma There exists no smooth retraction $r : \bar{B}^n \to \partial \bar{B}^n$ (that is, there exists no smooth map $r : \bar{B}^n \to \partial \bar{B}^n$ whose restriction to $\partial \bar{B}^n$ is the identity).

Proof. The case n = 1 is easy as the closed interval \bar{B}^1 is connected and its boundary is disconnected. Assume $n \ge 2$ and suppose, to the contrary, that such a retraction r exists. Recall that n-form α defined in (0.2.1). Since r is the identity along $\partial \bar{B}^n$,

$$\int_{\partial \bar{B}^n} r^* \alpha = \int_{\partial \bar{B}^n} \alpha \neq 0.$$

On the other hand, by Stokes theorem,

$$\int_{\partial \bar{B}^n} r^* \alpha = \int_{\bar{B}^n} dr^* \alpha = \int_{\bar{B}^n} r^* d\alpha = 0,$$

since $d\alpha = 0$, which is a contradiction.

0.3.2 Theorem Let $f: \overline{B}^n \to \overline{B}^n$ be a smooth map. Then there exists $p \in \overline{B}^n$ such that f(p) = p. In other words, every smooth self-map of the closed n-ball admits a fixed point.

Proof. Suppose, on the contrary, that $f(x) \neq x$ for all $x \in \overline{B}^n$. The half-line originating at x and going through f(x) meets $\partial \overline{B}^n$ at a unique point; call it r(x). It is easy to see that this defines a smooth retraction $r: \overline{B}^n \to \partial \overline{B}^n$ which is prohibited by Lemma 0.3.1.

0.3.3 Remark The theorem is not true in the case of the open ball B^n , as is easily seen.