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Foreword

The concept of smooth manifold is ubiquitous in Mathematics. Indeed
smooth manifolds appear as Riemannian manifolds in differential geom-
etry, space-times in general relativity, phase spaces and energy levels in
mechanics, domains of definition of ODE’s in dynamical systems, Riemann
surfaces in theory of complex analytic functions, Lie groups in algebra and
geometry..., to name a few instances.

The notion took some time to evolve until it reached its present form in
H. Whitney’s celebrated Annals of Mathematics paper in 1936. Whitney’s
paper in fact represents a culmination of diverse historical developments
which took place separately, each in a different domain, all striving to make
the passage from the local to the global.

From the modern point of view, the initial goal of introducing smooth
manifolds is to generalize the methods and results of differential and in-
tegral calculus, in special, the inverse and implicit function theorems, the
theorem on existence, uniqueness and regularity of ODE’s and Stokes’ the-
orem. As usual in Mathematics, once introduced such objects start to atract
interest on their own and new structure is uncovered. The subject of dif-
ferential topology studies smooth manifolds per se. Many important results
about the topology of smooth manifolds were obtained in the 1950’s and
1960’s in the high dimensional range. For instance, there exist topological
manifolds admitting several non-diffeomorphic smooth structures (Milnor,
1956, in the case of S7), and there exist topological manifolds admitting no
smooth strucuture at all (Kervaire, 1961). Moreover the Poincaré conjecture
in dimensions bigger than 4 was proved independently by Stallings and
Smale in the 1960’s. On the other hand, the topology of compact surfaces is
a classical subject already tackled in the nineteenth century; the very impor-
tant case of dimension 3 has seen tremendous development after the works
of Thurston (late 1970’s), Hamilton (1981) and Perelman (2003), and con-
tinues to attract a lot of attention; and the case of dimension 4, despite the
breakthroughs of Donaldson and Freedman in the 1980’s, is largely terra
incognita.

The aim of these notes is much more modest. Their contents cover,
with some looseness, the syllabus of the course “Differentiable manifolds

iii



iv FOREWORD

and Lie groups” that I taught at the Graduate Program of the University
of São Paulo in 2001, 2008, 2013 and 2015. Chapter 1 introduces the basic
language of smooth manifolds, culminating with the Frobenius theorem.
Chapter 2 introduces the basic language of tensors. The most important
construction there is perhaps the exterior derivative of differential forms.
Chapter 3 is a first encounter with Lie groups and their Lie algebras, in
which also homogeneous manifolds are briefly discussed. Finally, Chap-
ter 4 is about integration on manifolds and explains Stokes’ theorem, de
Rham cohomology and some rudiments of differential topology. Routine
exercises are scattered throughout the text, which aim to help the reader
digest the material. More elaborate problems can be found in the final sec-
tion of each chapter. Needless to say, working arduously in problems is a
necessary (but not sufficient) condition to advance one’s comprehension of
a mathematical theory.

I am indebted to the (dozens of) graduate students who took my courses
and impelled me to write this set of notes. Special thanks go to Dr. Pedro
Zühlke whose careful reading and suggestions has helped improve the text.
Any remaining errors are of course my own fault.

São Paulo, December 2015
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C H A P T E R 1

Smooth manifolds

In order to motivate the definition of abstract smooth manifold, we first
define submanifolds of Euclidean spaces. Recall from vector calculus and
differential geometry the ideas of parametrizations and inverse images of
regular values.

1.1 Submanifolds of Euclidean spaces

A smooth map f : U → R
n+k, whereU ⊂ R

n is open, is called an immersion
at p, where p ∈ U , if dfp : Rn → R

n+k is injective. f is called simply an
immersion if it is an immersion everywhere. An injective immersion will be
called a parametrization.

A smooth map F : W → R
k, where W ⊂ R

n+k is open, is called a
submersion at p, where p ∈ W , if dfp : Rn+k → R

k is surjective. F is called
simply a submersion if it is a submersion everywhere. For z0 ∈ R

k, if F is
a submersion along the level set F−1(z0), then z0 is called a regular value
of F (in particular, a point z0 ∈ R

k not in the image of F is always a regular
value!).

Images of parametrizations and inverse images of regular values are
thus candidates to be submanifolds of Euclidean spaces. Next we would
like to explain why the second class has stronger properties than the first
one. The argument involves the implicit function theorem, and how it is
proved to be a consequence of the inverse function theorem.

Assume then z0 is a regular value of F as above and F−1(z0) is non-
empty; writeM for this set and consider p ∈M . Then dFp is surjective and,
up to relabeling the coordinates, we may assume that (d2F )p, which is the
restriction of dFp to {0} ⊕ R

k ⊂ R
n+k, is an isomorphism onto R

k. Write
p = (x0, y0) where x0 ∈ R

n, y0 ∈ R
k. Define a smooth map

Φ :W → R
n+k, Φ(x, y) = (x, F (x, y)− z0)

Then dΦ(x0,y0) is easily seen to be an isomorphism, so the inverse function
theorem implies that there exist open neighborhoods U , V of x0, y0 in R

n,

1



2 C H A P T E R 1. SMOOTH MANIFOLDS

p

Figure 1.1: A non-embedded submanifold of R2.

R
k, respectively, such that Φ is a diffeomorphism of U × V onto an open

subset of R
n+k, i.e. Φ is a smooth bijective map onto its image and the

inverse map is also smooth. Now the fundamental fact is that

Φ(M ∩ (U × V )) = (Rn × {0}) ∩ Φ(U × V ),

as it follows from the form of Φ; namely, Φ “rectifies” M .
Let ϕ : M ∩ (U × V ) → R

n be the restriction of Φ. Then ϕ−1 is the
restriction of Φ to R

n and thus smooth. It also follows from the above
calculation thatM∩(U×V ) is exactly the graph of the smooth map f : U →
V , satisfying f(x0) = y0, given by f = projRk ◦ ϕ−1. Another way to put it
is thatM∩(U×V ) is the image of a parametrization ϕ−1 : ϕ(M∩(U×V )) ⊂
R
n → R

n+k which is a homeomorphism onto its image, where the latter is
equipped with the topology induced from R

n+k.

1.1.1 Definition (i) A subset M ⊂ R
n+k will be called a embedded submani-

fold of dimension n of Rn+k if for every p ∈M , there exists a diffeomorphism
Φ from an open neighborhood U of p in R

n+k onto its image such that
Φ(M ∩U) = (Rn×{0})∩Φ(U). In this case we will say that (U,Φ) is a local
chart of Rn+k adapted to M .

(ii) A parametrized submanifold of dimension n of R
n+k is a pair (U, f)

where U ⊂ R
n is open and f : U → R

n+k is an injective immersion.

1.1.2 Example Let (R, f) be a parametrized submanifold of dimension 1
of R2, where f : R → R

2 has image M described in Figure 1.1. Then M is
non-embedded. In fact no connected neighborhood of p can be homeomor-
phic to an interval of R (restrict such a homeomorphism to the complement
of {p} to get a contradiction). Note that f is not a homeomorphism onto its
image.

1.1.3 Exercise Prove that the graph of a smooth map f : U → R
k, where

U ⊂ R
n is open, is an embedded submanifold of dimension n of Rn+k.
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1.1.4 Exercise Let f , g : (0, 2π) → R
2 be defined by

f(t) = (sin t, sin t cos t), g(t) = (sin t,− sin t cos t).

a. Check that f , g are injective immersions with the same image.
b. Sketch a drawing of their image.
c. Write a formula for g−1 ◦ f : (0, 2π) → (0, 2π).
d. Deduce that the identity map id : im f → im g is not continuous,

where im f and im g are equipped with the topology induced from R

via f and g, respectively.

The algebra C∞(M) of real smooth functions on M

Let M be an embedded submanifold of Rn+k.

1.1.5 Definition A function f : M → R is said to be smooth at p ∈ M if
f ◦Φ−1 : Φ(U)∩R

n → R is a smooth function for some adapted local chart
(U,Φ) around p.

1.1.6 Remark (i) The condition is independent of the choice of adapted lo-
cal chart around p. Indeed if (V,Φ) is another one,

f ◦ Φ−1 = (f ◦Ψ−1) ◦ (Ψ ◦ Φ−1)

where Ψ ◦ Φ−1 : Φ(U ∩ V ) → Ψ(U ∩ V ) is a diffeomorphism and the claim
follows from the the chain rule for smooth maps between Euclidean spaces.

(ii) A smooth function on M is automatically continuous.
(iii) Let F be a smooth function defined on an open neighborhood of p

in R
n+k. The restriction of F to M is smooth at p.

1.2 Definition of abstract smooth manifold

Let M be a topological space. A local chart of M is a pair (U,ϕ), where U
is an open subset of M and ϕ is a homeomorphism from U onto an open
subset of Rn. A local chart ϕ : U → R

n introduces coordinates (x1, . . . , xn)
on U , namely, the component functions of ϕ, and that is why (U,ϕ) is also
called a system of local coordinates on M .

A (topological) atlas for M is a family {(Uα, ϕα)} of local charts of M ,
where the dimension n of the Euclidean space is fixed, whose domains
cover M , namely,

⋃
Uα = M . If M admits an atlas, we say that M is lo-

cally modeled on R
n and M is a topological manifold.

A smooth atlas is an atlas whose local charts satisfy the additional com-
patibility condition:

(1.2.1) ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)
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is smooth, for all α, β. A smooth atlas A defines a notion of smooth func-
tion on M as above, namely, a function f : M → R is smooth if f ◦ ϕ−1 :
ϕ(U) → R is smooth for all (U,ϕ) ∈ A. We say that two atlas A, B forM are
equivalent if the local charts of one are compatible with those of the other,
namely, ψ ◦ φ−1 is smooth for all (U,ϕ) ∈ A, (V, ψ) ∈ B. In this case, it is
obvious that A and B define the same notion of smooth function on M .

A smooth structure on M is an equivalence class [A] of smooth atlases
on M . Finally, a smooth manifold is a topological space M equipped with
a smooth structure [A]. In order to be able to do interesting analysis on
M , we shall assume, as usual, that the topology of M is Hausdorff and second
countable.

1.2.2 Remark (a) It follows from general results in topology that (smooth)
manifolds are metrizable. Indeed, manifols are locally Euclidean and thus
locally compact. A locally compact Hausdorff space is (completely) reg-
ular, and the Urysohn metrization theorem states that a second countable
regular space is metrizable.

(b) The condition of second countability also rules out pathologies of
the following kind. Consider R2 with the topology with basis of open sets
{(a, b) × {c} | a, b, c ∈ R, a < b}. This topology is Hausdorff but not sec-
ond countable, and it is compatible with a structure of smooth manifold of
dimension 1 (a continuum of real lines)!

1.2.3 Exercise Let M be a topological space. Prove that two smooth atlases
A and B are equivalent if and only if their union A ∪ B is a smooth atlas.
Deduce that every equivalence class of smooth atlases for M contains a
unique representative which is maximal (i.e. not properly contained in any
other smooth atlas in the same equivalence class).

Let M , N be smooth manifolds. A map f : M → N is called smooth if
for every p ∈ M , there exist local charts (U,ϕ), (V, ψ) of M , N around p,
f(p), resp., such that f(U) ⊂ V and ψ ◦ f ◦ ϕ−1 : ϕ(U) → ψ(V ) is smooth.

1.2.4 Remark (i) The definition is independent of the choice of local charts.
(ii) The definition is local in the sense that f : M → N is smooth if

and only if its restriction to an open subset U of M is smooth (cf. Exam-
ple 1.2.7(vi)).

(iii) A smooth map M → N is automatically continuous.

We have completed the definition of the category DIFF, whose objects
are the smooth manifolds and whose morphisms are the smooth maps. An
isomorphism in this category is usually called a diffeomorphism.

1.2.5 Exercise LetM be a smooth manifold with smooth atlas A. Prove that
any local chart (U,ϕ) ∈ A is a diffeomorphism onto its image. Conversely,
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prove any map τ :W → R
n, where n = dimM and W ⊂M is open, which

is a diffeomorphism onto its image belongs to a smooth atlas equivalent to
A; in particular, (W, τ) ∈ A if A is maximal.

1.2.6 Remark In practice, explicitly written down atlases are finite (com-
pare Problem 1 and Example 1.2.9). However, in view of the last asser-
tion in Exercise 1.2.5, it is often convenient to implicitly represent a smooth
structure by a maximal atlas, and we shall be doing that.

1.2.7 Examples (i) R
n has a canonical atlas consisting only of one local

chart, namely, the identity map, which in fact is a global chart. This is the
standard smooth structure on R

n with respect to which all definitions coin-
cide with the usual ones. Unless explicit mention, we will always consider
R
n with this smooth structure.

(ii) Any finite dimensional real vector space V has a canonical structure
of smooth manifold. In fact a linear isomorphism V ∼= R

n defines a global
chart and thus an atlas, and two such atlases are always equivalent since
the transition map between their global charts is a linear isomorphism of
R
n and hence smooth.

(iii) Submanifolds of Euclidean spaces (Definition 1.1.1(i)) are smooth
manifolds. Namely, atlases are construted by using restrictions of adapted
charts. Note that the compatibility condition (1.2.1) is automatically satis-
fied.

(iv) Graphs of smooth maps defined on open subsets of Rn with values
on R

n+k are smooth manifolds (cf. Exercise 1.1.3 and (iii)). More generally,
a subsetM of Rn+k with the property that every one of its points admits an
open neighborhood in M which is a graph as above is a smooth manifold.

(v) It follows from (iv) that the n-sphere

Sn = {(x1, . . . , xn+1) ∈ R
n+1 : x21 + · · ·+ x2n+1 = 1}

is a smooth manifold.
(vi) If A is an atlas for M and V ⊂ M is open then A|V := {(V ∩

U,ϕ|V ∩U ) : (U,ϕ) ∈ A} is an atlas for V . It follows that any open subset of
a smooth manifold is a smooth manifold.

(vii) If M , N are smooth manifolds with atlases A, B, resp., then A× B
is an atlas for the Cartesian product M × N with the product topology,
and hence M ×N is canonically a smooth manifold of dimension dimM +
dimN .

(viii) It follows from (iv) and (vi) that the n-torus

Tn = S1 × · · · × S1 (n factors)

is a smooth manifold.
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(ix) The general linear group GL(n,R) is the set of all n× n non-singular
real matrices. Since the set of n×n real matrices can be identified with a R

n2

and as such the determinant becomes a continuous function, GL(n,R) can
be viewed as the open subset of Rn2

where the determinant does not vanish
and hence acquires the structure of a smooth manifold of dimension n2.

The following two examples deserve a separate discussion.

1.2.8 Example The map f : R → R given by f(x) = x3 is a homeomor-
phism, so it defines a local chart around any point of R and we can use it
to define an atlas {f} for R; denote the resulting smooth manifold by R̃.
We claim that R̃ 6= R as smooth manifolds, because C∞(R̃) 6= C∞(R).
In fact, id : R → R is obviously smooth, but id : R̃ → R is not, because
id ◦ f−1 : R → R maps x to 3

√
x so it is not differentiable at 0. On the other

hand, R̃ is diffeomorphic to R. Indeed f : R̃ → R defines a diffeomor-
phism since its local representation id ◦ f ◦ f−1 is the identity.

1.2.9 Example The real projective space, denoted RPn, as a set consists of all
one-dimensional subspaces of Rn+1. We introduce a structure of smooth
manifold of dimension n on RPn. Each subspace is spanned by a non-zero
vector v ∈ R

n+1. Let Ui be the subset of RPn specified by the condition
that the i-th coordinate of v is not zero. Then {Ui}n+1

i=1 covers RPn. Each
line in Ui meets the hyperplane xi = 1 in exactly one point, so there is a
bijective map ϕi : Ui → R

n ⊂ R
n+1. For i 6= j, ϕi(Ui ∩ Uj) ⊂ R

n ⊂ R
n+1 is

precisely the open subset of the hyperplane xi = 1 defined by xj 6= 0, and

ϕj ◦ ϕ−1
i : {x ∈ R

n+1 : xi = 1, xj 6= 0} → {x ∈ R
n+1 : xj = 1, xi 6= 0}

is the map

v 7→ 1

xj
v,

thus smooth. So far there is no topology in RPn, and we introduce one by
declaring

∪n+1
i=1 {ϕ−1

i (W ) :W ⊂ ϕi(Ui) = R
n is open}

to be a basis of open sets. It is clear that ∅ and M are open sets (since each
Ui is open) and we have only to check that finite intersections of open sets
are open. Let Wi ⊂ ϕi(Ui) and Wj ⊂ ϕi(Uj) be open. Then

ϕ−1
i (Wi) ∩ ϕ−1

j (Wj) = ϕ−1
j

(
ϕjϕ

−1
i (Wi ∩ ϕi(Ui ∩ Uj)) ∩Wj

)
.

Since ϕjϕ−1
i is a homeomorphism, a necessary and sufficient condition for

the left hand side to describe an open set for all i, j, is that ϕi(Ui ∩ Uj) be
open for all i, j, and this does occur in this example. Now the topology is
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well defined, second countable, and the ϕi are homeomorhisms onto their
images. It is also clear that for ℓ ∈ RPn the sets

{ℓ′ ∈ RP : ∠(ℓ, ℓ′) < ǫ}

for ǫ > 0 are open neighborhoods of ℓ. It follows that the topology is Haus-
dorff.

The argument in Example 1.2.9 is immediately generalized to prove the
following proposition.

1.2.10 Proposition Let M be a set and let n be a non-negative integer. A count-
able collection {(Uα, ϕα)} of injective maps ϕ : Uα → R

n whose domains cover
M satisfying
a. ϕα(Uα) is open for all α;
b. ϕα(Uα ∩ Uβ) is open for all α, β;
c. ϕβϕ

−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ) is smooth for all α, β;

defines a second countable topology and smooth structure on M (the Hausdorff
condition is not automatic and must be checked in each case).

1.3 Tangent space

As a motivation, we first discuss the case of an embedded submanifold M
of Rn+k. Fix p ∈M and take an adapted local chart (U,Φ) around p. Recall
that we get a parametrization ofM around p by setting ϕ := projRn◦Φ|M∩U

and taking
ϕ−1 : Rn ∩ Φ(U) → R

n+k.

It is then natural to define the tangent space of M at p to be the image of the
differential of the parametrization, namely,

TpM := d(ϕ−1)ϕ(p)(R
n).

If (V,Ψ) is another adapted local chart around p, ψ := projRn ◦Ψ|M∩V and
ψ−1 : Rn ∩Ψ(V ) → R

n+k is the associated parametrization, then

d(ϕ−1)ϕ(p)(R
n) = d(ψ−1)ψ(p)d(ψϕ

−1)ϕ(p)(R
n)

= d(ψ−1)ϕ(p)(R
n)

since d(ψϕ−1)ϕ(p) : Rn → R
n is an isomorphism. It follows that TpM is

well defined as a subspace of dimension n of Rn+k.
Note that we have the following situation:

v ∈ TpM

a ∈ R
n

d(ψϕ−1)ϕ(p)
>

dϕ−1
ϕ(p) >

b ∈ R
n

dψ−1
ψ(p)

<
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Namely, the tangent vector v ∈ TpM is represented by two different vectors
a, b ∈ R

n which are related by the differential of the transition map. We
can use this idea to generalize the construction of the tangent space to an
abstract smooth manifold.

Let M be a smooth manifold of dimension n, and fix p ∈ M . Suppose
that A is an atlas defining the smooth structure of M . The tangent space of
M at p is the set TpM of all pairs (a, ϕ) — where a ∈ R

n and (U,ϕ) ∈ A is a
local chart around p — quotiented by the equivalence relation

(a, ϕ) ∼ (b, ψ) if and only if d(ψ ◦ ϕ−1)ϕ(p)(a) = b.

It follows from the chain rule in R
n that this is indeed an equivalence re-

lation, and we denote the equivalence class of (a, ϕ) by [a, ϕ]. Each such
equivalence class is called a tangent vector at p. For a fixed local chart (U,ϕ)
around p, the map

a ∈ R
n 7→ [a, ϕ] ∈ TpM

is a bijection, and it follows from the linearity of d(ψ ◦ ϕ−1)ϕ(p) that we
can use it to transfer the vector space structure of Rn to TpM . Note that
dimTpM = dimM .

1.3.1 Exercise Let M be a smooth manifold and let V ⊂ M be an open
subset. Prove that there is a canonical isomorphism TpV ∼= TpM for all
p ∈ V .

Let (U,ϕ = (x1, . . . , xn)) be a local chart ofM , and denote by {e1, . . . , en}
the canonical basis of Rn. The coordinate vectors at p are with respect to this
chart are defined to be

∂

∂xi

∣
∣
∣
p
= [ei, ϕ].

Note that

(1.3.2)
{

∂

∂x1

∣
∣
∣
p
, . . . ,

∂

∂xn

∣
∣
∣
p

}

is a basis of TpM .
In the case of R

n, for each p ∈ R
n there is a canonical isomorphism

R
n → TpR

n given by

(1.3.3) a 7→ [a, id],

where id is the identity map of Rn. Usually we will make this identification
without further comment. In particular, TpRn and TqR

n are canonically
isomorphic for every p, q ∈ R

n. In the case of a general smooth manifold
M , obviously there are no such canonical isomorphisms. Occasionally we
shall denote by (r1, . . . , rn) the coordinates on R

n corresponding to id.
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Tangent vectors as directional derivatives

LetM be a smooth manifold, and fix a point p ∈M . For each tangent vector
v ∈ TpM of the form v = [a, ϕ], where a ∈ R

n and (U,ϕ) is a local chart of
M , and for each f ∈ C∞(U), we define the directional derivative of f in the
direction of v to be the real number

v(f) =
d

dt

∣
∣
∣
t=0

(f ◦ ϕ−1)(ϕ(p) + ta)

= d(f ◦ ϕ−1)(a).

It is a simple consequence of the chain rule that this definition does not
depend on the choice of representative of v.

In the case of Rn, ∂
∂ri

∣
∣
p
f is simply the partial derivative in the direction

ei, the ith vector in the canonical basis of Rn. In general, if ϕ = (x1, . . . , xn),
then xi ◦ ϕ−1 = ri, so

v(xi) = d(ri)ϕ(p)(a) = ai,

where a =
∑n

i=1 aiei. Since v = [a, ϕ] =
∑n

i=1 ai[ei, ϕ], it follows that

(1.3.4) v =
n∑

i=1

v(xi)
∂

∂xi

∣
∣
∣
p
.

If v is a coordinate vector ∂
∂xi

and f ∈ C∞(U), we also write

∂

∂xi

∣
∣
∣
p
f =

∂f

∂xi

∣
∣
∣
p
.

As a particular case of (1.3.4), take now v to be a coordinate vector of an-
other local chart (V, ψ = (y1, . . . , yn)) around p. Then

∂

∂yj

∣
∣
∣
p
=

n∑

i=1

∂xi
∂yj

∣
∣
∣
p

∂

∂xi

∣
∣
∣
p
.

Note that the preceding formula shows that even if x1 = y1 we do not need
to have ∂

∂x1
= ∂

∂y1
.

The differential

Let f : M → N be a smooth map between smooth manifolds. Fix a point
p ∈ M , and local charts (U,ϕ) of M around p, and (V, ψ) of N around
q = f(p). The differential or tangent map of f at p is the linear map

dfp : TpM → TqN



10 C H A P T E R 1. SMOOTH MANIFOLDS

given by
[a, ϕ] 7→ [d(ψ ◦ f ◦ ϕ−1)ϕ(p)(a), ψ].

It is easy to check that this definition does not depend on the choices of local
charts. Using the identification (1.3.3), one checks that dϕp : TpM → R

n

and dψq : TpM → R
n are linear isomorphisms and

dfp = (dψq)
−1 ◦ d(ψ ◦ f ◦ ϕ−1)ϕ(p) ◦ dϕp.

1.3.5 Proposition (Chain rule) Let M , N , P be smooth manifolds. If f :M →
N and g : N → P are smooth maps, then g ◦ f :M → P is a smooth map and

d(g ◦ f)p = dgf(p) ◦ dfp
for p ∈M .

1.3.6 Exercise Prove Proposition 1.3.5.

If f ∈ C∞(M,N), g ∈ C∞(N) and v ∈ TpM , then it is a simple matter
of unravelling the definitions to check that

dfp(v)(g) = v(g ◦ f).

Now (1.3.4) together with this equation gives that

dfp

(
∂

∂xj

∣
∣
∣
p

)

=
n∑

i=1

dfp

(
∂

∂xj

∣
∣
∣
p

)

(yi)
∂

∂yi

∣
∣
∣
f(p)

=

n∑

i=1

∂(yi ◦ f)
∂xj

∣
∣
∣
p

∂

∂yi

∣
∣
∣
f(p)

.

The matrix (
∂(yi ◦ f)
∂xj

∣
∣
∣
p

)

is called the Jacobian matrix of f at p relative to the given coordinate systems.
Observe that the chain rule (Proposition 1.3.5) is equivalent to saying that
the Jacobian matrix of g◦f at a point is the product of the Jacobian matrices
of g and f at the appropriate points.

Consider now the case in which N = R and f ∈ C∞(M). Then dfp :
TpM → Tf(p)R, and upon the identification between Tf(p)R and R, we
easily see that dfp(v) = v(f). Applying this to f = xi, where (U,ϕ =
(x1, . . . , xn)) is a local chart around p, and using again (1.3.4) shows that

(1.3.7) {dx1|p, . . . , dxn|p}

is the basis of TpM∗ dual of the basis (1.3.2), and hence

dfp =
n∑

i=1

dfp

(
∂

∂xi

∣
∣
∣
p

)

dxi|p =
n∑

i=1

∂f

∂xi
dxi|p.
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Finally, we discuss smooth curves on M . A smooth curve in M is simply
a smooth map γ : (a, b) → M where (a, b) is an interval of R. One can
also consider smooth curves γ in M defined on a closed interval [a, b]. This
simply means that γ admits a smooth extension to an open interval (a −
ǫ, b+ ǫ) for some ǫ > 0.

If γ : (a, b) →M is a smooth curve, the tangent vector to γ at t ∈ (a, b) is

γ̇(t) = dγt

(
∂

∂r

∣
∣
∣
t

)

∈ Tγ(t)M,

where r is the canonical coordinate of R. Note that an arbitrary vector
v ∈ TpM can be considered to be the tangent vector at 0 to the curve γ(t) =
ϕ−1(ta), where (U,ϕ) is a local chart around p with ϕ(p) = 0 and dϕp(v) =
a.

In the case in which M = R
n, upon identifying Tγ(t)R

n and R
n, it is

easily seen that

γ̇(t) = lim
h→0

γ(t+ h)− γ(t)

h
.

The inverse function theorem

It is now straightforward to state and prove the inverse function theorem
for smooth manifolds.

1.3.8 Theorem (Inverse function theorem) Let f : M → N be a smooth map
between two smooth manifolds M , N , and let p ∈ M and q = f(p). If dfp :
TpM → TqN is an isomorphism, then there exists an open neighborhood W of p
such that f(W ) is an open neighborhood of q and f restricts to a diffeomorphism
from W onto f(W ).

Proof. The proof is really a transposition of the inverse function theorem
for smooth mappings between Euclidean spaces to manifolds using local
charts. Note that M and N have the same dimension, say, n. Take local
charts (U,ϕ) of M around p and (V, ψ) of N around q such that f(U) ⊂ V .
Set α = ψ ◦ f ◦ ϕ−1. Then dαϕ(p) : Rn → R

n is an isomorphism. By the
inverse function theorem for smooth mappings of Rn, there exists an open
subset W̃ ⊂ ϕ(U) with ϕ(p) ∈ W̃ such that α(W̃ ) is an open neighborhood
of ψ(q) and α restricts to a diffeomorphism from W̃ onto α(W̃ ). It follows
that f = ψ−1 ◦ α ◦ ϕ is a diffeomorphism from the open neighborhood
W = ϕ−1(W̃ ) of p onto the open neighborhood ψ−1(α(W̃ )) of q. �

A smooth map f : M → N satisfying the conclusion of Theorem 1.3.8
at a point p ∈ M is called a local diffeomorphism at p. It follows from the
above and the chain rule that f is a local diffeomorphism at p if and only if
dfp : TpM → TqN is an isomorphism. In this case, there exist local charts
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(U,ϕ) of M around p and (V, ψ) of N around f(p) such that the local rep-
resentation ψ ◦ f ◦ ϕ−1 of f is the identity, owing to Problem 1.2.5, after
enlarging the atlas of M , if necessary.

1.3.9 Exercise Let f : M → N be a smooth bijective map that is a local
diffeomorphism everywhere. Show that f is a diffeomorphism.

1.4 Submanifolds of smooth manifolds

Similar to the situation of submanifolds of Euclidean spaces, some man-
ifolds are contained in other manifolds in a natural way (compare Defi-
nition 1.1.1). Let N be a smooth manifold of dimension n + k. A subset
M of N is called an embedded submanifold of N of dimension n if, for every
p ∈M , there exists a local chart (V, ψ) ofN such that p ∈ V and ψ(V ∩M) =
ψ(V )∩Rn, where we identify R

n with R
n×{0} ⊂ R

n×R
k = R

n+k. We say
that (V, ψ) is a local chart ofN adapted toM . An embedded submanifoldM
ofN is a smooth manifold in its own right, with respect to the relative topol-
ogy, in a canonical way. In fact an atlas of M is furnished by the restrictions
toM of those local charts ofN that are adapted toM . Namely, if {(Vα, ψα)}
is an atlas of N consisting of adapted charts, then {(Vα ∩M,ψα|Vα∩M )} be-
comes an atlas of M . Note that the compatibility condition for the local
charts of M follows automatically from the compatibility condition for N .

1.4.1 Exercise LetN be a smooth manifold and letM be an embedded sub-
manifold of N . Prove that TpM is canonically isomorphic to a subspace of
TpN for every p ∈M .

Immersions and embeddings

Another class of submanifolds can be introduced as follows. Let f : M →
N be a smooth map between smooth manifolds. The map f is called an
immersion at p ∈ M if dfp : TpM → Tf(p)N is injective. If f is an immersion
everywhere it is simply called an immersion. Now call the pair (M, f) an
immersed submanifold or simply a submanifold of N if f : M → N is an
injective immersion.

Let M be an embedded submanifold of N and consider the inclusion ι :
M → N . The existence of adapted local charts implies that ι can be locally
represented around any point of M by the standard inclusion x 7→ (x, 0),
R
n → R

n+k. Since this map is an immersion, also ι is an immersion. It
follows that (M, ι) is an immersed submanifold ofN . This shows that every
embedded submanifold of a smooth manifold is an immersed submanifold,
but the converse is not true.
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1.4.2 Example Let N be the 2-torus T 2 = S1 × S1 viewed as an embedded
submanifold of R2 ×R

2 = R
4 and consider the smooth map

F : R → R
4, F (t) = (cos at, sin at, cos bt, sin bt),

where a, b are non-zero real numbers. Note that the image of F lies in
T 2. Denote by (r1, r2, r3, r4) the coordinates on R

4. Choosing ri, rj where
i ∈ {1, 2} and j ∈ {3, 4} gives a system of coordinates defined on an open
subset of T 2, and in this way we obtain atlas for T 2. It follows that the
induced map f : R → T 2 is smooth. Since N is an embedded submanifold
of R4, we can consider Tf(t)N to be a subspace of R4, and the tangent vector
f ′(t) ∈ Tf(t)N is the usual derivative F ′(t). Since f ′(t) never vanishes,
f is an immersion. Note that if b/a is an irrational number, then f is an
injective map, so (R, f) is an immersed submanifold which we claim is not
an embedded submanifold of T 2. In fact, the assumption on b/a implies
that M is a dense subset of T 2, but an embedded submanifold of another
manifold is always locally closed.

We would like to further investigate the gap between immersed sub-
manifolds and embedded submanifolds.

1.4.3 Lemma (Local form of an immersion) Let M and N be smooth mani-
folds of dimensions n and n+ k, respectively, and suppose that f : M → N is an
immersion at p ∈M . Then there exist local charts of M and N such that the local
expression of f at p is the standard inclusion of Rn into R

n+k.

Proof. Let (U,ϕ) and (V, ψ) be local charts of M and N around p and
q = f(p), respectively, such that f(U) ⊂ V , and set α = ψ ◦ f ◦ ϕ−1. Then
dαϕ(p) : R

n → R
n+k is injective, so, up to rearranging indices, we can

assume that d(π1 ◦ α)ϕ(p) = π1 ◦ dαϕ(p) : R
n → R

n is an isomorphism,
where π1 : Rn+k = R

n × R
k → R

n is the projection onto the first factor.
By the inverse function theorem, by shrinking U , we can assume that π1 ◦α
is a diffeomorphism from U0 = ϕ(U) onto its image V0; let β : V0 → U0

be its smooth inverse. Now we can describe α(U0) as being the graph of
the smooth map γ = π2 ◦ α ◦ β : V0 ⊂ R

n → R
k, where π2 : R

n+k =
R
n × R

k → R
k is the projection onto the second factor. By Exercise 1.1.3,

α(U0) is a submanifold of Rn+k and the map τ : V0 ×R
k → V0 ×R

k given
by τ(x, y) = (x, y−γ(x)) is a diffeomorphism such that τ(α(U0)) = V0×{0}.
Finally, we put ϕ̃ = π1 ◦α ◦ϕ and ψ̃ = τ ◦ψ, shrinking V if necessary. Then
(U, ϕ̃) and (V, ψ̃) are local charts, and for x ∈ ϕ̃(U) = V0 we have that

ψ̃ ◦ f ◦ ϕ̃−1(x) = τ ◦ ψ ◦ f ◦ ϕ−1 ◦ β(x) = τ ◦ α ◦ β(x)
= τ(x, γ(x)) = (x, 0).

�
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1.4.4 Proposition If f :M → N is an immersion at p ∈M , then there exists an
open neighborhood U of p inM such that f |U is injective and f(U) is an embedded
submanifold of N .

Proof. The local injectivity of f at p is an immediate consequence of the
fact that some local expression of f at p is the standard inclusion of Rn into
R
n+k, hence, injective. Moreover, in the course of proof of Lemma 1.4.3, we

have produced a local chart (V, ψ̃) of N adapted to f(U). �

A smooth map f : M → N is called an embedding if it is an immersion
and a homeomorphism from M onto f(M) with the induced topology.

1.4.5 Proposition Let N be a smooth manifold. A subset P ⊂ N is an embedded
submanifold of N if and only if it is the image of an embedding.

Proof. Let f : M → N be an embedding with P = f(M). To prove
that P is an embedded submanifold of N , it suffices to check that it can be
covered by open sets in the relative topology each of which is an embedded
submanifold ofN . Owing to Proposition 1.4.4, any point of P lies in a set of
the form f(U), where U is an open subset of M and f(U) is an embedded
submanifold ofN . Since f is an open map into P with the relative topology,
f(U) is open in the relative topology and we are done. Conversely, if P is
an embedded submanifold of N , it has the relative topology and thus the
inclusion ι : P → N is a homeomorphism onto its image. Moreover, we
have seen above that ι is an immersion, whence it is an embedding. �

Recall that a continuous map between locally compact, Hausdorff topo-
logical spaces is called proper if the inverse image of a compact subset of
the target space is a compact subset of the domain. It is known that proper
maps are closed. Also, it is clear that if the domain is compact, then every
continuous map is automatically proper. An embedded submanifold M
of a smooth manifold N is called properly embedded if the inclusion map is
proper.

1.4.6 Proposition If f :M → N is an injective immersion which is also a proper
map, then the image f(M) is a properly embedded submanifold of N .

Proof. Let P = f(M) have the relative topology. A proper map is closed.
Since f viewed as a map M → P is bijective and closed, it is an open map
and thus a homeomorphism. Due to Proposition 1.4.5, P is an embedded
submanifold of N . The properness of the inclusion P → N clearly follows
from that of f . �

1.4.7 Exercise Give an example of an embedded submanifold of a smooth
manifold which is not properly embedded.
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1.4.8 Exercise Decide whether a closed embedded submanifold of a smooth
manifold is necessarily properly embedded.

Exercise 1.1.4 dealt with a situation in which a smooth map f :M → N
factors through an immersed submanifold (P, g) of N (namely, f(M) ⊂
g(P )) and the induced map f0 : M → P (namely, g ◦ f0 = f ) is discontinu-
ous.

1.4.9 Proposition Suppose that f :M → N is smooth and (P, g) is an immersed
submanifold of N such that f(M) ⊂ g(P ). Consider the induced map f0 : M →
P that satisfies g ◦ f0 = f .
a. If g is an embedding, then f0 is continuous.
b. If f0 is continuous, then it is smooth.

Proof. (a) In this case g is a homeomorphism onto g(P ) with the relative
topology. If V ⊂ P is open, then g(V ) = W ∩ g(P ) for some open sub-
set W ⊂ N . By continuity of f , we have that f−1

0 (V ) = f−1
0 (g−1(W )) =

f−1(W ) is open in M , hence also f0 is continuous.
(b) Let p ∈ M and q = f0(p) ∈ P . By Proposition 1.4.4, there exists a

neighborhood U of q and a local chart (V, ψ) of Nn adapted to g(U), with
g(U) ⊂ V . In particular, there exists a projection π from R

n onto a subspace
obtained by setting some coordinates equal to 0 such that τ = π ◦ ψ ◦ g is
a local chart of P around q. Note that f−1

0 (U) is a neighborhood of p in M .
Now

τ ◦ f0|f−1
0 (U) = π ◦ ψ ◦ g ◦ f0|f−1

0 (U) = π ◦ ψ ◦ f |f−1
0 (U),

and the latter is smooth. �

An immersed submanifold (P, g) of N with the property that f0 :M →
P is smooth for every smooth map f : M → N with f(M) ⊂ g(P ) will be
called an initial submanifold.

1.4.10 Exercise Use Exercise 1.3.9 and Propositions 1.4.5 and 1.4.9 to de-
duce that an embedding f : M → N induces a diffeomorphism from M
onto a submanifold of N .

1.4.11 Exercise For an immersed submanifold (M, f) ofN , show that there
is a natural structure of smooth manifold on f(M) and that (f(M), ι) is an
immersed submanifold of N , where ι : f(M) → N denotes the inclusion.

Submersions

A smooth map f : M → N is called a submersion at p ∈ M if dfp : TpM →
Tf(p)N is surjective. If f is a submersion everywhere it is simply called a
submersion. A point q ∈ N is called a regular value of f if f is a submersion
at all points in f−1(q); otherwise q is called a singular value of f .
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1.4.12 Lemma (Local form of a submersion) Let M an N be smooth mani-
folds of dimensions n + k and k, respectively, and suppose that f : M → N
is a submersion at p ∈M . Then there exist local charts of M and N such that the
local expression of f at p is the standard projection of Rn+k onto R

k.

Proof. Let (U,ϕ) and (V, ψ) be local charts of M and N around p and
q = f(p), respectively, and set α = ψ ◦ f ◦ϕ−1. Then dαϕ(p) : R

n+k → R
k is

surjective, so, up to rearranging indices, we can assume that d(α ◦ ι2)ϕ(p) =
dαϕ(p)◦ι2 : Rk → R

k is an isomorphism, where ι2 : Rk → R
n+k = R

n×R
k

is the standard inclusion. Define α̃ : ϕ(U) ⊂ R
n × R

k → R
n × R

k by
α̃(x, y) = (x, α(x, y)). Since dαϕ(p) ◦ ι2 is an isomorphism, it is clear that
dα̃ϕ(p) : R

n ⊕ R
k → R

n ⊕ R
k is an isomorphism. By the inverse function

theorem, there exists an open neighborhood U0 of ϕ(p) contained in ϕ(U)
such that α̃ is a diffeomorphism from U0 onto its image V0; let β̃ : V0 → U0

be its smooth inverse. We put ϕ̃ = α̃ ◦ ϕ. Then (ϕ−1(U0), ϕ̃) is a local chart
of M around p and

ψ ◦ f ◦ ϕ̃−1(x, y) = ψ ◦ f ◦ ϕ−1 ◦ β̃(x, y) = α ◦ β̃(x, y)
= π2 ◦ α̃ ◦ β̃(x, y) = y.

�

1.4.13 Proposition Let f :M → N be a smooth map, and let q ∈ N be a regular
value of f such that f−1(q) 6= ∅. Then P = f−1(q) is an embedded submanifold
of M of dimension dimM −dimN . Moreover, for p ∈ P we have TpP = ker dfp.

Proof. It is enough to construct local charts of M that are adapted to
P and whose domains cover P . So suppose dimM = n + k, dimN = k,
let p ∈ P and consider local charts (W := ϕ−1(U0), ϕ̃) and (V, ψ) as in
Theorem 1.4.12 such that p ∈ U and q ∈ V . We can assume that ψ(q) = 0.
Now

π2 ◦ ϕ̃(W ∩ P ) = α ◦ ϕ(W ∩ P ) = ψ ◦ f(W ∩ P ) = {0},
so ϕ̃(W ∩P ) = ϕ̃(W )∩R

n and thus ϕ is an adapted chart around p. Finally,
the local representation of f at p is the projection R

n+k → R
k. This is a

linear map with kernel Rn. It follows that ker dfp = (dϕ̃−1)ϕ(p)(R
n) = TpP .

�

1.4.14 Examples (a) Let A be a non-singular real symmetric matrix of or-
der n + 1 and define f : R

n+1 → R by f(p) = 〈Ap, p〉 where 〈, 〉 is the
standard Euclidean inner product. Then dfp : R

n+1 → R is given by
dfp(v) = 2〈Ap, v〉, so it is surjective if p 6= 0. It follows that f is a submersion
on R

n+1 \ {0}, and then f−1(r) for r ∈ R is an embedded submanifold of
R
n+1 of dimension n if it is nonempty. In particular, by taking A to be the

identity matrix we get a manifold structure for Sn which coincides with the
one previously constructed.
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(b) Denote by Sym(n,R) the vector space of real symmetric matrices
of order n, and define f : M(n,R) → Sym(n,R) by f(A) = AAt. This
is map between vector spaces whose local representations components are
quadratic polynomials. It follows that f is smooth and that dfA can be
viewed as a map M(n,R) → Sym(n,R) for all A ∈ M(n,R). We claim
that I is a regular value of f . For the purpose of checking that, we first
compute for A ∈ f−1(I) and B ∈M(n,R) that

dfA(B) = lim
h→0

(A+ hB)(A+ hB)t − I

h

= lim
h→0

h(ABt +BAt) + h2BBt

h

= ABt +BAt.

Now given C ∈ Sym(n,R), we have dfA(12CA) = C, and this proves that f
is a submersion at A, as desired. Hence f−1(I) = {A ∈ ML(n,R) | AAt =
I } is an embedded submanifold of M(n,R) of dimension

dimM(n,R)− dimV = n2 − n(n+ 1)

2
=
n(n− 1)

2
.

Note that f−1(I) is a group with respect to the multiplication of matrices;
it is called the orthogonal group of order n and is usually denoted by O(n).
It is obvious that O(n) ⊂ GL(n,R).

We close this section by mentioning a generalization of Proposition 1.4.13.
Let f : M → N be a smooth map and let Q be an embedded submanifold
of N . We say that f is transverse to Q, in symbols f ⋔ Q, if

dfp(TpM) + Tf(p)Q = Tf(p)N

for every p ∈ f−1(Q).

1.4.15 Exercise Let f : M → N be a smooth map and let q ∈ N . Prove that
f ⋔ {q} if and only if q is a regular value of f .

For an immersed submanifold (M, f) of a smooth manifold N , its codi-
mension is the number dimN − dimM .

1.4.16 Proposition If f : M → N is a smooth map which is transverse to an
embedded submanifold Q of N of codimension k and P = f−1(Q) is non-empty,
then P is an embedded submanifold of M of codimension k. Moreover TpP =
(dfp)

−1(Tf(p)Q) for every p ∈ P .

Proof. For the first assertion, it suffices to check that P is an embedded
submanifold of M in a neighborhod of a point p ∈ P . Let (V, ψ) be a local
chart of N adapted to Q around q := f(p). Then ψ : V → R

n+k and
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ψ(V ∩Q) = ψ(V ) ∩R
n, where n = dimQ. Let π2 : Rn+k = R

n ×R
k → R

k

be the standard projection and put g = π2 ◦ ψ. Then g : V → R
k is a

submersion and g−1(0) = V ∩Q. Moreover

d(g ◦ f)p(TpM) = dgq ◦ dfp(TpM)

= dgq(TqN)

= R
k

where, in view of ker dgq = TqQ, the second equality follows from the as-
sumption f ⋔ Q. Now h := g ◦ f : f−1(V ) → R

k is a submersion at p and
h−1(0) = f−1(V ∩ Q) = f−1(V ) ∩ P and f−1(V ) is an open neighborhood
of p in M , so we can apply Proposition 1.4.13. All the assertions follow. �

As a most important special case, two embedded submanifoldsM , P of
N are called transverse, denoted M ⋔ P , if the inclusion map ι : M → N is
transverse to P . It is easy to see that this is a symmetric relation.

1.4.17 Corollary If M and P are transverse embedded submanifolds of N then
M ∩ P is an embedded submanifold of N and

codim(M ∩ P ) = codim(M) + codim(P ).

1.5 Partitions of unity

Many important constructions for smooth manifolds rely on the existence
of smooth partitions of unity. This technique allows for a much greater
flexibility of smooth manifolds as compared, for instance, with real analytic
or complex manifolds.

Bump functions

We start with the remark that the function

f(t) =

{
e−1/t, if t > 0
0, if t ≤ 0

is smooth everywhere. Therefore the function

g(t) =
f(t)

f(t) + f(1− t)

is smooth, flat and equal to 0 on (−∞, 0], and flat and equal to 1 on [1,+∞).
Finally,

h(t) = g(t+ 2)g(2− t)
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is smooth, flat and equal to 1 on [−1, 1] and its support lies in (−2, 2); h
is called a bump function. We can also make an n-dimensional version of a
bump function by setting

k(x1, . . . , xn) = h(x1) · · ·h(xn),

and we can rescale k by precomposing with x 7→ r−1x to have a smooth
function on R

n which is flat and equal to 1 on a closed ball of radius r and
with support contained in an open ball of radius 2r.

Bump functions are very useful. As one application, note that for a
given smooth manifold M so far we do not know whether the algebra
C∞(M) of smooth functions on M contains functions other than the con-
stants (of course, the components of local charts are smooth, but these are
not globally defined onM ). We claim thatC∞(M) is indeed in general huge.
In fact, let (U,ϕ) be a local chart ofM and take a bump function k : Rn → R

whose support lies in ϕ(U). Then

f(x) :=

{
k ◦ ϕ(x) if ∈ U ,

0 if x ∈M \ U

is a smooth function on M : this is clear for a point p ∈ U ; if p 6∈ U , then
we can find a neighborhood V of p which does not meet the compact set
ϕ−1(supp(k)), so f |V = 0 and thus f is smooth at p.

Partitions of unity

LetM be a smooth manifold. A partition of unity onM is a collection {ρi}i∈I
of smooth functions on M , where I is an index set, such that:

(i) ρi(p) ≥ 0 for all p ∈M and all i ∈ I ;
(ii) the collection of supports {supp(ρ)}i∈I is locally finite (i.e. every point

of M admits a neighborhood meeting supp(ρi) for only finitely many
indices i);

(iii)
∑

i∈I ρi(p) = 1 for all p ∈M (the sum is finite in view of (ii)).
Let {Uα}α∈A be a cover of M by open sets. We say that a partition of unity
{ρi}i∈I is subordinate to {Uα}α∈A if for every i ∈ I there is some α ∈ A such
that supp(ρi) ⊂ Uα; and we say {ρi}i∈I is strictly subordinate to {Uα}α∈A if
I = A and supp(ρα) ⊂ Uα for every α ∈ A.

Partitions of unity are used to piece together global objects out of local
ones, and conversely to decompose global objects as locally finite sums of
locally defined ones. For instance, suppose {Uα}α∈A is an open cover of M
and {ρα}α∈A is a partition of unity strictly subordinate to {Uα}. If we are
given fα ∈ C∞(Uα) for all α ∈ A, then f =

∑

α∈A ραfα is a smooth function
on M . Indeed for p ∈ M and α ∈ A, it is true that either p ∈ Uα and then
fα is defined at p, or p 6∈ Uα and then ρα(p) = 0. Moreover, since the sum
is locally finite, f is locally the sum of finitely many smooth functions and
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hence smooth. Conversely, if we start with f ∈ C∞(M) then f =
∑

α∈A fα
for smooth functions fα with supp(fα) ⊂ Uα, namely, fα := ραf .

1.5.1 Exercise Let C be closed in M and let U be open in M with C ⊂ U .
Prove that there exists a smooth function λ ∈ C∞(M) such that 0 ≤ λ ≤ 1,
λ|C = 1 and suppλ ⊂ U .

If M is compact, it is a lot easier to prove the existence of a partition
of unity subordinate to any given open cover {Uα} of M . In fact for each
x ∈ Uα we construct as above a bump function λx which is flat and equal
to 1 on a neighborhood Vx of x and whose (compact) support lies in Uα.
Owing to compactness of M , we can extract a finite subcover of {Vx} and
thus we get non-negative smooth functions λi := λxi for i = 1, . . . , n such
that λi is 1 on Vxi . In particular, their sum is positive, so

ρi :=
λi

∑n
i=1 λi

for i = 1, . . . , n yields the desired partition of unity.

1.5.2 Theorem (Easy Whitney embedding theorem) LetM be a compact smooth
manifold. Then there exists an embedding of M into R

m for m suffciently big.

Proof. Since M is compact, there exists an open covering {Vi}ai=1 such
that for each i, V̄i ⊂ Ui where (Ui, ϕi) is a local chart of M . For each i, we
can find ρi ∈ C∞(M) such that 0 ≤ ρi ≤ 1, ρi|V̄i = 1 and supp ρi ⊂ Ui. Put

fi(x) =

{
ρi(x)ϕi(x), if x ∈ Ui,
0, if x ∈M \ Ui.

Then fi : M → R
n is smooth, where n = dimM . Define also smooth

functions

gi = (fi, ρi) :M → R
n+1 and g = (g1, . . . , ga) :M → R

a(n+1).

It is enough to check that g is an injective immersion. In fact, on the open
set Vi, we have that gi = (ϕi, 1) is an immersion, so g is an immersion.
Further, if g(x) = g(y) for x, y ∈ M , then ρi(x) = ρi(y) and fi(x) = fi(y)
for all i. Take an index j such that ρj(x) = ρj(y) 6= 0. Then x, y ∈ Uj and
ϕj(x) = ϕj(y). Due to the injectivity of ϕj , we must have x = y. Hence g is
injective. �

1.5.3 Remark In the noncompact case, one can still construct partitions of
unity and modify the proof of Theorem 1.5.2 to prove that M properly em-
bedds into R

m for somem. Then a standard trick involving Sard’s theorem
and projections into lower dimensional subspaces of Rm allows to find the
bound m ≤ 2n + 1, where n = dimM . A more difficult result, the strong
Whitney embedding theorem asserts that in fact m ≤ 2n.
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In general, a reasonable substitute for compactness is paracompactness.
A topological space is called paracompact if every open covering admits an
open locally finite refinement. It turns out that every locally compact, sec-
ond countable, Hausdorff space is paracompact. Hence manifolds are para-
compact. Now the above argument can be extended to give the following
theorem, for whose proof we refer the reader to [War83].

1.5.4 Theorem (Existence of partitions of unity) Let M be a smooth mani-
fold and let {Uα}α∈A be an open cover of M . Then there exists a countable parti-
tion of unity {ρi : i = 1, 2, 3, . . .} subordinate to {Uα} with supp(ρi) compact
for each i. If one does not require compact supports, then there is a partition of
unity {ϕα}α∈A strictly subordinate to {Uα} with at most countably many of the
ρα not zero.

1.6 Vector fields

Let M be a smooth manifold. A vector field on M is an assigment of a tan-
gent vectorX(p) in TpM for all p ∈M . Sometimes, we also writeXp instead
of X(p). So a vector field is a map X : M → TM where TM = ∪̇p∈MTpM
(disjoint union), and

(1.6.1) π ◦X = id

where π : TM → M is the natural projection π(v) = p if v ∈ TpM . In
account of property (1.6.1), we say that X is a section of TM .

We shall need to talk about continuity and differentiability of vector
fields, so we next explain that TM carries a canonical manifold structure
induced from that of M .

The tangent bundle

Let M be a smooth manifold and consider the disjoint union

TM =
⋃̇

p∈M
TpM.

We can view the elements of TM as equivalence classes of triples (p, a, ϕ),
where p ∈M , a ∈ R

n and (U,ϕ) is a local chart of M such that p ∈ U , and

(p, a, ϕ) ∼ (q, b, ψ) if and only if p = q and d(ψ ◦ ϕ−1)ϕ(p)(a) = b.

There is a natural projection π : TM →M given by π[p, a, ϕ] = p, and then
π−1(p) = TpM .

Suppose dimM = n. Note that we have n degrees of freedom for a
point p in M and n degrees of freedom for a vector v ∈ TpM , so we expect
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TM to be 2n-dimensional. We will use Proposition 1.2.10 to simultane-
ously introduce a topology and smooth structure on TM . Let {(Uα, ϕα)}
be a smooth atlas for M with countably many elements (recall that every
second countable space is Lindelöf). For each α, ϕα : Uα → ϕα(Uα) is a
diffeomorphism and, for each p ∈ Uα, d(ϕα)p : TpUα = TpM → R

n is the
isomorphism mapping [p, a, ϕ] to a. Set

ϕ̃α : π−1(Uα) → ϕα(Uα)×R
n, [p, a, ϕ] → (ϕα(p), a).

Then ϕ̃α is a bijection and ϕα(Uα) is an open subset of R2n. Moreover, the
maps

ϕ̃β ◦ ϕ̃−1
α : ϕα(Uα ∩ Uβ)×R

n → ϕβ(Uα ∩ Uβ)×R
n

are defined on open subsets of R2n and are given by

(x, a) 7→ (ϕβ ◦ ϕ−1
α (x) , d(ϕβ ◦ ϕ−1

α )x(a)).

Since ϕβ ◦ ϕ−1
α is a smooth diffeomorphism, we have that d(ϕβ ◦ ϕ−1

α )x is
a linear isomorphism and d(ϕβ ◦ ϕ−1

α )x(a) is also smooth on x. It follows
that {(π−1(Uα), ϕ̃α)} defines a topology and a smooth atlas for M and we
need only to check the Hausdorff condition. Namely, let v, w ∈ TM with
v 6= w. Note that π is an open map. If v, w ∈ TM and π(v) 6= π(w), we can
use the Hausdorff property of M to separate v and w from each other with
open sets of TM . On the other hand, if v, w ∈ TpM , they lie in the domain
of the same local chart of TM and the result also follows.

Note that, in particular, we have shown that every system of local co-
ordinates (x1, . . . , xn) on an open subset U of M induces a system of local
coordinates (x1, . . . , xn, dx1, . . . , dxn) on TM |U .

If f ∈ C∞(M,N), then we define the differential of f to be the map

df : TM → TN

that restricts to dfp : TpM → Tf(p)N for each p ∈ M . Using the above
atlases for TM and TN , we immediately see that df ∈ C∞(TM, TN).

1.6.2 Remark The mapping that associates to each manifold M its tangent
bundle TM and associates to each smooth map f : M → N its tangent
map df : TM → TN can be thought of a functor DIFF → VB from the
category of smooth manifolds to the category of smooth vector bundles. In
fact, d(idM ) = idTM , and d(g ◦ f) = dg ◦ df for a sequence of smooth maps

M
f−→ N

g−→ P .

Smooth vector fields

A vector field X on M is called smooth (resp. continuous) if the map X :
M → TM is smooth (resp. continuous).
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More generally, let f : M → N be a smooth mapping. Then a (smooth,
continuous) vector field along f is a (smooth, continuous) mapX :M → TN
such that X(p) ∈ Tf(p)N for p ∈ M . The most important case is that in
which f is a smooth curve γ : [a, b] → N . A vector field along γ is a map
X : [a, b] → TN such that X(t) ∈ Tγ(t)N for t ∈ [a, b]. A typical example is
the tangent vector field γ̇.

For practical purposes, we reformulate the notion of smoothness as fol-
lows. Let X be a vector field on M . Given a smooth function f ∈ C∞(U)
where U is an open subset of M , the directional derivative X(f) : U → R

is defined to be the function p ∈ U 7→ Xp(f). Further, if (x1, . . . , xn) is a
coordinate system on U , we have already seen that { ∂

∂x1
|p, . . . , ∂

∂xn
|p} is a

basis of TpM for p ∈ U . It follows that there are functions ai : U → R such
that

(1.6.3) X|U =
n∑

i=1

ai
∂

∂xi
.

1.6.4 Proposition Let X be a vector field on M . Then the following assertions
are equivalent:
a. X is smooth.
b. For every coordinate system (U, (x1, . . . , xn)) ofM , the functions ai defined

by (1.6.3) are smooth.
c. For every open set V of M and f ∈ C∞(V ), the function X(f) ∈ C∞(V ).

Proof. Suppose X is smooth and let { ∂
∂x1

|p, . . . , ∂
∂xn

|p} be a coordinate
system on U . Then X|U is smooth and ai = dxi ◦X|U is also smooth.

Next, assume (b) and let f ∈ C∞(V ). Take a coordinate system

(U, (x1, . . . , xn))

with U ⊂ V . Then, by using (b) and the fact that ∂f
∂xi

is smooth,

X(f)|U =
n∑

i=1

ai
∂f

∂xi
∈ C∞(U).

Since V can be covered by such U , this proves (c).
Finally, assume (c). For every coordinate system (U, (x1, . . . , xn)) of

M , we have a corresponding coordinate system (π−1(U), x1 ◦ π, . . . , xn ◦
π, dx1, . . . , dxn) of TM . Then

(xi ◦ π) ◦X|U = xi and dxi ◦X|U = X(xi)

are smooth. This proves that X is smooth. �

In particular, the proposition shows that the coordinate vector fields ∂
∂xi

associated to a local chart are smooth. Since ai = X(xi) in (1.6.3), we have
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1.6.5 Scholium If X is a smooth vector field on M and X(f) = 0 for every
smooth function, then X = 0.

1.6.6 Remark Part (c) of Proposition 1.6.4 in fact says that every smooth
vector field on M defines a derivation of the algebra C∞(M), namely, a
differential operator that maps constants to zero and satisfies the Leibniz
identity X(fg) = X(f)g + fX(g).

Flow of a vector field

We have now come to the integration of vector fields. Let ϕt : M → M
be a diffeomorphism such that the curve t 7→ ϕt(p) is smooth for each p.
Then Xp := d

dt

∣
∣
t=0

ϕt(p) defines a vector field on M . Conversely, one can
integrate smooth vector fields to obtain (local) diffeomorphisms. Actually,
this is the extension of ODE theory to smooth manifolds that we discuss
below.

An integral curve of X is a smooth curve γ : I → M , where I is an open
interval, such that

γ̇(t) = X(γ(t))

for all t ∈ I . We write this equation in local coordinates. Suppose X has
the form (1.6.3), γi = xi ◦ γ and ãi = ai ◦ϕ−1. Then γ is an integral curve of
X in γ−1(U) if and only if

(1.6.7)
dγi
dr

∣
∣
∣
t
= ãi(γ1(t), . . . , γn(t))

for i = 1, . . . , n and t ∈ γ−1(U). Equation (1.6.7) is a system of first order
ordinary differential equations for which existence and uniqueness theo-
rems are known. These, translated into manifold terminology yield local
existence and uniqueness of integral curves for smooth vector fields. More-
over, one can cover M by domains of local charts and, using uniqueness,
piece together the locally defined integral curves of X to obtain, for any
given point p ∈ M , a maximal integral curve γp of X through p defined on
a possibly infinite interval (a(p), b(p)).

Even more interesting is to reverse the rôles of p and t by setting

ϕt(p) := γp(t)

for all p such that t ∈ (a(p), b(p)). The smooth dependence of solutions of
ODE on the initial conditions implies that for every p ∈ M , there exists an
open neighborhood V of p and ǫ > 0 such that the map

(1.6.8) (−ǫ, ǫ)× V →M, (t, q) 7→ ϕt(q)

is well defined and smooth. The same theorem also shows that, for fixed
t > 0, the domain of ϕt is an open subset Dt of M .



1.6. VECTOR FIELDS 25

The uniqueness of solutions of ODE with given initial conditions im-
plies that

(1.6.9) ϕs+t = ϕs ◦ ϕt

whenever both hand sides are defined. In fact, for each t, the curve s 7→
ϕs+t(p) is an integral curve of X passing through the point ϕt(p) at s = 0,
so it must locally coincide with ϕs(ϕt(p)).

Obviously ϕ0 is the identity, so ϕt is a diffeomorphism Dt → D−t with
inverse ϕ−t. The collection {ϕt} is called the flow of X . Owing to prop-
erty (1.6.9), the flow ofX is also called the one-parameter local group of locally
defined diffeomorphisms generated by X , and X is called the infinitesimal
generator of {ϕt}. If ϕt is defined for all t ∈ R, the vector field X is called
complete. This is equivalent to requiring that the maximal integral curves of
X be defined on the entire R, or yet, that the domain of each ϕt be M . In
this case we refer to {ϕt} as the one-parameter group of diffeomorphisms of
M generated by X .

1.6.10 Proposition Every smooth vector field X defined on a compact smooth
manifold M is complete.

Proof. If M is compact, we can find a finite open covering {Vi} of it and
ǫi > 0 such that (−ǫi, ǫi) × Vi → M , (t, p) 7→ ϕt(p) is well defined and
smooth for all i, as in (1.6.8). Let ǫ = mini{ǫi}. Now this map is defined on
(−ǫ, ǫ) ×M → M . This means that any integral curve of X starting at any
point ofM is defined at least on the interval (−ǫ, ǫ). The argument using the
uniqueness of solutions of ODE as in (1.6.9) and piecing together integral
curves of X shows that any integral curve of X is defined on (−kǫ, kǫ) for
all positive integer k, hence it is defined on R. �

1.6.11 Examples (a) Take M = R
2 and X = ∂

∂x1
. Then X is complete and

ϕt(x1, x2) = (x1 + t, x2) for (x1, x2) ∈ R
2. Note that if we replace R

2 by the
punctured plane R

2 \ {(0, 0)}, the domains of ϕt become proper subsets of
M .

(b) Consider the smooth vector field on R
2n defined by

X(x1, . . . , x2n) = −x2
∂

∂x1
+ x1

∂

∂x2
+ · · · − x2n

∂

∂x2n−1
+ x2n−1

∂

∂x2n
.

The flow of X is given the linear map

ϕt










x1
x2
...

x2n−1

x2n










=






Rt
. . .

Rt















x1
x2
...

x2n−1

x2n









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where Rt is the 2× 2 block
(

cos t − sin t
sin t cos t

)

.

It is clear that X restricts to a smooth vector field X̄ on S2n−1. The flow of
X̄ is of course the restriction of ϕt to S2n−1. X and X̄ are complete vector
fields.

(c) Take M = R and X(x) = x2 ∂
∂x . Solving the ODE we find ϕt(x) =

x
1−tx . It follows that the domain of ϕt is (−∞, 1t ) if t > 0 and (1t ,+∞) if
t < 0.

Lie bracket

IfX is a smooth vector field onM and f :M → R is a smooth function, the
directional derivative X(f) : M → R is also smooth and so it makes sense
to derivate it again as in Y (X(f)) where Y is another smooth vector field
on M . For instance, in a local chart (U,ϕ = (x1, . . . , xn)), we have the first
order partial derivative

∂

∂xi

∣
∣
∣
p
(f) =

∂f

∂xi

∣
∣
∣
p

and the second order partial derivative
(

∂

∂xj

)

p

(
∂

∂xi
(f)

)

=
∂2f

∂xj∂xi

∣
∣
∣
p

and it follows from Schwarz theorem on the commutativity of mixed partial
derivatives of smooth functions on R

n that

(1.6.12)
∂2f

∂xj∂xi

∣
∣
∣
p
=
∂2(f ◦ ϕ−1)

∂rj∂ri

∣
∣
∣
p
=
∂2(f ◦ ϕ−1)

∂ri∂rj

∣
∣
∣
p
=

∂2f

∂xi∂xj

∣
∣
∣
p
,

where id = (r1, . . . , rn) denote the canonical coordinates on R
n.

On the other hand, for general smooth vector fields X , Y on M the
second derivative depends on the order of the vector fields and the failure
of the commutativity is measured by the commutator or Lie bracket

(1.6.13) [X,Y ](f) = X(Y (f))− Y (X(f))

for every smooth function f : M → R. We say that X , Y commute if
[X,Y ] = 0. It turns out that formula (1.6.13) defines a smooth vector field
onM ! Indeed, Scholium 1.6.5 says that such a vector field is unique, if it ex-
ists. In order to prove existence, consider a coordinate system (U, (x1, . . . , xn)).
Then we can write

X|U =

n∑

i=1

ai
∂

∂xi
and Y |U =

n∑

j=1

bj
∂

∂xj
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for ai, bj ∈ C∞(U). If [X,Y ] exists, we must have

(1.6.14) [X,Y ]|U =

n∑

i,j=1

(

ai
∂bj
∂xi

− bi
∂aj
∂xi

)
∂

∂xj
,

because the coefficients of [X,Y ]|U in the local frame { ∂
∂xj

}nj=1 must be
given by [X,Y ](xj) = X(Y (xj))−Y (X(xj)). We can use formula (1.6.14) as
the definition of a vector field on U ; note that such a vector field is smooth
and satisfies property (1.6.13) for functions in C∞(U). We finally define
[X,Y ] globally by covering M with domains of local charts: on the overlap
of two charts, the different definitions coming from the two charts must
agree by the above uniqueness result; it follows that [X,Y ] is well defined.

1.6.15 Examples (a) Schwarz theorem (1.6.12) now means [ ∂∂xi ,
∂
∂xj

] = 0 for
coordinate vector fields associated to a local chart.

(b) Let X = ∂
∂x −

y
2
∂
∂z , Y = ∂

∂y +
x
2
∂
∂z , Z = ∂

∂z be smooth vector fields on

R
3. Then [X,Y ] = Z, [Z,X] = [Z, Y ] = 0.

1.6.16 Proposition Let X , Y and Z be smooth vector fields on M . Then
a. [Y,X] = −[X,Y ].
b. If f , g ∈ C∞(M), then

[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X.

c. [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0. (Jacobi identity)

1.6.17 Exercise Prove Proposition 1.6.16. (Hint: Use (1.6.13).)

Let f : M → N be a diffeomorphism. For every smooth vector field X
on M , the formula df ◦X ◦ f−1 defines a smooth vector field on N , called
the push-forward of X under f , which we denote by f∗X . If the flow of X is
{ϕt}, then the flow of f∗X is f ◦ ϕt ◦ f−1, as

d

dt
f(ϕt(f

−1(p))) = df

(
d

dt
ϕt(f

−1(p))

)

= df(Xf−1(p)).

More generally, if f : M → N is a smooth map which needs not be a
diffeomorphism, smooth vector fields X on M and Y on N are called f -
related if df ◦X = Y ◦ f .

TM
df
> TN

M

X
∧

f
> N

f∗X
∧.........
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1.6.18 Proposition Let f :M →M ′ be smooth. LetX , Y be smooth vector fields
on M , and let X ′, Y ′ be smooth vector fields on M ′. If X and X ′ are f -related and
Y and Y ′ are f -related, then also [X,Y ] and [X ′, Y ′] are f -related.

Proof. Let h ∈ C∞(M ′) and q ∈M . Note first that

Xq(h ◦ f) = d(h ◦ f)(Xq)

= dh(df(Xq))

= (df ◦X)q(h)

= X ′
f(q)(h),

namely,

(1.6.19) X(h ◦ f) = X ′(h) ◦ f.

Similarly, Y (h ◦ f) = Y ′(h) ◦ f .
We now prove df ◦ [X,Y ] = [X ′, Y ′] ◦ f . Let g ∈ C∞(M ′) and p ∈ M .

Use (1.6.13) and the above identities:

df([X,Y ]p)(g) = [X,Y ]p(g ◦ f)
= Xp(Y (g ◦ f))− Yp(X(g ◦ f))
= Xp(Y

′(g) ◦ f)− Yp(X
′(g) ◦ f)

= X ′
f(p)(Y

′(g))− Y ′
f(p)(X

′(g))

= [X ′, Y ′]f(p)(g),

as we wished. �

What is the relation between flows and Lie brackets? In order to discuss
that, let X , Y be smooth vector fields on M . Denote the flow of X by {ϕt}
and let f be a smooth function on M . Then

d

dt
f(ϕt) = X(f),

and

(1.6.20) ((ϕ−t)∗Y )(f ◦ ϕt) = Y (f) ◦ ϕt

as (ϕ−t)∗Y and Y are ϕt-related (cf. (1.6.19)).

1.6.21 Exercise Let Zt be a smooth curve in TpM and let ht(x) = H(t, x),
where H ∈ C∞(R×M). Prove that

d

dt

∣
∣
∣
t=0

Zt(ht) =

(
d

dt

∣
∣
∣
t=0

Zt

)

(h0) + Z0

(
d

dt

∣
∣
∣
t=0

ht

)

.

(Hint: Here d
dt |t=0ht(x) means ∂H

∂t (0, x). Consider Γ ∈ C∞(R × R) such
that Γ(t, 0) = p and ∂

∂s |s=0Γ(t, s) = Zt for all t ∈ R, and use the chain rule.)
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Differentiate identity (1.6.20) at t = 0 to get

d

dt

∣
∣
∣
t=0

((ϕ−t)∗Y ) (f) + Y (X(f)) = X(Y (f)).

Note that t 7→ ((ϕ−t)∗Y )p is a smooth curve in TpM . Its tangent vector at
t = 0 is called the Lie derivative of Y with respect to X at p, denoted by
(LXY )p, and this defines the Lie derivative LXY as a smooth vector field
on M . The above calculation shows that

(1.6.22) LXY = [X,Y ].

1.6.23 Proposition X and Y commute if and only if their corresponding flows
{ϕt}, {ψs} commute.

Proof. [X,Y ] = 0 if and only if 0 = d
dt

∣
∣
t=0

(ϕ−t)∗Y . Since {ϕt} is a one-
parameter group,

d

dt

∣
∣
∣
t=t0

(ϕ−t)∗Y =
d

dh

∣
∣
∣
h=0

(ϕ−(t0+h))∗Y

= d(ϕ−t0)

(
d

dh

∣
∣
∣
h=0

(ϕ−h)∗Y ◦ ϕt0
)

,

this is equivalent to (ϕ−t)∗Y = Y for all t. However the flow of (ϕ−t)∗Y is
{ϕ−tψsϕt}, so this means ϕ−tψsϕt = ψs. �

We know that, for a local chart (U,ϕ), the set of coordinate vector fields
{ ∂
∂x1

, . . . , ∂
∂xn

} is linearly independent at every point of U and the ∂
∂xi

pair-
wise commute. It turns out these two conditions locally characterize coor-
dinate vector fields. Namely, we call a set {X1, . . . , Xk} of smooth vector
fields defined on an open set V of M a local k-frame if it is linearly indepen-
dent at every point of V ; if k = dimM , we simply say local frame.

1.6.24 Proposition Let {X1, . . . , Xk} be a local k-frame on V such that [Xi, Xj ] =
0 for all i, j = 1, . . . , k. Then for every p ∈ V there exists an open neighborhood U
of p in V and a local chart (U,ϕ) whose first k coordinate vector fields are exactly
the Xi.

Proof. Complete {X1, . . . , Xk} to a local frame {X1, . . . , Xn} in smaller
neighborhood Ṽ ⊂ V of p. (One can do that by first completing

{X1(p), . . . , Xk(p)}

to a basis
{X1(p), . . . , Xk(p), vk+1, . . . , vn}

of TpM and then declaring Xk+1, . . . , Xn to be the vector fields defined on
the domain of a system of local coordinates (W, y1, . . . , yn) around p, W ⊂
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V , with constant coefficients in { ∂
∂y1

, . . . , ∂
∂yn

} that extend vk+1, . . . , vn. By

continuity, {X1, . . . , Xk} will be a local frame in a neighborhood Ṽ ⊂ W
of p.) Let {ϕit} be the flow of Xi and put F (t1, . . . , tn) := ϕ1

t1 ◦ · · · ◦ ϕntn(p),
smooth map defined on a neighborhood of 0 in R

n. Then dF0(ei) = Xi(p)
for all i, so F is a local diffeomorphism at 0 by the inverse function theorem.
The local inverse F−1 defines a local chart (U, x1, . . . , xn) around p. Finally,
for q = F (t1, . . . , tn),

∂

∂xi

∣
∣
∣
q

= dFF−1(q)(ei)

=
d

dh

∣
∣
∣
t=0

ϕiti+hϕ
1
t1 · · · ϕ̂iti · · ·ϕ

n
tn(p)

= Xi

(

ϕitiϕ
1
t1 · · · ϕ̂iti · · ·ϕ

n
tn(p)

)

= Xi

(
ϕ1
t1 · · ·ϕ

n
tn(p)

)

= Xi(q),

where we have used Proposition 1.6.23 twice. �

1.7 Distributions and foliations

We seek to generalize the theory of the previous section to higher dimen-
sions, so let us rephrase it in the following terms. Let X be a smooth vector
field on M which is nowhere zero. On one hand, the R-span of Xp defines a
family D of one-dimensional subspaces Dp of TpM for each p ∈ M . On the
other hand, the maximal integral curves ofX define a partition F ofM into
regular parametrized curves, or 1-dimensional immersed submanifolds of
M . The relation between D and F is that TpL = Dp for every L ∈ F and
every p ∈ L.

In view of the above, we give the following definition. Suppose dimM =
n. A rank k (smooth) distribution D on M , 0 ≤ k ≤ n, is an assignment of a k-
dimensional subspace Dp of TpM to each p ∈ M , where any p ∈ M admits
an open neighborhood U with the property that there exist smooth vec-
tor fields X1, . . . , Xk on U such that the span of X1(q), . . . , Xk(q) coincides
with Dq for all q ∈ U .

Before continuing, we recall a consequence of Proposition 1.6.24, namely,
that the flow of a non-vanishing vector field can be locally “rectified” in the
following sense.

1.7.1 Proposition Let X be a smooth vector field on M such that Xp 6= 0 for
some p ∈ M . Then there exists a system of local coordinates (U, (x1, . . . , xn))
around p such that X|U = ∂

∂x1
. Equivalently, the integral curves of X in U are of

the form x2 = c2, . . . , xn = cn for some c2, . . . , cn ∈ R.
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Based on Proposition 1.7.1, we make the following definition. A k-
dimensional foliation of M , 0 ≤ k ≤ n, is a partition F of M into piece-
wise smooth arc-connected subsets, where any p ∈ M admits a coordi-
nate neighborhood (U, (x1, . . . , xn)) such that U is connected and, for every
L ∈ F , the piecewise smooth arc-connected components of L ∩ U are coin-
cide with the “slices”

xk+1 = ck+1, . . . , xn = cn

for some ck+1, . . . , cn ∈ R. The elements of F are called leaves. A coordinate
system (U, (x1, . . . , xn)) as above will be called distinguished. If L ∈ F , the
piecewise smooth arc-components of L ∩ U are called plaques.

1.7.2 Examples (i) The levels sets of a submersion M → N form a foliation
of rank dimM−dimN , by the local form of a submersion, where the leaves
are embedded submanifolds. Indeed, this is the local model of a general
foliation, by definition.

(ii) Recall the skew-line in the torus in Example 1.4.2. The traces of the
immersions

Fs : R → R
4, F (t) = (cos at, sin at, cos(bt+ 2πs), sin(bt+ 2πs)),

where a, b are non-zero real numbers, for s ∈ [0, 1], form a foliation of rank
1 of T 2. If b/a is an irrational number, the leaves are dense in T 2.

Each leaf L ∈ F has a canonical structure of immersed submanifold of M of
dimension k. In fact, we can use Proposition 1.2.10. For any distinguished
chart (U,ϕ), ϕ|P is a bijective map from a plaque (arc component) P ofL∩U
onto an open subset of Rk. In this way, if we start with a countable collec-
tion {(Um, ϕm)}m∈N of distinguished charts of M whose domains cover L,
we construct a collection {(Pα, ϕα)}α∈A, where Pα is a plaque of L∩Um for
some m and ϕα is the restriction of ϕm to Pα. It is clear that this collection
satisfies conditions (a), (b) and (c) of Proposition 1.2.10, but it remains to
be checked that the index set A is countable. For that purpose, it suffices
to see that Um ∩ L has countably many arc components, for every m. Fix a
plaque P0 of L in {Um}. Since L is arc connected, for any other plaque P
there exists a sequence P1, . . . , Pℓ = P of plaques such that Pi−1 ∩ Pi 6= ∅

for all i = 1, . . . , ℓ. So any plaque of L in {Um} can be reached by a finite
path of plaques that originates at P0. It suffices to show that the collection
of such paths is countable. In order to do that, it is enough to prove that a
given plaque P ′ of L in {Um} can meet only countably many other plaques
of L in {Um}. For any m, P ′ ∩ (L ∩ Um) = P ′ ∩ Um is an open subset of the
locally Euclidean space P ′ and thus has countably many components, each
such component being contained in a plaque of L ∩ Um. It follows that P ′

can meet at most countably many components of L ∩ Um, as we wished.
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In this way, we have a structure of smooth manifold of L such that each
plaque of L is an open submanifold of L. The underlying topology in L
can be much finer than the induced topology. In any case, the Hausdorff
condition follows because the inclusion map L → M is continuous and M
is Hausdorff. In addition (recall Proposition 1.4.9):

1.7.3 Proposition Every leaf L of a foliation of N is an initial submanifold.

Proof. Let f : M → N be a smooth map such that f(M) ⊂ L and
consider the induced map f0 :M → L such that ι◦f0 = f , where ι : L→ N
is the inclusion. We need to show that f0 is continuous. We will prove that
f−1
0 (U) is open in M for any given open subset U of L. We may assume
f−1
0 (U) 6= ∅, so let p ∈ f−1

0 (U) and q = f0(p) ∈ U . It suffices to show that p
is an interior point of f−1

0 (U). Let (V, y1, . . . , yn) be a distinguished chart of
N around q, so that the plaques of L in V are of the form

(1.7.4) yi = constant for i = k + 1, . . . , n

and the plaque containing q is

(1.7.5) yk+1 = · · · = yn = 0

By shrinking V , we may assume that (1.7.5) is an open set Ũ ⊂ U . Note that
f−1(V ) an open neighborhood of p inM ; letW be its connected component
containing p. Of course, W is open. It is enough to show that f0(W ) ⊂ Ũ ,
or what amounts to the same, f(W ) is contained in (1.7.5). Since f(W ) is
connected, it is contained in a plaque of of V ∩ L; since f(W ) meets q, it
must be (1.7.5). �

The Frobenius theorem

Let M be a smooth manifold. It is clear that every foliation of M gives rise
to a distribution simply by taking the tangent spaces to the leaves at each
point; locally, for a distinguished chart (U, (x1, . . . , xn)), the vector fields
∂
∂x1

, . . . , ∂
∂xk

span the distribution on U . What about the converse? If we
start with a distribution, can we produce an “integral” foliation? Well, in
case k = 1, locally we can find a smooth vector field X that spans the line
distribution and we have seen how to construct a local foliation by integral
curves of X ; in fact, the global problem can also be solved by passing to
a double covering of M . It turns out that in case k = 1 there are no ob-
structions to the integrability of distributions, and this is in line with the
fact that there are no obstructions to the integrability of ordinary differen-
tial equations. On the other hand, the situation is different when we pass
to distributions of rank k > 1, what amounts to consider certain kinds of
partial differential equations.
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Let D be a distribution on M . We say that D is integrable if there exists
a foliation F such that TpLp = Dp for every p ∈ M , where Lp ∈ F denotes
the leaf thorugh p. Such an F is called an integral foliation of D.

1.7.6 Proposition If D is an integrable foliation on M then the integral foliation
F is unique.

Proof. Define an equivalence relation on M by declaring two points
equivalent if and only if they can be joined by a piecewise smooth curve
whose smooth arcs are tangent to D. For p ∈ M , denote by Lp the leaf of
F through p. Since Lp is arc connected, it is a union of equivalence classes.
Now the existence of distinguished charts implies that each such equiva-
lence class is open in Lp, so Lp coincides with the equivalence class of p.
This already characterizes the leaves of F as subsets of M . Each leaf is an
initial submanifold of M , so the structure of smooth manifold on the leaf is
unique up to equivalence, as in Problem 19(d). �

More generally, an integral manifold of a distribution D on M is a sub-
manifold (L, f) of M such that dfp(TpL) = Df(p) for every p ∈ L. A maximal
integral manifold of D is a connected integral manifold whose image in M
is not a proper subset of another connected integral manifold of D, that is,
there is no connected integral manifold (L′, f ′) such that f(L) is a proper
subset of f ′(L′).

1.7.7 Exercise Let L1, L2 be two integral manifolds of a distribution D on
M . Use adapted charts to show that either L1 and L2 are disjoint or L1∩L2

is open in both L1 and L2. Deduce that, if D is integrable, then the leaves
of the integral foliation are the maximal integral manifolds of D.

We say that a vector field X on M lies in D if X(p) ∈ Dp for all p ∈ M ;
in this case, we write X ∈ D. We say that D is involutive if X , Y ∈ D
implies [X,Y ] ∈ D, namely, if D is closed under Lie brackets. Involutivity
is a necessary condition for a distribution to be integrable.

1.7.8 Proposition Every integrable distribution is involutive.

Proof. Let D be an integrable distribution on a smooth manifold M .
Given smooth vector fields X , Y ∈ D and p ∈ M , we need to show
that [X,Y ]p ∈ Dp. By assumption, there exists a distinguished coordinate
system (U, (x1, . . . , xn)) around p such that the vector fields ∂

∂x1
, . . . , ∂

∂xk
span the distribution D on U . Now X|U , Y |U are linear combinations of
∂
∂x1

, . . . , ∂
∂xk

with C∞(U)-coefficients, and so is their bracket, as we wished.
�

It so happens that involutivity is also a sufficient condition for a dis-
tribution to be integrable. This is the contents of the celebrated Frobenius
theorem.
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Despite being named after Frobenius, the theorem seems to be proved first by Clebsch
and Deahna. The merit of Frobenius in his 1875 Crelle’s paper was to apply the theorem to
Pfaffian systems, or systems of partial differential equations that are usefully formulated,
from the point of view of their underlying geometric and algebraic structure, in terms of a
system of differential forms of degree one. The proof below is accredited to Lundell [Lun92]
who found inspiration in Chern and Wolfson.

We first prove an elementary, general lemma.

1.7.9 Lemma Let D be any rank k distribution on a smooth manifold M . Then
there exists a system of local coordinates (U, x1, . . . , xn) around any given point p
in M such that D is spanned by the k vector fields

Xj =
∂

∂xj
+

n∑

i=k+1

aij
∂

∂xi
for j = 1, . . . , k

at all points in U , where aij ∈ C∞(U).

Proof. Let (V, x1, . . . , xn) be any system of local coordinates around p.
Let Y1, . . . , Yk be arbitrary smooth vector fields spanning D on an open set
Ũ ⊂ V . Then Yj =

∑n
i=1 bij

∂
∂xi

for j = 1, . . . , k and bij ∈ C∞(Ũ). Since

Y1, . . . , Yk is linearly independent at every point of Ũ , the matrix B(q) =
(bij(q)) has rank k for all q ∈ Ũ . By relabeling the xi, we may assume
that the 1 ≤ i, j ≤ k-block B′ is non-singular in an open neighborhood
U ⊂ Ũ of p. Now the 1 ≤ i, j ≤ k-block of B(B′)−1 is the identity, namely,
Xj =

∑k
i=1 b̂ijYi has the desired form, where (B′)−1 = (b̂ij). �

1.7.10 Theorem Every involutive distribution is integrable.

Proof. Let D be an involutive distribution on a smooth manifold M . We
first prove the local integrability, namely, the existence around any given
point p ∈ M of a system of local coordinates (V, y1, . . . , yn) such that Dq is
spanned by ∂

∂y1
|1, . . . , ∂

∂yk
|q for every q ∈ V . Indeed let (U, x1, . . . , xn) and

X1, . . . , Xk be as in Lemma 1.7.9. Note that

[Xi, Xj ] ∈ span

{
∂

∂xk+1
, . . . ,

∂

∂xn

}

,

so the involutivity of D implies that [Xi, Xj ] = 0 for i, j = 1, . . . , k. The
desired result follows from Proposition 1.6.24.

Finally, we construct the integral foliation. According to Proposition 1.7.6,
the leaf Lp through a given point p ∈ M must be the set of points q ∈ M
that can be reached from p by a piecewise smooth curve whose smooth arcs
are tangent to D. This defines a partition F of M into piecewise smooth arc
connected subsets. Given q ∈ Lp, let (V, y1, . . . , yn) be a system of local co-
ordinates around q such that D is spanned by ∂

∂y1
, . . . , ∂

∂yk
at all points in V .

It is clear that the arc connected components of Lp ∩ V are

yk+1 = constant, . . . , yn = constant.
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This proves that F is a foliation. �

1.8 Problems

§ 1.2

1 a. Use stereographic projection ϕN : UN = S2 \ {(0, 0, 1)} → R
2 to

define a local chart on S2 and write a formula for ϕN in terms of the
coordinates of R3. Do the same for ϕS : US = S2 \ {(0, 0,−1)} → R

2.
b. Show that {(UN , ϕN ), (US , ϕS)} is a smooth atlas for S2. Compare

the smooth structure defined by this atlas with that defined in exam-
ple 1.2.7 (viewing S2 as a union of graphs of smooth maps).

2 Let M be the set of all (affine) lines in R
2. Construct a natural structure

of smooth manifold inM . What is the dimension ofM? (Hint: Parametrize
lines in terms of their equations.)

3 Let M , N , P be smooth manifolds and denote by π1 : M × N → M ,
π2 :M ×N → N the canonical projections. Define maps ι1 :M →M ×N ,
ι2 : N →M ×N , where ι1(x) = (x, q), ι2(y) = (p, y) and p ∈M , q ∈ N .
a. Show that π1, π2, ι1, ι2 are smooth maps.
b. Show that f : P → M × N is smooth if and only if π1 ◦ f and π2 ◦ f

are smooth.

4 Let f : M → N be a map. Prove that f ∈ C∞(M,N) if and only if
g ◦ f ∈ C∞(M) for all g ∈ C∞(N).

5 Let π : M̃ → M be a topological covering of a smooth manifold M .
Check that M̃ is necessarily Hausdorff, second-countable (here you need to
know that the fundamental group π(M) is at most countable) and locally
Euclidean. Prove also that there exists a unique smooth structure on M̃
which makes π smooth and a local diffeomorphism (compare Appendix A).

§ 1.4

6 a. Prove that the composition and the product of immersions are im-
mersions.

b. In case dimM = dimN , check that the immersions M → N coincide
with the local diffeomorphisms.

7 Prove that every submersion is an open map.

8 a. Prove that if M is compact and N is connected then every submer-
sion M → N is surjective.
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b. Show that there are no submersions of compact manifolds into Eu-
clidean spaces.

9 Show that every smooth real function on a compact manifold has at least
two critical points.

10 Let M be a compact manifold of dimension n and let f : M → R
n be

smooth. Prove that f has at least one critical point.

11 Let p(z) = zm + am−1z
m−1 + · · · + a0 be a polynomial with complex

coefficients and consider the associated polynomial map C → C. Show
that this map is a submersion out of finitely many points.

12 (Generalized inverse function theorem.) Let f : M → N be a smooth map
which is injective on a compact submanifold P of M . Assume that dfp :
TpM → Tf(p)N is an isomorphism for every p ∈ P .
a. Prove that f(P ) is a submanifold of N and that f restricts to a diffeo-

morphism P → f(P ).
b. Prove that indeed f maps some open neighborhood of P in M dif-

feomorphically onto an open neighborhood of f(P ) in N . (Hint: It
suffices to show that f is injective on some neighborhood of P ; if this
is not the case, there exist sequences {pi}, {qi} in M both converging
to a point p ∈ P , with pi 6= qi but f(pi) = f(qi) for all i, and this
contradicts the non-singularity of dfp.)

13 Let p be a homogeneous polynomial of degreem in n variables t1, . . . , tn.
Show that p−1(a) is a submanifold of codimension one of Rn if a 6= 0. Show
that the submanifolds obtained with a > 0 are all diffeomorphic, as well as
those with a < 0. (Hint: Use Euler’s identity

n∑

i=1

ti
∂p

∂ti
= mp.)

14 The n×n real matrices with determinar 1 form a group denoted SL(n,R).
Prove that SL(n,R) is a submanifold of GL(n,R). (Hint: Use Problem 13.)

15 Consider the submanifolds GL(n,R), O(n) and SL(n,R) of the vec-
tor space M(n,R) (see Examples 1.2.7(ix) and 1.4.14(b), and Problem 14,
respectively).
a. Check that the tangent space ofGL(n,R) at the identity is canonically

isomorphic to M(n,R).
b. Check that the tangent space of SL(n,R) at the identity is canonically

isomorphic to the subspace of M(n,R) consisting of matrices of trace
zero.
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c. Check that the tangent space ofO(n) at the identity is canonically iso-
morphic to the subspace ofM(n,R) consisting of the skew-symmetric
matrices.

16 Denote by M(m× n,R) the vector space of real m× n matrices.
a. Show that the subset of M(m×n,R) consisting of matrices of rank at

least k (0 ≤ k ≤ min{m,n}) is a smooth manifold.
b. Show that the subset of M(m × n,R) consisting of matrices of rank

equal to k (0 ≤ k ≤ min{m,n}) is a smooth manifold. What is its
dimension? (Hint: We may work in a neighborhood of a matrix

g =
k

m−k

( k
A

n−k
B

C D

)

where A is nonsingular and right multiply by

(
I −A−1B

0 I

)

to check that g has rank k if and only if D − CA−1B = 0.)

17 Let M
f−→ N

g−→ P be a sequence of smooth maps between smooth
manifolds. Assume that g ⋔ Q for a submanifold Q of P . Prove that f ⋔

g−1(Q) if and only if g ◦ f ⋔ Q.

18 Let G ⊂ R
2 be the graph of g : R → R, g(x) = |x|1/3. Show that G

admits a smooth structure so that the inclusion G → R
2 is smooth. Is it an

immersion? (Hint: consider the map f : R → R given by

f(t) =







te−1/t if t > 0,
0 if t = 0,
te1/t if t < 0.)

19 Define submanifolds (M1, f1), (M2, f2) of N to be equivalent if there ex-
ists a diffeomorphism g :M1 →M2 such that f2 ◦ g = f1.
a. Show that this is indeed an equivalence relation.
b. Show that each equivalence class of submanifolds of N contains a

unique representative of the form (M, ι), where M is a subset of N
with a manifold structure such that ι : M → N is a smooth immer-
sion.

c. Let N be a smooth manifold, and let M be a subset of N equipped
with a given topology. Prove that there exists at most one smooth
structure on M , up to equivalence, which makes (M, ι) an immersed
submanifold of N , where ι : M → N is the inclusion. (Hint: Use
Proposition 1.4.9.)
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d. Let N be a smooth manifold, and let M be a subset of N . Prove that
there exists at most one structure of smooth manifold on M , up to
equivalence, which makes (M, ι) an initial submanifold of N , where
ι :M → N is the inclusion. (Hint: Use Proposition 1.4.9.)

20 Let N be a smooth manifold of dimension n+ k. For a point q ∈ N and
a subsetA ⊂ N , denote by Cq(A) the set of all points ofA that can be joined
to q by a smooth curve in M whose image lies in A.
a. Prove that if (P, g) is an initial submanifold of dimension n of N then

for every p ∈ P there exists a local chart (V, ψ) of N around g(p) such
that

ψ(Cg(p)(V ∩ g(P ))) = ψ(V ) ∩ (Rn × {0}).

(Hint: Use Proposition 1.4.5.)
b. Conversely, assume P is a subset of N with the property that around

any point p ∈ P there exists a local chart (V, ψ) of N around p such
that

ψ(Cp(V ∩ P )) = ψ(V ) ∩ (Rn × {0}).

Prove that there exists a topology on P that makes each connected
component of P into an initial submanifold of dimension n of N with
respect to the inclusion. (Hint: Apply Proposition 1.2.10 to the re-
strictions ψ|Cp(V ∩P ). Proving second-countability requires the follow-
ing facts: for locally Euclidean Hausdorff spaces, paracompactness is
equivalent to the property that each connected component is second-
countable; every metric space is paracompact; the topology on P is
metrizable since it is compatible with the Riemannian distance for
the Riemannian metric induced from a given Riemannian metric on
N ; Riemannian metrics can be constructed on N using partitions of
unity.)

21 Show that the product of any number of spheres can be embedded in
some Euclidean space with codimension one.

§ 1.5

22 Let M be a closed submanifold of N . Prove that the restriction map
C∞(N) → C∞(M) is well defined and surjective. Show that the result
ceases to be true if: (i) M is not closed; or (ii) M ⊂ N is closed but merely
assumed to be an immersed submanifold.

23 Let M be a smooth manifold of dimension n. Given p ∈ M , construct
a local chart (U,ϕ) of M around p such that ϕ is the restriction of a smooth
map M → R

n.
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24 Prove that on any smooth manifold M there exists a proper smooth
map f : M → R. (Hint: Use σ-compactness of manifolds and partitions of
unity.)

§ 1.6

25 Determine the vector field on R
2 with flow ϕt(x, y) = (xe2t, ye−3t).

26 Determine the flow of the vector field X on R
2 when:

a. X = y ∂
∂x − x ∂

∂y .

b. X = x ∂
∂x + y ∂

∂y .

27 Given the following vector fields in R
3,

X = y ∂
∂x − x ∂

∂y , Y = z ∂
∂y − y ∂

∂z , Z = ∂
∂x + ∂

∂y +
∂
∂z ,

compute their Lie brackets.

28 Show that the restriction of the vector field defined on R
2n

X = −x2 ∂
∂x1

+ x1
∂
∂x2

+ · · · − x2n
∂

∂x2n−1
+ x2n−1

∂
∂x2n

to the unit sphere S2n−1 defines a nowhere vanishing smooth vector field.

29 Let X and Y be smooth vector fields on M and N with flows {ϕt} and
{ψt}, respectively, and let f : M → N be smooth. Show that X and Y are
f -related if and only if f ◦ ϕt = ψt ◦ f for all t.

30 Let M be a properly embedded submanifold of N . Prove that every
smooth vector field on M can be smoothly extended to a vector field on N .

31 Construct a natural diffeomorphism TS1 ≈ S1 ×R which restricts to a
linear isomorphism TpS

1 → {p} × R for every p ∈ S1 (we say that such a
diffeomorphism maps fibers to fibers and is linear on the fibers).

32 Construct a natural diffeomorphism T (M ×N) ≈ TM ×TN that maps
fibers to fibers and is linear on the fibers.

33 Construct a natural diffeomorphism TRn ≈ R
n ×R

n that maps fibers
to fibers and is linear on the fibers.

34 Show that TSn × R is diffeomorphic to Sn × R
n+1. (Hint: There are

natural isomorphisms TpSn ⊕R ∼= R
n+1.)
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35 A smooth manifold M of dimension n is called parallelizable if TM ≈
M ×R

n by a diffeomorphism that maps fibers to fibers and is linear on the
fibers. Prove that M is parallelizable if and only if there exists a globally
defined n-frame {X1, . . . , Xn} on M .

§ 1.7

36 Is there a non-constant smooth function f defined on an open subset of
R

3 such that
∂f

∂x
− y

∂f

∂z
= 0 and

∂f

∂y
+ x

∂f

∂z
= 0?

(Hint: Consider a regular level set of f .)

37 Consider the first order system of partial differential equations

∂z

∂x
= α(x, y, z),

∂z

∂y
= β(x, y, z)

where α, β are smooth functions defined on an open subset of R3.
a. Show that if f is a solution, then the smooth vector fields X = ∂

∂x +

α ∂
∂z e Y = ∂

∂y + β ∂
∂z span the tangent space to the graph of f at all

points.
b. Prove that the system admits local solutions if and only if

∂β

∂x
+ α

∂β

∂z
=
∂α

∂y
+ β

∂α

∂z
.

38 Prove that there exists a smooth function f defined on a neighborhood
of (0, 0) in R

2 such that f(0, 0) = 0 and ∂f
∂x = ye−(x+y)−f , ∂f∂y = xe−(x+y)−f .


