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Foreword

The concept of smooth manifold is ubiquitous in Mathematics. Indeed
smooth manifolds appear as Riemannian manifolds in differential geom-
etry, space-times in general relativity, phase spaces and energy levels in
mechanics, domains of definition of ODE’s in dynamical systems, Riemann
surfaces in theory of complex analytic functions, Lie groups in algebra and
geometry..., to name a few instances.

The notion took some time to evolve until it reached its present form in
H. Whitney’s celebrated Annals of Mathematics paper in 1936. Whitney’s
paper in fact represents a culmination of diverse historical developments
which took place separately, each in a different domain, all striving to make
the passage from the local to the global.

From the modern point of view, the initial goal of introducing smooth
manifolds is to generalize the methods and results of differential and in-
tegral calculus, in special, the inverse and implicit function theorems, the
theorem on existence, uniqueness and regularity of ODE’s and Stokes’ the-
orem. As usual in Mathematics, once introduced such objects start to atract
interest on their own and new structure is uncovered. The subject of dif-
ferential topology studies smooth manifolds per se. Many important results
about the topology of smooth manifolds were obtained in the 1950’s and
1960’s in the high dimensional range. For instance, there exist topological
manifolds admitting several non-diffeomorphic smooth structures (Milnor,
1956, in the case of S7), and there exist topological manifolds admitting no
smooth strucuture at all (Kervaire, 1961). Moreover the Poincaré conjecture
in dimensions bigger than 4 was proved independently by Stallings and
Smale in the 1960’s. On the other hand, the topology of compact surfaces is
a classical subject already tackled in the nineteenth century; the very impor-
tant case of dimension 3 has seen tremendous development after the works
of Thurston (late 1970’s), Hamilton (1981) and Perelman (2003), and con-
tinues to attract a lot of attention; and the case of dimension 4, despite the
breakthroughs of Donaldson and Freedman in the 1980’s, is largely terra
incognita.

The aim of these notes is much more modest. Their contents cover,
with some looseness, the syllabus of the course “Differentiable manifolds

1ii



iv FOREWORD

and Lie groups” that I taught at the Graduate Program of the University
of Sao Paulo in 2001, 2008, 2013 and 2015. Chapter 1 introduces the basic
language of smooth manifolds, culminating with the Frobenius theorem.
Chapter 2 introduces the basic language of tensors. The most important
construction there is perhaps the exterior derivative of differential forms.
Chapter 3 is a first encounter with Lie groups and their Lie algebras, in
which also homogeneous manifolds are briefly discussed. Finally, Chap-
ter 4 is about integration on manifolds and explains Stokes” theorem, de
Rham cohomology and some rudiments of differential topology. Routine
exercises are scattered throughout the text, which aim to help the reader
digest the material. More elaborate problems can be found in the final sec-
tion of each chapter. Needless to say, working arduously in problems is a
necessary (but not sufficient) condition to advance one’s comprehension of
a mathematical theory.

I am indebted to the (dozens of) graduate students who took my courses
and impelled me to write this set of notes. Special thanks go to Dr. Pedro
Ziihlke whose careful reading and suggestions has helped improve the text.
Any remaining errors are of course my own fault.

Sio Paulo, December 2015
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CHAPTER 1

Smooth manifolds

In order to motivate the definition of abstract smooth manifold, we first
define submanifolds of Euclidean spaces. Recall from vector calculus and
differential geometry the ideas of parametrizations and inverse images of
regular values.

1.1 Submanifolds of Euclidean spaces

A smoothmap f: U — R"t* where U ¢ R"is open, is called an immersion
at p, where p € U, if df, : R" — R is injective. f is called simply an
immersion if it is an immersion everywhere. An injective immersion will be
called a parametrization.

A smooth map F' : W — RF, where W c R ig open, is called a
submersion at p, where p € W, if df,, : R"* — RF is surjective. Fis called
simply a submersion if it is a submersion everywhere. For zy € R¥, if F' is
a submersion along the level set F'~1(z), then 2 is called a regular value
of F (in particular, a point zy € R* not in the image of F is always a regular
value!).

Images of parametrizations and inverse images of regular values are
thus candidates to be submanifolds of Euclidean spaces. Next we would
like to explain why the second class has stronger properties than the first
one. The argument involves the implicit function theorem, and how it is
proved to be a consequence of the inverse function theorem.

Assume then zj is a regular value of F' as above and F~Y(%) is non-
empty; write M for this set and consider p € M. Then dF), is surjective and,
up to relabeling the coordinates, we may assume that (d2F'),, which is the
restriction of dF}, to {0} ® R* ¢ R™*, is an isomorphism onto R*. Write
p = (x0,y0) where zy € R", yp € R”. Define a smooth map

W — RVF ®(z,y) = (z,F(z,y) — 20)

Then d®,, ) is easily seen to be an isomorphism, so the inverse function
theorem implies that there exist open neighborhoods U, V of xy, yo in R",

1



2 CHAPTERI1. SMOOTH MANIFOLDS

Figure 1.1: A non-embedded submanifold of R?.

RF, respectively, such that ® is a diffeomorphism of U x V onto an open
subset of R"**, ie. ® is a smooth bijective map onto its image and the
inverse map is also smooth. Now the fundamental fact is that

OMNUxV))=R"x{0})Nn®U x V),

as it follows from the form of ®; namely, ® “rectifies” M.

Let o : M N (U x V) — R" be the restriction of ®. Then ! is the
restriction of ® to R" and thus smooth. It also follows from the above
calculation that M N (U x V') is exactly the graph of the smoothmap f : U —
V, satisfying f(xo) = yo, given by f = projrs o ¢ 1. Another way to put it
is that M N (U x V) is the image of a parametrization ¢~ : o(MN(UxV)) C
R" — R""* which is a homeomorphism onto its image, where the latter is
equipped with the topology induced from R™**.

1.1.1 Definition (i) A subset M/ ¢ R will be called a embedded submani-
fold of dimension n of R" " if for every p € M, there exists a diffeomorphism
® from an open neighborhood U of p in R"™* onto its image such that
O(MNU) = (R"x{0})N®(U). In this case we will say that (U, ®) is a local
chart of R adapted to M.

(i) A parametrized submanifold of dimension n of R"** is a pair (U, f)
where U C R"isopenand f: U — R"* is an injective immersion.

1.1.2 Example Let (R, f) be a parametrized submanifold of dimension 1
of R?, where f : R — R? has image M described in Figure 1.1. Then M is
non-embedded. In fact no connected neighborhood of p can be homeomor-
phic to an interval of R (restrict such a homeomorphism to the complement
of {p} to get a contradiction). Note that f is not a homeomorphism onto its
image.

1.1.3 Exercise Prove that the graph of a smooth map f : U — R”*, where
U C R" is open, is an embedded submanifold of dimension n of R TF,
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1.1.4 Exercise Let f, g : (0,27) — R? be defined by
f(t) = (sint,sint cost), g(t) = (sint, —sint cost).

Check that f, g are injective immersions with the same image.
Sketch a drawing of their image.

Write a formula for g~ o f : (0,27) — (0,27).

Deduce that the identity map id : im f — img is not continuous,
where im f and im ¢ are equipped with the topology induced from R
via f and g, respectively.

&0 =R

The algebra C°°(M) of real smooth functions on M
Let M be an embedded submanifold of R"**.

1.1.5 Definition A function f : M — R is said to be smooth at p € M if
fo® 1:®(U)NR™ — Ris asmooth function for some adapted local chart
(U, ®) around p.

1.1.6 Remark (i) The condition is independent of the choice of adapted lo-
cal chart around p. Indeed if (V, ®) is another one,

fo® ' =(fo¥ o (Vo)

where Vo ®~1: ®(UNV) — ¥(UNYV) is a diffeomorphism and the claim
follows from the the chain rule for smooth maps between Euclidean spaces.
(ii) A smooth function on M is automatically continuous.
(iii) Let F be a smooth function defined on an open neighborhood of p
in R™™*. The restriction of F to M is smooth at p.

1.2 Definition of abstract smooth manifold

Let M be a topological space. A local chart of M is a pair (U, ¢), where U
is an open subset of M and ¢ is a homeomorphism from U onto an open
subset of R". A local chart ¢ : U — R" introduces coordinates (z1, ..., x,)
on U, namely, the component functions of ¢, and that is why (U, ¢) is also
called a system of local coordinates on M.

A (topological) atlas for M is a family {(U,, pq)} of local charts of M,
where the dimension n of the Euclidean space is fixed, whose domains
cover M, namely, | JU, = M. If M admits an atlas, we say that M is lo-
cally modeled on R™ and M is a topological manifold.

A smooth atlas is an atlas whose local charts satisfy the additional com-
patibility condition:

(1.2.1) 030 0s"  pa(UaNUs) = 0a(Us NUp)
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is smooth, for all o, 5. A smooth atlas A defines a notion of smooth func-
tion on M as above, namely, a function f : M — R is smooth if f o o~ ! :
©(U) — Rissmooth for all (U, p) € A. We say that two atlas A, BB for M are
equivalent if the local charts of one are compatible with those of the other,
namely, 1) o ¢~ is smooth for all (U, ) € A, (V,1) € B. In this case, it is
obvious that .4 and B define the same notion of smooth function on M.

A smooth structure on M is an equivalence class [A] of smooth atlases
on M. Finally, a smooth manifold is a topological space M equipped with
a smooth structure [A]. In order to be able to do interesting analysis on
M, we shall assume, as usual, that the topology of M is Hausdorff and second
countable.

1.2.2 Remark (a) It follows from general results in topology that (smooth)
manifolds are metrizable. Indeed, manifols are locally Euclidean and thus
locally compact. A locally compact Hausdorff space is (completely) reg-
ular, and the Urysohn metrization theorem states that a second countable
regular space is metrizable.

(b) The condition of second countability also rules out pathologies of
the following kind. Consider R? with the topology with basis of open sets
{(a,b) x {c} | a,b, ¢ € R, a < b}. This topology is Hausdorff but not sec-
ond countable, and it is compatible with a structure of smooth manifold of
dimension 1 (a continuum of real lines)!

1.2.3 Exercise Let M be a topological space. Prove that two smooth atlases
A and B are equivalent if and only if their union A U B is a smooth atlas.
Deduce that every equivalence class of smooth atlases for M contains a
unique representative which is maximal (i.e. not properly contained in any
other smooth atlas in the same equivalence class).

Let M, N be smooth manifolds. A map f : M — N is called smooth if
for every p € M, there exist local charts (U, ¢), (V,4) of M, N around p,
f(p), resp., such that f(U) C Vand ¢ o fop™t:pU) — (V) is smooth.

1.2.4 Remark (i) The definition is independent of the choice of local charts.
(ii) The definition is local in the sense that f : M — N is smooth if
and only if its restriction to an open subset U of M is smooth (cf. Exam-
ple 1.2.7(vi)).
(iii) A smooth map M — N is automatically continuous.

We have completed the definition of the category DIFF, whose objects
are the smooth manifolds and whose morphisms are the smooth maps. An
isomorphism in this category is usually called a diffeomorphism.

1.2.5 Exercise Let M be a smooth manifold with smooth atlas .A. Prove that
any local chart (U, ¢) € Ais a diffeomorphism onto its image. Conversely,
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proveany map 7 : W — R", where n = dim M and W C M is open, which
is a diffeomorphism onto its image belongs to a smooth atlas equivalent to
A; in particular, (W, 7) € Aif A is maximal.

1.2.6 Remark In practice, explicitly written down atlases are finite (com-
pare Problem 1 and Example 1.2.9). However, in view of the last asser-
tion in Exercise 1.2.5, it is often convenient to implicitly represent a smooth
structure by a maximal atlas, and we shall be doing that.

1.2.7 Examples (i) R" has a canonical atlas consisting only of one local
chart, namely, the identity map, which in fact is a global chart. This is the
standard smooth structure on R" with respect to which all definitions coin-
cide with the usual ones. Unless explicit mention, we will always consider
R’ with this smooth structure.

(ii) Any finite dimensional real vector space V' has a canonical structure
of smooth manifold. In fact a linear isomorphism V' = R" defines a global
chart and thus an atlas, and two such atlases are always equivalent since
the transition map between their global charts is a linear isomorphism of
R"™ and hence smooth.

(iii) Submanifolds of Euclidean spaces (Definition 1.1.1(i)) are smooth
manifolds. Namely, atlases are construted by using restrictions of adapted
charts. Note that the compatibility condition (1.2.1) is automatically satis-
fied.

(iv) Graphs of smooth maps defined on open subsets of R" with values
on R"** are smooth manifolds (cf. Exercise 1.1.3 and (iii)). More generally,
a subset M of R""* with the property that every one of its points admits an
open neighborhood in M which is a graph as above is a smooth manifold.

(v) It follows from (iv) that the n-sphere

S"={(x1,..,wnp1) ER™ a4 4ap =1}

is a smooth manifold.

(vi) If A is an atlas for M and V' C M is open then Aly := {(V N
U,olvau) : (U, ) € A} is an atlas for V. It follows that any open subset of
a smooth manifold is a smooth manifold.

(vii) If M, N are smooth manifolds with atlases A, B, resp., then A x B
is an atlas for the Cartesian product M x N with the product topology,
and hence M x N is canonically a smooth manifold of dimension dim M +
dim N.

(viii) It follows from (iv) and (vi) that the n-torus

T =8 x ... x §* (n factors)

is a smooth manifold.
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(ix) The general linear group GL(n, R) is the set of all n x n non-singular
real matrices. Since the set of n x n real matrices can be identified with a R
and as such the determinant becomes a continuous function, GL(n, R) can
be viewed as the open subset of R where the determinant does not vanish

and hence acquires the structure of a smooth manifold of dimension n2.

The following two examples deserve a separate discussion.

1.2.8 Example The map f : R — R given by f(z) = 2? is a homeomor-
phism, so it defines a local chart around any point of R and we can use it
to define an atlas {f} for R; denote the resulting smooth manifold by R.
We claim that R # R as smooth manifolds, because C°(R) # C*®(R).
In fact, id : R — R is obviously smooth, but id : R — R is not, because
ido f~1 : R — R maps z to /7 so it is not differentiable at 0. On the other
hand, R is diffeomorphic to R. Indeed f : R — R defines a diffeomor-
phism since its local representationid o f o f ~lis the identity.

1.2.9 Example The real projective space, denoted RP", as a set consists of all
one-dimensional subspaces of R"*!. We introduce a structure of smooth
manifold of dimension n on RP™. Each subspace is spanned by a non-zero
vector v € R™"!. Let U; be the subset of RP" specified by the condition
that the i-th coordinate of v is not zero. Then {U; }” 1 covers RP". Each
line in U; meets the hyperplane z; = 1 in exactly one point, so there is a
bijective map ¢; : U; — R™ C R"™!. Fori # j, p;(U; N U;) C R" ¢ R" " is
precisely the open subset of the hyperplane x; = 1 defined by z; # 0, and

piopi i {reR"™ iay =1, 2; £0) = {z e R 12y =1, a; # 0}

is the map
1
V= —u,
Zj
thus smooth. So far there is no topology in RP", and we introduce one by
declaring

UnH{% (W) : W C ¢i(U;) = R" is open}

to be a basis of open sets. It is clear that @ and M are open sets (since each
U; is open) and we have only to check that finite intersections of open sets
are open. Let W; C ¢;(U;) and W; C ¢;(U;) be open. Then

o LW N (W) = o5t (i { (Wi Ngi(Ui N Uy) NW; )

Since ¢;jp; ! is a homeomorphism, a necessary and sufficient condition for
the left hand side to describe an open set for all i, j, is that ¢;(U; N U;) be
open for all 4, j, and this does occur in this example. Now the topology is
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well defined, second countable, and the ; are homeomorhisms onto their
images. It is also clear that for £ € RP" the sets

{{ eRP:£(L,0) < €}

for e > 0 are open neighborhoods of /. It follows that the topology is Haus-
dorff.

The argument in Example 1.2.9 is immediately generalized to prove the
following proposition.

1.2.10 Proposition Let M be a set and let n be a non-negative integer. A count-
able collection {(Uy, o)} of injective maps ¢ : U, — R™ whose domains cover
M satisfying

a. vo(Uy) is open for all a;

b. pa(Us NUR) is open for all o, 3;

c. paoat pa(Ua NUg) = @5(Us N Ug) is smooth for all o, f3;
defines a second countable topology and smooth structure on M (the Hausdorff
condition is not automatic and must be checked in each case).

1.3 Tangent space

As a motivation, we first discuss the case of an embedded submanifold M
of R"**. Fix p € M and take an adapted local chart (U, ®) around p. Recall
that we get a parametrization of M around p by setting ¢ := projgr. o®|yrnv
and taking

“LR"NOU) —» R

It is then natural to define the tangent space of M at p to be the image of the
differential of the parametrization, namely,

TPM = d(gp_l)go(p) (Rn)

If (V, ¥) is another adapted local chart around p, ¢ := projr» o ¥|yny and
Y~ R"N ¥ (V) — R is the associated parametrization, then

A ey R™) = AW )y d(e™ e (R™)
= d(?ﬁ )Lp(p)(Rn)
since d(yo 1) : R" — R™ is an isomorphism. It follows that T, M is

well defined as a subspace of dimension n of R"**.
Note that we have the following situation:

vel,M

dtp %p

aGRnﬁleRn
d(pe )<pp
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Namely, the tangent vector v € T),M is represented by two different vectors
a, b € R" which are related by the differential of the transition map. We
can use this idea to generalize the construction of the tangent space to an
abstract smooth manifold.

Let M be a smooth manifold of dimension n, and fix p € M. Suppose
that A is an atlas defining the smooth structure of M. The tangent space of
M at pis the set T, M of all pairs (a, p) — where a € R" and (U, ¢) € Aisa
local chart around p — quotiented by the equivalence relation

(a,) ~ (b,7) ifand onlyif d(¢)o 8071%0(1))(&) =b.

It follows from the chain rule in R" that this is indeed an equivalence re-
lation, and we denote the equivalence class of (a, ) by [a,¢]. Each such
equivalence class is called a tangent vector at p. For a fixed local chart (U, ¢)
around p, the map

ac€R"—[a,¢] € T,M

is a bijection, and it follows from the linearity of d(y o ¢™1),(,) that we
can use it to transfer the vector space structure of R" to 7),M. Note that
dim T, M = dim M.

1.3.1 Exercise Let M be a smooth manifold and let V' C M be an open
subset. Prove that there is a canonical isomorphism 7,V = T,M for all
peV.

Let (U, = (21,...,2y)) bealocal chart of M, and denoteby {e;,...,e,}
the canonical basis of R". The coordinate vectors at p are with respect to this
chart are defined to be

Al

axip_ i P
Note that

0 0
(132) {a_m%p}

is a basis of T),M.
In the case of R", for each p € R" there is a canonical isomorphism
R" — T,R" given by

(1.3.3) a— [a,id],

where id is the identity map of R". Usually we will make this identification
without further comment. In particular, 7,R" and T,R" are canonically
isomorphic for every p, ¢ € R". In the case of a general smooth manifold
M, obviously there are no such canonical isomorphisms. Occasionally we
shall denote by (r1,...,,) the coordinates on R" corresponding to id.
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Tangent vectors as directional derivatives

Let M be a smooth manifold, and fix a point p € M. For each tangent vector
v € T,M of the form v = [a, |, where a € R" and (U, ¢) is a local chart of
M, and for each f € C*°(U), we define the directional derivative of f in the
direction of v to be the real number

W) = 4 (For)el) +ta)
= d(fog)a).

It is a simple consequence of the chain rule that this definition does not
depend on the choice of representative of v.

In the case of R", % ‘p f is simply the partial derivative in the direction
e;, the ith vector in the canonical basis of R". In general, if p = (z1,...,2y,),

then z; 0 o~ ! =r;, so

v(x;) = d(r;)p(p) (@) = ai,

where a = Y7 | a;e;. Since v = [a, p] = 31" | aie;, ¢, it follows that

(1.3.4) v = Zn: v(;) 0

o0x;
i=1 ’

,
If v is a coordinate vector % and f € C*°(U), we also write

0
(31‘2‘

_9f

p Ox;

.
As a particular case of (1.3.4), take now v to be a coordinate vector of an-
other local chart (V, ¢ = (y1,...,y,)) around p. Then

Ayjlp ZZ1 dy;

0

pOx;

p

Note that the preceding formula shows that even if z; = y; we do not need

9 _ 9
to have Do = Dy

The differential

Let f : M — N be a smooth map between smooth manifolds. Fix a point
p € M, and local charts (U, ) of M around p, and (V,%) of N around
q = f(p). The differential or tangent map of f at p is the linear map

dfp : T,M — Ty N
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given by
[a, @] = [d(W 0 f o o™ gy (@), Y.
Itis easy to check that this definition does not depend on the choices of local

charts. Using the identification (1.3.3), one checks that dy, : T,M — R"
and dy, : T,M — R" are linear isomorphisms and

dfp = (dwq)_l © d(ﬂ) © f © 90_1)90(]2) 0 d@p'

1.3.5 Proposition (Chain rule) Let M, N, P be smooth manifolds. If f : M —
N and g : N — P are smooth maps, then go f : M — P is a smooth map and

d(go f)p=dgsp) o dfy
forp e M.

1.3.6 Exercise Prove Proposition 1.3.5.

If fe C®°(M,N), g e C®°(N)and v € T,M, then it is a simple matter
of unravelling the definitions to check that

dfp(v)(g) = v(g o f).
Now (1.3.4) together with this equation gives that

0 - 0 0
dfp <8—x] p) = ;dfp (8—95]‘;)) (yz‘)a—yi

_ Zn:a(yiof)‘ 0

(95'3]' pa—yz‘

f(p)

fp)

(2521

is called the Jacobian matrix of f at p relative to the given coordinate systems.
Observe that the chain rule (Proposition 1.3.5) is equivalent to saying that
the Jacobian matrix of go f at a point is the product of the Jacobian matrices
of g and f at the appropriate points.

Consider now the case in which N = R and f € C*°(M). Then df), :
T,M — Trp) R, and upon the identification between T f(p)R and R, we
easily see that df,(v) = v(f). Applying this to f = x;, where (U,¢ =
(x1,...,xy,)) is a local chart around p, and using again (1.3.4) shows that

The matrix

(1.3.7) {dxilp, ... dzylp}
is the basis of T, M* dual of the basis (1.3.2), and hence

= 0 " of
dfy = dep (%‘p) dx;lp = = dwip.
i=1 !

ox;
i=1 v



1.3. TANGENT SPACE 11

Finally, we discuss smooth curves on M. A smooth curve in M is simply
a smooth map v : (a,b) - M where (a,b) is an interval of R. One can
also consider smooth curves v in M defined on a closed interval [a, b]. This
simply means that v admits a smooth extension to an open interval (a —
¢,b+ ¢) for some € > 0.

If v : (a,b) — M is a smooth curve, the tangent vector to v att € (a, b) is

. )
F(t) = dy (g() € TyumM,

where 7 is the canonical coordinate of R. Note that an arbitrary vector
v € T,M can be considered to be the tangent vector at 0 to the curve (t) =
¢~ 1(ta), where (U, ¢) is a local chart around p with (p) = 0 and dy,(v) =
a.

In the case in which M = R", upon identifying T, R" and R", it is
easily seen that

0 = i AR =0,

The inverse function theorem

It is now straightforward to state and prove the inverse function theorem
for smooth manifolds.

1.3.8 Theorem (Inverse function theorem) Let f : M — N be a smooth map
between two smooth manifolds M, N, and let p € M and q = f(p). If df, :
T,M — T,N is an isomorphism, then there exists an open neighborhood W of p
such that f(W) is an open neighborhood of q and f restricts to a diffeomorphism
from W onto f(W).

Proof. The proof is really a transposition of the inverse function theorem
for smooth mappings between Euclidean spaces to manifolds using local
charts. Note that M and N have the same dimension, say, n. Take local
charts (U, ¢) of M around p and (V, 1) of N around ¢ such that f(U) C V.
Set v = ¢ o f o ! Then day, : R — R" is an isomorphism. By the
inverse function theorem for smooth mappings of R", there exists an open
subset W C o(U) with (p) € W such that (V) is an open neighborhood
of 9)(¢q) and « restricts to a diffeomorphism from W onto o(W). It follows
that f = ¢! o a o ¢ is a diffeomorphism from the open neighborhood
W = =1 (W) of p onto the open neighborhood v~ (a(W)) of g. O

A smooth map f : M — N satisfying the conclusion of Theorem 1.3.8
at a point p € M is called a local diffeomorphism at p. It follows from the
above and the chain rule that f is a local diffeomorphism at p if and only if
dfp : T,M — T, N is an isomorphism. In this case, there exist local charts
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(U,¢) of M around p and (V,%) of N around f(p) such that the local rep-
resentation ¢ o f o ! of f is the identity, owing to Problem 1.2.5, after
enlarging the atlas of M, if necessary.

1.3.9 Exercise Let f : M — N be a smooth bijective map that is a local
diffeomorphism everywhere. Show that f is a diffeomorphism.

1.4 Submanifolds of smooth manifolds

Similar to the situation of submanifolds of Euclidean spaces, some man-
ifolds are contained in other manifolds in a natural way (compare Defi-
nition 1.1.1). Let N be a smooth manifold of dimension n + k. A subset
M of N is called an embedded submanifold of N of dimension n if, for every
p € M, there exists a local chart (V,¢) of N such thatp € Vand ¢ (VNM) =
¥(V)NR", where we identify R" with R" x {0} ¢ R" xR = R"**. We say
that (V,¢) is a local chart of N adapted to M. An embedded submanifold M
of N is a smooth manifold in its own right, with respect to the relative topol-
ogy, in a canonical way. In fact an atlas of M is furnished by the restrictions
to M of those local charts of N that are adapted to M. Namely, if {(V,, 94)}
is an atlas of NV consisting of adapted charts, then {(V, N M, 4 |v,~n)} be-
comes an atlas of M. Note that the compatibility condition for the local
charts of M follows automatically from the compatibility condition for N.

1.4.1 Exercise Let N be a smooth manifold and let M be an embedded sub-
manifold of N. Prove that 7),M is canonically isomorphic to a subspace of
T,N foreveryp € M.

Immersions and embeddings

Another class of submanifolds can be introduced as follows. Let f : M —
N be a smooth map between smooth manifolds. The map f is called an
immersion at p € M if dfy, : T, M — Ty, N is injective. If f is an immersion
everywhere it is simply called an immersion. Now call the pair (M, f) an
immersed submanifold or simply a submanifold of N if f : M — N is an
injective immersion.

Let M be an embedded submanifold of N and consider the inclusion ¢ :
M — N. The existence of adapted local charts implies that ¢ can be locally
represented around any point of M by the standard inclusion z — (z,0),
R"” — R"™*. Since this map is an immersion, also ¢ is an immersion. It
follows that (M, ¢) is an immersed submanifold of N. This shows that every
embedded submanifold of a smooth manifold is an immersed submanifold,
but the converse is not true.
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1.4.2 Example Let N be the 2-torus 7% = S! x S! viewed as an embedded
submanifold of R* x R? = R* and consider the smooth map

F:R —RY F(t) = (cos at, sin at, cos bt, sin bt),

where a, b are non-zero real numbers. Note that the image of F' lies in
T2. Denote by (r1,r2,73,74) the coordinates on R, Choosing r;, ; where
i € {1,2} and j € {3,4} gives a system of coordinates defined on an open
subset of T2, and in this way we obtain atlas for T2. Tt follows that the
induced map f : R — T? is smooth. Since N is an embedded submanifold
of R*, we can consider Ty N to be a subspace of R*, and the tangent vector
f'(t) € Tyy N is the usual derivative F'(t). Since f'(t) never vanishes,
f is an immersion. Note that if b/a is an irrational number, then f is an
injective map, so (R, f) is an immersed submanifold which we claim is not
an embedded submanifold of 72. In fact, the assumption on b/a implies
that M is a dense subset of T2, but an embedded submanifold of another
manifold is always locally closed.

We would like to further investigate the gap between immersed sub-
manifolds and embedded submanifolds.

1.4.3 Lemma (Local form of an immersion) Let M and N be smooth mani-
folds of dimensions n and n + k, respectively, and suppose that f : M — N is an
immersion at p € M. Then there exist local charts of M and N such that the local
expression of f at p is the standard inclusion of R™ into R"*F,

Proof. Let (U, ) and (V, 1)) be local charts of M and N around p and
q = f(p), respectively, such that f(U) C V, and set « = ¢ o f o p~L. Then
dogp) + R" — R"™" is injective, so, up to rearranging indices, we can
assume that d(m o a)w(p) = m odayp) : R" — R" is an isomorphism,
where 7; : R""% = R™ x R*¥ — R" is the projection onto the first factor.
By the inverse function theorem, by shrinking U, we can assume that 7 o
is a diffeomorphism from Uy = ¢(U) onto its image Vp; let 5 : Vo — Uy
be its smooth inverse. Now we can describe «(Up) as being the graph of
the smooth map v = moaof : Vp C R" — R, where 1y : R*"* =
R" x R*¥ — R" is the projection onto the second factor. By Exercise 1.1.3,
a(Uy) is a submanifold of R™* and the map 7 : V; x R* — ;) x R given
by 7(z,y) = (z,y—(x)) is a diffeomorphism such that 7(a(Uy)) = Vo x{0}.
Finally, we put ¢ = mioaopand Y =T01, shrinking V' if necessary. Then
(U, $) and (V, ) are local charts, and for z € $(U) = V, we have that

Yofogl(z) = Toyofoplof(r)=Toao0f(z)
7(z,7(2)) = (2,0).
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1.4.4 Proposition If f : M — N is an immersion at p € M, then there exists an
open neighborhood U of p in M such that f|y is injective and f(U) is an embedded
submanifold of N.

Proof. The local injectivity of f at p is an immediate consequence of the
fact that some local expression of f at p is the standard inclusion of R" into
R"* hence, injective. Moreover, in the course of proof of Lemma 1.4.3, we
have produced a local chart (V1)) of N adapted to f(U). O

A smooth map f : M — N is called an embedding if it is an immersion
and a homeomorphism from M onto f(M) with the induced topology.

1.4.5 Proposition Let N be a smooth manifold. A subset P C N is an embedded
submanifold of N if and only if it is the image of an embedding.

Proof. Let f : M — N be an embedding with P = f(M). To prove
that P is an embedded submanifold of N, it suffices to check that it can be
covered by open sets in the relative topology each of which is an embedded
submanifold of N. Owing to Proposition 1.4.4, any point of P lies in a set of
the form f(U), where U is an open subset of M and f(U) is an embedded
submanifold of N. Since f is an open map into P with the relative topology,
f(U) is open in the relative topology and we are done. Conversely, if P is
an embedded submanifold of N, it has the relative topology and thus the
inclusion ¢ : P — N is a homeomorphism onto its image. Moreover, we
have seen above that ¢ is an immersion, whence it is an embedding. O

Recall that a continuous map between locally compact, Hausdorff topo-
logical spaces is called proper if the inverse image of a compact subset of
the target space is a compact subset of the domain. It is known that proper
maps are closed. Also, it is clear that if the domain is compact, then every
continuous map is automatically proper. An embedded submanifold A
of a smooth manifold N is called properly embedded if the inclusion map is

proper.

1.4.6 Proposition If f : M — N is an injective immersion which is also a proper
map, then the image f(M) is a properly embedded submanifold of N.

Proof. Let P = f(M ) have the relative topology. A proper map is closed.
Since f viewed as a map M — P is bijective and closed, it is an open map
and thus a homeomorphism. Due to Proposition 1.4.5, P is an embedded
submanifold of N. The properness of the inclusion P — N clearly follows
from that of f. O

1.4.7 Exercise Give an example of an embedded submanifold of a smooth
manifold which is not properly embedded.
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1.4.8 Exercise Decide whether a closed embedded submanifold of a smooth
manifold is necessarily properly embedded.

Exercise 1.1.4 dealt with a situation in which a smoothmap f: M — N
factors through an immersed submanifold (P, g) of N (namely, f(M) C
g(P)) and the induced map fy : M — P (namely, g o fo = f) is discontinu-
ous.

1.4.9 Proposition Suppose that f : M — N is smooth and (P, g) is an immersed
submanifold of N such that f(M) C g(P). Consider the induced map fo : M —
P that satisfies g o fo = f.

a. If g is an embedding, then fy is continuous.

b. If fo is continuous, then it is smooth.

Proof. (a) In this case g is a homeomorphism onto g(P) with the relative
topology. If V' C P is open, then ¢g(V) = W N g(P) for some open sub-
set W C N. By continuity of f, we have that f; (V) = f; (¢~ (W)) =
f~Y(W) is open in M, hence also f is continuous.

(b) Let p € M and g = fo(p) € P. By Proposition 1.4.4, there exists a
neighborhood U of ¢ and a local chart (V, ) of N adapted to g(U), with
g(U) C V. In particular, there exists a projection 7 from R" onto a subspace
obtained by setting some coordinates equal to 0 such that 7 = T o o gis
a local chart of P around q. Note that f; !(U) is a neighborhood of p in M.
Now

T O f0|f0_1(U) =T O T;Z) o0go f0|f0_1(U) =T O 1][) e} f|f0_1(U)’
and the latter is smooth. O

An immersed submanifold (P, g) of N with the property that f, : M —
P is smooth for every smooth map f : M — N with f(M) C g(P) will be
called an initial submanifold.

1.4.10 Exercise Use Exercise 1.3.9 and Propositions 1.4.5 and 1.4.9 to de-
duce that an embedding f : M — N induces a diffeomorphism from M
onto a submanifold of N.

1.4.11 Exercise For an immersed submanifold (M, f) of N, show that there
is a natural structure of smooth manifold on f(M) and that (f(M),:) is an
immersed submanifold of N, where ¢ : f(M) — N denotes the inclusion.

Submersions

A smoothmap f : M — N is called a submersion at p € M if df, : T,M —
Tty N is surjective. If f is a submersion everywhere it is simply called a
submersion. A point ¢ € N is called a regular value of f if f is a submersion
at all points in f~!(q); otherwise q is called a singular value of f.
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1.4.12 Lemma (Local form of a submersion) Let M an N be smooth mani-
folds of dimensions n + k and k, respectively, and suppose that f : M — N
is a submersion at p € M. Then there exist local charts of M and N such that the
local expression of f at p is the standard projection of R"** onto RE.

Proof. Let (U, ) and (V,) be local charts of M and N around p and
q = f(p), respectively, and set @ = ¢ o f o o~ Then dov, ) : R"* - RF is
surjective, so, up to rearranging indices, we can assume that d(« o L2)¢(p) =
daw(p) o1 : R — RFisan isomorphism, where ¢ : RF - R"" = R"x RF
is the standard inclusion. Define & : ¢(U) € R™ x R* — R" x RF by
a(z,y) = (z,a(z,y)). Since dayy,) otz is an isomorphism, it is clear that
dagp) : R" @ RF — R" @ R* is an isomorphism. By the inverse function
theorem, there exists an open neighborhood Uj of ¢(p) contained in ¢(U)
such that @ is a diffeomorphism from Uj onto its image Vj; let B:Vy— Uy
be its smooth inverse. We put % = & o . Then (¢~ 1(Up), §) is a local chart
of M around p and

Yo fogt(ry) = zbOfOsDjloB(x,y):aOﬁ(w,y)
= modaof(z,y)=y.

0

1.4.13 Proposition Let f : M — N be a smooth map, and let g € N be a regular
value of f such that f~1(q) # @. Then P = f~1(q) is an embedded submanifold
of M of dimension dim M — dim N. Moreover, for p € P we have T, P = ker df),.

Proof. It is enough to construct local charts of M that are adapted to
P and whose domains cover P. So suppose dimM = n + k, dim N = k,
let p € P and consider local charts (W := ¢~ 1(Up), ) and (V,%) as in
Theorem 1.4.12 such that p € U and ¢ € V. We can assume that ¢)(q) = 0.
Now
mop(WNP)=aop(WNP)=1of(WnNP)={0},

so o(WNP) =¢@(W)NR" and thus ¢ is an adapted chart around p. Finally,
the local representation of f at p is the projection R"™* — RF¥. This is a
linear map with kernel R”. It follows that ker df, = (dg™ 1), (R") = T, P.

U

1.4.14 Examples (a) Let A be a non-singular real symmetric matrix of or-
der n + 1 and define f : R"™' — R by f(p) = (Ap,p) where (,) is the
standard Euclidean inner product. Then df, : R""l - Ris given by
df,(v) = 2(Ap,v), soitis surjective if p # 0. It follows that f is a submersion
on R"1\ {0}, and then f~!(r) for » € R is an embedded submanifold of
R™"! of dimension n if it is nonempty. In particular, by taking A to be the
identity matrix we get a manifold structure for S™ which coincides with the
one previously constructed.
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(b) Denote by Sym(n,R) the vector space of real symmetric matrices
of order n, and define f : M(n,R) — Sym(n,R) by f(A) = AA’. This
is map between vector spaces whose local representations components are
quadratic polynomials. It follows that f is smooth and that df4 can be
viewed as a map M(n,R) — Sym(n,R) for all A € M(n,R). We claim
that I is a regular value of f. For the purpose of checking that, we first
compute for A € f~1(I) and B € M (n,R) that

(A+ hB)(A+ hB)t — I

dfa(B) = ,{igg) A
. h(AB! + BA) + h>BB?
= lim
h—0 h
= AB! + BA.

Now given C' € Sym(n,R), we have de(%CA) = (, and this proves that f
is a submersion at 4, as desired. Hence f~!(I) = { A € ML(n,R) | AA' =
I} is an embedded submanifold of M (n, R) of dimension

nn+1) n(n-1)

dim M (n,R) —dimV = n? — SR

Note that f~1(I) is a group with respect to the multiplication of matrices;
it is called the orthogonal group of order n and is usually denoted by O(n).
It is obvious that O(n) C GL(n,R).

We close this section by mentioning a generalization of Proposition 1.4.13.
Let f : M — N be a smooth map and let () be an embedded submanifold
of N. We say that f is transverse to @), in symbols f th Q, if

dfp(TyM) + Ty @ = Ty)N
forevery p € f71(Q).

1.4.15 Exercise Let f : M — N be a smooth map and let ¢ € N. Prove that
f h{¢} if and only if ¢ is a regular value of f.

For an immersed submanifold (M, f) of a smooth manifold N, its codi-
mension is the number dim N — dim M.

1.4.16 Proposition If f : M — N is a smooth map which is transverse to an
embedded submanifold Q of N of codimension k and P = f~1(Q) is non-empty,
then P is an embedded submanifold of M of codimension k. Moreover T,P =

(dfp) "N (T Q) for every p € P.
Proof. For the first assertion, it suffices to check that P is an embedded

submanifold of M in a neighborhod of a point p € P. Let (V,%) be a local
chart of N adapted to @ around ¢ := f(p). Theny : V — R"* and
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P»(VNQ)=vy(V)NR", where n = dim Q. Let o : R""* = R" x RF — RF
be the standard projection and put g = m o1. Theng : V — RFisa
submersion and g~!(0) = V N Q. Moreover

d(go f)p(Tp,M) = dggodfy(T,M)
= dgy(TyN)
Rk;

where, in view of ker dg, = T,(), the second equality follows from the as-
sumption f h Q. Now h :=go f: f74V) — R” is a submersion at p and
R7H0) = 7YV NnQ) = f~YV)N Pand f~1(V) is an open neighborhood
of pin M, so we can apply Proposition 1.4.13. All the assertions follow. [J

As a most important special case, two embedded submanifolds M, P of
N are called transverse, denoted M h P, if the inclusion map ¢ : M — N is
transverse to P. It is easy to see that this is a symmetric relation.

1.4.17 Corollary If M and P are transverse embedded submanifolds of N then
M N P is an embedded submanifold of N and

codim(M N P) = codim(M ) + codim(P).

1.5 Partitions of unity

Many important constructions for smooth manifolds rely on the existence
of smooth partitions of unity. This technique allows for a much greater
flexibility of smooth manifolds as compared, for instance, with real analytic
or complex manifolds.

Bump functions

We start with the remark that the function

eVt ift>0
f“y_{o, ift <0

is smooth everywhere. Therefore the function

f(t)

90 = T fa -

is smooth, flat and equal to 0 on (—o0, 0], and flat and equal to 1 on [1, 4+00).
Finally,

h(t) = g(t +2)g(2 — 1)
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is smooth, flat and equal to 1 on [—1,1] and its support lies in (-2,2); h
is called a bump function. We can also make an n-dimensional version of a
bump function by setting

kE(xy,...,zp) = h(z1) - h(zy),

and we can rescale k by precomposing with z ~ 7!z to have a smooth
function on R" which is flat and equal to 1 on a closed ball of radius r and
with support contained in an open ball of radius 2.

Bump functions are very useful. As one application, note that for a
given smooth manifold M so far we do not know whether the algebra
C>°(M) of smooth functions on M contains functions other than the con-
stants (of course, the components of local charts are smooth, but these are
not globally defined on M). We claim that C*° () is indeed in general huge.
In fact, let (U, ¢) be a local chart of M and take a bump functionk : R" — R
whose support lies in ¢(U). Then

_f koyp(x) ifeU,
f(x)"{ 0 ifzeM\U

is a smooth function on M: this is clear for a point p € U; if p ¢ U, then
we can find a neighborhood V' of p which does not meet the compact set
¢ (supp(k)), so f|lv = 0 and thus f is smooth at p.

Partitions of unity

Let M be a smooth manifold. A partition of unity on M is a collection {p; }icr
of smooth functions on M, where [ is an index set, such that:
(i) pi(p) >0forallp e M andalli € I;

(ii) the collection of supports {supp(p) }ier is locally finite (i.e. every point
of M admits a neighborhood meeting supp(p;) for only finitely many
indices 7);

(iii) > ;c;pi(p) = 1forall p € M (the sum is finite in view of (ii)).
Let {Ua }aca be a cover of M by open sets. We say that a partition of unity
{pitier is subordinate to {U, }ac if for every i € I there is some o € A such
that supp(p;) C U,; and we say {p; }icr is strictly subordinate to {Uq, }aca if
I = A and supp(pq) C U, for every o € A.

Partitions of unity are used to piece together global objects out of local
ones, and conversely to decompose global objects as locally finite sums of
locally defined ones. For instance, suppose {U, }nca is an open cover of M
and {pq }aca is a partition of unity strictly subordinate to {U,}. If we are
given f, € C°(U,) foralla € A, then f = 3 pa fa is a smooth function
on M. Indeed for p € M and a € A, it is true that either p € U, and then
fo is defined at p, or p ¢ U, and then p,(p) = 0. Moreover, since the sum
is locally finite, f is locally the sum of finitely many smooth functions and
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hence smooth. Conversely, if we start with f € C*°(M) then f =3 4 fa
for smooth functions f, with supp(fa) C U,, namely, f, := pof.

1.5.1 Exercise Let C be closed in M and let U be open in M with C C U.
Prove that there exists a smooth function A € C*°(M) such that0 < A < 1,
Mc =1and suppA C U.

If M is compact, it is a lot easier to prove the existence of a partition
of unity subordinate to any given open cover {U,} of M. In fact for each
x € U, we construct as above a bump function A\, which is flat and equal
to 1 on a neighborhood V. of z and whose (compact) support lies in U,,.
Owing to compactness of M, we can extract a finite subcover of {V,} and

thus we get non-negative smooth functions \; := A;, fori = 1,...,n such
that \; is 1 on V,,. In particular, their sum is positive, so
oy
pi =
' Z?:l Ai

fori=1,...,n yields the desired partition of unity.

1.5.2 Theorem (Easy Whitney embedding theorem) Let M be a compact smooth
manifold. Then there exists an embedding of M into R™ for m suffciently big.

Proof. Since M is compact, there exists an open covering {V;}{_; such
that for each i, V; C U; where (U;, ¢;) is a local chart of M. For each i, we
can find p; € C°°(M) such that 0 < p; < 1, p;|y. = 1 and supp p; C U;. Put

_ | pi@)gi(x), ifx el
M@_{o, if v € M\ Us.

Then f; : M — R" is smooth, where n = dim M. Define also smooth
functions

gi=(fip): M - R"™ and g=(g1,...,9a) : M — RV,

It is enough to check that g is an injective immersion. In fact, on the open
set V;, we have that g; = (¢;,1) is an immersion, so g is an immersion.
Further, if g(x) = g(y) for , y € M, then p;(z) = pi(y) and fi(z) = fi(y)
for all i. Take an index j such that p;(z) = p;(y) # 0. Then z, y € U; and
@;(x) = ¢;(y). Due to the injectivity of ¢;, we must have « = y. Hence g is
injective. O

1.5.3 Remark In the noncompact case, one can still construct partitions of
unity and modify the proof of Theorem 1.5.2 to prove that M properly em-
bedds into R™ for some m. Then a standard trick involving Sard’s theorem
and projections into lower dimensional subspaces of R™ allows to find the
bound m < 2n + 1, where n = dim M. A more difficult result, the strong
Whitney embedding theorem asserts that in fact m < 2n.
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In general, a reasonable substitute for compactness is paracompactness.
A topological space is called paracompact if every open covering admits an
open locally finite refinement. It turns out that every locally compact, sec-
ond countable, Hausdorff space is paracompact. Hence manifolds are para-
compact. Now the above argument can be extended to give the following
theorem, for whose proof we refer the reader to [War83].

1.5.4 Theorem (Existence of partitions of unity) Let M be a smooth mani-
fold and let {Uy }aca be an open cover of M. Then there exists a countable parti-
tion of unity {p; : i = 1, 2, 3,...} subordinate to {U,} with supp(p;) compact
for each i. If one does not require compact supports, then there is a partition of
unity {@q aca strictly subordinate to {U, } with at most countably many of the
Pa N0t zero.

1.6 Vector fields

Let M be a smooth manifold. A vector field on M is an assigment of a tan-
gent vector X (p) in T, M forall p € M. Sometimes, we also write X, instead
of X(p). So a vector field is a map X : M — TM where TM = Upen T, M
(disjoint union), and

(1.6.1) moX =id

where 7 : TM — M is the natural projection 7(v) = pif v € T,M. In
account of property (1.6.1), we say that X is a section of T'M.

We shall need to talk about continuity and differentiability of vector
fields, so we next explain that 7'M carries a canonical manifold structure
induced from that of M.

The tangent bundle

Let M be a smooth manifold and consider the disjoint union
TM = UpeMTpM.

We can view the elements of 7'M as equivalence classes of triples (p, a, ¢),
where p € M, a € R" and (U, ) is a local chart of M such that p € U, and

(p,a,¢) ~ (g,b,%) ifand only if p = g and d(v o o™ 1)) (a) = b.

There is a natural projection 7 : TM — M given by 7[p, a, ¢] = p, and then
7 Y(p) = T, M.

Suppose dim M = n. Note that we have n degrees of freedom for a
point p in M and n degrees of freedom for a vector v € T}, M, so we expect
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TM to be 2n-dimensional. We will use Proposition 1.2.10 to simultane-
ously introduce a topology and smooth structure on 7M. Let {(Ua, ¢a)}
be a smooth atlas for M with countably many elements (recall that every
second countable space is Lindelof). For each o, ¢, : Uy — ¢a(U,) is a
diffeomorphism and, for each p € Uy, d(¢a)p : TyUa = T,M — R" is the
isomorphism mapping [p, a, ¢| to a. Set

Pa Wﬁl(Ua) — SDa(Ua) X Rn, [pa a, 90] - (Spa(p)’a)'

Then @, is a bijection and ¢, (U,) is an open subset of R*". Moreover, the
maps
$g o 95;1 f9a(Ua N Uﬁ) x R" — QDB(UQ N Uﬁ) x R"

are defined on open subsets of R?*" and are given by

(z,a) = (pgowy(x), d(eg o, )a(a)).

Since ¢ o ¢, ! is a smooth diffeomorphism, we have that d(¢s o o 1), is
a linear isomorphism and d(¢p o ¢, '), (a) is also smooth on z. It follows
that {(771(Uy), $a)} defines a topology and a smooth atlas for M and we
need only to check the Hausdorff condition. Namely, let v, w € T M with
v # w. Note that 7 is an open map. If v, w € TM and 7(v) # 7(w), we can
use the Hausdorff property of M to separate v and w from each other with
open sets of T'M. On the other hand, if v, w € T,M, they lie in the domain
of the same local chart of 7'M and the result also follows.

Note that, in particular, we have shown that every system of local co-
ordinates (z1,...,2,) on an open subset U of M induces a system of local
coordinates (z1,...,zy,dz1,...,dx,) on TM|y.

If f € C*°(M, N), then we define the differential of f to be the map

df : TM — TN

that restricts to dfy, : T,M — Ty, N for each p € M. Using the above
atlases for TM and T'N, we immediately see that df € C>°(T'M,TN).

1.6.2 Remark The mapping that associates to each manifold M its tangent
bundle 7'M and associates to each smooth map f : M — N its tangent
map df : TM — TN can be thought of a functor DIFF — VB from the
category of smooth manifolds to the category of smooth vector bundles. In
fact, d(idps) = idyrar, and d(g o f) = dg o df for a sequence of smooth maps

ML NS p.

Smooth vector fields

A vector field X on M is called smooth (resp. continuous) if the map X :
M — TM is smooth (resp. continuous).
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More generally, let f : M — N be a smooth mapping. Then a (smooth,
continuous) vector field along f is a (smooth, continuous) map X : M — T'N
such that X (p) € Ty, N for p € M. The most important case is that in
which f is a smooth curve v : [a,b] — N. A vector field along ~ is a map
X :[a,b] = T'N such that X (t) € T, N for t € [a,b]. A typical example is
the tangent vector field 7.

For practical purposes, we reformulate the notion of smoothness as fol-
lows. Let X be a vector field on M. Given a smooth function f € C*°(U)
where U is an open subset of M, the directional derivative X (f) : U — R
is defined to be the function p € U — X, (f). Further, if (z1,...,2,) is a
coordinate system on U, we have already seen that {a%l\p, ce % lp} is a
basis of T),M for p € U. It follows that there are functions a; : U — R such
that

& )
(1.6.3) Xlop=> ai-—.
= O

1.6.4 Proposition Let X be a vector field on M. Then the following assertions
are equivalent:
a. X is smooth.
b. For every coordinate system (U, (z1,...,xy)) of M, the functions a; defined
by (1.6.3) are smooth.
c. For every open set V of M and f € C*°(V), the function X (f) € C>*(V).

Proof. Suppose X is smooth and let {8%1 lps -+, %b} be a coordinate
system on U. Then X|y is smooth and a; = dz; o X |y is also smooth.
Next, assume (b) and let f € C°°(V). Take a coordinate system

(U, (.%'1,. .. ,xn))

with U C V. Then, by using (b) and the fact that —g {z is smooth,
Zn of ~
X = s — .

Since V' can be covered by such U, this proves (c).

Finally, assume (c). For every coordinate system (U, (z1,...,z,)) of
M, we have a corresponding coordinate system (7~ 1(U),z1 o ,..., 2, 0
mw,dxy,...,dz,) of TM. Then

(xiOW)OX’U:.%'Z‘ and d.%'iOX‘U:X(.%'Z‘)

are smooth. This proves that X is smooth. 0

In particular, the proposition shows that the coordinate vector fields 8%1_
associated to a local chart are smooth. Since a; = X (z;) in (1.6.3), we have
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1.6.5 Scholium If X is a smooth vector field on M and X(f) = 0 for every
smooth function, then X = 0.

1.6.6 Remark Part (c) of Proposition 1.6.4 in fact says that every smooth
vector field on M defines a derivation of the algebra C°°(M), namely, a
differential operator that maps constants to zero and satisfies the Leibniz

identity X (fg) = X(f)g + fX(g).

Flow of a vector field

We have now come to the integration of vector fields. Let ¢, : M — M
be a diffeomorphism such that the curve ¢ — ¢;(p) is smooth for each p.
Then X, := 4| —o#t(p) defines a vector field on M. Conversely, one can
integrate smooth vector fields to obtain (local) diffeomorphisms. Actually,
this is the extension of ODE theory to smooth manifolds that we discuss
below.

An integral curve of X is a smooth curve v : I — M, where I is an open
interval, such that

() = X(v(1))
for all t € I. We write this equation in local coordinates. Suppose X has
the form (1.6.3), v; = ; oy and @; = a; o ¢~ '. Then ~ is an integral curve of
X iny~Y(U) if and only if

% ) =a;(71(t), ..., (1))

(1.6.7)
fori =1,...,nand t € y~1(U). Equation (1.6.7) is a system of first order
ordinary differential equations for which existence and uniqueness theo-
rems are known. These, translated into manifold terminology yield local
existence and uniqueness of integral curves for smooth vector fields. More-
over, one can cover M by domains of local charts and, using uniqueness,
piece together the locally defined integral curves of X to obtain, for any
given point p € M, a maximal integral curve v, of X through p defined on
a possibly infinite interval (a(p), b(p)).
Even more interesting is to reverse the roles of p and ¢ by setting

ot(p) == 7p()

for all p such that t € (a(p),b(p)). The smooth dependence of solutions of
ODE on the initial conditions implies that for every p € M, there exists an
open neighborhood V' of p and € > 0 such that the map

(1.6.8) (—e,€) xV = M, (t,q) — @(q)

is well defined and smooth. The same theorem also shows that, for fixed
t > 0, the domain of ¢, is an open subset D; of M.
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The uniqueness of solutions of ODE with given initial conditions im-
plies that

(1.6.9) Ps+t = Ps O Pt

whenever both hand sides are defined. In fact, for each ¢, the curve s —
©s+t(p) is an integral curve of X passing through the point ¢;(p) at s = 0,
so it must locally coincide with (¢ (p)).

Obviously ¢y is the identity, so ¢, is a diffeomorphism D; — D_; with
inverse ¢_;. The collection {¢;} is called the flow of X. Owing to prop-
erty (1.6.9), the flow of X is also called the one-parameter local group of locally
defined diffeomorphisms generated by X, and X is called the infinitesimal
generator of {¢,}. If ¢, is defined for all ¢ € R, the vector field X is called
complete. This is equivalent to requiring that the maximal integral curves of
X be defined on the entire R, or yet, that the domain of each ¢; be M. In
this case we refer to {¢} as the one-parameter group of diffeomorphisms of
M generated by X.

1.6.10 Proposition Every smooth vector field X defined on a compact smooth
manifold M is complete.

Proof. If M is compact, we can find a finite open covering {V;} of it and
e; > 0 such that (—e¢;,¢;) X V; = M, (t,p) — ¢i(p) is well defined and
smooth for all 4, as in (1.6.8). Let ¢ = min;{¢; }. Now this map is defined on
(—e€,€) x M — M. This means that any integral curve of X starting at any
point of M is defined at least on the interval (—¢, ¢). The argument using the
uniqueness of solutions of ODE as in (1.6.9) and piecing together integral
curves of X shows that any integral curve of X is defined on (—ke, ke) for
all positive integer k, hence it is defined on R. O

1.6.11 Examples (a) Take M = R? and X = 8%1' Then X is complete and
oe(x1,22) = (21 + t, 22) fOr (z1,22) € R?. Note that if we replace R? by the
punctured plane R? \ {(0,0)}, the domains of ¢; become proper subsets of
M.

(b) Consider the smooth vector field on R*" defined by

0

X(x1,...,20n) = 20—+ 21—+ — 2 + xop_1=—.
( 1 2n) 28561 1 6902 2n 85521171 2n—1 a$2n
The flow of X is given the linear map
xr1 X
€T Rt i)
Pt =
Top—1 Ry Top—1

Ton Ton
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where R; is the 2 x 2 block
cost —sint
sint cost ’
It is clear that X restricts to a smooth vector field X on S2n=1 The flow of
X is of course the restriction of ¢; to S?"~!. X and X are complete vector
fields.
(c) Take M = R and X (z) = xZB%. Solving the ODE we find ¢ (z) =

—Z—. It follows that the domain of ¢; is (—o0, 1) if t > 0 and (2, +o00) if
t <0.

Lie bracket

If X is a smooth vector field on M and f : M — R is a smooth function, the
directional derivative X (f) : M — R is also smooth and so it makes sense
to derivate it again as in Y (X (f)) where Y is another smooth vector field
on M. For instance, in a local chart (U, ¢ = (z1,...,x,)), we have the first
order partial derivative

0
(9::3@-
and the second order partial derivative

9 o .\ &f
<%j>p <996i (f)) ~ Ow;0u;

and it follows from Schwarz theorem on the commutativity of mixed partial
derivatives of smooth functions on R" that

o

D Ox;

p

p

(1.6.12) FPf o P(fo 901)‘ _P(fo wl)‘ _f
o ijaxl P - (37“]‘87“1‘ P - 67@-873 p - axlamj p7
where id = (rq,...,r,) denote the canonical coordinates on R".

On the other hand, for general smooth vector fields X, Y on M the
second derivative depends on the order of the vector fields and the failure
of the commutativity is measured by the commutator or Lie bracket

(1.6.13) (X, Y](f) = X(Y(f) = Y (X(f))

for every smooth function f : M — R. We say that X, Y commute if
[X,Y] = 0. It turns out that formula (1.6.13) defines a smooth vector field
on M! Indeed, Scholium 1.6.5 says that such a vector field is unique, if it ex-
ists. In order to prove existence, consider a coordinate system (U, (x1, ..., Zy)).
Then we can write

- 0 - 0
Xy = - Vi, = -9
’U ZZ:; a; 8£CZ and ’U JZ:; bj axj
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for a;, b; € C*°(U). If [ X, Y] exists, we must have

N (O 00 0
(1.6.14) X, Y]y = (az 9z, bi 8:cl-> ox;’

i,j=1

because the coefficients of [X,Y]|y in the local frame {%}?:1 must be
givenby [X,Y|(z;) = X (Y (x;)) =Y (X(z;)). We can use formula (1.6.14) as
the definition of a vector field on U; note that such a vector field is smooth
and satisfies property (1.6.13) for functions in C*°(U). We finally define
[X, Y] globally by covering M with domains of local charts: on the overlap
of two charts, the different definitions coming from the two charts must
agree by the above uniqueness result; it follows that [ X, Y] is well defined.

1.6.15 Examples (a) Schwarz theorem (1.6.12) now means | aii, a%] =0 for

J
coordinate vector fields associated to a local chart.

(b) Let X = a% — %%, Y = a% + %%, Z = % be smooth vector fields on
R3. Then [X,Y]=Z,[Z,X]|=[Z,Y] =0.
1.6.16 Proposition Let X, Y and Z be smooth vector fields on M. Then
a. Y, X] = —[X,Y].
b. If f, g € C°(M), then
[fX,gY]= fg[X,Y]+ f(Xg)Y —g(Y f)X.

c. [[X,Y], 2] +[[Y, 2], X] + [[Z, X],Y] = 0. (Jacobi identity)

1.6.17 Exercise Prove Proposition 1.6.16. (Hint: Use (1.6.13).)

Let f : M — N be a diffeomorphism. For every smooth vector field X
on M, the formula df o X o f~! defines a smooth vector field on N, called
the push-forward of X under f, which we denote by f.X. If the flow of X is
{¢¢}, then the flow of f. X is fo ;o f71, as

G o0 = (oI 0D) = X p1g)

More generally, if f : M — N is a smooth map which needs not be a
diffeomorphism, smooth vector fields X on M and Y on N are called f-
related if df o X =Y o f.

df
TM —> TN

A
XT (X

M ——N
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1.6.18 Proposition Let f : M — M’ be smooth. Let X, Y be smooth vector fields
on M, and let X', Y’ be smooth vector fields on M'. If X and X' are f-related and
Y and Y’ are f-related, then also [X,Y] and [X',Y'] are f-related.

Proof. Let h € C*°(M') and ¢ € M. Note first that

Xo(hof) = d(ho f)(X,)

= dh(df(Xq))
= (df o X)q(h)
- X}(q)(h)’
namely,
(1.6.19) X(hof)=X'(h)of.

Similarly, Y (ho f) =Y'(h) o f.
We now prove df o [X,Y] = [X', Y] o f. Letg € C*°(M') and p € M.
Use (1.6.13) and the above identities:
df([X7 Y]p)(g) - [X7 Y]p(g © f)
= Xp(Y(gof)) —Yp(X(gof))
= X(Y'(g)o f) = Yp(X'(g) 0 f)
= X}(p) (Y'(g)) — Yf(p)(X,(g))
= [Xlayl]f(p)(g)v
as we wished. O

What is the relation between flows and Lie brackets? In order to discuss
that, let X, Y be smooth vector fields on M. Denote the flow of X by {¢;}
and let f be a smooth function on M. Then

d
Ef(%) = X(f),
and

(1.6.20) ((p-t)Y)(fop) =Y(f) o
as (¢—¢)«Y and Y are p;-related (cf. (1.6.19)).

1.6.21 Exercise Let Z; be a smooth curve in T,M and let hi(z) = H(t, x),
where H € C*°(R x M). Prove that

d d d
=gt M) = (aLﬂ) (ho) + Zo (ak&“) -

(Hint: Here %\tzoht(x) means %—?(O,x). Consider I' € C*(R x R) such
that I'(¢,0) = pand %\Szof(t, s) = Z; for all t € R, and use the chain rule.)
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Differentiate identity (1.6.20) at ¢ = 0 to get

d

2t o ((p—):Y) (/) +Y(X(f)) = XY (f)).

Note that ¢t — ((¢—¢)+Y), is a smooth curve in T},M. Its tangent vector at
t = 0 is called the Lie derivative of Y with respect to X at p, denoted by
(LxY),, and this defines the Lie derivative LxY as a smooth vector field
on M. The above calculation shows that

(1.6.22) LxY =[X,Y].

1.6.23 Proposition X and Y commute if and only if their corresponding flows
{oi}, {1} commute.

Proof. [X,Y] = 0if and only if 0 = & ‘tzo(ap_t)*Y. Since {¢;} is a one-
parameter group,

d

d
- — *Y - _‘ — *Y
dt t:to(@ t) dh hZO(SO (to+h))

d
= d(@*to) (%‘ho(@—h)*y © th0> >

this is equivalent to (¢_;).Y =Y for all ¢. However the flow of (¢p_;).Y is
{@_11sp1}, so this means p_ s = s. O

We know that, for a local chart (U, ¢), the set of coordinate vector fields
{a%l, c %} is linearly independent at every point of U and the a%i pair-
wise commute. It turns out these two conditions locally characterize coor-
dinate vector fields. Namely, we call a set {X1,..., X} of smooth vector
fields defined on an open set V of M a local k-frame if it is linearly indepen-
dent at every point of V; if k£ = dim M, we simply say local frame.

1.6.24 Proposition Let {X1,..., Xy} bealocal k-frame on V such that [ X;, X;] =
Oforalli,j =1,..., k. Then for every p € V there exists an open neighborhood U
of pin V and a local chart (U, @) whose first k coordinate vector fields are exactly
the Xi~

Proof. Complete {X1, ..., Xy} to alocal frame {Xj,..., X,,} in smaller
neighborhood V' C V of p. (One can do that by first completing

{Xl(p)a s an(p)}
to a basis
{Xl(p)’ cee ’Xk(p)’vk—i—la cee ,Un}

of T,M and then declaring X}, ..., X, to be the vector fields defined on
the domain of a system of local coordinates (W, yi,...,yy) around p, W C
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V, with constant coefficients in {8%1, e %} that extend vy1,...,v,. By

continuity, {X,..., X3} will be a local frame in a neighborhood V' C W
of p.) Let {}} be the flow of X; and put F(t1,...,t,) == ¢}, 00 ¢} (p),
smooth map defined on a neighborhood of 0 in R". Then dFy(e;) = X;(p)
for all i, so F'is a local diffeomorphism at 0 by the inverse function theorem.
The local inverse F~! defines a local chart (U, z1, . . ., z,,) around p. Finally,
forqg= F(t1,...,tn),

0
7 Ml dFp-1(g)(€i)

d i 1 i n

= %‘tzo%ﬁh@tl Py Py, (»)

= Xi (el el e )

= Xi(pi,en )

= Xi(9),

where we have used Proposition 1.6.23 twice. O

1.7 Distributions and foliations

We seek to generalize the theory of the previous section to higher dimen-
sions, so let us rephrase it in the following terms. Let X be a smooth vector
field on M which is nowhere zero. On one hand, the R-span of X, defines a
family D of one-dimensional subspaces D,, of T,,M for each p € M. On the
other hand, the maximal integral curves of X define a partition F of M into
regular parametrized curves, or 1-dimensional immersed submanifolds of
M. The relation between D and F is that T,,L = D, for every L € F and
everyp € L.

In view of the above, we give the following definition. Suppose dim M =
n. A rank k (smooth) distribution D on M, 0 < k < n, is an assignment of a k-
dimensional subspace D, of T),M to each p € M, where any p € M admits
an open neighborhood U with the property that there exist smooth vec-
tor fields X7, ..., X} on U such that the span of X;(q), ..., Xx(¢q) coincides
with D, forall g € U.

Before continuing, we recall a consequence of Proposition 1.6.24, namely,
that the flow of a non-vanishing vector field can be locally “rectified” in the
following sense.

1.7.1 Proposition Let X be a smooth vector field on M such that X, # 0 for
some p € M. Then there exists a system of local coordinates (U, (z1,...,zy))
around p such that X |y = 8%1. Equivalently, the integral curves of X in U are of
the form xo = ca, ..., &y = cy, for some ca, ..., cp, € R.
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Based on Proposition 1.7.1, we make the following definition. A k-
dimensional foliation of M, 0 < k < n, is a partition F of M into piece-
wise smooth arc-connected subsets, where any p € M admits a coordi-
nate neighborhood (U, (z1, ..., z,)) such that U is connected and, for every
L € F, the piecewise smooth arc-connected components of L N U are coin-
cide with the “slices”

Tl4+1 = Ck+1y -+ Tn = Cp

forsome ¢ 1, ..., c, € R. The elements of F are called leaves. A coordinate
system (U, (x1,...,x,)) as above will be called distinguished. If L € F, the
piecewise smooth arc-components of L N U are called plaques.

1.7.2 Examples (i) The levels sets of a submersion M — N form a foliation
of rank dim M —dim N, by the local form of a submersion, where the leaves
are embedded submanifolds. Indeed, this is the local model of a general
foliation, by definition.

(ii) Recall the skew-line in the torus in Example 1.4.2. The traces of the
immersions

F,:R — R*, F(t) = (cos at,sin at, cos(bt + 2ws), sin(bt + 27s)),

where q, b are non-zero real numbers, for s € [0, 1], form a foliation of rank
1 of T2. If b/a is an irrational number, the leaves are dense in 7.

Each leaf L € F has a canonical structure of immersed submanifold of M of
dimension k. In fact, we can use Proposition 1.2.10. For any distinguished
chart (U, ¢), | p is a bijective map from a plaque (arc component) P of LNU
onto an open subset of R”. In this way, if we start with a countable collec-
tion {(Up,, ¥m) }men of distinguished charts of M whose domains cover L,
we construct a collection {(Py, ¥a) }aca, Where P, is a plaque of LN U,, for
some m and ¢, is the restriction of ¢, to P,. It is clear that this collection
satisfies conditions (a), (b) and (c) of Proposition 1.2.10, but it remains to
be checked that the index set A is countable. For that purpose, it suffices
to see that U,,, N L has countably many arc components, for every m. Fix a
plaque Py of L in {U,,}. Since L is arc connected, for any other plaque P
there exists a sequence P, ..., P, = P of plaques such that P,_1 N P, # @
foralli = 1,...,¢. So any plaque of L in {U,,} can be reached by a finite
path of plaques that originates at . It suffices to show that the collection
of such paths is countable. In order to do that, it is enough to prove that a
given plaque P’ of L in {U,, } can meet only countably many other plaques
of L in {U,,}. For any m, P’ N (L NU,,) = P’ NU,, is an open subset of the
locally Euclidean space P’ and thus has countably many components, each
such component being contained in a plaque of L N U,,. It follows that P’
can meet at most countably many components of L N U,,, as we wished.
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In this way, we have a structure of smooth manifold of L such that each
plaque of L is an open submanifold of L. The underlying topology in L
can be much finer than the induced topology. In any case, the Hausdorff
condition follows because the inclusion map L — M is continuous and M
is Hausdorff. In addition (recall Proposition 1.4.9):

1.7.3 Proposition Every leaf L of a foliation of N is an initial submanifold.

Proof. Let f : M — N be a smooth map such that f(M) C L and
consider the induced map fy : M — L suchthatcofy = f,wherev: L - N
is the inclusion. We need to show that fj is continuous. We will prove that
fy 1(U) is open in M for any given open subset U of L. We may assume
foH(U) # @,s0letp € fy{(U) and ¢ = fo(p) € U. Tt suffices to show that p
is an interior point of f; YU). Let (V,y1,...,y,) bea distinguished chart of
N around g, so that the plaques of L in V' are of the form

(1.7.4) y; = constant fori=k+1,...,n

and the plaque containing ¢ is

By shrinking V, we may assume that (1.7.5) is an open set U C U. Note that
f~Y(V) an open neighborhood of p in M; let W be its connected component
containing p. Of course, W is open. It is enough to show that fo(W) C U,
or what amounts to the same, f(1V) is contained in (1.7.5). Since f(W) is
connected, it is contained in a plaque of of V' N L; since f(WV) meets g, it
must be (1.7.5). O

The Frobenius theorem

Let M be a smooth manifold. It is clear that every foliation of M gives rise
to a distribution simply by taking the tangent spaces to the leaves at each
point; locally, for a distinguished chart (U, (x1,...,x,)), the vector fields
8%1, ceey B%k span the distribution on U. What about the converse? If we
start with a distribution, can we produce an “integral” foliation? Well, in
case k = 1, locally we can find a smooth vector field X that spans the line
distribution and we have seen how to construct a local foliation by integral
curves of X; in fact, the global problem can also be solved by passing to
a double covering of M. It turns out that in case k£ = 1 there are no ob-
structions to the integrability of distributions, and this is in line with the
fact that there are no obstructions to the integrability of ordinary differen-
tial equations. On the other hand, the situation is different when we pass
to distributions of rank £ > 1, what amounts to consider certain kinds of
partial differential equations.
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Let D be a distribution on M. We say that D is integrable if there exists
a foliation F such that 7),L, = D), for every p € M, where L, € F denotes
the leaf thorugh p. Such an F is called an integral foliation of D.

1.7.6 Proposition If D is an integrable foliation on M then the integral foliation
F is unique.

Proof. Define an equivalence relation on M by declaring two points
equivalent if and only if they can be joined by a piecewise smooth curve
whose smooth arcs are tangent to D. For p € M, denote by L, the leaf of
F through p. Since L, is arc connected, it is a union of equivalence classes.
Now the existence of distinguished charts implies that each such equiva-
lence class is open in L,, so L, coincides with the equivalence class of p.
This already characterizes the leaves of F as subsets of M. Each leaf is an
initial submanifold of M, so the structure of smooth manifold on the leaf is
unique up to equivalence, as in Problem 19(d). O

More generally, an integral manifold of a distribution D on M is a sub-
manifold (L, f) of M such that df,,(T,,L) = Dy, for every p € L. A maximal
integral manifold of D is a connected integral manifold whose image in M
is not a proper subset of another connected integral manifold of D, that is,
there is no connected integral manifold (L', ') such that f(L) is a proper
subset of f'(L’).

1.7.7 Exercise Let L, Ly be two integral manifolds of a distribution D on
M. Use adapted charts to show that either L; and L, are disjoint or L1 N Lo
is open in both L; and Ls. Deduce that, if D is integrable, then the leaves
of the integral foliation are the maximal integral manifolds of D.

We say that a vector field X on M lies in D if X (p) € D, for all p € M;
in this case, we write X € D. We say that D is involutive it X, Y € D
implies [X,Y] € D, namely, if D is closed under Lie brackets. Involutivity
is a necessary condition for a distribution to be integrable.

1.7.8 Proposition Every integrable distribution is involutive.

Proof. Let D be an integrable distribution on a smooth manifold M.
Given smooth vector fields X, Y € D and p € M, we need to show
that [X,Y], € D,. By assumption, there exists a distinguished coordinate
system (U, (x1,...,x,)) around p such that the vector fields 8%1, A 8%%
span the distribution D on U. Now X|y, Y|y are linear combinations of

8%17 e 8%;@ with C*°(U)-coefficients, and so is their bracket, as we wished.
O

It so happens that involutivity is also a sufficient condition for a dis-
tribution to be integrable. This is the contents of the celebrated Frobenius
theorem.
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Despite being named after Frobenius, the theorem seems to be proved first by Clebsch
and Deahna. The merit of Frobenius in his 1875 Crelle’s paper was to apply the theorem to
Pfaffian systems, or systems of partial differential equations that are usefully formulated,
from the point of view of their underlying geometric and algebraic structure, in terms of a
system of differential forms of degree one. The proof below is accredited to Lundell [Lun92]
who found inspiration in Chern and Wolfson.

We first prove an elementary, general lemma.

1.7.9 Lemma Let D be any rank k distribution on a smooth manifold M. Then
there exists a system of local coordinates (U, x1, . .., xy) around any given point p
in M such that D is spanned by the k vector fields

0 0 .
XJ':—A_{_‘Z aij% fOT’]Zl,...,k‘

at all points in U, where a;; € C*°(U).

Proof. Let (V,x1,...,x,) be any system of local coordinates around p.
Let Y3, ..., Y}, be arbitrary smooth vector fields spanning D on an open set
UcCV.ThenY; = Y1, bijaimi for j = 1,...,k and b;; € C>(U). Since
Yi,..., Y} is linearly independent at every point of U, the matrix B (q) =
(bij(g)) has rank k for all ¢ € U. By relabeling the z;, we may assume
that the 1 < 4, j < k-block B’ is non-singular in an open neighborhood
U c U of p. Now the 1 < i, j < k-block of B(B')~! is the identity, namely,
X; = 3% | b;;Vi has the desired form, where (B')~ = (b;;). O

1.7.10 Theorem Every involutive distribution is integrable.

Proof. Let D be an involutive distribution on a smooth manifold M. We
first prove the local integrability, namely, the existence around any given
point p € M of a system of local coordinates (V,y1,...,yy) such that D, is

spanned by aiyl‘l? A aiyk’q for every ¢ € V. Indeed let (U, zy,...,z,) and
X1,...,X} beasin Lemma 1.7.9. Note that
0 0
X, X:]€s e, ,
[ ;] € span { Dires &’Un}

so the involutivity of D implies that [X;, X;] = 0 fori, j = 1,...,k. The
desired result follows from Proposition 1.6.24.

Finally, we construct the integral foliation. According to Proposition1.7.6,
the leaf L, through a given point p € M must be the set of points ¢ € M
that can be reached from p by a piecewise smooth curve whose smooth arcs
are tangent to D. This defines a partition F of M into piecewise smooth arc
connected subsets. Given ¢ € L,, let (V,y1,...,y,) be a system of local co-
ordinates around ¢ such that D is spanned by aiyl, ce B%k atall pointsin V.
It is clear that the arc connected components of L, NV are

Yr+1 = constant, ..., y, = constant.
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This proves that F is a foliation. O

1.8 Problems

§1.2

1 a. Use stereographic projection oy : Uy = S?\ {(0,0,1)} — R? to
define a local chart on S? and write a formula for ¢y in terms of the
coordinates of R3. Do the same for ¢g : Us = S\ {(0,0,-1)} — R2.

b. Show that {(Uy,¢n), (Us,¢s)} is a smooth atlas for S?. Compare
the smooth structure defined by this atlas with that defined in exam-
ple 1.2.7 (viewing S? as a union of graphs of smooth maps).

2 Let M be the set of all (affine) lines in R?. Construct a natural structure
of smooth manifold in M. What is the dimension of M? (Hint: Parametrize
lines in terms of their equations.)

3 Let M, N, P be smooth manifolds and denote by m; : M x N — M,
mo : M x N — N the canonical projections. Define maps ¢; : M — M x N,
ta: N — M x N,where 11(z) = (z,q), t2(y) = (p,y) and p e M, q € N.
a. Show that mq, my, ¢1, t2 are smooth maps.
b. Show that f : P — M x N is smooth if and only if 7y o f and m o f
are smooth.

4 Let f : M — N be a map. Prove that f € C°°(M, N) if and only if
go feC>®(M)forall g e C®(N).

5 Let 7 : M — M be a topological covering of a smooth manifold M.
Check that M is necessarily Hausdorff, second-countable (here you need to
know that the fundamental group (M) is at most countable) and locally
Euclidean. Prove also that there exists a unique smooth structure on M
which makes 7 smooth and a local diffeomorphism (compare Appendix A).

§14

6 a. Prove that the composition and the product of immersions are im-
mersions.
b. In case dim M = dim N, check that the immersions M — N coincide
with the local diffeomorphisms.

7 Prove that every submersion is an open map.

8  a. Provethatif M is compact and NV is connected then every submer-
sion M — N is surjective.
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b. Show that there are no submersions of compact manifolds into Eu-
clidean spaces.

9 Show that every smooth real function on a compact manifold has at least
two critical points.

10 Let M be a compact manifold of dimension n and let f : M — R" be
smooth. Prove that f has at least one critical point.

11 Let p(z) = 2™ + am—12""1 + - -+ + ap be a polynomial with complex
coefficients and consider the associated polynomial map C — C. Show
that this map is a submersion out of finitely many points.

12 (Generalized inverse function theorem.) Let f : M — N be a smooth map
which is injective on a compact submanifold P of M. Assume that df, :
T,M — Ty, N is an isomorphism for every p € P.

a. Prove that f(P) is a submanifold of N and that f restricts to a diffeo-
morphism P — f(P).

b. Prove that indeed f maps some open neighborhood of P in M dif-
feomorphically onto an open neighborhood of f(P) in N. (Hint: It
suffices to show that f is injective on some neighborhood of P; if this
is not the case, there exist sequences {p;}, {¢;} in M both converging
to a point p € P, with p; # ¢; but f(p;) = f(¢;) for all ¢, and this
contradicts the non-singularity of df,.)

13 Letpbe ahomogeneous polynomial of degree m inn variables ¢y, .. ., t,.
Show that p~!(a) is a submanifold of codimension one of R"™ if a # 0. Show
that the submanifolds obtained with a > 0 are all diffeomorphic, as well as
those with a < 0. (Hint: Use Euler’s identity

n

Jp
; tza_ti - mp')

14 The nxn real matrices with determinar 1 form a group denoted SL(n, R).
Prove that SL(n,R) is a submanifold of GL(n,R). (Hint: Use Problem 13.)

15 Consider the submanifolds GL(n,R), O(n) and SL(n,R) of the vec-
tor space M (n,R) (see Examples 1.2.7(ix) and 1.4.14(b), and Problem 14,
respectively).
a. Check that the tangent space of GL(n, R) at the identity is canonically
isomorphic to M (n, R).
b. Check that the tangent space of SL(n, R) at the identity is canonically
isomorphic to the subspace of M (n, R) consisting of matrices of trace
zero.
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c. Check that the tangent space of O(n) at the identity is canonically iso-
morphic to the subspace of M (n, R) consisting of the skew-symmetric
matrices.

16 Denote by M (m x n,R) the vector space of real m x n matrices.
a. Show that the subset of M (m x n, R) consisting of matrices of rank at
least k& (0 < k < min{m,n}) is a smooth manifold.
b. Show that the subset of M (m x n,R) consisting of matrices of rank
equal to k (0 < k < min{m,n}) is a smooth manifold. What is its
dimension? (Hint: We may work in a neighborhood of a matrix

k  n—k
B

- (et

where A is nonsingular and right multiply by

I|-A"'B
0 I

to check that g has rank k if and only if D — CA™1B = 0.)

17 Let M & N % Pbea sequence of smooth maps between smooth
manifolds. Assume that g th @ for a submanifold @) of P. Prove that f m

g7 1(Q)if and only if g o f th Q.

18 Let G C R? be the graph of g : R — R, g(z) = |z|'/3. Show that G
admits a smooth structure so that the inclusion G — R? is smooth. Is it an
immersion? (Hint: consider the map f : R — R given by

te 1/t ift >0,
f =40 ift =0,
tel/t ift <0.)

19 Define submanifolds (M3, f1), (Mo, f2) of N to be equivalent if there ex-
ists a diffeomorphism g : M; — M, such that fa 0 g = fi.

a. Show that this is indeed an equivalence relation.

b. Show that each equivalence class of submanifolds of N contains a
unique representative of the form (M, ), where M is a subset of N
with a manifold structure such that: : M — N is a smooth immer-
sion.

c. Let N be a smooth manifold, and let M be a subset of N equipped
with a given topology. Prove that there exists at most one smooth
structure on M, up to equivalence, which makes (M, () an immersed
submanifold of N, where ¢ : M — N is the inclusion. (Hint: Use
Proposition 1.4.9.)
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d. Let N be a smooth manifold, and let M be a subset of N. Prove that
there exists at most one structure of smooth manifold on M, up to
equivalence, which makes (M, ) an initial submanifold of N, where
t: M — N is the inclusion. (Hint: Use Proposition 1.4.9.)

20 Let N be a smooth manifold of dimension n + k. For a point ¢ € N and
asubset A C N, denote by C,(A) the set of all points of A that can be joined
to ¢ by a smooth curve in M whose image lies in A.
a. Prove that if (P, g) is an initial submanifold of dimension n of N then
for every p € P there exists a local chart (V,¢) of N around g(p) such
that

U(Cypy(V Ng(P))) = (V) N (R" x {0}).

(Hint: Use Proposition 1.4.5.)

b. Conversely, assume P is a subset of N with the property that around
any point p € P there exists a local chart (V,4) of N around p such
that

PG (VN P)) =¢(V)N(R™ x {0}).

Prove that there exists a topology on P that makes each connected
component of P into an initial submanifold of dimension n of N with
respect to the inclusion. (Hint: Apply Proposition 1.2.10 to the re-
strictions ¢|¢, (vnp). Proving second-countability requires the follow-
ing facts: for locally Euclidean Hausdorff spaces, paracompactness is
equivalent to the property that each connected component is second-
countable; every metric space is paracompact; the topology on P is
metrizable since it is compatible with the Riemannian distance for
the Riemannian metric induced from a given Riemannian metric on
N; Riemannian metrics can be constructed on N using partitions of
unity.)

21 Show that the product of any number of spheres can be embedded in
some Euclidean space with codimension one.

§1.5

22 Let M be a closed submanifold of N. Prove that the restriction map
C>®(N) — C*(M) is well defined and surjective. Show that the result
ceases to be true if: (i) M is not closed; or (ii) M C N is closed but merely
assumed to be an immersed submanifold.

23 Let M be a smooth manifold of dimension n. Given p € M, construct
a local chart (U, ¢) of M around p such that ¢ is the restriction of a smooth
map M — R".
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24 Prove that on any smooth manifold M there exists a proper smooth
map f : M — R. (Hint: Use o-compactness of manifolds and partitions of
unity.)

§1.6

25 Determine the vector field on R? with flow ¢ (z,y) = (ze*, ye™3).

26 Determine the flow of the vector field X on R? when:

— gyl _ 0
a. X =yz- Ty

_ .0 o)

27 Given the following vector fields in R?,

— gl _ 0 —,0 _,0 — 90 4,0 4 0
X_yaar x@y’ Y_Zay Yaz» Z_8x+ +

compute their Lie brackets.

28 Show that the restriction of the vector field defined on R*"

0 o) 0 0
X =g + @15, T — Tongg, 7 + Tan—155,-

to the unit sphere S?"~! defines a nowhere vanishing smooth vector field.

29 Let X and Y be smooth vector fields on M and N with flows {¢;} and
{14}, respectively, and let f : M — N be smooth. Show that X and Y are
f-related if and only if f o ¢; = 9y o f for all ¢.

30 Let M be a properly embedded submanifold of N. Prove that every
smooth vector field on M can be smoothly extended to a vector field on V.

31 Construct a natural diffeomorphism T'S* ~ S! x R which restricts to a
linear isomorphism 7,,S* — {p} x R for every p € S! (we say that such a
diffeomorphism maps fibers to fibers and is linear on the fibers).

32 Construct a natural diffeomorphism 7'(M x N) ~ T'M x TN that maps
fibers to fibers and is linear on the fibers.

33 Construct a natural diffeomorphism 7R" ~ R" x R" that maps fibers
to fibers and is linear on the fibers.

34 Show that T'S™ x R is diffeomorphic to $” x R""!. (Hint: There are
natural isomorphisms 7,,5" ® R = R"H1)
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35 A smooth manifold M of dimension n is called parallelizable if TM ~
M x R" by a diffeomorphism that maps fibers to fibers and is linear on the
fibers. Prove that M is parallelizable if and only if there exists a globally
defined n-frame {X;,..., X, } on M.

§1.7

36 Is there a non-constant smooth function f defined on an open subset of

R? such that o7 of of 5
L gL = - e )
2 Vo, 0 and By + P 0’

(Hint: Consider a regular level set of f.)

37 Consider the first order system of partial differential equations

0z 0z
% —Oé(.l?,y,Z), a_y —5(5'%%2)

where a, 3 are smooth functions defined on an open subset of R?.

a. Show that if f is a solution, then the smooth vector fields X = 8% +
aa% eY = a% + % span the tangent space to the graph of f at all
points.

b. Prove that the system admits local solutions if and only if

98 98 da oo
ox +a8z Oy +582'

38 Prove that there exists a smooth function f defined on a neighborhood
of (0,0) in R? such that f(0,0) = 0 and % =ye @t _f, g—]yc = ge @tV _ .



CHAPTER 2

Tensor fields and differential forms

2.1 Multilinear algebra

Let V be a real vector space. In this section, we construct the tensor algebra
T(V) and the exterior algebra A(V') over V. Elements of T'(V') are called
tensors on V. Later we will apply these constructions to the tangent space
T, M of a manifold M and let p vary in M, similarly to the definition of the
tangent bundle.

Tensor algebra

All vector spaces are real and finite-dimensional. Let V' and W be vector
spaces. It is less important what the tensor product of V' and W is than
what it does. Namely, a tensor product of V' and W is a vector space V @ W
together with a bilinear map ~ : V. x W — V ® W such that the following
universal property holds: for every vector space U and every bilinear map
B:V x W — U, there exists a unique linear map B : V@ W — U such that
Boh=B.
VeWw

Vx W —>
“W g

There are different ways to construct V @ W. It does not actually matter
which one we choose, in view of the following exercise.

2.1.1 Exercise Prove that the tensor product of V' and W is uniquely de-
fined by the universal property. In other words, if (V@1 W, hy), (V @2 W, ha)
are two tensor products, then there exists an isomorphism ¢ : V ®; W —
V ®9 W such that £ o hy = has.

We proceed as follows. Start with the canonical isomorphism V** = V
between V' and its bidual. It says that we can view an element v in V' as

41
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the linear map on V* given by f — f(v). Well, we can extend this idea
and consider the space Bil(V, W) of bilinear forms on V' x W. Then there
is anatural map h : V- x W — Bil(V, W)* given by h(v,w)(b) = b(v, w) for
b € Bil(V, W). We claim that (Bil(V, W)*, h) satisfies the universal property:
given a bilinear map B : V x W — U, there is an associated map U* —
Bil(V, W), f — f o B;let B : Bil(V,W)* — U** = U be its transpose.

2.1.2 Exercise Check that Boh = B.

2.1.3 Exercise Let {e;}, {f;} be bases of V, W, respectively. Define b;; €
Bil(V, W) to be the bilinear form whose value on (e, f¢) is 1 if (k,¢) = (i, J)
and 0 otherwise. Prove that {b;;} is a basis of Bil(V, W). Prove also that
{h(ei, f;)} is the dual basis of Bil(V, W)*. Deduce that the image of h spans
Bil(V, W)* and hence B as in Exercise 2.1.2 is uniquely defined.

Now that V' ® W is constructed, we can forget about its definition and
keep in mind its properties only (in the same way as when we work with
real numbers and we do not need to know that they are equivalence classes
of Cauchy sequences), namely, the universal property and those listed in
the sequel. Henceforth, we write v ® w = h(v,w) forv € V and w € W.

2.1.4 Proposition Let V and W be vector spaces. Then:
a. (v14+v2) @wW =0 QW+ vy ®w;
b. v ® (w1 +w2) = v wy + v wo;
e av@w=v®aw = a(v@w);

forall v, v1,v2 € V; w, wy, wa € W;a € R.

2.1.5 Proposition Let U, V and W be vector spaces. Then there are canonical
isomorphisms:

a VOW=ZWeV;

b. VeaW)eU2Ve(WeU),

c. V*@ W = Hom(V,W); in particular, dimV @ W = (dim V')(dim W).

2.1.6 Exercise Prove Propositions 2.1.4 and 2.1.5.

2.1.7 Exercise Let {e1,...,e,,} and {f1,..., fn} be bases for V and W, re-
spectively. Prove that {e; ® f; : i =1,...,mand j = 1,...,n} is a basis
forVeoW.

2.1.8 Exercise Let A = (a;;) be a real m x n matrix, viewed as an element of
Hom(R",R™). Use the canonical inner product in R" to identify (R")* =
R". What is the element of R" ® R™ that corresponds to A?

Taking V' = W and using Proposition 2.1.5(b), we can now inductively
form the tensor nth power @™V = Q" 1V @ V for n > 1, where we adopt
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the convention that @”V = R. The tensor algebra T(V') over V is the direct

sum
(V)= v
r,s>0

where
VT',S — (®T‘V) ® (®SV*)

is called the tensor space of type (r, s). The elements of T'(V') are called tensors,
and those of V"* are called homogeneous of type (r, s). The multiplication ®,
read “tensor”, is the R-linear extension of

(U ® - QU QU Qus )RV ® QU QU] ® -+ Q V)
— U1®"'®Ur1®U1®"'®U1~2®UT®"'®U:1®UT®'“®U:Q-

T'(V) is a non-commutative, associative graded algebra, in the sense that
tensor multiplication is compatible with the natural grading:

VLSt @ T2s2 - Vritresitss
Note that V%0 = R, V10 = v, V&l = V* so real numbers, vectors and
linear forms are examples of tensors.
Exterior algebra

Even more important to us will be a certain quotient of the subalgebra
TH(V) = @0 V0 of T(V). Let J be the two-sided ideal of T (V') gener-
ated by the set of elements of the form

(2.1.9) VR v

forveV.

2.1.10 Exercise Prove that another set of generators for J is given by the
elements of the formu @ v +v @ uforu, v € V.

The exterior algebra over V is the quotient
AV)=T"(V)/3.

The induced multiplication is denoted by A, and read “wedge” or “exterior
product”. In particular, the class of v1®- - -®@v, modulo J is denoted v A- - -A
vg. This is also a graded algebra, where the space of elements of degree k is

AV = VRO 3Nk,
Since J is generated by elements of degree 2, we immediately get
A°(V)=R and AYV)=V.

A(V) is not commutative, but we have:



44 CHAPTER?2 TENSORFIELDS AND DIFFERENTIAL FORMS

2.1.11 Proposition a A 3 = (—1)FB Aafora € A¥(V), B € AY(V).

Proof. Since v ® v € Jforall v € V, we have v A v = 0. Since R is not a
field of characteristic two, this relation is equivalent to v A v = —v2 A vy
forall v, vo € V.

By linearity, we may assume that « = w3 A -+~ Aug, B =vi A--- A v
Now

alANfB = urA---ANugANviA--- Ay

= —UIAN - NU,_ 1 ANVI AU ANV ANy
= WA NU_1 NANVI ANV AU ANV3 -+ AUy

= (=D ugr A Aup_1 AvL A Avg Ay,
= (=DHur A Aug_a Aoy A+ A Aug—q A ug

= (_1)]?55 A a,
as we wished. O

2.1.12 Lemma Ifdim V = n, then dim A*(V) = 1 and A*(V) = 0 for k > n.
Proof. Let {ey,...,e,} be abasis of V. Since
(2.1.13) {e;, ®---®e;, :i1,...,0, €{1,...,n}}

is a basis of V% (see Exercise 2.1.7), the image of this set under the pro-
jection V0 — A¥(V) is a set of generators of A¥(V). Taking into account
Proposition 2.1.11 yields A*(V') = 0 for k > n and that A"(V) is generated
by e1 A --- A en, 50 we need only show that this element is not zero.
Suppose, on the contrary, thate; ® --- ® e, € J. Thene; ® --- ® e, is
a linear combination of elements of the form o« ® v ® v ® 5 where v € V,
a eV, 3 e ViOand k + £ + 2 = n. Writing a (resp. 3) in terms of the
basis (2.1.13), we may assume that the only appearing base elements are of
the forme; ® - - ® ey, (resp. ep—g41 @ - - - @ ey,). It follows that we can write

n—2
(2.1.14) 61®"'®6n:chel®“'®€k®vk®vk®€k+3®“'®€n
k=0

where ¢, € Rand vy, € V for all k. Finally, write vy, = >, a;xe; for a;, € R.
Form =0,...,n — 2, the coefficient of

e1® - QepRemia2Pemt1 ®epiz - Qe

on the right hand side of (2.1.14) is

Cm Am+2,mOm+1,m,
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thus zero. However, the coefficient of e; ® - - - ® e,, on the right hand side is

n—2

g Ck Ok+1,k0k+2 k>
k=0

hence also zero, a contradiction. O
2.1.15 Proposition If {ei,...,e,} be a basis of V, then
{61‘1/\---/\6”C :i1<---<ik}

is a basis of A¥(V') for all 0 < k < n; in particular, dim A¥(V)) = (7).

Proof. Fix k € {0,...,n}. The above set is clearly a set of generators of
A¥(V') and we need only show linear independence. Suppose

E iy €3y N N € = 0,

which we write as
E arer = 0

where the I denotes increasing k-multi-indices, and ez = 1. Multiply
through this equation by e;, where J is an increasing n — k-multi-index,
and note that e; A ey = 0 unless [ is the multi-index J¢ complementary
to J, in which case eje Aej = +e; A--- Aey. Sincee; A--- Ae, # 0 by
Lemma 2.1.12, this shows that a; = 0 for all 1. ]

2.2 Tensor bundles

Cotangent bundle

In the same way as the fibers of the tangent bundle of M are the tangent
spaces T),M for p € M, the fibers of the cotangent bundle of M will be the
dual spaces T),M*. Indeed, form the disjoint union

T*M = UpeMTpM*.

There is a natural projection 7* : T*M — M givenby n(7) = pif 7 € T, M*.
Recall that every local chart (U, ¢) of M induces a local chart ¢ : =1 (U) —
R" x R" = R* of TM, where ¢(v) = (¢(n(v)), de(v)), and thus a map @* :
(7)"L(U) > R" x (R")* = R*", 3*(r) = (o(x"(7)), ((dp)")~1(r)), where
(dp)* denotes the transpose map of dy and we have identified R" = R™
using the canonical Euclidean inner product. The collection

(2.2.1) {((=*) "1 U), ") | (U, ¢) € A},
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for an atlas A of M, satisfies the conditions of Proposition 1.2.10 and defines
a Hausdorff, second-countable topology and a smooth structure on 7 M
such that 7* : TM — M is smooth.

A section of T*M is a map w : M — T*M such that 7 o w = idy,.
A smooth section of T*M is also called a differential form of degree 1 or dif-
ferential 1-form. For instance, if f : M — R is a smooth function then
dfy : T,M — R is an element of T,M* for all p € M and hence defines a
differential 1-form df on M.

If (U,x1,...,x,) is a system of local coordinates on M, the differentials
dxy,...,dxz, yield local smooth sections of 7*M that form the dual basis to
8%1, e % at each point (recall (1.3.7)). Therefore any section w of 7" M

can be locally written as w|y = Y ., a;dz;, and one proves similarly to
Proposition 1.6.4 that w is smooth if and only if the a; are smooth functions
on U, for every coordinate system (U, z1,. .., ).

2.2.2 Exercise Prove that the differential of a smooth function on M indeed
gives a a smooth section of 7*M by using the atlas (2.2.1).
Tensor bundles

We now generalize the construction of the tangent and cotangent bundles
using the notion of tensor algebra. Let M be a smooth manifold. Set:

T73(M) = Upen(TpyM)"™*  tensor bundle of type (r, s) over M;
A(M) = Upen A(T,M*) exterior k-bundle over M;
A(M) = Upen ATpM7) exterior algebra bundle over M.

Then T7*(M), A*(M) and A(M) admit natural structures of smooth man-
ifolds such that the projections onto M are smooth. If (U,z1,...,z,) is a
coordinate system on M, then the bases {%b}?:l of T,M and {dx;|,}I,
of T,M*, for p € U, define bases of (T,M)"*, A*(T,M*) and A(T,M). For
instance, a section w of A¥(M) can be locally written as

(2.2.3) w\U = Z ai1~~~ikdxi1 VANEIERIVAY d.%'ik,
11 <<l
where the a;, . ;, are functions on U.
2.2.4 Exercise Check that T'9(M) = TM, TOY (M) = T*M = AY(M)
and A°(M) = M x R.

The smooth sections of T7*(M), A*(M), A*(M) are respectively called
tensor fields of type (r, s), differential k-forms, differential forms on M. For in-
stance, a section w of A*(M) is a differential k-form if and only if the func-
tions a; in all its local representations (2.2.3) are smooth.
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We will denote the space of differential k-forms on M by QF(M) and
the space of all differential forms on M by Q*(M). Note that Q*(M) is a
graded algebra over R with wedge multiplication and a module over the
ring C*°(M).

It follows from Problems 4 and 7(a) that a differential k-form w on M
is an object that, at each point p € M, yields a map w,, that can be evalu-
ated on £ tangent vectors vy, ..., v; at p to yield a real number, with some
smoothness assumption. The meaning of the next proposition is that we
can equivalently think of w as being an object that, evaluated at k vector
fields X1, ..., X}, yields the smooth function

w(X1,..., Xg) i p— wp(Xi(p), ..., Xk(p)).

We first prove a lemma.
Hereafter, it shall be convenient to denote the C*° (M )-module of smooth
vector fields on M by X(M).

2.2.5 Lemma Let

Wi X(M) x -+ x X(M) = C*(M)

/

~
k factors

be a C°°(M )-multilinear map. Then the value of w(Xy,...,X}y) at any given
point p depends only on the values of X1, ..., X} at p.

Proof. For simplicity of notation, let us do the proof for k£ = 1; the case
k > 11is similar. We first show that if X |y = X'|y for some open subset U
of M, then w(X)|y = w(X')|y. Indeed let p € U be arbitrary, take an open
neighborhood V of p such that V' C U and a smooth function A € C°°(M)
with M| = 1 and supp A C U (Exercise 1.5.1). Then

w(X)(p) = APw(X)(p)

where in the third and fifth equalities we have used C*°(M)-linearity of w,
and in the fourth equality we have used that AX = AX' as vector fields
on M.

Finally, we prove that w(X)(p) depends only on X (p). By linearity, it
suffices to prove that X (p) = 0 implies w(X)(p) = 0. Let (W, z1,...,x,)
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be a coordinate system around p and write X|y = > al-a%i for a; €

C*>°(W). By assumption, a;(p) = 0 for all i. Let A be a smooth function on
M with support contained in W and such that it is equal to 1 on an open
neighborhood U of p with U C W. Define also

)\CLZ‘ on W

~ )\(%, on W
0 onM\U.

Xi: _ ~i:
0 onM\U and a {

Then NX’ := 3" | @;X; is a globally defined smooth vector field on M such
that X |y = X|y and we can apply the result in the previous paragraph to
write

wX)(p) = wX)(p)

- (Z aimi)) »)
i=1

= ) ailp)w(X)(p)
=1

o .

because a;(p) = a;(p) = 0 for all 7. O

2.2.6 Proposition Q* (M) is canonically isomorphic as a C°°(M )-module to the
C*°(M)-module of alternating C°° (M )-multilinear maps

2.2.7) X(M) x - x (M) — C=(M)

k factors

Proof. Letw € QF(M). Then w, € A¥(T,M*) = A¥(T,M)* = Ax(T,M)
for every p € M, owing to Problems 4 and 7(a), namely, w,, can be consid-
ered to be an alternating k-multilinear form on 7),M. Therefore, for vector
fields X1,..., X} on M,

(:)(Xl, e ,Xk)(p) = wp(Xl(p), N ,Xk(p))

defines a smooth function on M, ©(Xy,..., X)) is C°°(M)-linear in each
argument X, thus @ is an alternating C'°°(M )-multilinear map as in (2.2.7).

Conversely, let @ be a C°°(M )-multilinear map as in (2.2.7). Due to
Lemma 2.2.5, we have @, € Ay(T,M) = A¥(T,M*), namely, & defines a
section w of A¥(M): given vy,...,v; € T,M, choose Xi,..., X}, € X(M)
such that X;(p) = v; for all ¢ and put

wp(v1, ..., 08) = 0(X1, ..., Xg)(p).

The smoothness of the section w follows from the fact that, in a coordinate

system (U, x1, ..., xy,), we can write w|y = Zi1<___<l-k @iy diy N -+ N dxg,
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where a;,...;, (¢) = wq(% R (%aik q) = (Z}(azl ey Ba?ik )(q) forallq € U,
and thus a;,..;,, € C*°(U). It follows that w is a differential k-form on M. [J

Henceforth we will not distinguish between differential k-forms and
alternating multilinear maps (2.2.7). Similarly to Proposition 2.2.6:

2.2.8 Proposition The C°°(M)-module of tensor fields of type (r,s) on M is
canonically isomorphic to the C*°(M )-module of C*° (M )-multilinear maps

QY M) x - x QY(M) x X(M) x -+ x X(M) — C=(M).

T factors s factors

2.3 The exterior derivative

Recall that A°(M) = M x R, so a smooth section of this bundle is a map
M — M x R of the form p — (p, f(p)) where f € C°°(M). This shows
that QY(M) = C>°(M). Furthermore, we have seen that the differential
of f € C°°(M) can be viewed as a differential 1-form df € Q!(M), so we
have an operator C*(M) — QY(M), f — df. In this section, we extend
this operator to an operator d : Q*(M) — Q*(M), called exterior derivative,
mapping QF(M) to Q¥T1(M) for all k& > 0. It so happens that d plays an
extremely important role in the theory of smooth manifolds.

2.3.1 Theorem There exists a unique R-linear operator d : Q*(M) — Q*(M)
with the following properties:
a. d(QF(M)) Cc Q¥ Y(M) forallk >0 (dhas degree +1);
b. dwAn) =dwAn+ (=DFwAdy  foreveryw € QF(M), n € QM)
(d is an anti-derivation);
c. d2=0;
d. df is the differential of f for every f € C>®(M) = QO(M).

Proof. We start with uniqueness, so let d be as in the statement. The first

case is when M is a coordinate neighborhood (U, x1,...,z,). Then any
w € QF(U) can be written as w = 5 ;ardxzr, where I runs over increasing
multi-indices (i1, ...,1;) and a; € C*°(U), and we get

do = Y d(aydzi A---Ndx;,) (by R-linearity)
1

= Zd(a;) Adxiy N A d.%'ik
1

k
(2.3.2) +> (=) tapdr, A Ad(da,) A Adag, (by (b))
r=1
-~ 8@[

= > > a—xrdxr Adziy, A--- Adz;,  (by (c) and (d).)
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Next we go to the case of a general manifold M and show that d is a
local operator, in the sense that (dw)|y = 0 whenever w|y = 0 and U is an
open subset of M. So assume w|y = 0, take an arbitrary point p € U, and
choose A € C*°(M) such that 0 < A <1, Ais flatequal to 1 on M \ U and
has support disjoint from V, where V is a neighborhood of p with V C U.
Then w = Aw on the entire M so that, using (b) we get

(dw)p = d(Aw)p = dA\y A wp + A(p) dwp =0,
=0 =0

as wished.

To continue, we verify that d induces an operator diy on Q*(U) satis-
fying (a)-(d) for every open subset U of M. So given w € QF(U) and
p € U, construct @ € QF(M) which coincides with w on a neighborhood
V of p with V' C U, as usual by means of a bump function, and define
(dyw)p = (d@),. The definition is independent of the chosen extension,
as d is a local operator. It is easy to check that diy indeed satisfies (a)-(d);
for instance, for (b), note that & A 77 is an extension of w A 1 and hence
dy(w A )y = (d@ A7)y = (d)p A flp + (1)@, A (di))p = (dyw)p A
np + (—1)38“w, A (dyn),. Note also that the collection {dy;} is natural with
respect to restrictions, in the sense that if U C V are open subsets of M then

dy|v = dy.

Finally, for w € Q*(M) and a coordinate neighborhood (U, z1, ..., z,),
on one hand dy (w|y) is uniquely defined by formula (2.3.2). On the other
hand, w itself is an extension of w|y, and hence (dw), = (dy(w|v)), for
every p € U. This proves that dw is uniquely defined.

To prove existence, we first use formula (2.3.2) to define an R-linear
operator di on Q¥ (U) for every coordinate neighborhood U of M. It is clear
that diy satisfies (a) and (d); let us prove that it also satisfies (b) and (c). So
letw =Y, ardr; € QF(U). Then dyw = 3", da; A dx; and

Oag
2 — E
dUw = . dU <a—xrd$r AN dl’])

820,]
= drs Ndx,. Nd
D20z, Ts N\ dx, N\ dx]

I,rs

= O’
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0%ay

O0x0x,
n=> ;bsdr;. ThenwAn= ZLJaled:c[ A dxyand

since is symmetric and dz; A dx, is skew-symmetricin 7, s. Let also

dy(An) = > dylarbsdes Adzy)

I,J
aa[ 8bJ
— Z awerdxr Adxy Adzy + Z ar5 des Adxy Adry
1,Jr I,J;s
- 0ar 4o ndwy | A S byda
— < 8.%'7» r I - J J

+(=)Hl (Zafdxl> A ( %dws /\de>
I Jys s

= dyw An+ (—1)%8w A dy,

where we have used Proposition 2.1.11 in the third equality to write dxs A
dry = (—D)ldzy A da,.

We finish by noting that the operators d;; for each coordinate system U
of M can be pieced together to define a global operator d. Indeed for two
coordinate systems U and V/, the operators diy and dy induce two operators
on Q*(U N V) satisfying (a)-(d) by the remarks above which must coincide
by the uniqueness part. Note also that the resulting d satisfies (a)-(d) since
it locally coincides with some dy;. O

2.3.3 Remark We have constructed the exterior derivative d as an operator
between sections of vector bundles which, locally, is such that the local
coordinates of dw are linear combinations of partial derivatives of the local
coordinates of w (cf. 2.3.2). For this reason, d is called a differential operator.

Pull-back

A nice feature of differential forms is that they can always be pulled-back
under a smooth map. In contrast, the push-forward of a vector field under
a smooth map need not exist if the map is not a diffeomorphism.

Let f : M — N be a smooth map. The differential df), : T,M — Ty,
at a point p in M has a transpose map (df,)* : Ty, N* — T,M* and there
is an induced algebra homomorphism df, := A((dfp)*) : ATy N*) —
A(T, M*) (cf. Problem 6). For varying p € M, this yields map 6 f : A*(N) —
A*(M). Recall that a differential form w on N is a section of A*(NN). The
pull-back of w under f is the section of A*(M) given by f*w = df owo f,so
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that the following diagram is commutative:

)
A" (M) ef A*(N)
A
f *WT fw
M——>N
f
(We prove below that f*w is smooth, so that it is in fact a differential form
on M. This fact would also follow from the formula f*w = §f ow o f if we
checked that § f is a smooth.) In more detail, we have

(ffw)p = df(wy(p))

for all p € M. In particular, if w is a k-form, then (f*w), € AK(T,M*) =
AM(T,M)* = Ap(T,M) and

(23.4) (P01, vk) = Wy (dfp (01), - dfp (00))

forall vy,...,v, € T,M.

2.3.5 Exercise Let f : M — N be a smooth map.
a. In the case of 0-forms, that is smooth functions, check that f*(g) =
go fforall g € Q°(N) = C>®(N).
b. In the case w = dg € Q'(N) for some g € C*(N), check that f*(dg) =
d(g o f).

2.3.6 Proposition Let f : M — N be a smooth map. Then:
a. f*: QY(N) — Q*(M) is a homomorphism of algebras;
b. do f*= f*od;
e (@)Xt X)) = @y (df(Xa (D)), dF(Xi(p)) for all w €
O (N)andall Xq,..., X, € X(M).

Proof. Result (c) follows from (2.3.4). The fact that f* is compatible
with the wedge product is a consequence of Problem 6(b) applied to local
expressions of the form (2.2.3). For (a), it only remains to prove that f*w is
actually a smooth section of A*(M) for a differential form w € Q*(M). So
let p € M, choose a coordinate system (V, yi,...,yy) of N around f(p) and
a neighborhood U of p in M with f(U) C V. Since f* is linear, we may
assume that w is a k-form. As w is smooth, we can write

w‘v = Za[dyil FANKIRIRIVAN dyik.
I

It follows from Exercise 2.3.5 that

(2.3.7) Froly=> (aro f)d(yi o f) A+ Ad(yi, o f),

1
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which indeed is a smooth form on U. Finally, (b) is proved using (2.3.7):

dfw)y = d (Zmz o Pl o ) A Ny, o f)) I
I

= > (dlago f) Ndyi o f) A+ Nd(yi, 0 ) |y

I

e (Zdaj/\dyil/\---/\dyik> ‘p
I
= fH(dw)p,

as desired. n

2.4 The Lie derivative of tensors

In section 1.6, we defined the Lie derivative of a smooth vector field Y on
M with respect to another smooth vector field X by using the flow {¢;} of
X to identify different tangent spaces of M along an integral curve of X.
The same idea can be used to define the Lie derivative of a differential form
w or tensor field S with respect to X. The main point is to understand the
action of {(} on the space of differential forms or tensor fields.

So let {¢;} denote the flow of a vector field X on M, and let w be a
differential form on M. Then the pull-back yjw is a differential form and
t — (pjw)p is a smooth curve in A(T,M*), for all p € M. The Lie derivative
of w with respect to X is the section Lxw of A(M) given by

d

(24.1) (Lxw)p = —| _ (@iw)p.

We prove below that L xw is smooth, so it indeed yields a differential form
on M. In view of (2.3.4), it is clear that the Lie derivative preserves the
degree of a differential form.

We extend the definition of Lie derivative to an arbitrary tensor field S
of type (r, s) as follows. Suppose

SSOt(P) :/U1®®’U7‘®'UT®®’UZ
Then we define (¢} S), € (T,M)"* to be
ng_t(Ul) X ® ng_t(Ur) ® (5%&(’0;) X ® 5§0t(1);k)

and put

(2.4.2) (LxS)p = d (7 9)p-
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One can view definition 2.4.1 as the operator in the quotient obtained from
definition 2.4.2 in the sense that the exterior algebra is a subquotient of the
tensor algebra.

Before stating properties of the Lie derivative, it is convenient to intro-
duce two more operators. For X € X(M) and w € Q¥ (M) with k > 0, the
interior multiplication 1xw € QF(M) is the k-differential form given by

txw(Xy, ..., Xg) =w(X, Xy, ..., Xk)
for Xq,..., X, € X(M), and vx is zero on O-forms.

2.4.3 Exercise Prove that .xw is indeed a smooth section of A*~1(M) for
w € QF(M). Prove also that ¢ x is an anti-derivation in the sense that

ix(WAN) =ixwAn+ (=) wAuxn

for w € QF(M) and n € QY(M). (Hint: For the last assertion, it suffices to
check the identity at one point.)

Let V be a vector space. The contraction c; j : V™ — V=151 s the
linear map that operates on basis vectors as

MR - RU U QU

=) Q@GR QYU @ U ® - © ).

It is easy to see that ¢; ; extends to a map 7"*(M) — 7"~ 1~ (M).

2.4.4 Exercise Let V be a vector space. Recall the canonical isomorphism
Vhl = Hom(V,V) = End(V) (Proposition 2.1.5). Check that ¢y : V11 —
V90 is the trace map tr : End(V) — R.

2.4.5 Proposition Let X be a smooth vector field on M. Then:
a. Lxf=X(f)forall f e C®(M).
b. LxY = [X,Y] forall X € X(M).
c. Lx isatype-preserving R-linear operator on the space T (M) of tensor fields
on M.
d. Lx : T(M) — T (M) is a derivation, in the sense that

Lx(S®S8)=(LxS)®@ S +S® (LxS")
e. Lx :T(M)— T(M) commutes with contractions:
Lx(¢(S)) = ¢(LxS)
for any contraction ¢ : T™5(M) — T~ 171(M).

f. Lx is adegree-preserving R-linear operator on the space of differential forms
Q(M) which is a derivation and commutes with exterior differentiation.
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g. Lx =1x od+doux on Q(M) (Cartan’s magical formula)
h. Forw € QF(M) and Xy, ..., X € X(M), we have:
LXOw(Xl, e ,Xk) = Xo(w(Xl, ‘e ,Xk))
k

_Zw(Xla cee )Xl'fly [XOaXi],XZ'+1,' .- ,Xk‘)
i=1

i. Same assumption as in (h), we have:

k
dw(Xo, ..., Xg) = > (1) Xw(Xo,..., Xi, ..., Xp)
i=0
+ Z(—l)i—’—jw([Xi,Xj],Xo, R ,Xi, - ,X]‘, R ,Xk)

1<j

Proof. (a) follows from differentiation of (¢} f), = f(¢:(p)) att = 0.
(b) was proved in section 1.6. The type-preserving part of (c) is clear from
the definition. For (d), differentiate the obvious formula ¢} (S ® S)|, =
(0rS)p @ (pfS")p at t = 0; the derivation property follows using the fact
that tensor multiplication is R-bilinear. Smoothness of Lx S as a section of
T™*(M) is proved noting that Lx is a local operator and expressing Ly S in
a system of local coordinates, see below for the analogous argument in the
case of differential forms. This covers (c) and (d).

(e) follows from the easily checked fact that ¢f commutes with con-
tractions. As a consequence, which we will use below, if w € QY(M) and
Y e X(M) thenw(Y) = c¢(Y ®w) so

X@(¥)) = Lyle(Y ®w))  (using (@)
= oLx(Y®w))
= ¢(LxY®w+Y ® Lxw) (using (d))
= w([X,Y]) 4+ Lxw(Y) (using (b));

in other words,
(2.4.6) Lxw(Y)=Xw()) —w(X,Y]).

For (f), we first remark that Ly is a derivation as a map from (M) to
non-necessarily smooth sections of A(M): this is a pointwise check, and
follows from the fact that (¢;)* defines an automorphism of the algebra
Q(M). Next, check that Lx commutes with d on functions using (2.4.6):

Lx(df)(Y) = X(df(Y))—df([X,Y])
= XY () -XYI(/)
= Y(X(f)

= dX())Y)

= d
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forall f € C*°(M)and Y € X(M). To continue, note that L x is a local oper-
ator: formula (2.4.1) shows that Lxw| depends only on w|y;, for any open
subset U of M, and the same applies for (2.4.1). Finally, to see that Lxw is
smooth for any w € Q(M), we may assume that w has degree k and work
in a coordinate system (U, x1, . . . , &), where w has a local representation as
in (2.2.3). Using the above collected facts:

LXw’U - Z X(air--ik)dxil /\"'/\dwik

11 < <ip

k
+Z ail...ikdxil VANRIERIVAY d(X(.%'ZJ)) VANRIERIVAY d.%'ik
j=1

as wished. This formula can also be used to show that Lx commutes with
d in general.

To prove (g), let Py = dotx+txod. Then Px and L are local operators,
derivations of (M), that coincide on functions and commmute with d.
Since any differential form is locally a sum of wedge products of functions
and differentials of functions, it follows that Ly = Px.

The case k = 1in (h) is formula (2.4.6). The proof for £ > 1is completely
analogous.

Finally, (i) is proved by induction on k. The initial case £ = 0 is imme-
diate. Assuming (i) holds for £ — 1, one proves it for k by starting with (h)
and using (g) and the induction hypothesis. O

2.4.7 Exercise Carry out the calculations to prove (h) and (i) in Proposi-
tion 2.4.5.

2.5 Vector bundles

The tangent, cotangent and and all tensor bundles we have constructed so
far are smooth manifolds of a special kind in that they have a fibered struc-
ture over another manifold. For instance, T M fibers over M so that the
fiber over any point p in M is the tangent space 7),M. Moreover, there is
some control on how the fibers vary with the point. In case of T'M, this
is reflected on the way a chart (7~1(U), ) is constructed from a given
chart (U, ) of M. Recall that ¢ : 7= 1(U) — R" x R" where $(v) =
(p(m(v)),dp(v)). So ¢ induces a diffeomorphism U,cpyT, M — ¢(U) x R"™
so that each fiber T}, M is mapped linearly and isomorphically onto {¢(p)} x
R™. We could also compose this map with ¢! x id to get a diffeomorphism

TM|y :==UpcvTpyM — ¢(U) x R" = U x R™.

Of course each T),M is abstractly isomorphic to R", where n = dim M,
but here we are saying that the part of TM consisting of fibers lying over
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points in U is diffeomorphic to a product U x R" in such a way that 7,
corresponds to {p} x R". This is the idea of a vector bundle.

2.5.1 Definition A (smooth) vector bundle of rank k& over a smooth man-
ifold M is a smooth manifold E, called the total space, together with a
smooth projection 7 : E — M such that:
a. E, = n"!(p) is a vector space of dimension k for all p € M;
b. M can be covered by open sets U such that there exists a diffeomor-
phism E|; = 7~'(U) — U x R* mapping E, linearly and isomorphi-
cally onto {p} x R¥ forall p € U.

The trivial vector bundle of rank k over M is the direct product M x R
with the projection onto the first factor. A vector bundle of rank £ = 1 is
also called a line bundle.

An equivalent definition of vector bundle, more similar in spirit to the
definition of smooth manifold, is as follows.

2.5.2 Definition A (smooth) vector bundle of rank k over a smooth mani-
fold M is a set E, called the total space, together with a projection 7 : £ — M
with the following properties:
a. M admits a covering by open sets U such that there exists a bijection
ov : Ely = 771 (U) — U x RF satisfying 7 = 7 o ¢y, where 7 :
U x R* — U is the projection onto the first factor. Such a ¢y is called
a local trivialization.
b. Given local trivializations ¢, py with UNV # &, the change of local
trivialization or transition function

propyt  (UNV)xRY = (UNV) x RF
has the form
(z,a) — (z,gvv(x)a)

where
guv : UNV — GL(k,R)

is smooth.

2.5.3 Exercise Prove that the family of transition functions {gyv } in Defi-
nition 2.5.2 satisfies the cocycle conditions:

gov(z) = id (zel)
guv(@)gyvw(x)gwu(z) = id (xeUNVNW)

2.5.4 Exercise Let M be a smooth manifold.
a. Prove that for a vector bundle 7= : E — M as in Definition 2.5.2, the
total space E has a natural structure of smooth manfifold such that =
is smooth and the local trivializations are diffeomorphisms.
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b. Prove that Definitions 2.5.1 and 2.5.2 are equivalent.

2.5.5 Example In this example, we construct a very important example of
vector bundle which is not a tensor bundle, called the tautological (line) bun-
dle over RP™. Recall that a point p in real projective space M = RP" is a
1-dimensional subspace of R+ (Example 1.2.9). Set E = Upen E, where
E, is the subspace of R"*! corresponding to p, namely, E,, consists of vec-
tors v € R"! such that v € p. Let 7 : E — M map E, to p. We will prove
that this is a smooth vector bundle by constructing local trivializations and

using Definition 2.5.2. Recall the atlas {¢;}7"' of Example 1.2.9. Set

852‘ : 7T_1(Ui) — Ui x R V= (ﬂ(v),xi(v)).
This is a bijection and the cocycle
gij(xla R ,InJrl) = xi/iﬂj S GL(l,R) = R\ {0}

is smooth on U; N Uj, as wished.

2.6 Problems

§2.1

1 LetV beavectorspaceandlet:: V" — ®@"V be defined as ¢(vy,...,v,) =
U] ® - ® vy, where V? =V x --- x V (n factors on the right hand side).
Prove that ®"V satisfies the following universal property: for every vector
space U and every n-multilinear map 7" : V" — U, there exists a unique
linear map 7' : "V — U such that T ot =T,

"V
L
vVt ——>
T

2 Prove that ®"V is canonically isomorphic to the dual space of the space
n-multilinear forms on V™. (Hint: Use Problem 1.)

3 Let V be a vector space. An n-multilinear map 7" : V" — U is called
alternating if T'(vy(1), - - -, Vo(n)) = (sgn )T (v1,...,v,) forevery vy, ... v, €
V and every permutation o of {1,...,n}, where sgn denotes the sign +1 of
the permutation.

Lett: V™ — A™(V) be defined as ¢(v1, ..., v,) = v1 A---Av,. Note that ¢
is alternating. Prove that A"V satisfies the following universal property: for
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every vector space U and every alternating n-multilinear map 7' : V" — U,
there exists a unique linear map 7' : A"(V) — U such that T ot =T.

A”X_/

L

Vvt ——>
T

4 Denote the vector space of all alternating multilinear forms V" — R by
A (V). Prove that A™ (V') is canonically isomorphic to A, (V')*.

5 Provethatvy,...,v; € V are linearly independent if and only if v; A- - - A
vg # 0.

6 LetV and W be vector spaces and let 7' : V' — W be a linear map.

a.

b.

Show that T naturally induces a linear map A*(T') : A¥(V) — AF(W).
(Hint: Use Problem 3.)

Show that the maps A* (V') for various k induce an algebra homomor-
phism A(T) : A(V) — A(W).

Letnow V = W and n = dim V. The operator A™(7") is multiplication
by a scalar, as dim A"(V') = 1; define the determinant of T to be this
scalar. Any n xn matrix A = (a;;) can be viewed as the representation
of a linear operator on R" with respect to the canonical basis. Prove
that

det A=) (80.0) @ o(s) ()

where sgn o is the sign of the permutation o and o runs over the set of
all permutations of the set {1, ...,n}. Prove also that the determinant
of the product of two matrices is the product of their determinants.
Using Problem 7(a) below, prove that the transpose map A¥(T)* =
AF(T™).

7 Let V be vector space.

a.

b.

Prove that there is a canonical isomorphism
AF(V*) = AF(V)
given by
VI A A= (U A A = det (v (ug)) )

Leta, 8 € V* =2 AY(V*) = A1 (V). Show that a A 3 € A%2(V*), viewed
as an element of A%2(V)* = A5(V) is given by

a B (u,v) =alu)f(v) —alv)s(u)

forallu,veV.
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8 LetV be an Euclidean vector space, that is, a vector space equipped with
a (positive-definite) inner product (, ). Prove that there is an induced inner
product on A¥(V) given by

(ur A== ANug,vr A= Avg) — det ((v;,u5)) .

9 LetV be a vector space.
a. In analogy with the exterior algebra, construct the symmetric algebra
Sym(V'), a commutative graded algebra, as a quotient of 7'(V').
b. Determine a basis of the homogeneous subspace Sym™ (V).
c. State and prove that Sym" (V) satisfies a certain universal property.
d. Show that the Sym™ (V) is canonically isomorphic to the dual of the
space Sy, (V') of symmetric n-multilinear forms V" — R.
In view of (d), Sym(V*) is usually defined to be the space P(V') of polyno-
mials on V.

10 Anelement of A”(V) is called decomposable if it lies in the subset A (V) A
-~ AAL(V) (n factors).
a. Show that in general not every element of A" (V) is decomposable.
b. Show that, for dimV' < 3, every homogeneous element in A(V) is
decomposable.
c. Letw be a differential form. Isw A w = 0?

11 Let V be an oriented vector space equipped with a non-degenerate
symmetric bilinear form (we do not require positive-definiteness from the
outset). Let dim V' = n.

a. Prove there exists an element w € A™(V') such that

w=e N---Ney

for every positively oriented orthonormal basis {ey, ..., e, } of V (here
orthonormal means that e; - e; = +6;; (delta of Kronecker)).

b. Check that the bilinear form on V' induces an isomorphism V' — V*,
which induces an isomorphism A*(V') — A¥(V*) via Problem 6(a).

c. Show that the bilinear map

AF(V) x AmR(V) = A™Y(V), (o, ) » aNp
together with the isomorphism
R — A" (V), a— aw
define a canonical isomorphism

(AF(V))* = A"H(V).
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d. Combine the isomorphims of (b) and (c) with that in Problem 7(a) to
get a linear isomorphism

w0 AR(V) — AVR(V)

for 0 < k < n, called the Hodge star.

e. Show that
an=f=(a,B)w
forall a, 8 € A* (V), where we use the inner product of Problem 8.
f. Assume the inner product is positive definite and let {e;,...,e,} bea

positively oriented orthonormal basis of V. Show that

xl=eg A~ Nep, *x(eg A Ney) =1,

and
x(eg Ao ANek) =ekr1 A Aep.
Show also that
Kk = (—1)k("_k)
on A¥(V).

§2.2

12 Let M be a smooth manifold. A Riemannian metric g on M is an assign-
ment of positive definite inner product g, on each tangent space 7,/ which
is smooth in the sense that ¢(X,Y)(p) = g,(X(p), Y (p)) defines a smooth
function for every X, Y € X(M). A Riemannian manifold is a smooth mani-
fold equipped with a Riemannian metric.

a. Show that a Riemannian metric g on M is the same as a tensor field g
of type (0,2) which is symmetric, in the sense that (Y, X) = §(X,Y)
for every X, Y € X(M), with the additional property of positive-
definiteness at each point.

b. Fix a local coordinate system (U, z1, ..., x,) on M.

(i) LetgbeaRiemannian metricon M. Show that gy =3, ; gijdz;®
dx; where g;; = g(a%i, %) € C>(U), gij = gji and the matrix
(gi;) is everywhere positive definite.
(ii) Conversely, given functions g;; = g;; € C°°(U) such that the
matrix (g;;) is positive definite everywhere in M, show how to
define a Riemannian metric on U.
c. Use part (b)(ii) and a partition of unity to prove that every smooth
manifold can be equipped with a Riemannian metric.
d. On a Riemannian manifold M there exists a natural diffeomorphism
TM =~ T*M taking fibers to fibers. (Hint: There exist linear isomor-
phisms v € T,M — g,(v,-) € T,M*).
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§23

13 Consider R? with coordinates (x,%, z). In each case, decide whether
dw = 0 or there exists n such that dn = w.

a. w=yzdr + xzdy + xydz.

b. w = xdx + x*y*dy + yzdz.

c. w=2xy’dr Ady + zdy A dz.

14 (The operator d on R?) Identify 1- and 2-forms on R? with vector fields
on R?, and 0- and 3-forms on R? with smooth functions on R3, and check

that:
d on 0-forms is the gradient;

d on 1-forms is the curl;
d on 2-forms is the divergent.

Also, interpret d? = 0 is those terms.
§2.4

15 Let M and N be smooth manifolds where M is connected, and consider
the projection 7 : M x N — N onto the second factor. Prove that a k-
form w on M x N is of the form 7*7 for some k-form 7 on N if and only if
txw = Lxw =0 forevery X € X(M x N) satisfying dm o X = 0.

16 Let M be a smooth manifold.
a. Prove that txtx = 0 for every X € X(M).
b. Prove that 1x yjw = Lxiyw — 1y Lxw for every X, Y € X(M) and
w € QF(M).

§2.5

17 The Whitney sum E; @ E5 of two vector bundles 1 : Ey — M, 7y : By —
M is a vector bundle 7 : E = E; & Ey — M where E, = (E1), & (E2), for
allp e M.
a. Show that Fy @ E» is indeed a vector bundle by expressing its local
trivializations in terms of those of E'; and E» and checking the condi-
tions of Definition 2.5.2.
b. Similarly, construct the tensor product bundle F; ® E> and the dual
bundle E*.



CHAPTER 3

Lie groups

Lie groups are amongst the most important examples of smooth manifolds.
At the same time, almost all usually encountered examples of smooth man-
ifolds are related to Lie groups, in a way or another. A Lie group is a smooth
manifold with an additional, compatible structure of group. Here compati-
bility refers to the fact that the group operations are smooth (another point
of view is to regard a Lie group as a group with an additional structure of
manifold...). The reader can keep in mind the matrix group GL(n,R) of
non-singular real n x n matrices (Examples 1.2.7) in which the n? matrix
coefficients form a global coordinate system. The conjuction of the smooth
and the group structures allows one to give a more explicit description
of the differential invariants attached to a manifold. For this reason, Lie
groups form a class of manifolds suitable for testing general hypotheses
and conjectures. The same remarks apply to homogeneous spaces, which
are certain quotients of Lie groups.

3.1 Basic definitions and examples

A Lie group G is a smooth manifold endowed with a group structure such
that the group operations are smooth. More concretely, the multiplication
map p : G x G — G and the inversion map ¢ : G — G are required to be
smooth.

3.1.1 Examples (a) The Euclidean space R" with its additive vector space
structure is a Lie group. Since the multiplication is commutative, this is an
example of a Abelian (or commutative) Lie group.

(b) The multiplicative group of nonzero complex numbers C*. The sub-
group of unit complex numbers is also a Lie group, and as a smooth mani-
fold it is diffeomorphic to the circle S*. This is also an Abelian Lie group.

(c) If G and H are Lie groups, the direct product group structure turns
the product manifold G x H into a Lie group.

63
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(d) It follows from (b) and (c) that the n-torus T = S* x- - - x S (n times)
is a Lie group. Of course, T is a compact connected Abelian Lie group.
Conversely, we will see in Theorem 3.5.3 that every compact connected
Abelian Lie group is an n-torus.

(e) If G is a Lie group, the connected component of the identity of G,
denoted by G°, is also a Lie group. Indeed, G° is open in G, so it inherits
a smooth structure from G just by restricting the local charts. Since p(G° x
G°) is connected and p(1,1) = 1, we must have p(G° x G°) C G°. Similarly,
t(G°) C G°. Since G° C G is an open submanifold, it follows that the group
operations restricted to G° are smooth.

(f) Any finite or countable group endowed with the discrete topology
becomes a 0-dimensional Lie group. Such examples are called discrete Lie
groups.

(g) We now turn to some of the classical matrix groups. The general
linear group GL(n, R) is a Lie group since the entries of the product of two
matrices is a quadratic polynomial on the entries of the two matrices, and
the entries of inverse of a non-singular matrix is a rational function on the
entries of the matrix.

Similarly, one defines the complex general linear group of order n, which is
denoted by GL(n, C), as the group consisting of all nonsingular n x n com-
plex matrices, and checks that it is a Lie group. Note that dim GL(n,C) =
2n? and GL(1,C) = C*.

We have already encountered the orthogonal group O(n) as a closed
embedded submanifold of GL(n,R) in 1.4.14. Since O(n) is an embedded
submanifold, it follows from Theorem 1.4.9 that the group operations of
O(n) are smooth, and hence O(n) is a Lie group.

Similarly to O(n), one checks that the

SL(n,R) = {Ae€ GL(n,R)| det(A) =1} (real special linear group)
SL(n,C) = {Ae€GL(n,C)| det(A) =1} (complex special linear group)
U(n) = {AeGL(n,C)|AA* =1} (unitary group)
SO(n) = {Ae€O(n)| det(A) =1} (special orthogonal group)
SU((n) = {Ae€U(n)| det(A) =1} (special unitary group)

are Lie groups, where A* denotes the complex conjugate transpose matrix
of A. Note that U(1) = S*.

Lie algebras

For an arbitrary smooth manifold M, the space X(M) of smooth vector
fields on M is an infinite-dimensional vector space over R. In addition,
we have already encountered the Lie bracket, a bilinear map [-,] : X(M) x
X(M) — X(M) satisfying;:

a. [V, X]=-[X,Y];
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b. [[X,Y], Z]+ Y, Z],X] + [[Z, X], Y] = 0 (Jacobi identity);
for every X,Y € X(M). In general, a vector space with a bilinear operation
satisfying (a) and (b) above is called a Lie algebra. So X(M) is Lie algebra
over R.

It turns out in case of a Lie group GG, we can single out a finite dimen-
sional subalgebra of X(M ). For that purpose, let us first introduce transla-
tions in G. The left translation defined by g € G is the map L, : G — G,
Ly(z) = gw. It is a diffeomorphism of G, its inverse being given by L 1.
Similarly, the right translation defined by g € G is the map R, : G — G,
Ry(x) = xg. Itis also a diffeomorphism of G, and its inverse is given by
R,-1.

’ The translations in G define canonical identifications between the tan-
gent spaces to G at different points. For instance, dL, : T;,G — T,,G is
an isomorphism for every g, h € G. This allows us to consider invariant
tensors, the most important case being that of vector fields. A vector field
X on G is called left-invariant if d(Lgy),(X,) = X4 for every g, € X. This
condition is simply dL, 0 X = X o L, for every g € G; equivalently, X is
L 4-related to itself, or yet L, X = X (since L, is a diffeomorphism), for all
g € G. We can similarly define right-invariant vector fields, but most often
we will be considering the left-invariant variety. Note that left-invariance
and right-invariance are the same property in case of an Abelian group.

3.1.2 Lemma Every left invariant vector field X in G is smooth.

Proof. Let f be a smooth function defined on a neighborhood of 1 in G,
and let v : (—€,e) — G be a smooth curve with v(0) = 1 and 7/(0) = X;.
Then the value of X on f is given by

X,(f) = dLy(X0)(F) = Xi(fo L) = | flart) = 2|~ Fonutg ()

and hence, it is a smooth function of g. O

Let g denote the set of left invariant vector fields on G. It follows that g
is a vector subspace of X(M). Further, g is a subalgebra of X(M), for given
X,Y € g, we have by Proposition 1.6.18 that

L[ X, Y] = [Lg X, Lg,Y] = [X,Y],

for every g € G. Finally, we explain why g is finite-dimensional: the map
X € g — X, defines a linear isomorphism between g and the tangent space
to G at the identity 771G, since any left invariant vector field is completely
defined by its value at the identity.

The discussion above shows that to any Lie group G is naturally asso-
ciated a (real) finite-dimensional Lie algebra g of the same dimension as G,
consisting of the left invariant vector fields on G. This Lie algebra is the
infinitesimal object associated to G' and, as we shall see, completely deter-
mines its local structure.
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3.1.3 Examples (The Lie algebras of some known Lie groups)

(i) The left-invariant vector fields on R" are precisely the constant vec-
tor fields, namely, the linear combinations of coordinate vector fields (in the
canonical coordinate system) with constant coefficients. The bracket of two
constant vector fields on R" is zero. It follows that the Lie algebra of R"
is R" itself with the null bracket. In general, a vector space equipped with
the null bracket is called an Abelian Lie algebra.

(ii) The Lie algebra of the direct product G x H is the direct sum of Lie
algebras g @ b, where the bracket is taken componentwise.

(iii) Owing to the skew-symmetry of the Lie bracket, every one-dimensional
Lie algebra is Abelian. In particular, the Lie algebra of S is Abelian. It fol-
lows from (ii) that also the Lie algebra of 7" is Abelian.

(iv) G and G° have the same Lie algebra.

(v) The Lie algebra of a discrete group is {0}.

3.1.4 Examples (Some abstract Lie algebras)

(i) Let A be any real associative algebra and set [a,b] = ab — ba for q,
b € A. Itis easy to see that A becomes a Lie algebra.

(ii) The cross-product x on R? is easily seen to define a Lie algebra
structure.

(iii) If V' is a two-dimensional vector space and X, Y € V are linearly
independent, the conditions [X, X]| = [Y,Y] = 0, [X,Y] = X define a Lie
algebra structure on V.

(iv) If V is a three-dimensional vector space spanned by X, Y, Z, the
conditions [X,Y] = Z, [Z, X] = [Z,Y] = 0 define a Lie algebra structure
on V, called the (3-dimensional) Heisenberg algebra. It can be realized as a Lie
algebra of smooth vector fields on R? as in Example 1.6.15(b).

3.1.5 Exercise Check the assertions of Examples 3.1.3 and 3.1.4.

3.2 The exponential map

For a Lie group G, we have constructed its most basic invariant, its Lie
algebra g. Our next step will be to present the fundamental map that relates
G and g, namely, the exponential map exp : g — G.

Matrix exponential

Recall that the exponential of a matrix A € M(n,R) (or M(n, C)) is given
by the formula:

1 1
e = TH+A+ZAP+ A3+
2 3!
SA”
n:On'
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Since || > ), %AkH < ellll for all n > 0, the series is absolutely conver-
gent on the entire M(n, R); here || - || denotes the usual Euclidean norm in
M(n,R) = R™. In case n = 1, we recover the usual exponential map on
the line. In general, note that:

a. ¥ =1;

b. eAtB = e4eP if Aand B commute.
Indeed, to check (b) notice that one can compute the product of e/ and e?
by multiplying the individual terms and rearranging, by absolute conver-
gence. In particular:

c. eBTHA — esAetB forall 5, t € R;

d. e is invertible and (e4)™! = e=4.
View t € R + €/ as a curve in M(n, R). The last property worth mention-
ing is

e. %!t:to et = Aetod = glod 4,

Flow of left-invariant vector fields

Let G be a Lie group, and let g denote its Lie algebra.

3.2.1 Proposition Every left-invariant vector field is complete.

Proof. Given X € g, there exists a maximal integral curve vx : (a,b) —
G of X with 0 € (a,b) (a, b € [—00,¢]) and vx(0) = 1; namely, 7 (t) =
X, ()- Since

d

Tl La(rx () = d(Lg)(Xox 1)) = Xy (rx (10
=to

we have that L, o yx is an integral curve of X starting at g. In particular,
if b < oo, by taking g = 7(s) with s very close to b, this shows that yx can
be extended beyond b, leading to a contradiction. Similarly, one sees that
a = —oo. Hence X is complete. O

Now the integral curve vx of any X € g starting at the identity is de-
fined on R. The exponential map of G is the map exp : g — G defined by
exp X = yx(1).

Note that d% sms VX (t5) = v (tso) = tX (yx (tso)). This implies yx (ts) =
vx (s) for all s, t € R and therefore

x(t) = mx(1)
(3.2.2) = exp(tX),

namely, every integral curve of a left-invariant vector field through the
identity factors through the exponential map.
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3.2.3 Exercise Check that the flow {¢;} of a left-invariant vector field X is
given by ¢; = Regpix (recall that R, denotes a right-translation). What is
the corresponding result for right-invariant vector fields?

Moreover, we state:

3.2.4 Proposition The exponential map exp : g — G is smooth and it is a local
diffeomorphism at 0.

Proof. Smoothness follows from general properties of flows, namely,
smooth dependence on parameters of solutions of ODE’s. Moreover, d expy, :
Tog = g — T1G = g is the identity, since

d
dexpo(X) = 2| exp(tX) = ¢ (0) = X,
Thus, exp is a diffeomorphism from a neighborhood of 0 in g onto a neigh-
borhood of 1 in G by the Inverse Function Theorem (1.3.8). O

Recall that the identity component G° is an open subgroup of G.

3.2.5 Proposition G° is generated as a group by any neighborhood U of 1 in G°,

namely,
G° = U Un,
n>1
where U™ denotes the set of n-fold products of elements in U. In particular, G° is
generated by explg].

Proof. By replacing U by U N U™}, if necessary, we may assume that
U = UL Define V = Un>oU" and consider the relation in G° given by
g ~ ¢ if and only if g~'¢’ € V. Note that this is an equivalence relation,
and equivalence classes are open as ¢’ ~ g implies ¢'U ~ g, where ¢’'U is an
open neighborhood of ¢’. Hence V' = G°. O

The case of GL(n,R)

Recall that G = GL(n, R) inherits its manifold structure as an open sub-
set of the Euclidean space M(n, R). In particular, the tangent space at the
identity 7;G = M(n,R). Let A € M(n,R) and denote by A ¢ g the
corresponding left-invariant vector field on G. For any g € G, we have
A, = (dL,)(A) = gA (matrix multiplication on the right hand side).

Using property (e) of the matrix exponential,

d

tA to A 1
— et =e""A =A 4
dt lt=tq e

shows that ¢ — ¢!/ is the integral curve of A through the identity, namely

exp A = et
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forall A € M(n,R).
Finally, to determine t~he~Lie bracket in g, we resort to (1.6.22). Let A4,
B € M(n,R), denote by A, B the corresponding left-invariant vector fields
on G, let {¢y = R.:a} be the flow of A (cf. Exercise 3.2.3):
[A’ B] = [A’ B]I
= (LiB)1

do—t(Byy(n))

d
_‘ AABe—tA
dt It=0

= AB - BA.

4
dt lt=0

Note that the Lie algebra structure in M(n, R) is induced from its associa-
tive algebra structure as in Example 3.1.4(i). The space M(n, R) with this
Lie algebra structure will be denoted by gl(n, R).

The case of GL(n, C) is completely analogous.

3.3 Homomorphisms and Lie subgroups

A (Lie group) homomorphism between Lie groups G and H ismap ¢ : G — H
which is both a group homomorphism and a smooth map. ¢ is called an
isomorphism if, in addition, it is a diffeomorphism. An automorphism of a
Lie group is an isomorphism of the Lie group with itself. A (Lie algebra)
homomorphism between Lie algebras g and h is a linear map @ : g — b
which preserves brackets. @ is called an isomorphism if, in addition, it is
bijective. An automorphism of a Lie algebra is an isomorphism of the Lie
algebra with itself.

3.3.1 Exercise For a homomorphism ¢ : G — H, check that L) o ¢ =
polLgforall g e G.

A homomorphism ¢ : G — H between Lie groups induces a linear map
dyp1 : T'G — T1H and hence a linear map dy : g — b. Indeed, if X is a left
invariant vector field on G, let X’ be the unique left invariant vector field
on H such that X| = dy;(X;) and put dp(X) = X'.

3.3.2 Proposition If ¢ : G — H is a homomorphism between Lie groups then
dy : g — b is a homomorphism between the corresponding Lie algebras.

Proof. Let X € g. We first claim that X and X’ := dp(X) are p-related.
In fact,

Xip(g) = ULp(g))1(X1) = d(Ly(g) © 0)1(X1) = d(p 0 Lyg)1(X1) = dipg(Xy),
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proving the claim. Now, if Y € g, then Y and ¢(Y") are op-related. Therefore
[X,Y] and [dp(X),dp(Y")] are ¢-related and thus

dgp([X, Y]l) = [d@(X)7 d@(Y)]¢(1)7

or
dp([X,Y]) = [dp(X), de(Y)].

This shows that dy is a Lie algebra homomorphism. 0

Let G be a Lie group. A Lie subgroup of G is an immersed submanifold
(H, ¢) of G such that H is a Lie group and ¢ : H — G is a homomorphism.

3.3.3 Remark Similarly as in the case of immersed submanifolds (Prob-
lem 19 in Chapter 1), we consider two Lie subgroups (H1, ¢1) and (Hz, ¢2)
of G equivalent if there exists a Lie group isomorphism « : H; — Hj such
that ¢1 = 2 o a. This is an equivalence relation in the class of Lie sub-
groups of G and each equivalence class contains a unique representative of
the form (A, ¢), where A is a subset of G (an actual subgroup)and ¢ : A — G
is the inclusion. So we lose no generality in assuming that a Lie subgroup of
G is an abstract subgroup H of G which is an immersed submanifold of G
and a Lie group with respect to the operations induced from G; namely, the
multiplication and inversion in G must restrict to smooth maps H x H — H
and H — H, respectively.

3.3.4 Example The skew-line (R, f) in 72 (Example 1.4.2) is an example of
a Lie subgroup of T2 which is not closed.

If g is a Lie algebra, a subspace § of g is called a Lie subalgebra if b is
closed under the bracket of g.

Let H be a Lie subgroup of G, say, ¢ : H — G is the inclusion map. Since
¢is an immersion, d¢ : h — g is an injective homomorphism of Lie algebras,
and we may and will view § as a Lie subalgebra of g. Conversely, as our
most important application of Frobenius’ theorem, we have:

3.3.5 Theorem (Lie) Let G be a Lie group, and let g denote its Lie algebra. If b
is a Lie subalgebra of g, then there exists a unique connected Lie subgroup H of G
such that the Lie algebra of H is b.

Proof. We have that h is a subspace of g and so defines a subspace h(1) :=
{X(1) | X € b} of T1G. Let D be the left-invariant distribution on G defined
by b, namely, D, = dL4(h(1)) forall g € G. Then D is a smooth distribution,
as it is globally generated by left-invariant vector fields X;,..., X} in b.
The fact that D is involutive follows from (and is equivalent to) b being a
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Lie subalgebra of g. In fact, suppose X and Y lie in D over the open subset
Uof G. Write X =3, a;X;, Y =, b; X for a;, b € C°°(U). Then

Zaz Xi, j + aiXi(bj)Xj - ijj(ai)Xi

also lies in D, as [ X;, Y] € b.

By Frobenius theorem (1.7.10), there exists a unique maximal integral
manifold of D passing through 1, which we call H. Since D is left-invariant,
for every h € H, L,,~1(H) = h™'H is also a maximal integral manifold of
D, and it passes through through h='h = 1. This implies h"'H = H, by
uniqueness. It follows that H is a subgroup of G. The operations induced
by G on H are smooth because H is an initial submanifold, due to Propo-
sition 1.7.3. This proves that H is a Lie group. Its Lie algebra is h because
h consists precisely of the elements of g whose value at 1 lies in Dy = T1 H,
and these are exacly the elements of the Lie algebra of H.

Suppose now H’ is another Lie subgroup of G with Lie algebra h. Then
H' must also be an integral manifold of D through 1. By the maximality of
H,wehave H' C H, and the inclusion map is smooth by Proposition 1.7.3
and thus an immersion. Now H’ is an open submanifold of H and contains
a neighborhood of 1 in H. Owing to Propostion 3.2.5, H' = H. ]

3.3.6 Corollary There is a bijective correspondence between connected Lie sub-
groups of a Lie group and subalgebras of its Lie algebra.

3.3.7 Example Let G be a Lie group. A subgroup H of G which is an
embedded submanifold of G is a Lie subgroup of G' by Proposition 1.4.9.
It follows from Example 1.4.14(b) that O(n) is a closed Lie subgroup of
GL(n,R). Similarly, the other matrix groups listed in Examples 3.1.1(g)
are closed Lie subgroups of GL(n, R), except that SL(n, C) is a closed Lie
subgroup of GL(n, C). In particular, the Lie bracket in those subgroups is
given by [A, B] = AB — BA.

3.3.8 Exercise Show that the Lie algebras of the matrix groups listed in Ex-
amples 3.1.1(g) are respectively as follows:

o(n) = {Acgl(n,R)|A+ A" =0}
sl(n,R) = {Ae€gl(n,R)| trace(A) =0}
sl(n,C) = {Ae€gl(n,C)| trace(A) = 0}

u(n) = {Aegl(n,C)|A+ A" =0}

so(n) = o(n)
su(n) = {A€u(n)]| trace(A) =0}
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A Lie group homomorphism ¢ : R — G'is called a (smooth) one-parameter
subgroup. Note that such a ¢ is the integral curve of X := dy(1) € g, and
we have seen in (3.2.2) that p(t) = exp(tX) forall t € R.

More generally, let ¢ : G — H be ahomomorphism between Lie groups.
Then, for a left invariant vector field X on G, t — (exp%(tX)) is a one-
parameter subgroup of H with % | tzogo(expG tX) = de(X1). In view of the
above,

(3.3.9) @ oexp® X = exp!? odp(X),

forevery X € g. In particular, if K is a Lie subgroup of G, then the inclusion
map ¢ : K — G'is a Lie group homomorphism, so that the exponential map
of G restricts to the exponential map of K, and the connected component
of K is generated by exp“[¢], where ¢ is the Lie algebra of K. It follows also
that

(3.3.10) t={X eg:exp¥(tX) € K, forallt € R}.

Indeed, let X € g with exp®(tX) € K for all t € R. Since K is an
integral manifold of an involutive distribution (compare Theorem 3.3.5),
t — exp’(tX) defines a smooth map R — K and thus a one-parameter
subgroup of K. Therefore exp®(tX) = i o exp’ (tX’) for some X’ € &, and
hence X = di(X’).

3.4 Covering Lie groups

Let G be a connected Lie group. Consider the universal covering 7 : G —
G. By Problem 5 in Chapter 1 or the results in Appendix A, G has a unique
smooth structure for which = is a local diffeomorphism.

3.4.1 Theorem Every connected Lie group G has a simply-connected covering
7 : G — G such that G is a Lie group and w is a Lie group homomorphism.

Proof. Consider the smooth map « : G x G — G given by (g, h)
7(g)m(h)~. Choose 1 € 7~'(1). As G is simply-connected, so is G x G. By
the lifting criterion, there exists a unique map smooth & : G’ x G — G such
that 7o @ = e and @(1,1) = 1. Put

g t=a(,5), gh:=a(ghr?

for §, h € G. These operations are shown to make G into a group by use of
the uniqueness part in the lifting criterion. As an example,

(3.4.2) m(g1) = M~f5=a@i”>=ﬂmﬂfﬁ*=w@)

since 17! = a(1,1) = (1) = 1. Identity (3.4.2) shows that g — g1

1 an
is a lifting of g — 7(g), G’ G, toamap G — G which takes 1to1-1 =
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&(1,17Y) = a(1,1) = 1. However, the identity map of G is also a lifting
of § — m(G) which takes 1 to 1. By uniqueness, both liftings coincide and
gl =gforall g e G.

Now G is a group. Since @ is smooth, G'is a Lie group. Finally,

(g ") =ma(1,9) = a(l,§) =a(D)n(g) " =m(5)~"

and

Hence, 7 : G — Gisa Lie group homomorphism. O

3.4.3 Remark It follows from Lemma 3.4.4(c) and Theorem 3.7.7 that the
structure of Lie group on the universal covering G of G is unique, up to
isomorphism.

3.4.4 Lemma Let ¢ : G — H be a homomorphism between Lie groups. Consider
the induced homomorphism between the corresponding Lie algebras dy : g — b.
Then:
a. dy is injective if and only if the kernel of ¢ is discrete.
b. dy is surjective if and only if o(G°) = H®.
c. dy is bijective if and only if o is a topological covering (here we assume G
and H connected).

Proof. (a) If dp : g — b is injective, then ¢ is an immersion at 1 and
thus everywhere by Exercise 3.3.1. Therefore ¢ is locally injective and
hence ker ¢ is discrete. Conversely, if dp : g — b is not injective, ker dy,
is positive-dimensional for all g € G and thus defines a smooth distribu-
tion D. Note that X lies in D if and only if X is op-related to the null vector
field on H. It follows that D is involutive. The maximal integral manifold
of D through the identity is collapsed to a point under ¢ implying that ker ¢
is not discrete.

(b) Since ¢ o exp = exp ody and G° is generated by exp|g|, we have that
©(G®) is the subgroup of H® generated by expldp(g)], thus p(G°) = H® if
dy is surjective. On the other hand, if dy is not surjective, dy(g) is a proper
subalgebra of h to which there corresponds a connected, proper subgroup
K of H®, and expldp(g)] generates K.

(c) Assume G, H connected. If ¢ is a covering then ker dy is discrete and
¢ is surjective, so dy is an isomorphism by (a) and (b). Conversely, suppose
that dp : g — bh an isomorphism. Then ¢ is surjective by (b). Let U be a
neighborhood of 1 in G such that ¢ : U — ¢(U) := V is a diffeomorphism.
We can choose U so that UnNker dyp = {1} by (a). Then ¢~ (V) = Upeker pnU,
and this is a (disjoint union) for ng = n’¢g’ withn, n’ € kerpand g, ¢/ € U
implies g¢'~' = n~!n’ € kerp and so ¢(g) = ¢(g') and then g = ¢'. Since
po L, = ¢ forn € ker ¢, we also have that ¢|nU is a diffeomorphism onto
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V. This shows that V is an evenly covered neighborhood of 1. Now AV
is an evenly covered neighborhood of any given h € H, and thus ¢ is a
covering. O

3.4.5 Theorem Let G, G be Lie groups, and assume that G is connected and
simply-connected. Then, given a homomorphism ® : g, — gy between the Lie
algebras, there exists a unique homomorphism ¢ : Gi — Go such that dp = .

Proof. The graphof @, h = {(X, ®(X)) : X € g, is a subalgebra of g, ©gs.
Let H be the subgroup of G x G defined by b (Theorem 3.3.5). Consider
the projections

Q191D gy — Gy ;i : G1 x Gy = G,

for i = 1, 2. Since ®;|h : h — g; is an isomorphism, we have that ® =
g0 (P1|h)"Land ¢ : H — Gy is a covering. Since G is simply-connected,
v1|H : H — G is an isomorphism of Lie groups, and we can thus define
¢ = p20(p1)~ L. This proves the existence part. The uniqueness part comes
from the fact that dyp = @ specifies ¢ in a neighborhood of 1 (by using the
exponential map as in (3.3.9)), and G| is generated by this neighborhood.
O

3.5 The adjoint representation

Let G be a Lie group, and denote its Lie algebra by g. The noncommutativ-
ity of G is organized by the adjoint representation. In order to introduce it,
let g € G, and define a map Inn, : G — G by Inny(z) = gzg~'. Then Inn,
is an automorphism of G, which is called the inner automorphism defined by
g. The differential d(Inng) : g — g defines an automorphism of g, which we
denote by Ad,. Then

d d 1
AdyX = pn tZOInn(g)(exp tX) = 7,9 exp tXg .

3.5.1 Example In case G = GL(n,R), Inn, is the restriction of the linear map
M(n,R) = M(n,R), X — gXg~!,s0 AdyX = d(Inny);(X) = gXg~'.

This defines a homomorphism
Ad:ge G — Ady € GL(g),

which is called the adjoint representation of G on g.
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We have
(Ang ) 1

= ((Rg-1).X) 1

Recall that GL(g) is itself a Lie group isomorphic to GL(n, R), where
n = dimg. Its Lie algebra consists of all linear endomorphisms of g with
the bracket [A, B] = AB — BA and it is denoted by gl(g). Note that Ad, =
DsF(g,1), where F : G x G — G is the smooth function F(g,r) = gzg~!,
so the linear endomorphism Ad, of g depends smoothly on g. Now Ad :
g € G = Ad,; € GL(g) is homomorphism of Lie groups and its differential
d(Ad) defines the adjoint representation of g on g:

ad: X €eg—adx = Adexth € g[(g)

"
dt lt=0
Since ¢y = Rexptx is the flow of X, we get

d
adxY = —

d
dt tZOAdexthY = @‘t:o ((Rexp(ftX))*Y)l = (LXY)l = [X, Y]

As an important special case of (3.3.9), we have

Adexp X = eadX

1

1
= I—i—adx+§ad§(+§ad§(—|—---

forall X € g.

3.5.2 Lemma For given X, Y € g, we have that [X,Y]| = 0 if and only if
expXexpY = expYexpX. In that case, exp(t(X +Y)) = exptXexptYy
forall t € R. It follows that a connected Lie group is Abelian if and only if its Lie
algebra is Abelian.

Proof. The first assertion is a special case of Proposition 1.6.23 using that
0t = Rexpix is the flow of X and ¢y = Rexp sy is the flow of Y. The second
one follows from noting thatboth ¢t — exp(t(X+Y))and t — exptX exptY
are one-parameter groups with initial speed X + Y. Finally, we have seen
that g is Abelian if and only if exp[g] is Abelian, but the latter generates G°.

O

3.5.3 Theorem Every connected Abelian Lie group G is isomorphic to R"™% x
T*. In particular, a simply-connected Abelian Lie group is isomorphic to R™ and
a compact connected Abelian Lie group is isomorphic to T™.



76 CHAPTERS3. LIE GROUPS

Proof. 1t follows from Lemma 3.5.2 that g is Abelian and exp : g — G
is a homomorphism, where g = R" as a Lie group, thus exp is a smooth
covering by Lemma 3.4.4(c). Hence G is isomorphic to the quotient of R"
by the discrete group ker exp. O

3.6 Homogeneous manifolds

Let G be a Lie group and let H be a closed subgroup. Consider the set G/H
of left cosets of H in G equipped with the quotient topology with respect to
the projection 7 : G — G//H. Note also that left multiplication in G induces
amap A\ : G x G/H — G/H,namely, \(g,zH) = (gz)H, and that

(3.6.1) moLy=Agom
for all g € G, where \;(p) = A(g,p) forp € G/H.

3.6.2 Lemma A closed Lie subgroup H of a Lie group G must have the induced
topology.

Proof. We need to prove that the inclusion map ¢ : H — G is an embed-
ding. Since « commutes with left translations, it suffices to find an open sub-
set V of H such that the restriction ¢|y is an embedding into G. By the proof
of Theorem 3.3.5, there exists a distinguished chart (U, ¢ = (x1,...,2,)) of
G around 1 such that H N U consists of at most countably many plaques,
each plaque being a slice of the form

Li+1 = Ck+1y --+y Tn = Cn

for some ciy1,...,¢, € R, where k = dim H. Denote by 7 : R" = RF x
R"* — R"* the projection. Let U be a compact neighborhood of 1 con-
tained in U. Now H N U is compact, so 7(H N U) is a non-empty closed
countable subset of R"~* which by the Baire category theorem must have
an isolated point. This point specifies a isolated plaque V' of H in U along
which ¢ is an open mapping and hence a homeomorphism onto its image,
as desired. O

3.6.3 Theorem If G is a Lie group and H is a closed subgroup of G, then there
is a unique smooth structure on the topological quotient G /H such that X : G x
G/H — G/H is smooth. Moreover, = : G — G/H is a surjective submersion
and dim G/H = dim G — dim H.

Proof. For an open set V of G/H we have that 7~ 1(7(V)) = Ugec 9V
is a union of open sets and thus open. This shows that 7 is an open map
and hence the projection of a countable basis of open sets of G yields a
countable basis of open sets of G/H. To prove that G/H is Hausdorff, we
use closedness of H. Indeed it implies that the equivalence relation R C
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G x G, defined by specifying that g ~ ¢ if and only if g~1¢’ € H, is a closed
subset of G x G. Now if gH # ¢'H in G/H then (g,¢’) ¢ R and there exist
open neighborhoods W of g and W' of ¢’ in G such that (W x W/)NR = @.
It follows that 7(W) and 7(W') are disjoint neighborhoods of g and ¢’ in
G/ H, respectively.

We first construct a local chart of G/H around pg = 7(1) = 1H. Re-
call from Proposition 3.2.4 and (3.3.9) that the exponential map exp = exp®
gives a parametrization of G around the identity element and restricts to
the exponential map of . Denote the Lie algebras of G and H by g and b,
resp., and choose a complementary subspace m to h in g. We can choose a
product neighborhood of 0 in g of the form Uy x Vj;, where Uy is a neigh-
borhood of 0 in §, V; is a neighborhood of 0 in m such that the map

f:VoxUy— G, f(X,)Y)=expXexpY

is a diffeomorphism from onto its image (apply the Inverse Function Theo-
rem 1.3.8 to f). Owing to Lemma 3.6.2, H has the topology induced from G,
so we may choose a neighborhood W of 1 in G such that W N H = exp(Up).
We also shrink Vg so that (expVp) 'expVy € W. Now we claim that
moexp |y, is injective. Indeed, if m(exp X ) = w(exp X') for some X, X' € 1},
then (exp X) texp X' € HNW = exp(Up), so exp X’ = exp X expY for
some Y € Up. Since f is injective on Uy x Vj, this implies that X' = X
and Y = 0 and proves the claim. Note exp Vjexp Uy is open in G, so the
image m(exp Vp) = m(exp Vpexp Up) is open in G/H. We have shown that
7 o exp defines a homeomorphism from Vj onto the open neighborhood
V = 7w(exp V) of p in G/H, whose inverse can then be used to define a
local chart (V, ) of G/H around py.

Now the collection {(V'9,19)}4cc defines an atlas of G/H, where V9 =
gV and 99 = ¢po L -1, and we need to check the its smoothness. Suppose g,
¢ € G aresuch that VINVY +# @, and that p = (gexp X)H = (¢ exp X')H
is an element there, namely, 19(p) = X and ¢¢ (p) = X’. Then exp X’ =
(¢')"*gexp Xh € exp Vp for some h € H, so there exists a neighborhood V;
of X in Vj such that (¢')~'g(exp Vp)h C Vp, and thus 49 o (¢~")_1|‘~,0 can be
written as the composite map

TologoRp o Ly-14 0 exp,

where log denotes the inverse map of exp : Uy x Vo — exp(Up x V), and
7 : g — m denotes the projection along . Hence the change of charts
Y9 o (19)~1 is smooth.
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The local representation of 7 is 7 in the above charts is 7, namely, there
is a commutative diagram

T
gexpVpexpUy —— VY

f—l OLg_IJ/ TLgowoexp

Uy x Vg ——=W
T

which shows that 7 is a submersion. Similarly, the commutative diagram

GxgexplVg ———> G

] I

GxVI—>G/H
GXxV9
proves that A is smooth. The uniqueness of the smooth structure follows
from Proposition 3.6.4 below. O

Let M be a smooth manifold and let G be a Lie group. An action of G on
M isasmoothmap p : GXxM — M such that u(1,p) = pand u(g, A(¢',p)) =
u(gg',p) for all p € M and ¢, ¢ € G. For brevity of notation, in case fx is
fixed and clear from the context, we will simply write 1.(g, p) = gp.

An action of G is M is called transitive if for every p, g € M there exists
g € G such that gp = ¢. In this case, M is called homogeneous under G, G-
homogeneous, or simply a homogeneous manifold. Examples of homogeneous
manifolds are given by the quotients G/H, where H is closed Lie subgroup
of G, according to Theorem 3.6.3. Conversely, the next proposition that
every homogeneous manifold is of this form. For an action of G on M and
p € M, the isotropy group at p is the subgroup G, of G consisting of elements
that fix p, namely, G, = {g € G | gp = p }. Plainly, G, is a closed subgroup
of G, and so a Lie subgroup of G, owing to Theorem 3.7.1 below.

3.6.4 Proposition Let ;1 : G x M — M be a transitive action of a Lie group G
on a smooth manifold M. Fix po € M and let H = G, be the isotropy group at
po. Define a map

f:G/H =M, f(gH) = u(g,po)-
Then f is well-defined and a diffeomorphism.

Proof. It is easy to see that f is well-defined, bijective and smooth. We
can write f o m = w, where w : G — M is the “orbit map” w(g) = gpo. For
X € g, we have

dwi (X) = 4 (exp sX)po = d(exp(—sX)) d

ds l1s=0 @ t:s(exp tX)pm
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so X € kerdw if and only if exptX € H for all t € R if and only if X
belongs to the Lie algebra h of H, due to (3.3.10). Since dfi1g o dm = dw;
and ker dm; = b, this implies that f is an immersion at 1H, and thus an
immersion everywhere by the equivariance property f o Ay = g4 o f for
all g € G.

This already implies that dim G/H < dim M and that (G/H, f) is a sub-
manifold of M, but the strict inequality cannot hold as f is bijective and
the image of a smooth map from a smooth manifold into a strictly higher
dimensional smooth manifold has null measure (this result follows from
the statement that the image of a smooth map R" — R"* with k > 0 has
null measure, and the second countability of smooth manifolds). It follows
that f is a local diffeomorphism and hence a diffeomorphism. O

3.6.5 Examples (a) Let {ey,...,e,} be the canonical basis of R" and view
elements of R" as column-vectors (n x 1 matrices). Then GL(n,R) acts on
R" by left-multiplication:

(3.6.6) GL(n,R) x R" = R"

The basis {e;} is orthonormal with respect to the standard scalar product
in R". The orthogonal group O(n) precisely consists of those elements of
GL(n,R) whose action on R" preserves the lengths of vectors. In particu-
lar, the action (3.6.6) restricts to an action

(3.6.7) O(n) x §"~ 1 — gn~1

which is smooth, since S”~! is an embedded submanifold of R". The ac-
tion (3.6.7) is transitive due to the facts that any unit vector can be com-
pleted to an orthonormal basis of R", and any two orthonormal bases of
R" differ by an orthogonal transformation. The isotropy group of (3.6.7)
at e; consists of transformations that leave the orthogonal complement ei-
invariant, and indeed any orthogonal transformation of e = R™~! can oc-
cur. It follows that the isotropy group is isomorphic to O(n — 1) and hence

S =0(n)/O(n —1)

presents the unit sphere as a homogeneous space, where a the diffeomor-
phism is given by gO(n — 1) — g(e1). If we use only orientation-preserving
transformations on R", also the elements of the isotropy group will act by
orientation-preserving transformations and hence

S"1 = 80(n)/SO(n — 1).

(b) The group SO(n) also acts transtively on the set of lines through the
origin in R". Besides the orthogonal transformations of ei, the isotropy
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group at the line Re; now also contains transformations that map e; to
—ej. It follows that
RP" =50(n)/O(n—1)

where O(n — 1) is identified with the subgroup of SO(n) consisting of ma-
trices of the form
detA 0
(55
where A € O(n —1).

(c) Let {eq,..., e} be the canonical basis of C". It is a unitary basis with
respect to the standard Hermitian inner product in C”. Similarly to (a), one
shows that U(n) and SU (n) act transitively on the set of unit vectors of C",
namely, the sphere S?"~!. More interesting is to consider the set CP" ! of

one-dimensional complex subspaces of C™. This set is homogeneous under
SU(n) and the isotorpy group at the line Ce; consists of matrices of the

form
(det A)~1 0
0 A

where A € U(n — 1). It follows from Theorem 3.6.3 that CP"~! is a smooth
manifold and
CP" 1 =S8U(n)/U(n—1)

as a homogeneous manifold, called complex proejctive space

(d) Let {ey,...,e,} be the canonical basis of R", and let V;(R") be the
set of orthonormal k-frames in R", that is, ordered k-tuples of orthonormal
vectors in R". There is an action

O(n) x Viz(R™") = V&(R"™), g¢g-(v1,...,0k) = (gu1,...,gu%)

which is clearly transitive. The isotropy group at (e, ...,ex) is the sub-
group of O(n) consisting of matrices of the form

(3.6.8) ( é 31 >

where A € O(n — k). The resulting homogeneous space
Vi(R") = O0(n)/O(n — k)

is called the Stiefel manifold of k-frames in R". Note that the restricted action
of SO(n) on Vi (R") is also transitive and

Ve(R") = SO(n)/SO(n — k).
3.7 Additional results

In this section, we state without proofs some important, additional results
about basic Lie theory, and add some remarks.
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Closed subgroups

3.7.1 Theorem Let G be a Lie group, and let A be a closed (abstract) subgroup of
G. Then A admits a unique manifold structure whch makes it into a Lie group;
moreover, the topology in this manifold structure must be the relative topology.

3.7.2 Corollary Let ¢ : G — H be a homomorphism of Lie groups. Then A =
ker ¢ is a closed Lie subgroup of G with Lie algebra a = ker de.

Proof. A'is a closed subgroup and hence a Lie subgroup of G by Theo-
rem 3.7.1. The rest follows from (3.3.9) and (3.3.10). O

Continuous homomorphisms

3.7.3 Theorem Let ¢ : G — H be a continuous homomorphism between Lie
groups. Then ¢ is smooth.

3.7.4 Definition A topological group is an abstract group equipped with a
topology such that the group operations are continuous maps.

3.7.5 Corollary A Hausdorff second countable locally Euclidean group G can
have at most one smooth structure making it into a Lie group.

Proof. Let [A] and [B] two such smooth structures on G. The identity
map (G, [A]) — (G, [B]) is a homomorphism and a homeomorphism, and
hence a diffeomorphism by Theorem 3.7.3. O

Hilbert’s fifth problem is the fifth mathematical problem posed by David
Hilbert in his famous address to the International Congress of Mathemati-
cians in 1900. One (restricted) interpretation of the problem in modern
language asks whether a connected (Hausdorff second countable) locally
Euclidan group admits a smooth structure which makes it into a Lie group.
In 1952, A. Gleason proved that a locally compact group satisfying the “no-
small subgroups” (NSS) condition (compare Problem 12) is a Lie group,
and then immediately afterwards Montgomery and Zippin used Gleason’s
result to prove inductively that locally Euclidean groups of any dimension
satisfy NSS. The two papers appeared together in the same issue of the An-
nals of Mathematics. Here one says that a topological group satisfies NSS
if there exists a neighborhood of the identity which contains no subgroups
other than the trivial group. (Actually, the above is not quite the full story;
Gleason assumed a weak form of finite dimensionality in his original ar-
gument that NSS implies Lie, but shortly thereafter Yamabe showed that
finite dimensionality was not needed in the proof.)
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Theorem of Ado

A (real) representation of a Lie algebra g is a homomorphism ¢ : g —
gl(n, R); if, in addition, ¢ is injective, it is called a faithful representation.

A faithful representation of a Lie algebra g can be thought of a “linear
picture” of g and allows one to view g as a Lie algebra of matrices.

3.7.6 Theorem (Ado) Every Lie algebra admits a faithful representation.

3.7.7 Theorem There is a bijective correspondence between isomorphism classes
of Lie algebras and isomorphism classes of simply-connected Lie groups.

Proof. If g is a Lie algebra, then g is isomorphic to a Lie subalgebra of
gl(n,R) by Theorem 3.7.6. Owing to Theorem 3.3.5, there is a connected
Lie subgroup of GL(n,R) with Lie algebra g. Due to Theorem 3.4.1 and
Lemma 3.4.4(c), there is also a simply-connected Lie group with Lie alge-
bra g. Two simply-connected Lie groups with isomorphic Lie algebras are
isomorphic in view of Theorem 3.4.5. O

Theorem of Yamabe

3.7.8 Theorem (Yamabe) An arcwise connected subgroup of a Lie group is a Lie
subgroup.

3.7.9 Corollary Let G be a connected Lie group and let A and B be connected Lie
subgroups. Then the subgroup (A, B) generated by the commutators

S ={aba b7 : ac A, bec B}

is a Lie subgroup of G. In particular, the commutator of G, (G, G), is a Lie sub-
group of G.

Proof. As a continuous image of A x B, S is arcwise connected, and so
isT = SUS™ !, since SN S~ 5 1. As a continuous image of T x - x T
(n factors) also T is arcwise connected and hence so is (4, B) = U,>1T",
since it is an increasing union of arcwise connected subsets. The result
follows from Yamabe’s theorem 3.7.8. ]

3.7.10 Example In general, the subgroup (4, B) does not have to be closed
for closed connected subgroups A and B of G, even if G is simply-connected.
Indeed, take G to be the simply-connected covering of SL(4,R), and let a
and b be one-dimensional and respectively spanned by

0
0
0

V2

and

co oo
co o~
co oo
o~ oo
oo~ o
cocoo
cococo
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Then A and B are closed one-dimensional subgroups isomorphic to R but
their commutator is a dense line in a torus.

3.8 Problems

§3.1

1 Leta, B : (—€,¢) — G be smooth curves in a Lie group G such that
a(0) = B(0) = 1, and consider v(t) = «(t)3(t). Prove that 4(0) = &(0) +
/3(0). (Hint: consider the multiplication map p : G x G — G and show that
dp(v,w) = du((v,0) + (0,w)) = v+ w for v, w € T1G.)

2 a. Show that
SO(2):{< _a,b Z) ta, beR, a2+b2:1}.

Deduce that SO(2) is diffeomorphic to S?.
b. Show that

SU(2):{<_QB g) s a, feC, |a|2+|ﬁ|2:1}.

Deduce that SU(2) is diffeomorphic to S3.

1
H?’{(O ): x,y,zGR}.
0

a. Prove that H? is closed under matrix multiplication and it has the
structure of a Lie group (the so called Heisenberg group).

b. Show that A = 8%' B = 8% + x%, C = % are left-invariant vector
tields. Compute their Lie brackets.

c. Describe the Lie algebra of H3.

3 Let

o = 8
[l SR

4 In this problem, we classify all real Lie algebras of dimension two and
three.

a. Show that a non-Abelian two-dimensional Lie algebra contains two
vectors X, Y such that [X,Y] = X.

b. For an arbitrary Lie algebra g, denote by [g, g] the subspace spanned
by all elements of the form [X,Y] for X, Y € g. Show that [g,g] is a
subalgebra of g (this is called the derived subalgebra of g).

Throughout the remainder of this problem, we let g be a three-dimensional
Lie algebra. Put n = dim[g, g]. Note that n = 0 if and only if g is Abelian.
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. Assume n = 3. Fix a non-zero w € A3g and show that

XAYAZ={(X,Y],Z)w

for all X, Y, Z € g defines an inner product on g such that adx is
skew-symmetric for all X € g. Conclude that g is isomorphic to so(3)
orsl(2,R).

. Now consider n = 2. Choose linearly independent X, Y € [g,g].

Use (a) and the Jacobi identity to show that [X,Y] = 0. Show also
that it is possible to chose a non-zero Z ¢ [g, g] such that one of the
following holds:

G) [Z2,X]=X,[Z,Y]=X+Y.
(i) [2,X] = X, [2,Y] = \Y, A € R\ {0}.
(i) [Z2,X]=aX+Y,[Z,Y]=-X+aY,a €R.

(Hint: Consider the Jordan canonical form of ady : [g, g] — [g, g].)

. Finally, show that g is either the Heisenberg algebra or a certain prod-

uct algebra in case n = 1.

. Conclude that the above reasoning classifies real Lie algebras in di-

mension 3 (Bianchi 1898). Can you find corresponding Lie groups?

Let G = O(n).
a. Show that G° C SO(n).
b. Prove that any element in SO(n) is conjugate in G to a matrix of the

form
Ry,

where R; is the 2 x 2 block
cost —sint
sint cost

and tq,...,t, € R.

c. Deduce from the above that SO(n) is connected. Conclude that O(n)

has two connected components and SO(n) is the identity component.

6 Prove that Lie groups are parallelizable manifolds (cf. Problem 35 in
Chapter 1).

§3.2
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0 —t\ [ cost —sint
Pl o ~ \ sint cost

8 Give examples of matrices A, B € gl(2, R) such that eA+5 £ e4eB.

7 Show that

fort € R.

9 In this problem, we show that the exponential map in a Lie group does
not have to be surjective.
a. Show that every element ¢ in the image of exp : g — G has a square
root, namely, there is h € G such that h? = g.
b. Prove that trace A> > —2 for any A € SL(2,R) (Hint: A satisfies its
characteristic polynomial X2 — 2(trace X)X + (det X)I = 0.)
c. Deduce from the above that _02 _O

exp : 5[(2,R) — SL(2,R).

1 ) does not lie in the image of
2

10 Let X € sl(2,R). Show that

cosh(— det X)1/2] + SmhCdet )2 v 4e ot X < 0,

x (—de/tX)l/2
: 1/2
e” =9 cos(det X)1/2T + %x if det X > 0,
I+X if det X = 0.

11 (Polar decomposition of matrices)

a. Prove thatany g € GL(n, R) can be written as g = hk where h € O(n)
and k is a positive-definite symmetric matrix.

b. Prove that the exponential map defines a bijection between the space
of real symmetric matrices and the set of real positive-definite sym-
metric matrices. (Hint: Prove it first for diagonal matrices.)

c. Deduce from the above that GL(n,R) is diffeomorphic to O(n) x

n(n+1)
2

12 Let G be a Lie group. Prove that it does not have small subgroups;i.e.,
prove the existence of an open neighborhood of 1 such that {1} is the only
subgroup of G entirely contained in U.

13 For a connected Lie group, prove that the second-countability of its
topology is a consequence of the other conditions in the definition of a Lie

group. (Hint: Use Proposition 3.2.5).

§3.3
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14 Check that

A B

A+iB € GL(n,C) — < 5

> € GL(2n,R)

defines an injective homomorphism ¢ of GL(n, C) onto a closed subgroup
of GL(2n, R). Check also that ¢ restricts to an injective homomorphism of
U(n) onto a closed subgroup of SO(2n).

15 Prove that a discrete normal subgroup of a connected Lie group is cen-
tral.

16 Determine the center of SU(n).

17 Construct a diffeomorphism between U(n) and S* x SU(n). Is it an
isomorphism of Lie groups?

§3.4

18 Consider G = SU(2) and its Lie algebra g = su(2).

a. Check that
_ i Y+ iz ]
g_{<—y+iz i ) .x,y,zGR}.

b. Identify g with R? and check that det : g — R corresponds to the
usual quadratic form on R?. Check also that Ad,, preserves this quadratic
form for all g € G.

c. Deduce form the above that there is a smooth homomorphism SU(2) —
SO(3) which is the simply-connected covering of SO(3).

§3.5

19 Prove that the kernel of the adjoint representation of a connected Lie
group coincides with its center.

20 Let A be a connected subgroup of a connected Lie group G. Prove that
A is a normal subgroup of G if and only if the Lie algebra a of A is an ideal
of the Lie algebra g of G.

§3.6

21 a. Let Gri(R") be the set of k-dimensional subspaces of R". Prove
that
Gri(R") = 50(n)/S(O(k) x O(n — k)).

This is called the Grassmann manifold of k-planes in R".



3.8. PROBLEMS 87

b. Consider now the set Gr; (R") of oriented k-dimensional subspaces of
R", and prove that

Gr (R™) = SO(n)/SO(k) x SO(n — k).

This is called the Grassmann manifold of oriented k-planes in R".
c. Define the Grassmann manifold Gry(C") of k-planes in C" and prove
that

Gry(C") = Un)/ [U(k) x Uln — k)]
= SU(n)/S(U((k) x SU(n — k)).
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CHAPTER 4

Integration

4.1 Orientation

Recall the formula for change of variables in a multiple integral

/ FWi, - yn)dyr - - - dyn
o(

D)
(4.1.1) = /D flo(xy, ... zp)|Jo(x1,. .., xn)|dey - - - dxy,

Here (21,...,2,) and (y1,...,y,) are two sets of coordinates on R" related
by a diffeomorphism ¢ : U — V between open subsets of R", D is a
bounded domain of integration in U, f is a real continuous function on D,

Jp = det (L‘% - 90))
aﬁﬂj

is the Jacobian determinant of ¢, and f refers to the Riemann integral. Let
us interpret (4.1.1) in terms of differential forms. We have

9 o 9yiow)| 0
dtp(@@ p>_; Ox;j ‘payi

»(p)

and

A(yiop)
do)* (dy;|,) = g 7‘ dz;l,,
(dp)*(dyilp) - oz; lp zjlp
so, in view of Exercise 6 in Chapter 2,

O (dyr AN+ Ndyp) = (Jo)dzy A+ Ndxy,.

If we define, as we do, the left hand side of (4.1.1) as the integral of the
n-form w = fdy; A --- A dyy, over ¢(D), that formula says that

4.1.2) / w = i/ orw
(D) D

89
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where the sign is positive or negative according to whether the sign of the
Jacobian determinant is positive or negative throughout D. In general, a
diffeomorphism between open subsets of R" is called orientation-preserving
if its Jacobian determinant is everywhere positive. The above discussion
shows that integration of n-forms on bounded domains is not invariant
under diffeomorphisms in general, but only under those that preserve ori-
entation. This suggests that if we want to transfer these ideas to smooth
manifolds via local charts, and define integration of n-forms there in a man-
ner independent of local coordinates, we should try to sort out a consistent
sign for the transition maps.

Let M be a smooth manifold. A smooth atlas for M is called oriented if
all the transition maps are orientation-preserving, and M is called orientable
if it admits an oriented atlas. If M is orientable, two oriented atlases are
said to define the same orientation if their union is an oriented atlas; this
defines an equivalence relation on the set of oriented atlases, and a choice
of equivalence class is called an orientation for M.

If M is orientable, an oriented atlas for M defines an orientation on
each tangent space induced from the canonical orientation of R" via the
local charts. For these reason, an orientation on M can also be viewed as a
coherent choice of orientations on the tangent spaces to M.

4.1.3 Exercise Recall that an orientation on a vector space V' is an equiva-
lence class of (ordered) bases, where two bases are said to be equivalent if
the matrix of change from one basis to the other has positive determinant.
Clearly, a vector space admits exactly two orientations. Show that for any
non-zero element w € A"(V*) (n = dim V') and any basis (e, ...,e,) of V,
the number w(ey, ..., e,) is not zero and its sign is constant in each equiva-
lence class of bases. Deduce that the components of A”(V*)\ {0} = R\ {0}
naturally correspond to the orientations in V.

4.1.4 Proposition A smooth manifold M of dimension n is orientable if and only
if it has a nowhere vanishing n-form.

Proof. Let wy = dx1 A - - - A dxy, be the canonical n-form on R". The basic
fact we need is that a diffeomorphism 7 of R" is orientation-preserving if
and only if 7wy = f wp for a everywhere positive smooth function f.

Assume firstw is a nowhere vanishing n-formon M. Let A = {(Uq, ¥0) }
be a smooth atlas for M where each U, is connected. For all o, ¢} wy =
fow where f, is a nowhere zero smooth function on U,. Thus f, is ev-
erywhere positive or everywhere negative on U,; in the latter case, we
replace ¢, by ¢, = T o ¢, Where 7(z1,...,2,) = (—21,...,2,). Since
Yrwo = paT wy = —ppwo = — faw, this shows that, by replacing A with an
equivalent atlas, we may assume that f, > 0 for all a. Now (¢gp 1) wo =
(faovat)/(fa o st wo with fz/fo > 0 for all a, 8, which proves that A is
oriented.
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Conversely, assume A = {(U,, ¢o)} is an oriented atlas for M. Define
wa = @hwo. Then w, is a nowhere vanishing n-form on U,, and w,, ws are
positive multiples of one another on U, N Up. It follows that w := ) | pawa
is a well defined, nowhere vanishing n-form on M, where {p,} is a parti-
tion of unity strictly subordinate to {U,}. O

In view of the proof of Proposition 4.1.4, on an orientable manifold M
of dimension 7, there exists a bijection between equivalence classes of ori-
ented atlases and equivalence classes of nowhere vanishing n-forms, where
two nowhere vanishing n-forms on M are said to be equivalent if they dif-
fer by a positive smooth function. On a connected manifold, the sign of a
nowhere zero function cannot change, so on a connected orientable mani-
fold there are exactly two possible orientations.

4.1.5 Example Let M be the pre-image of a regular value of a smooth map
f: R" — R. Then M is an (embedded) submanifold of R"*! and we
show in the following that M is orientable b fy constructing a nowhere van-
ishing n-form on M. Le’cU—{peM\(9 ) #0}fori=1,...,n+ 1.
Then {U;} is an open cover of M and we can take (X1, Ty ,an) as
local coordinates on U;. Define a nowhere vanishing n-form on U; by

(Of\ 7! .
w; = (—1) <8xf> dey N--- ANdziy A+ Ndxpgr.

Since f is constanton M, >, g—idﬂck = 0, so we have on U; that

of
o= (5—%> Z 0"

Now one easily checks that
wi’UiﬁUj - wj ’UiﬁUj
and hence the w; can be pieced together to yield a global n-form on M.

Let M be an orientable smooth manifold and fix an orientation for M,
say given by an oriented atlas A = {(U,, po)}. We want to define the inte-
gral of a compactly supported n-form w on M. For that purpose, consider
first the special case in which the support of w is contained in the domain
of some local chart, say, (U, ¢o) € A. Then we set

Jo= b= L

Note that choosing another local chart in A whose domain contains the
support of w yields the same result due to (4.1.2). In the general case, we
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choose a partition of unity {p;} subordinate to {U,}, suppp; C Uy, and

put
w = pPiw.
/M Z /l;a(i) ’

)

Note that only finitely many terms in this sum are nonzero as suppw is
compact and {supp p;} is locally finite. Let us check that this definition is
independent of the choices made. Namely, let {(V3,3)} be another ori-
ented atlas defining the same orientation, and let {)\;} be a partition of
unity subordinate to {V}}, namely, supp \; C Vs(j)- Note that p;\jw has
support contained in U, ;) N Vp(;), S0, by the special case,

/ ,ol-)\jw == / pi)\jw.
Uaa) V()

It follows that

Z/ piw = Z/ Pidjw
Ua(i)

i ij Y Uat)
=X e
T IRALI)

— i,
Z /Vﬁ(j) 7

J
as we wished, where we have used that >, p; = >, A; = 1.

4.1.6 Exercise Let f : M — N be a diffeomorphism between connected
oriented manifolds of dimension 7, and let w be a compactly supported

n-form on N. Prove that
/ ffw==+ / w
M N

where the sign is “+” if f is orientation-preserving and “—" if f is orientation-
reversing. (Hint: Use (4.1.2).)

4.1.7 Exercise Let M be a connected orientable manifold of dimension n
and denote by —M the same manifold with the opposite orientation. Show

that
/ w:—/ w
-M M

for every compactly supported n-form w on M.
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4.2 Stokes’ theorem

Stokes’ theorem for manifolds is the exact generalization of the classical
theorems of Green, Gauss and Stokes of Vector Calculus. In order to pro-
ceed, we need to develop a notion of boundary.

Manifolds with boundary

In the same way as manifolds are modeled on R", manifolds with bound-
ary are modeled on the upper half space

R} = {(z1,...,2,) € R" | 2, > 0}.

A smooth manifold with boundary of dimension n is given by a smooth atlas
{(Uq, ¢a)} where ¢, maps U, homeomorphically onto an open subset of
R’ and the transition maps are diffeomorphisms between open subsets of
R’} . Recall a function f from an arbitrary subset A of R" is called smooth if
it admits a smooth extension f to an open neighborhood of A. In case A is
an open subset of R”, by continuity all partial derivatives of f at points in
OR! are determined by the values of f in the interior of R'}, and therefore
in particular are independent of the choice of extension.

Of course, R’ is itself a manifold with boundary. There is a natural
decomposition of R} into the boundary

OR"Y = {(z1,...,2,) e R" | , = 0}

and its complement, the interior, and both are smooth manifolds in the pre-
vious (restricted) sense, with a natural diffeomorphism OR"} ~ R"!. For
an open subset U of R'}, we also put 0U = U N 0R}.

4.2.1 Lemma Let 7 : U — V be a diffeomorphism between open subsets of R
with everywhere positive Jacobian determinant. Then T restricts to a diffeomor-
phism Ot : OU — OV with everywhere positive Jacobian determinant.

Proof. A diffeomorphism between open sets of Euclidean space is an
open map, so 7(U \ U) C V \ 9V; applying this to 7!, we get equality
and hence 7(9U) = oV

Write 2/ = (21,...,2p,-1) € R L. By assumption the Jacobian matrix
of 7 = (11,...,7,) at (2/,0) € OU has positive determinant and block form
A B

C D)’
where

_ (9 On 1) _
c_<axl(;ﬂ,0),...,axn1(56,0))_(0,...,0)
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since 7, (2',0) = 0 for all 2/, and

_ O

D
o,

(2',0) >0
since 7 maps the upper half space into itself. It follows that A, which is the
Jacobian of 97 at (2/,0), also has positive determinant, as desired. O

Let M be a smooth manifold with boundary. It follows from Lemma 4.2.1
that the boundary of M, namely, the subset M consisting of points of M
mapped to JR! under coordinate charts, is well defined. Moreover, it is
a smooth manifold of dimension (n — 1), and an (oriented) atlas for M in-
duces an (oriented) atlas for M by restricting the coordinate charts. Note
also that M \ OM is a smooth manifold of dimension n.

4.2.2 Examples (a) The closed unitball B" in R" is a smooth manifold with
boundary S 1.
(b) The Mobius band is smooth manifold with boundary a circle S*.

In general, for an oriented smooth manifold with boundary, we will
always use the so called induced orientation on its boundary. Namely, if
in R} we use the standard orientation given by dx; A --- A dz,, then the
induced orientation on JR! is specified by (—1)"dx1 A --- A dxp—1 (the
sign is required to make the statement of Stokes’ theorem right). On an
oriented smooth manifold with boundary M, for any local chart (U, ¢) in
an oriented atlas of M, we declare the restriction of ¢ to U — IR} to be
orientation-preserving.

A 0-manifold M is just a countable discrete collection of points. In this
case, an orientation for M is an assignment of sign o(p) = £1 for each p €
M and [, f = 3 cp o(p)f(p) for any O-form f € C°°(M) with compact
support.

Asitis, the closed interval [a, b] C R (a < b) admits an orientation given
by the nowhere vanishing 1-form dx;, but no oriented atlas consisting of
local charts with values on R ! (Note that in the proof of Proposition 4.1.4,
we used the fact that if (z1,...,z,) are local coordinates on our manifold,
then so are (—x1,...,z,).) To remedy this situation, we introduce a slight
modification in the definition of manifold with boundary in case n = 1
and also allow local charts with values on the left-line R} . Accordingly, for
the standard orientation dz; of R!, the induced orientation is on OR is
specified by +1. With such conventions, the induced orientation at a is —1
and that at b is +1.

4.2.3 Remark A smooth manifold M in the old sense is a smooth manifold
with boundary with 0M = @. Indeed, we can always find an atlas for M
whose local charts have images in R \ OR'}.
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Let M be a smooth manifold with boundary of dimension n. The tan-
gent space to M at a point p is an n-dimensional vector space defined in
the same way as in the case of a smooth manifold (even in case p € 9M).
The definition of the tangent bundle also works, and T'M is itself a mani-
fold with boundary. More generally, tensor bundles and differential forms
are also defined. If M is in addition oriented, the integral of compactly
supported n-forms is defined similarly to above.

Statement and proof of the theorem

4.2.4 Theorem Let w be an (n — 1)-form with compact support on an oriented
smooth n-manifold M with boundary and give OM the induced orientation. Then

/dw:/ w.
M oM

In the right hand side of Stokes” theorem, w is viewed as ¢*w, where
t: OM — M is the inclusion, and the integral vanishes if M = @. In the
case n = 1, the integral on the right hand side is a finite sum and the result
reduces to the Fundamental Theorem of Calculus.

Proof of Theorem 4.2.4. We first consider two special cases.

Case 1: M is an open subset U of R". View w as an (n — 1)-form on R"
which is zero on the complement of U. Write w = >, a;dz1 A--- A dﬁci A
- Adxy. Then dw = Zi(—l)i_lg—gz dxi A --- A dzy. By Fubini’s theorem,

/dw:/dw
U n

- Sy

( aaida:i>dx1---d50i---d:nn
n—1

i R —00 axl
= 0
because
a
_dei
— 0o axz
= CLZ‘(. ey Lj—1,00,Tj41,- - ) — CLZ'(. ey Lj—1, =00, Lj4-1y - - )
= 0,

as a; has compact support. Since M has no boundary, this case is settled.
Case 2: M is an open subset U of R'}. View w as an (n — 1)-form on R}
which is zero on the complement of U. Writew = ). a; dz1 A--- A dz; A A
dx,, as before, but note that while the a; are smooth on (a neighborhood) of
R, the linear forms dz; are defined on the entire R". Since a; has compact
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support, ffooo ggz dx; = 0 for i < n, so by Fubini’s theorem

/dw:/dw
U n

+

= (—1)”_1/ < %dw,& dxy - dxn,—1
Rn—1 0 n

= (—1)"1/ ) —an(xl,...,xn_l,O) dry---den,—1
R

/
OR"
/i) ’
U

finishing this case.

General case: M is an arbitrary manifold with boundary of dimen-
sion n. Let {(Ua,pa)} be an oriented atlas for M such that each U, has
compact closure and let {p,} be a partition of unity strictly subordinate
to {Us}. Thenw = ), pow where each term has compact support. By lin-
earity, it suffices to prove Stokes” formula for p,w which has support con-
tained in U,. Since U, is diffeomorhic to an open set in R" or R}, cases 1
and 2 imply that the formula holds on U,, so

/d,oaw:/ dpaw:/ paw:/ Pald,
M Ua OUq oM

which concludes the proof of the theorem. O

4.3 De Rham Cohomology

De Rham theory, named after Georges de Rham, is a cohomology theory
in the realm of smooth manifolds and “constitutes in some sense the most
perfect example of a cohomology theory” (Bott and Tu). The de Rham com-
plex of a smooth manifold is defined as a differential invariant, but turns
out to be a topological invariant (we will not prove that, but in the next
section we shall see that its an invariant of the smooth homotopy type).

The most basic invariant of a topological space X is perhaps its number
of connected components. In terms of continuous functions, a component
is characterized by the property that on it every locally constant continuous
function is globally constant. If we define H°(X) to be the vector space of
real valued locally constant continuous functions on X, then dim H°(X) is
the number of connected components of X. Of course, in case X = M isa
smooth manifold and we define H°(M) to be the vector space of real valued
locally constant smooth functions on M, again dim H%(X) is the number of
connected components of M.
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In seeking to define H*(M) for k > 0, assume for simplicity M is an
open subset of R" with coordinates (z1,...,z,). In this case, the locally
constant smooth functions f on M are exactly those satisfying

of
df = Z o, dz; = 0.

Therefore HY(M) appears as the space of solutions of a differential equa-
tion. In case £ > 0, points and functions are replaced by k-dimensional
submanifolds and k-forms, respectively. For instance, if £ = 1, a 1-form
w = ) . aj,dz; defines a function on smooth paths

7+—>/w
v

and we look for locally constant functions, namely, those left unchanged
under a small perturbation of v keeping the endpoints fixed. In general,
if we homotope v to a nearby curve with endpoints fixed, the difference
between the line integrals is given by the integral of dw along the spanned
surface, owing to Stokes’ theorem. Therefore the condition of local con-
stancy is here dw = 0 or, equivalently, the system of partial differential
equations

aai (9aj .

(4.3.1) ol el

for all 4, j. On the other hand, fv df = f(q) — f(p) where p, g are the end-
points of v, so 1-forms of type df yield trivial solutions of (4.3.1). This sug-
gest that H! (M) be defined as the vector space of locally constant line inte-
grals modulo the trivially constant ones, and similarly for bigger k.

4.3.2 Definition Let M be a smooth manifold. A k-form w on M is called
closed if dw = 0, and it is called exact if w = dn for some (k — 1)-form 1 on
M. These conditions define subspaces of the real vector space of k-forms
on M. Since d? = 0, every exact form is closed. The k-th de Rham cohomology
space of M is the quotient vector space

H*(M) = {closed k-forms}/{exact k-forms}.

4.3.3 Examples (a) For any smooth manifold M of dimension n, there are
no exact 0-forms and all n-forms are closed. Moreover H°(M) = R” where
p is the number of connected components of M, and H*¥(M) =0 for k > n
since in this case there are no nonzero k-forms.

(b) Let w = f(x)dx be a 1-form on R. Then w = dg where g(z) =
Jy f(t)dt. Therefore every 1-form on R is exact and hence H'(R) = 0. It
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follows from Poincaré lemma to be proved in the next section that H*(R™) =
0 forall &£ > 0.

(c) Owing to Stokes’ theorem, an n-form w on an n-dimensional ori-
ented manifold M (without boundary) can be of the form dn for a compactly
supported (n — 1)-form n only if [, w = 0; in particular, if M is compact,
w can be exact only if f y @ = 0. On the other hand, if M is compact and
orientable, let (U, z1,...,z,) be a positively oriented local coordinate sys-
tem and let f be a non-negative smooth function with compact support
contained in U. Then w = fdx; A --- A dx,, defines an n-form on M with
Jyyw > 0 and hence H"(M) # 0. We will see later that “integration over
M” defines an isomorphism H" (M) = R for compact connected orientable
M.

(d) The 1-form

—ydx +xdy
w=_2°rT %
z2 4+ y?
on M = R?\ {(0,0)} is easily checked to be closed by a direct calculation.
Let:: S — M be the unit circle. If w is exact, w = df for some f € C°(M),
then d(v* f) = *df = 1*w, and also (*w is exact, but fsl *w = 21 # 0, so this
cannot happen, owing to (c). It follows that H* (M) # 0.

(e) Consider M = S!. The polar cooordinate function # on S 1is defined
only locally, but any two determinations of the angle differ by a constant
multiple of 27, so its differential is a well defined 1-form called the “an-
gular form” and usually denoted by df, although it is not globally exact
(be careful!). It is easily seen that t*w = df, where w is as in (d), and so
H'(S') # 0. We next show that [, : 2!(5') — R induces an isomorphism
H!(S') — R. Every 1-form is closed, so we need only to identify its ker-
nel with the exact 1-forms. Since df never vanishes, any 1-form o on S 1

can be written as o = fdf where f € C(S'). Now [ o = 0 says that

2T F(eM) dt =0, 50

(1) = /0 f(e*) ds

is a smooth, 27-periodic function on R which induces g € C°°(S!) such
that g(e) = §(t) for all t € R. It is clear that dg = «, completing the
argument.

4.3.4 Exercise Prove that the restriction of w from Example 4.3.3(d) to the
half-plane x > 0 is exact.

Induced maps in cohomology

Let f : M — N be smooth. Since d(f*w) = f*(dw) for any w € Q*(N), f*w
is closed if w is closed, and it is exact if w is exact. Thus there is an induced
homomorphism

f*: HY(N) — H*(M)



4.4. HOMOTOPY-INVARIANCE OF COHOMOLOGY 99

for each k& > 0. In addition, if g : N — P is smooth, then
(gof)*=f"og"

Of course, the identity map id : M — M induces the identity map in
cohomology. Such properties show that de Rham cohomology defines a
family of contravariant functors and, in particular, a diffeomorphism f :
M — N induces an isomorphism between all the corresponding cohomol-
ogy spaces. Thus de Rham cohomology is a differential invariant of smooth
manifolds. We will prove later that it is a homotopy invariant.

4.4 Homotopy-invariance of cohomology

Let f, g : M — N be smooth maps between smooth manifolds. A (smooth)
homotopy between f and g is a smooth map F' : M x [0, 1] — N such that

{ F(p,0) = f(p)
F(p,1) = 9(p)
for p € M. If there exists a homotopy between f and g, we say that they are

homotopic.

4.4.1 Proposition Let f, g be homotopic maps. Then the induced maps in de
Rham cohomology

19" HY(N) — HY(M)
are equal.

The proof of this propositon is given below. First, we need to make
some remarks. For ¢ € [0, 1], consider the inclusions i; given by

it(p) = (p, 1)

for p € M, and consider the natural projection = : M x [0, 1] — M given by
7(p,t) = p. Then, obviously,

Woit:id]\/j

implying that
irm* =id in QF(M) and H¥(M).
We consider the projection ¢ : M x [0,1] — [0,1]. Then there exist a
“vertical” vector field % and a 1-form dt on M x [0,1]. Note that ker dr is
spanned by %.

4.4.2 Lemma Let w € QF(M x [0,1]). Then we can write
(4.4.3) w=CHdtAn

where ¢ € QF(M x [0, 1]) has the property that it vanishes if some of its arguments
belongs to ker drr, and n € QF~1(M x [0, 1]) has the same property.
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Proof. Setn =i o wand ( = w — dt A n. Since
ot

toan=10t0w =0,

ot ot ot

it is clear that n has the claimed property. Similarly,

io( = dow—io (dtAn)
ot ot ot
= n—iadtAn+dtNian
ot ot
= n—n+0

as desired, where we have used that interior multiplication is an anti-deri-
vation. O

We define the homotopy operator
Hy : QF(M x [0,1]) — QF1(M)

by the formula

1
(ka)p(vl, PN ,’Uk_l) = / n(p,t) (dit(vl), PN ,dit(vk_l)) dt,
0

where w is decomposed as in (4.4.3) and p € M, vy,...,v,_1 € T,M. Note
that Hj, is “integration along the fiber of 7”. For simplicity, we henceforth
drop the subscript and just write H for the homotopy operator.

Proof of Propostion 4.4.1. Let w € QF(M x [0, 1]). We first claim that
(4.4.4) dHw + Hdw = ijw — igw.

The proof is by direct computation: since this is a pointwise identity, we
can work in a coordinate system. Let (U, z1, ..., z,) be a coordinate system
in M. Then (U x [0, 1], zyom, ..., xzyom,t) is a coordinate system in M x [0, 1]
and we can write

w’UX[O,l] = Zaldxf +dt A ijde
I J

where az, by are smooth functions on U x [0,1] and I, J are increasing
multi-indices. In U x [0, 1], we have:

1
Hw:z</ det> dzy,
0

J

L ob,
dHw =" (/0 axidt> dz; A dzxy,

Ji
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_ 8a1 8@[ 8bJ
dw = ; axidx, /\dw;—i—zl: ot N day dt/\; %Z_dm, Adzy,
1 8a1 1 8bJ
Hdu:}j(%-ﬁgﬁ>Mq—§:<1;8%dgdmAd@p
I Jyi
It follows that
dHw+ Hdwl, = Y. IQZ—I( t)dt ) da
rT o\ o Py g
= Z(al(p’ 1) - a[(pa 0))d$l
I
= qw — igwlp,
as claimed.

Suppose now that F' : M x [0,1] — N is a homotopy between f and
g. Let a be a closed k-form in N representing the cohomology class [a] €
HF(N). Applying identity (4.4.4) to w = F*a yields

dHF o+ HF*da = i1 F o — i F* a.
Since da = 0and F oig = f, F oi; = g, we get
d(HF*a)=g"a— f*a.
Hence g*« and f*a are cohomologous. O

Two smooth manifolds M and N are said to have the same homotopy
type (in the smooth sense) and are called homotopy equivalent (in the smooth
sense) if there exist smooth maps f : M — N and g : N — M such that go f
and f og are smoothly homotopic to the identity maps on M and N, respec-
tively. Each of the maps f and g is then called a homotopy equivalence, and
f and g are called inverses up to homotopy or homotopy inverses. A manifold
homotopy equivalent to a point is called contractible.

4.4.5 Corollary A homotopy equivalence between smooth manifolds induces an
isomorphism in de Rham cohomology.

4.4.6 Corollary (Poincaré Lemma) The de Rham cohomology of R"™ (or a star-
shaped open subset of R") is R in dimension zero and zero otherwise:

n R ifk=0,
H'(R ):{ 0 ifk>0.

Consider an inclusion ¢ : A — M. Amap r : M — A satistying r o1 =
id 4 is called a retraction. A special case of homotopy equivalence is the case
in which ¢ o7 : M — M is homotopic to id,; if that happens, r is called a
deformation retraction of M onto A and A is called a deformation retract of M.
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4.4.7 Exercise Check thatr : R?\ {0} — S given by r(z) = % is a defor-

L

mation retraction. Compare with Examples 4.3.3(d) and (e).

4.4.8 Lemma There exists no smooth retraction r : B"™ — OB" from the closed
ball onto its boundary.

Proof. The case n = 1 is easy as a retraction is surjective, the closed
interval B! is connected and its boundary is disconnected. Assume n > 2
and suppose, to the contrary, that such a retraction r exists. From r o =
idypn we deduce that .*r* = id and thus that r* : H"~1(B") — H"~1(B")
is injective. However 9B™ = S"~! and H"1(S"!) # 0 (Example 4.3.3(c))
whereas H"~(B") = 0 (Corollary 4.4.6), which is a contradiction. O

4.4.9 Theorem (Smooth Brouwer’s fixed point theorem) Let f : B" — B"
be a smooth map. Then there exists p € B™ such that f(p) = p. In other words,
every smooth self-map of the closed n-ball admits a fixed point.

Proof. Suppose, on the contrary, that f(z) # = for all z € B". The
half-line originating at f(z) and going through z meets 9B™ at a unique
point; call it r(x). It is easy to see that this defines a smooth retraction
r : B® — 0B™ which is prohibited by Lemma 4.4.8. O

4.4.10 Remark The theorem is not true in the case of the open n-ball, as is
easily seen.

For the next result, consider the unit sphere ¢ : S™ — R Tt is useful
to have an explicit expression for a non-zero element in H"(S") (Exam-
ple 4.1.5):

1 .
(4.4.11) w=(=1)'—dzy AN Ndx; N+ drpi

T

onz; #0fori=1,...,n+ 1.

4.4.12 Theorem (Hairy ball theorem) Let X be a smooth vector field on S*™.
Then there exists p € S*™ such that X, = 0. In other words, every smooth vector
field on an even-dimensional sphere has a zero.

Proof. Suppose, on the contrary, that X never vanishes. By rescaling, we
may assume that X is a unit vector field with respect to the metric induced
from Euclidean space. Set

Fy: 8% — §?™  Fy(p) = costp+sint X (p).

It is clear that F; defines a homotopy between the identity map and the
antipodal map of S?™:
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Note that
FX(zjot) = —x;0u.

It follows that
Fro=(-1)*"y = —w,

where w is as in (4.4.11). On the other hand,
Fyw =w,

and by Proposition 4.4.1, Fjw and F;w are cohomologous, which contra-
dicts the fact that w is not cohomologous to zero. O

4.4.13 Corollary The even-dimensional spheres cannot admit a structure of Lie
group compatible with its standard topology and smooth structure.

Proof. It follows from Problem 35 in Chapter 1 and Problem 6 in Chap-
ter 3. Indeed it is known that the only parallelizable spheres are S 183 and
S7, and the only ones that are Lie groups are the first two. O

4.4.14 Remark Theorems 4.4.9 and 4.4.12 can be extended to the continu-
ous category by using appropriate approximation results.

We close this section computing the de Rham cohomology of the n-
sphere. The argument is a nice presentation of the “Mayer-Vietoris prin-
ciple” in a very special case.

4.4.15 Proposition The de Rham cohomology of S™ vanishes except in dimen-
sions 0 and n.

Proof. We may assume n > 1. We prove first that H!(S") = 0. Letw
be a closed 1-form on S”. We must show that w is exact. Decompose 5"
into the union of two open sets U and V, where U in a neighborhood of the
northern hemisphere diffeomorphic to an open n-ball, V' is a neighborhood
of the southern hemisphere diffeomorphic to an open n-ball, and U NV is
a neighborhood of the equator which is diffeomorphic to S~ x (—1,1).
Since U and V are contractible, w|yy = df for a smooth function f on U and
w|y = dg for a smooth function g on V. In generalon U NV, f and ¢g do not
agree, but the difference h := f|ynv — glunv has dh = w|yny — wlvay = 0.
Since n > 1, "1 is connected and thus A is a constant. Setting

defines a smooth function on S™ such that dk = w, as we wished.
We proceed by induction. Let w be a closed k-form on S™ for 1 < k < n.
We shall prove that w is exact using the same decomposition S” = UNV as
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above and the induction hypothesis. As above, w|y = da for a (k — 1)-form
aonU anw|y = dffora (k—1)-form fon V. Lety = a|yny — Bluny- Then
dvy = 0. Since ~y is a closed (k — 1)-formon U NV and U NV is homotopy
equivalent to S"~1, by the induction hypothesis, ¥ = d¢ for a (k — 2)-form
onUNV. Let {py, pv } be a partition of unity subordinate to {U, V'}. Setting

__{ a—d(py§) onU,
T B+d(pyl) onV,

defines a (k—1)-form on S™ such that dn = w. This completes the induction
step and the proof of the theorem. O

4.4.16 Remark The “Mayer-Vietoris principle” indeed yields a long exact
sequence in cohomology. One nice application is to show that the de Rham
cohomology spaces of a compact manifold are always finite-dimensional.

4.5 Degree theory

Our first aim is to prove that the top dimensional de Rham cohomology of
a compact connected orientable smooth manifold is one-dimensional. We
start with a lemma in Calculus.

4.5.1 Lemma Let f be a smooth function on R"™ with support in the open cube
C" = (—1,1)" and

fdxy---dx, =0.
R?’L

Then there exist smooth functions f1, ..., fn, on R™ with support in C™ such that

~ Of;
fzzaxz

=1

Proof. By induction onn. If n = 1, we simply define f(z1) = [*_ f(¢)dt.
If n > 2, define a smooth function g on R"~! by

—+00
g(azl,...,:ﬂnl):/ flxy,. ... xp_1,t)dt.
—0o0

Then g has total integral zero by Fubini’s theorem, and clearly support con-
tained in C"~!, so by the induction hypothesis we can write
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for smooth functions g; on R"~! with support in C"~!. Now choose a
smooth function p on R with support in (—1,1) and total integral 1, and
define f;R" — R by

fj(x17 .. 71.77,—171.77/) = g](w17 v 7wn—1)p(xn)

forj =1,...,n — 1. Clearly the f; have supportin C™. Set

n—1
h:f—z%

0x;
i=1 7

and .
fn(ml,...,mn_l,xn):/ h(z1,. .., Tp_1,t)dt

Clearly h has support in C", so the same is true of f,, and we are done. [J

4.5.2 Lemma Let w be an n-form on R"™ with support contained in the open cube
C such that [g,, w = 0. Then there exists an (n — 1)-form 1 on R™ with support
contained in C such that dn = w.

Proof. The Poincaré lemma yields n with dn = w but does not give
information about the support of . Instead, write w = fdx; A--- A dx,, for
f e C®®R"). Thensuppf C C'and [, fdzy---dx, =0,50 f =3, giﬁ as
in Lemma 4.5.1, and thus w = dn where n = Zi(—l)i_lfi dzy A -+ Adz; A
< ANdx,. O

4.5.3 Proposition If M is a compact connected orientable smooth manifold of
dimension n, then H"(M) = R.

Proof. By compactness, there is a finite cover {Uy, . .. , Uy, } by coordinate
neighborhoods diffeomorphic to the open cube C. Let wy be a bump n-form
as in Example 4.3.3(c) with support contained in U; and total integral 1.
Then wy defines a non-zero cohomology class in H"(M). We shall prove
that any n-form w on M is cohomologous to a multiple of wp, namely, w =
cwo + dn for some ¢ € R and some (n — 1)-form 7. Using a partition of
unity {p; } subordinate to {U;}, we can write w = > | p;w where p;w is an
n-form with support in U;. By linearity, it suffices to prove the result for
piw, SO we may assume from the outset that the support of w is contained
in Uy, forsome k =1,...,m.

Owing to the connectedness of M, we can find a chain U;,, ..., U;, such
that U;, = Uy, U;, = Uy and U;; NU;,,, # @ forallj =1,...,r — 1. Forall
j=1,...,7 =1, choose an n-form w; with support in U;, N U;, ., and total
integral 1. Now wy — wy has support in U;; = U; and total integral zero, so
by Lemma 4.5.2, there exists 7; with support in U; such that

Wy — w1 = dnl-
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Next, w; —wg has support in U;, and total integral zero, so the lemma yields
n2 with support in U;, such that

w1 — wg = dno.
Continuing, we find 7; with support in U;; such that

wj—1 — wj = dn;
forall j =1,...,r — 1. Adding up, we get

wo — wr—1 = dn

where n = Z;;% n;j. Now U;, = U}, contains the support of w and w,_1, and
w — cw,—1 has total integral zero, where ¢ = [, w. By applying the lemma
again,

w— cwr—1 =dC

and hence
w=cwy + d(¢ — en)

as required. O

4.5.4 Corollary Let M be a compact connected oriented smooth manifold of di-
mension n. Then “integration over M "

/M cH"(M) - R

is a well defined linear isomorphism which is positive precisely on the cohomology
classes defined by nowhere vanishing n-forms belonging to the orientation of M.

Proof. By Stokes’ formula, the integral of an exact form is zero, so the
integral of an n-form depends only on its cohomology class and thus the
map is well defined. By the theorem, H" (M) is one dimensional and there
exist bump n-forms with non-zero integral, so the map is an isomorphism.

Let w be a nowhere vanishing n-form belonging to the orientation of A/,
choose an oriented atlas {(Uq, o = (z¢,...,2%))} and a partition of unity
{pa} subordinate to {U, }. Thenw = > pow, where p,w has supportin U,
and on which its local representation is of the form f, dz{ A --- A dz{; for a
non-negative smooth function f, on U,. It follows that

w= faop)dry---dr, >0
/M %:/Q(Ua)( )

since f, > 0 and it is positive somewhere. Conversely, if w’ is an n-form
with [;,w’ > 0, then o’ is cohomologous to cw, where ¢ = [, , '/ [}, w > 0,
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and cw and w are nowhere vanishing n-forms defining the same orientation
on M. O

Let f : M — N be a smooth map between compact connected oriented
manifolds of the same dimension n. Let wy;, wy be n-forms on M, N,
respectively, with total integral one. Then f* : H"(N) — H"(M) carries
[wn] to a multiple of [wys]; this number is called the degree of f, denoted
deg f. It follows from Proposition 4.4.1 that homotopic maps have the same
degree.

4.5.5 Remark In case N = S", Hopt’s degree theorem [GP10] asserts that
non-homotopic maps have different degrees. For the case n = 1, see Prob-
lem 19.

4.5.6 Proposition Let f : M — N be a smooth.
a. The degree of f is an integer.

b. Forallw € Q"(N),
| ro=tess [ w
M N

c. If ¢ € N is a reqular value of f, then

degf= > sgn(detdf,)  (finite sum)

pef~1(q)

Proof. (b) follows from the commutativity of the diagram

(V) L Hn

Iy Ju

R— R
deg f

and (a) follows from (c). Let us prove (c).

Consider first the case in which ¢ is a point outside the image of f. Since
f(M) is compact, we can find a bump n-form oo on N with total integral one
and support disjoint from f(M). It follows from (b) that deg f = [,, f*a =
0. Since f~1(q) = @, (c) is proved in this case.

Suppose now ¢ lies in the image of f. Since ¢ is a regular value and
dim M = dim N, f is a local diffeomorphism at each p € f~1(g). In partic-
ular, f~1(g) is discrete and thus finite, due to the compactness of M. Write
f~Yq) = {p1,--.,pm} and choose open neighborhoods U; of p; and V; of
gsuch that f : U; — V;is a diffeomorphism for all ¢ = 1,...,m. Setting
V=n,Viand U; = U; N f~YXV),now f: U; — V is a diffeomorphism for
all i. Moreover, f(M \ U, U;) is a compact subset of N disjoint from g, so
by further shrinking V' we can ensure that f~1(V) = U™, U,.
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Let a be an n-form on N with total integral one and support contained
in V. Then f*a is an n-form on M with support in U”,U;. In view of
Exercise 4.1.6

/ [fa = sgn(det dfy,) / a = sgn(det dfy,)
U; \%4

where we consider the determinant of the Jacobian matrix of f at p; relative
to orientation-preserving local charts around p; and ¢, so its sign is +1 if
dfp, : T,,M — T,N preserves orientation and —1 if it reverses orientation.
It follows that

P p
deg f = /M ffa= Z/U ffa= ngn(det dfp,),
i=1 Ui i=1

as desired. 0
4.5.7 Corollary The degree of a non-surjective map is zero.

4.5.8 Remark There always exists a regular value of f by Sard’s theorem [GP10].

More generally, if M has finitely many connected components M, ..., M,,
the degree of f : M — N can still be defined as the sum of the degrees of
the restrictions f : M; — N, and Proposition 4.5.6 remains true.

4.5.9 Example Consider S! as the set of unit complex numbers. Then f :
St — Sl given by f(2) = 2" is smooth and has degree n, which we can
show as follows. Recall the angular form df generates H!(S!). Removal of
one point does not change the integral below on the left hand side, and A :
(0,27) — S1\ {1}, h(z) = €@ is an orientation-preserving diffeomorphism,

N /S f*dG:/Ozﬂh*f*dez/o%(foh)*de

where (f o h)*df is exact on (0, 27) and in fact equal to
d(foh)*d =d(@o foh)=ndz
therefore

27
f*d@z/ nd:ﬂzZﬂ'n:n-/ do,
St 0 St

as we wished.

4.5.10 Example Let f : S' — R? be a smooth map. Its image is a circle in
the plane. Fix a point ¢ not in this circle. The winding number W (f,q) of f
with respect to ¢ is the degree of the map u : S' — S* given by

_ T—4q
@) = =
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Note that W(f,q1) = W(f,q2) if ¢1 and g5 lie in the same connected com-
ponent of the complement of the image of f.
Introducing the complex variable z = = + iy we have

—ydxr +xdy _ g ldz
x? 4+ y? 2

(compare Examples 4.3.3(d)). Using this formula, it is easy to arrive at the
complex integral for the winding number,

dz
z—q

(45.11) W(f,q) = i/c

211

dz,

where C is the image of f (Cauchy 1825).

4.5.12 Example Let f, g : S' — R? be two smooth maps. Their images
yield two circles in R? which we suppose to be disjoint. The linking number
Lk(f, g) is the degree of the map F : S x S! — S? given by

o) — f(x) —g(y)
F@9) = @ —gwl

If fi, g: : S' — R? are homotopies of f, g such that f; and g; have disjoint
images for all ¢, then Lk(f;, g;) is independent of .

In case f, g : S — 53, one chooses ¢ € S not in the image of those
maps and performs stereographic projection S3 \ {¢} — R? to define their
linking number. Moving ¢ continuously yields homotopies of f, g, so since
the union of the images of f and g does not disconnect S 3, this definition
does not depend on the choice of g.

According to Problems 6 and 10, the volume form of § 2 normalized to
have total integral 1, is

1
dA = o (21 dxg A dxs + xo drs A dry + x3dxy A dxs).
78

Since oF  oF
F*dA = % X a—y,
an easy calculation yields the formula for the linking number (Gauss 1833)
flx)—gly) df  dg
(4.5.13) Lk(f,g :/ / ———— . — X — dxdy
PO Jo Joi THD =g az * ay

4.5.14 Example We can generalize Example 4.5.10 as follows. Let f : M —
R be a smooth map from a compact, connected oriented manifold A
of dimension n. If ¢ € R™"! does not lie in the image of f, the winding
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number W(f, q) of f with respect to ¢ is the degree of the map v : M — S"
given by

f(x) —q

u(zr) = =

1S (@) — gl

It records how f “wraps” around g.

4.5.15 Exercise Check formulae (4.5.11) and (4.5.13).

4.6 The Borsuk-Ulam theorem

The Borsuk-Ulam theorem is one of the theorems in topology with most
applications in practice. It was conjectured by Ulam at the Scottish Cafe in
Lvov. The theorem proven in one form by Borsuk in 1933 has several other
equivalent formulations and many different proofs. One, well-known of
these was first proven by Lyusternik and Shnirel ' man in 1930. A host of ex-
tensions and generalizations, and numerous interesting applications to ar-
eas that include combinatorics, differential equations and even economics
add to its importance.

4.6.1 Lemma Let F : B™ — R"™ be a smooth map. Denote the restriction of F to
the boundary OB™ by f and let ¢ € R™ be a point that does not lie in the image
of f. Then the winding number W ( f, q) equals the number of preimages of q under
F' counted with signs according to whether F' preserves or reverses orientation at
the point, as in Proposition 4.5.6.

Proof. Suppose first that ¢ does not lie in the image of F'. Let F} : S"~! —
R" be defined by Fy(z) = F((1 —t)x) for 0 <t < 1. Then fy = f and

 Fi(z)—q
) = 5@ —d

defines an homotopy from ug to the constant map u;. This shows that
W(f,q) = deg(uo) = deg(u1) = 0.

Suppose next that F~1(¢) = {p1,...,pr}, and let B; be a small ball
around p; such that the B;’s are disjoint one another and from the boundary
of B™. Let f; : 9B; — R" be the restriction of F. Note that W(f;,q) = +1
according to whether I’ preserves or reverses orientation at p;. On the other
hand, set X = B"\ J*_, B;. The map

F(z) —q

“Ue) = F@) —q]
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is well defined and smooth on X. By Problem 20, deg u|sx = 0. It follows
that

W(f,a) = degulypn

k

= ZdegubBi
z:l

= > W(fiq)
i=1

k
= Z sgn(det dF,,),
i=1

as we wished. O

Amap f: S” — R""! will be called odd or antipode-preserving if f(—z) =
—f(z) for all z € S™, where —x denotes the antipodal point of .

4.6.2 Theorem (Borsuk-Ulam) An odd smooth map f : S™ — S™ has odd de-
gree.

Proof. We proceed by induction on n. The initial case n = 1 is Prob-
lem 24. Next assume the result true for n — 1 and let f : S™ — S™ be an odd
map.

Let g : S"! — S" be the restriction of f to the equator. By Sard’s
theorem, there is ¢ € S™ which is a regular value of both f and g. This
means that ¢ is not in the image of g (by dimensional reasons) and the
oriented number of preimages of ¢ under f is the degree d of f.

By composing f with a rotation, we may assume that ¢ is the north
pole. Since f is odd (and f does not hit ¢ along the equator), the south
pole —q is also a regular value of f, and f hits ¢ in the southern hemisphere
as many times as it hits —¢ in the northern hemisphere S”. Let f, denote
the restriction of f to S;'. Now d is the oriented number of preimages of
{*q} under f. Another way is to consider the orthogonal projection = :
5™ — B™ to the equatorial plane and note that d is the oriented number
of preimages of 0 under 7 o f,. Since 0 does not lie in the image of 7 o
g, Lemma 4.6.1 implies that d = W (w0 ¢,0) = deg(~2%-) which, by the

[lmogl]
mog

induction hypothesis, is odd as 722, : §*~1 — §"~! is an odd map. O

4.6.3 Corollary Let fi,..., f, be smooth functions on S™. Then there is a pair of
antipodal points +p € S™ such that

fip) = fi(=p), -, fu(p) = fu(-D).
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Proof. Let f : S™ — R" have components f; and suppose, to the con-
trary, that g(x) = f(z) — f(—x) never vanishes. Then h : S™ — S™ defined

by
9(x)
h(z) = < ,0>
g (@)l|
is an odd smooth map that never hits the points (0,...,0,£1) € S". By
Corollart 4.5.7, deg h = 0 contradicting Theorem 4.6.2. O

A popular illustration of Corollary 4.6.3 in case n = 2 is that if a baloon
is deflated and laid flat on the floor then at least two antipodal points end
up on top of one another. A meteorological formulation states that at any
given time there are two antipodal points on the surface of Earth with iden-
tical temperature and pressure (although anyone who has ever touched a
griddle-hot stove knows that temperature needs not be a continuous func-
tion!)

4.7 Maxwell’s equations

Maxwell’s equations are a set of partial differential equations that, together
with the Lorentz force law, form the foundation of classical electrodynam-
ics, classical optics, and electric circuits. These fields in turn underlie mod-
ern electrical and communications technologies. Maxwell’s equations de-
scribe how electric and magnetic fields are generated and altered by each
other and by charges and currents. They are named after the Scottish physi-
cist and mathematician James Clerk Maxwell who published an early form
of those equations between 1861 and 1862.
The electric field

E(t) = (Ey, By, E3)

and the magnetic field
B(t) = (B, B, Bs)

are vector fields on R3. Maxwell’s equations are

divE = dmtp
divB = 0
q OB
lF = ——
cur 5
. oF -
1B = — +4nJ
cur o + 47

where p is the electric charge density and J = (Jy, J, J3) is the electric current
density.
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Minkowski spacetime is R* with coordinates (¢, 1,22, 23) and an inner
product of signature (— + ++). The electromagnetic field is F' € Q*(R*)
given by

F = (Eldl'l + Eodxs + Egdl‘g) Adt
+Bidxo A dxs + Badxrs A dxq + Bsdxy A dxo

We use the Hodge star (Problem 11 in Chapter 2) to write

*F = —(Bld:vl + Bodxo + Bng3) A dt
+FEhdxo A dxs + Eodzs N dzy + Esdxy A dxs

The source is J € Q*(R*) given by

J = *(—pdt—{—Jl dr1 + Jodzo + J3 d$3)
4.7.1) = pdxi Adze A dxs
—dt N\ (Jldl'g Adzs + Jodxs A dry + Jzdxy A d.%'g).

Now Maxwell’s equations are equivalent to

dFF = 0
d+F = 4n7J

The second equation says in particular that 7 is exact, thus dJ = 0. Com-
puting dJ from (4.7.1) we get the law of conservation of charge

dp

p7 +divJ = 0.

Integrating throughout over a compact domain W in R3 with smooth bound-
ary, and using the Divergence theorem (see Problem 10), we obtain

/ (J-7t)dA = _4 pdxdydz.

ow dt Jw

The left-hand side represents the total amount of charge flowing outwards
through the surface OW per unit time. The right-hand side represents the
amont by which the charge is decreasing inside the region W per unit time.
In other words, charge does not disappear into or is created of out of noth-
ingness — it decreases in a region of space only becase it flows into other
regions. This is an important test of Maxwell’s equations since all experi-
mental evidence points to charge conservation.

The geometrization of Maxwell’s equations on the twentieth century
lead to a vast generalization in the form of the so called Yang-Mills equa-
tions, which describe not only electromagnetism but also the strong and
weak nuclear forces, but this is much beyond the scope of these modest
notes.
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4.8 Problems

§4.1

1 Let M be a smooth manifold of dimension n and let f : M — R"*!
be an immersion. Prove that M is orientable if and only if there exists a

nowhere vanishing smooth vector field X along f (see page 23) such that
X, is normal to df,(T,M) in R"! for all p € M.

2 Prove that RP" is orientable if and only if n is odd.

3 Show that the global n-form constructed in Example 4.1.5 in the case of
S™ can be given as the restriction of

n+1
o= Z(—l)iilxi dri N--- A d.A%'Z A ANdapg
=1

to S™, up to a constant multiple.
4 Prove that a parallelizable manifold is orientable.

5 (Integration on a Riemannian manifold) Let (M, g) be a Riemannian man-
ifold of dimension n.

a. On any coordinate neighborhood U, construct a local orthonormal frame
Eq, ..., E,, that is, a set of n smooth vector fields on U which is or-
thonormal at every point of U. (Hint: Apply the Gram-Schmidt pro-
cess to the coordinate vector fields.)

b. Letwsy,...,w, be the 1-forms dual to an orthonormal frame on U. This
is called a local orthonormal coframe on U. Suppose now wf, ... ,w,, isa
local orthonormal coframe on U’. Prove that

WA Awp =FwW] A Awh
at each pointof U NU".
c. Deduce that in case M is orientable, the locally defined n-forms w; A

-+ A wy, can be pieced together to yield a globally defined nowhere

vanishing n-form voly; on M satisfying

VOIM(El,. .o ,En) =1

for every positive local orthonormal frame Ei,..., E,. This form is
called the volume form of the oriented Riemannian manifold M and
its integral is called the volume of M.
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d. Show that for a positively oriented basis vy, ..., v, of T,M, we have

(volar)p(v1, ..., vp) = 1/ det (gp(vs, v5))-

Deduce that, in local coordinates (U, p = (z1,...,2")),

volyr = y/det(gi;) dot A -+ A da™.

6 Consider the unit sphere S in R"*! as a Riemannian manifold where,
for each p € S, the inner product on the tangent space 7,5™ is obtained by
restriction of the standard scalar product in R"t!. Recall the n-form « on
S™ given in Exercise 3. Let X be the outward unit normal vector field along
S™.
a. Show that
ap =tx,(dry A Ndzpylp)

forall p € S™.

b. Deduce from (a) that « is the volume form of S™ with respect to some
orientation.

c. In case n = 2, compute the volume of S2,

§4.2

7 Let~ : [a,b] = M be a smooth curve, and let y(a) = p, v(b) = g. Show
that if w = df for a smooth function f on M, then

b
/ Y'w=f(q) - f(p)

8 Let~ : [a,b] - M be a smooth curve, and let & : [¢,d] — [a,b] a smooth
map with i(c) = a and h(d) = b. Show that

b d
/v*wz/ (yoh)'w

for every 1-form w on M.

9 A closed curve in M is a smooth map 7 : S — M. For a 1-form w on M,
define the line integral of w around ~ as

/w::/ ~*w.
gl st

a. Write the line integral in local coodinates in case the image of v lies in
a coordinate neighborhood of M.
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[om [Cenrs

where h : [0,27] — S!is given by h(t) = €.

b. Show that

10 Let S be an orientable smooth manifold of dimension 2, let f : S —
R3 be an immersion, and let 7 be a unit normal vector field along f asin
Problem 1. Consider the Riemannian metric induced by the immersion f,
that is,

gp(u,v) = dfp(u) - dfp(v)
forallp € M and u, v € T,M.
a. Prove that the volume form (see Problem 5) of (.5, g) is given by

dA = njidrs N drs + nodrs A dxy + nsdxy A dxo

where nj, ny, n3 are the components of 7 in R? and each dz; is re-
stricted to S.

b. Assume f is an inclusion, S is the boundary of a a compact domain
W in R?, and F is a smooth vector field on W. Show that Stokes’
formula 4.2.4 specializes to the classical Divergence theorem:

/ (F-i)dA = / (divE) day daodas.
S w

§43

11 Let « and S be closed differential forms. Show that a A 3 is closed. In
addition, if 3 is exact, show that o A 3 is exact.

12 Leta = (2x + ycoszy) dx + (x cos zy) dy be a 1-form on R2. Show that
a is exact by finding a smooth function f on R? such that df = o

13 Prove that 72 and S? are not diffeomorphic by using de Rham coho-
mology.

§4.4
14 a. Prove that every closed 1-form on the open subset A in R? given
by
3 1/2
1< <Z mf) <2
i=1
is exact.

b. Give an example of a 2-form on A which is closed but not exact.
c. Prove that A is not diffeomorphic to the open ball in R3.
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15 Assume M = OP where P is a compact smooth manifold and let f :
M — N be a smooth map. Prove that if f extends to a smooth map F :
P — N then [ 1 [ w = 0 for every closed n-form w in N, where n = dim N.

16 Assume M is a compact smooth manifold of dimension m and f, g :
M — N are homotopic maps. Prove that

fure=f o

for every closed m-form w in V.

17 Prove that a 1-form w on a smooth manifold A has f7 w = 0 for every
_ (P

closed curve v in M if and only if it is exact. (Hint: Show that f(p) o

is well defined and satisfies df = w.)

w

18 Prove that H'(M) = 0 for a simply-connected smooth manifold M.
(Hint: By approximation results, a smooth manifold is simply-connected if
and only if every smooth closed curve is smoothly homotopic to a point.)

§45

19 Let f:S' — S! be a smooth map.
a. Prove that there exists a smooth map g : R — R such that f(e%) =
9 and g(t 4 27) = g(t) + 2nd for all t € R, where d is the degree of
f integer.
b. Use part (a) to show that if f, g : S — S! have the same degree then
they are homotopic. Deduce that homotopy classes of smooth maps
St — St are classified by their degree.

20 Let f : M — N be a smooth map between oriented manifolds of the
same dimension where NV is connected. Assume M is the boundary OP of a
compact oriented smooth manifold P, M has the induced orientation, and
f extends to a smooth map F': P — N. Prove that deg f = 0.

21 (Fundamental theorem of algebra) Let f(z) = 2F +a,_ 12" 1 +--- +ay
be a complex polynomial.

a. Consider the extended complex plane C := C U {oc} and show that
z:C\ {c} - C=R?1:C\ {0} - C = R? define a smooth atlas
on C. (Hint: Use Proposition 1.2.10.) Use stereographic projection
from the north and south poles to construct a diffeomorphism S? =
C.

b. Extend f to amap f : C — C by putting f(co) = co. Check that f is
smooth using the atlas constructed in (a).

c. Show that f is smoothly homotopic to g : C — C where g(z) = 2*.

What is the degree of g?
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d. Deduce from (c) that f is surjective. In particular, there exists zp € C
such that f(zp) = 0.

22 Define the Hopf map 7 : S — S% by 7(20,21) = (22071, |20)? — |21[%),
where we view S? ¢ C?and S? € C x R.
a. Show that the level sets of 7 are circles of the form {e’ - p | t € R} for
some p € S°.
b. Compute the linking number of 7=1(0, 1) and 7—1(0, —1).

23 Let M be a compact connected orientable surface (2-dimensional man-
ifold) in R?. Consider the Riemannian metric obtained by restriction of the
scalar product of R? to the tangent spaces of M.

a. According to Exercise 1, there exists a smooth normal unit vector field
along M in R3. Use the canonical parallelism in R? to view this vector
field as a smooth map g : M — S?; this map is called the Gauss map
of M; check that it is uniquely defined, up to sign.

b. For p € M, the differential dg, : T,M — Ty)S 2 where T,M and
Ty(p)S? can again be identified under the canonical parallelism in R3.
The Gaussian curvature k(p) of M at p is the determinant det(dg,), and
does not depend on the choice of sign in (a). Prove that

kvoly = g*volge.

c. Use (b) and the Gauss-Bonnet theorem to conclude that the degree of
the Gauss map is half the Euler characteristic of M:

1
degg = §X(M)-

§4.6

24 Use Problem 19(a) to show that an odd smooth map f : S' — S! has
odd degree.

25 Prove that there exists no antipode-preserving smooth map f : 5" —
Sn=L,

26 Let f:S™ — R" be a continuous map.
a. Use the Stone-Weierstrass theorem to show that for all ¢ > 0 there
exists a smooth map ¢ : S — R" such that ||g(z) — f(z)|| < € for all
x eSS
b. Prove that there exists a pair of antipodal points +p € S™ such that
f®) = f(=p).

c. Deduce form part (b) the following results:
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(i) (Ham sandwich theorem) Let 4, ..., A, be n Lebesgue measur-
able setsin R". Then there exists a hyperplane H simultaneously
bisecting all sets into half their volumes, that is,

vol(A; N HT) = vol(A; NH™)

where H* are the half-spaces defined by .
(ii) (Lyusternik-Schnirel’'man) For any cover {F,..., F,, 1} of S"

by closed sets, there exists at least one set containing a pair of
antipodal points, thatis, F;N(—F;) # @ forsomei =1,...,n+1.
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CHAPTER A

Covering manifolds

In this appendix, we summarize some properties of covering spaces in the
context of smooth manifolds.

A.1 Topological coverings

Recall that a (topological) covering of a space X is another space X with a
continuous map 7 : X — X such that X is a union of evenly covered open
set, where a connected open subset U of X is called evenly covered if

(A.1.1) 7 = UieU;

is a disjoint union of open sets U; of X, each of which is mapped home-
omorphically onto U under 7. In particular, the fibers of 7 are discrete
subsets of X. It also follows from the definition that X has the Hausdorff
property if X does. Further it is usual, as we shall do, to require that X
and X be connected, and then the index set I can be taken the same for all
evenly covered open sets.

A.1.2 Examples (a) 7 : R — S, 7(t) = €' is a covering.

(b) m: St — S, w(z) = 2™ is a covering for any nonzero integer n.

(c) m: (0,37) — S, 7(t) = e is a local homemeomorphism which is not a
covering, since 1 € St does not admit evenly covered neighborhoods.

A.2 Fundamental groups

Covering spaces are closely tied with fundamental groups. The fundamental
group w1 (X, zo) of a topological space X with basepoint x is defined as fol-
lows. As a set, it consists of the homotopy classes of continuous loops based
at xg9. The concatenation of such loops is compatible with the equivalence
relation given by homotopy, so it induces a group operation on 7 (X, o)
making it into a group. If X is arcwise connected, the isomorphism class

121
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of the fundamental group is independent of the choice of basepoint (in-
deed for xp, z1 € X and ¢ a continuous path from z, to x;, conjugation
by ¢! induces an isomorphism from 71 (X, z¢) and (X, 1)) and thus
is sometimes denoted by 71(X). Finally, a continuous map f : X — YV
between topological spaces with f(zg) = yo induces a homomorphism
Ju : m(X,20) = m1(Y,y0) so that the assignment (X, zq) — 71 (X, x0) is
functorial. Of course the fundamental group is trivial if and only if the
space is simply-connected.

Being locally Euclidean, a smooth manifold is locally arcwise connected
and locally simply-connected. A connected space X with such local con-
nectivity properties admits a simply-connected covering space, which is
unique up to isomorphism; an isomorphism between coverings 7; : X1 —
Xandms: Xy — X is a homeomorphism f : X, — X5 such that moof = my.
More generally, there exists a bijective correspondence between classes of
basepoint-preserving isomorphisms of coverings 7 : (X, %) — (X, o) and
subgroups of m1(X,xg) given by (X,%g) ~ mx(m1(X,)); moreover, a
change of basepoint in X corresponds to passing to a conjugate subgroup
™1 (X s 1‘0).

A.2.1 Lemma The fundamental group of a connected smooth manifold M is a
countable group.

Proof. Here we strongly use the second-countability of M. It implies
that we can find a countable covering { B;} of M by open sets, each of which
diffeomorphic to a ball in Euclidean space. For all 7, j, B; N B; has countably
many path-components; fix a point in each one of them and denote the
(countable) collection of points thus obtained by P. Finally, for all p, p’ € P
with p, p’ € B; for some i, fix a path 'Yziw’ joining p to p’ inside B;, and denote
the (countable) collection of paths thus obtained by C. Taking py € P; using
the simple-connectedness of the B;, it is now more or less clear that every
loop based at p, is homotopic to a loop at py consisting of the product of
finitely many elements of C. Hence 71 ()M, po) is countable. O

A.3 Smooth coverings

Suppose 7 : M — M is a covering where M is a smooth manifold. Then
there is a natural structure of smooth manifold on M such that the projec-
tion 7 is smooth. In fact, for every chart (U, ) of M where U is evenly
covered as in (A.1.1), take a chart (U;, o |g,) for M. This gives an atlas of

M, which is smooth because for another chart (V,v) of M, V evenly cov-
ered by U;c1V; and U; NV; # @ for some ¢, j € I, we have that the transition

map

Worly)pomly)t =yop™
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is smooth. We already know that M is a Hausdorff space. It is possible to
choose a countable basis of connected open sets for M which are evenly
covered. The connected components of the preimages under 7 of the el-
ements of this basis form a basis of connected open sets for M, which is
countable as long as the index set I is countable, but this follows from the
countability of the fundamental group 7 (M). Now, around any point in
M, 7 admits a local representation as the identity, so it is a local diffeo-
morphism. Note that we have indeed proved more: M can be covered by
evenly covered neighborhoods U such that the restriction of = to a con-
nected component of 7 !U is a diffeomorphism onto U. This is the defini-
tion of a smooth covering. Note that a topological covering whose covering
map is smooth need not be a smooth covering (e.g. 7 : R — R, m(z) = ).

Next, we can formulate basic results in covering theory for a smooth
covering m : M — M of a smooth manifold M. Fix basepoints p € M,
p € M such that 7(p) = p. We say thata map f : N — M admits a lifting if
there exists a map f:N — Msuchthatmo f = f.

A.3.1 Theorem (Lifting criterion) Letq € f~ Y(p). Asmoothmap f : N — M
admits a smooth lifting f : N — M with f(q) = p if and only if f4(m1(N,q)) C
Ty (m1 (M, p)). In that case, if N is connected, the lifting is unique.

Taking f : N — M to be the universal covering of M in Theorem A.3.1
shows that the universal covering of M covers any other covering of M and
hence justifies its name.

A.4 Deck transformations

For a topological covering 7 : X — X, a deck transformation or cover-
ing transformation is an isomorphism X — X, namely, a homeomorphism
[+ X — X such that 7 o f = 7. The deck transformations form a group
under composition. It follows from uniqueness of liftings that a deck trans-
formation is uniquely determined by its action on one point. In particular,
the only deck transformation admitting fixed points is the identity. Since a
smooth covering map 7 : M — M is a local diffeomorphism, in this case
the equation 7 o f = 7 implies that deck transformations are diffeomor-
phisms of M.

An action of a (discrete) group on a topological space (resp. smooth
manifold) is a homomorphism from the group to the group of homeomor-
phisms (resp. diffeomorphisms) of the space (resp. manifold). For a smooth
manifold M, we now recall the canonical action of 71 (M, p) on its universal
covering M by deck transformations. First we remark that by the lifting
criterion, given ¢ € M and ¢y, ¢2 € wfl(q), there is a unique deck transfor-
mation mapping ¢ to g2. Now let v be a continuous loop in M based at p
representing an element [y] € 71(M,p), and fix a point p € 7~ !(p). By the
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remark, it suffices to describe the action of [y] on p, which goes as follows:
lift v uniquely to a path 7 starting at p; then [v] - p is by definition the end-
point of 4, which sits in the fiber 77!(p). The definition independs of the
choice made, namely, if we change 7 to a homotopic curve, we get the same
result. This follows from Theorem A.3.1 applied to the homotopy, as it is
defined on a square and a square is simply-connected. Since 7 : M — M is
the universal covering, every deck transformation is obtained in this way
from an element of 71 (M, p).

An action of a (discrete) group I' on a topological space X is called free
if no nontrivial element of I" has fixed points, and it is called proper if any
two points z, y € X admit open neighborhoods U > z, V' > y such that
{v €T |yUNV # &} is finite. The action of 71 (M, p) on the universal
covering M by deck transformations has both properties. In fact, we have
already remarked it is free. To check properness, let p, § € M. If these
points lie in the same orbit of 71 (M, p) or, equivalently, the same fiber of
7, the required neighborhoods are the connected components of 7=(U)
containing p and ¢, resp., where U is an evenly covered neighborhood of
m(p) = w(q). On the other hand, if 7n(p) =: p # ¢ := = (p), we use the
Hausdorff property of M to find disjoint evenly covered neighborhoods
U > p, V > g and then it is clear that the connected component of 7=1(U)
containing  and the connected component of 7~!(V) containing § do the
job.

Conversely, we have:

A.4.1 Theorem If the group T acts freely and properly on a smooth manifold M,
then the quotient space M = T'\ M endowed with the quotient topology admits a
unique structure of smooth manifold such that the projection = : M — M is a
smooth covering.

Proof. The action of T' on M determines a partition into equivalence
classes or orbits, namely p ~ ¢ if and only if § = ~p for some v € I'. The
orbit through p is denoted I'(5). The quotient space I'\ M is also called orbit
space.

The quotient topology is defined by the condition that U C M is open
if and only if 7~ (U) is open in M. In particular, for an open set U C M
we have 77} (1(U)) = U,ery(U), a union of open sets, showing that 7(U) is
open and proving that 7 is an open map. In particular, 7 maps a countable
basis of open sets in M to a countable basis of open sets in M.

The covering property follows from the fact that I' is proper. In fact, let
S M. From the definition of proeprness, we can choose a neighborhood
U > psuchthat {y €T |yUNU # @} is finite. Using the Hausdorff prop-
erty of M and the freeness of T, we can shrink U so that this set becomes
empty. Now the map 7 identifies all disjoint homeomorphic open sets YU
for v € I" to a single open set w(U) in M, which is then evenly covered.
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The Hausdorff property of M also follows from properness of I'. In-
deed, letp, ¢ € M, p # q. Choose p € m~ (p) g € 7 1(¢q) and neighbor-
hoods U 3 $, V 5 Gsuch that {y € T | 'yU NV # @} is finite. Note that
G & T'(p), so by the Hausdorff property for M, we can shrink U so that this
set becomes empty. Since 7 is open, U := 7(U) and V := 7(V) are now
disjoint neighborhoods of p and ¢, respectively.

Finally, we construct a smooth atlas for M. Let p € M and choose an
evenly covered neighborhood U > p. Write 7 U = UjerU; as in (A.1.1).
By shrinking U we can ensure that U; is the domain of a local chart (U;, ¢;)
of M. Now ¢; := ¢; o (]| Ui) : U — R" defines a homeomorphism onto
the open set @;(U;) and thus a local chart (U, ¢;) of M. The domains of
such charts cover M and it remains only to check that the transition maps
are smooth. So let V' be another evenly covered neighborhood of p with
7'V = Uje;V; and associated local chart 1 := 9); o (7)™t : U = R”
where (V},4);) is a local chart of M. Then

. -1 _ 7. _\—1 ~—1
(A4.2) ;0 p; _1/)]0(7T|Vj) OO P,

However, (ﬂ\v )~! o m is realized by a unique element v € T' in a neighbor-
hood of p; = 7T|U_1( ). Since I acts by diffeomorphisms, this shows that the
transtion map (A.4.2) is smooth and finishes the proof. O
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