
C H A P T E R 4

Integration

4.1 Orientation

Recall the formula for change of variables in a multiple integral
∫

ϕ(D)
f(y1, . . . , yn)dy1 · · · dyn

=

∫

D
f ′(ϕ(x1, . . . , xn))|Jϕ(x1, . . . , xn)|dx1 · · · dxn(4.1.1)

Here (x1, . . . , xn) and (y1, . . . , yn) are two sets of coordinates onR
n related

by a diffeomorphism ϕ : U → V between open subsets of Rn, D is a
bounded domain of integration in U , f is a real continuous function onD,

Jϕ = det

(

∂(yi ◦ ϕ)

∂xj

)

is the Jacobian determinant of ϕ, and
∫

refers to the Riemann integral. Let
us interpret (4.1.1) in terms of differential forms. We have

dϕ

(

∂

∂xj

∣

∣

∣

p

)

=
∑

i

∂(yi ◦ ϕ)

∂xj

∣

∣

∣

p

∂

∂yi

∣

∣

∣

ϕ(p)

and

(dϕ)∗(dyi|p) =
∑

j

∂(yi ◦ ϕ)

∂xj

∣

∣

∣

p
dxj |p,

so, in view of Exercise 6 in Chapter 2,

ϕ∗(dy1 ∧ · · · ∧ dyn) = (Jϕ) dx1 ∧ · · · ∧ dxn.

If we define, as we do, the left hand side of (4.1.1) as the integral of the
n-form ω = fdy1 ∧ · · · ∧ dyn over ϕ(D), that formula says that

(4.1.2)

∫

ϕ(D)
ω = ±

∫

D
ϕ∗ω
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where the sign is positive or negative according to whether the sign of the
Jacobian determinant is positive or negative throughout D. In general, a
diffeomorphism between open subsets ofRn is called orientation-preserving
if its Jacobian determinant is everywhere positive. The above discussion
shows that integration of n-forms on bounded domains is not invariant
under diffeomorphisms in general, but only under those that preserve ori-
entation. This suggests that if we want to transfer these ideas to smooth
manifolds via local charts, and define integration of n-forms there in aman-
ner independent of local coordinates, we should try to sort out a consistent
sign for the transition maps.

LetM be a smooth manifold. A smooth atlas forM is called oriented if
all the transition maps are orientation-preserving, andM is called orientable
if it admits an oriented atlas. If M is orientable, two oriented atlases are
said to define the same orientation if their union is an oriented atlas; this
defines an equivalence relation on the set of oriented atlases, and a choice
of equivalence class is called an orientation forM .

If M is orientable, an oriented atlas for M defines an orientation on
each tangent space induced from the canonical orientation of Rn via the
local charts. For these reason, an orientation onM can also be viewed as a
coherent choice of orientations on the tangent spaces toM .

4.1.3 Exercise Recall that an orientation on a vector space V is an equiva-
lence class of (ordered) bases, where two bases are said to be equivalent if
the matrix of change from one basis to the other has positive determinant.
Clearly, a vector space admits exactly two orientations. Show that for any
non-zero element ω ∈ Λn(V ∗) (n = dimV ) and any basis (e1, . . . , en) of V ,
the number ω(e1, . . . , en) is not zero and its sign is constant in each equiva-
lence class of bases. Deduce that the components of Λn(V ∗) \{0} ∼= R \{0}
naturally correspond to the orientations in V .

4.1.4 Proposition A smooth manifoldM of dimension n is orientable if and only
if it has a nowhere vanishing n-form.

Proof. Let ω0 = dx1 ∧ · · · ∧ dxn be the canonical n-form onR
n. The basic

fact we need is that a diffeomorphism τ of Rn is orientation-preserving if
and only if τ∗ω0 = f ω0 for a everywhere positive smooth function f .

Assume firstω is a nowhere vanishing n-form onM . LetA = {(Uα, ϕα)}
be a smooth atlas for M where each Uα is connected. For all α, ϕ∗

αω0 =
fαω where fα is a nowhere zero smooth function on Uα. Thus fα is ev-
erywhere positive or everywhere negative on Uα; in the latter case, we
replace ϕα by ψα = τ ◦ ϕα where τ(x1, . . . , xn) = (−x1, . . . , xn). Since
ψ∗
αω0 = ϕ∗

ατ
∗ω0 = −ϕ∗

αω0 = −fαω, this shows that, by replacing A with an
equivalent atlas, we may assume that fα > 0 for all α. Now (ϕβϕ

−1
α )∗ω0 =

(fβ ◦ ϕ−1
α )/(fα ◦ ϕ−1

α )ω0 with fβ/fα > 0 for all α, β, which proves that A is
oriented.
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Conversely, assume A = {(Uα, ϕα)} is an oriented atlas for M . Define
ωα = ϕ∗

αω0. Then ωα is a nowhere vanishing n-form on Uα, and ωα, ωβ are
positive multiples of one another on Uα ∩Uβ . It follows that ω :=

∑

α ραωα

is a well defined, nowhere vanishing n-form on M , where {ρα} is a parti-
tion of unity strictly subordinate to {Uα}. �

In view of the proof of Proposition 4.1.4, on an orientable manifold M
of dimension n, there exists a bijection between equivalence classes of ori-
ented atlases and equivalence classes of nowhere vanishing n-forms, where
two nowhere vanishing n-forms onM are said to be equivalent if they dif-
fer by a positive smooth function. On a connected manifold, the sign of a
nowhere zero function cannot change, so on a connected orientable mani-
fold there are exactly two possible orientations.

4.1.5 Example LetM be the pre-image of a regular value of a smooth map
f : Rn+1 → R. Then M is an (embedded) submanifold of Rn+1 and we
show in the following thatM is orientable by constructing a nowhere van-
ishing n-form on M . Let Ui = {p ∈ M | ∂f

∂xi
(p) 6= 0} for i = 1, . . . , n + 1.

Then {Ui} is an open cover ofM and we can take (x1, . . . , x̂i, . . . , xn+1) as
local coordinates on Ui. Define a nowhere vanishing n-form on Ui by

ωi = (−1)i
(

∂f

∂xi

)−1

dx1 ∧ · · · ∧ ˆdxi ∧ · · · ∧ dxn+1.

Since f is constant onM ,
∑

k
∂f
∂xk

dxk = 0, so we have on Uj that

dxj = −

(

∂f

∂xj

)−1
∑

k 6=j

∂f

∂xk
dxk.

Now one easily checks that

ωi|Ui∩Uj
= ωj |Ui∩Uj

and hence the ωi can be pieced together to yield a global n-form onM .

Let M be an orientable smooth manifold and fix an orientation for M ,
say given by an oriented atlas A = {(Uα, ϕα)}. We want to define the inte-
gral of a compactly supported n-form ω onM . For that purpose, consider
first the special case in which the support of ω is contained in the domain
of some local chart, say, (Uα, ϕα) ∈ A. Then we set

∫

M
ω =

∫

Uα

ω =

∫

ϕα(Uα)
(ϕ−1

α )∗ω

Note that choosing another local chart in A whose domain contains the
support of ω yields the same result due to (4.1.2). In the general case, we
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choose a partition of unity {ρi} subordinate to {Uα}, suppρi ⊂ Uα(i), and
put

∫

M
ω =

∑

i

∫

Uα(i)

ρiω.

Note that only finitely many terms in this sum are nonzero as suppω is
compact and {supp ρi} is locally finite. Let us check that this definition is
independent of the choices made. Namely, let {(Vβ , ψβ)} be another ori-
ented atlas defining the same orientation, and let {λj} be a partition of
unity subordinate to {Vj}, namely, suppλj ⊂ Vβ(j). Note that ρiλjω has
support contained in Uα(i) ∩ Vβ(j), so, by the special case,

∫

Uα(i)

ρiλjω =

∫

Vβ(j)

ρiλjω.

It follows that

∑

i

∫

Uα(i)

ρiω =
∑

i,j

∫

Uα(i)

ρiλjω

=
∑

i,j

∫

Vβ(j)

ρiλjω

=
∑

j

∫

Vβ(j)

λjω,

as we wished, where we have used that
∑

i ρi =
∑

j λj = 1.

4.1.6 Exercise Let f : M → N be a diffeomorphism between connected
oriented manifolds of dimension n, and let ω be a compactly supported
n-form on N . Prove that

∫

M
f∗ω = ±

∫

N
ω

where the sign is “+” if f is orientation-preserving and “−” if f is orientation-
reversing. (Hint: Use (4.1.2).)

4.1.7 Exercise Let M be a connected orientable manifold of dimension n
and denote by −M the same manifold with the opposite orientation. Show
that

∫

−M
ω = −

∫

M
ω

for every compactly supported n-form ω onM .
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4.2 Stokes’ theorem

Stokes’ theorem for manifolds is the exact generalization of the classical
theorems of Green, Gauss and Stokes of Vector Calculus. In order to pro-
ceed, we need to develop a notion of boundary.

Manifolds with boundary

In the same way as manifolds are modeled on R
n, manifolds with bound-

ary are modeled on the upper half space

R
n
+ = {(x1, . . . , xn) ∈ R

n | xn ≥ 0}.

A smooth manifold with boundary of dimension n is given by a smooth atlas
{(Uα, ϕα)} where ϕα maps Uα homeomorphically onto an open subset of
R

n
+ and the transition maps are diffeomorphisms between open subsets of

R
n
+. Recall a function f from an arbitrary subset A of Rn is called smooth if

it admits a smooth extension f̃ to an open neighborhood of A. In case A is
an open subset of Rn

+, by continuity all partial derivatives of f̃ at points in
∂Rn

+ are determined by the values of f in the interior of Rn
+, and therefore

in particular are independent of the choice of extension.
Of course, Rn

+ is itself a manifold with boundary. There is a natural
decomposition ofRn

+ into the boundary

∂Rn
+ = {(x1, . . . , xn) ∈ R

n | xn = 0}

and its complement, the interior, and both are smooth manifolds in the pre-
vious (restricted) sense, with a natural diffeomorphism ∂Rn

+ ≈ R
n−1. For

an open subset U of Rn
+, we also put ∂U = U ∩ ∂Rn

+.

4.2.1 Lemma Let τ : U → V be a diffeomorphism between open subsets of Rn
+

with everywhere positive Jacobian determinant. Then τ restricts to a diffeomor-
phism ∂τ : ∂U → ∂V with everywhere positive Jacobian determinant.

Proof. A diffeomorphism between open sets of Euclidean space is an
open map, so τ(U \ ∂U) ⊂ V \ ∂V ; applying this to τ−1, we get equality
and hence τ(∂U) = ∂V .

Write x′ = (x1, . . . , xn−1) ∈ R
n−1. By assumption the Jacobian matrix

of τ = (τ1, . . . , τn) at (x
′, 0) ∈ ∂U has positive determinant and block form

(

A B
C D

)

,

where

C =

(

∂τn
∂x1

(x′, 0), . . . ,
∂τn
∂xn−1

(x′, 0)

)

= (0, . . . , 0)
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since τn(x
′, 0) = 0 for all x′, and

D =
∂τn
∂xn

(x′, 0) > 0

since τ maps the upper half space into itself. It follows that A, which is the
Jacobian of ∂τ at (x′, 0), also has positive determinant, as desired. �

LetM be a smoothmanifold with boundary. It follows from Lemma 4.2.1
that the boundary of M , namely, the subset ∂M consisting of points of M
mapped to ∂Rn

+ under coordinate charts, is well defined. Moreover, it is a
smooth manifold of dimension (n−1), and an oriented atlas forM induces
an oriented atlas for ∂M by restricting the coordinate charts. Note also that
M \ ∂M is a smooth manifold of dimension n.

4.2.2 Examples (a) The closed unit ball B̄n inR
n is a smoothmanifold with

boundary Sn−1.

(b) The Möbius band is smooth manifold with boundary a circle S1.

In general, for an oriented smooth manifold with boundary, we will
always use the so called induced orientation on its boundary. Namely, if
in R

n
+ we use the standard orientation given by dx1 ∧ · · · ∧ dxn, then the

induced orientation on ∂Rn
+ is specified by (−1)n dx1 ∧ · · · ∧ dxn−1 (the

sign is required to make the statement of Stokes’ theorem right). On an
oriented smooth manifold with boundary M , for any local chart (U,ϕ) in
an oriented atlas ofM , we declare the restriction of ϕ to ∂U → ∂Rn

+ to be
orientation-preserving.

A 0-manifold M is just a countable discrete collection of points. In this
case, an orientation forM is an assignment of sign σ(p) = ±1 for each p ∈
M and

∫

M f =
∑

p∈M σ(p)f(p) for any 0-form f ∈ C∞(M) with compact
support.

4.2.3 Exercise Let the interval [a, b] ⊂ R (a < b) have the standard orienta-
tion dx1. Check that the induced orientation at a is −1 and that at b is +1.

4.2.4 Remark A smooth manifoldM in the old sense is a smooth manifold
with boundary with ∂M = ∅. Indeed, we can always find an atlas for M
whose local charts have images in R

n
+ \ ∂Rn

+.

Let M be a smooth manifold with boundary of dimension n. The tan-
gent space to M at a point p is an n-dimensional vector space defined in
the same way as in the case of a smooth manifold (even in case p ∈ ∂M ).
The definition of the tangent bundle also works, and TM is itself a mani-
fold with boundary. More generally, tensor bundles and differential forms
are also defined. If M is in addition oriented, the integral of compactly
supported n-forms is defined similarly to above.
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Statement and proof of the theorem

4.2.5 Theorem Let ω be an (n − 1)-form with compact support on an oriented
smooth n-manifoldM with boundary and give ∂M the induced orientation. Then

∫

M
dω =

∫

∂M
ω.

In the right hand side of Stokes’ theorem, ω is viewed as ι∗ω, where
ι : ∂M → M is the inclusion, and the integral vanishes if ∂M = ∅. In the
case n = 1, the integral on the right hand side is a finite sum and the result
reduces to the Fundamental Theorem of Calculus.

Proof of Theorem 4.2.5. We first consider two special cases.
Case 1: M is an open subset U of Rn. View ω as an (n − 1)-form on R

n

which is zero on the complement of U . Write ω =
∑

i ai dx1 ∧ · · · ∧ ˆdxi ∧
· · · ∧ dxn. Then dω =

∑

i(−1)i−1 ∂ai
∂xi

dx1 ∧ · · · ∧ dxn. By Fubini’s theorem,
∫

U
dω =

∫

Rn

dω

=
∑

i

(−1)i−1

∫

Rn−1

(
∫ ∞

−∞

∂ai
∂xi

dxi

)

dx1 · · · ˆdxi · · · dxn

= 0

because
∫ ∞

−∞

∂ai
∂xi

dxi

= ai(. . . , xi−1,∞, xi+1, . . .)− ai(. . . , xi−1,−∞, xi+1, . . .)

= 0,

as ai has compact support. SinceM has no boundary, this case is settled.
Case 2: M is an open subset U ofRn

+. View ω as an (n− 1)-form onR
n
+

which is zero on the complement of U . Write ω =
∑

i ai dx1∧· · ·∧ d̂xi∧· · ·∧
dxn as before, but note that while the ai are smooth on (a neighborhood) of
R

n
+, the linear forms dxi are defined on the entireRn. Since ai has compact

support,
∫∞
−∞

∂ai
∂xi

dxi = 0 for i < n, so by Fubini’s theorem
∫

U
dω =

∫

Rn
+

dω

= (−1)n−1

∫

Rn−1

(
∫ ∞

0

∂an
∂xn

dxn

)

dx1 · · · dxn−1

= (−1)n−1

∫

Rn−1

−an(x1, . . . , xn−1, 0) dx1 · · · dxn−1

=

∫

∂Rn
+

ω

=

∫

∂U
ω,
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finishing this case.
General case: M is an arbitrary manifold with boundary of dimen-

sion n. Let {(Uα, ϕα)} be an oriented atlas for M such that each Uα has
compact closure and let {ρα} be a partition of unity strictly subordinate
to {Uα}. Then ω =

∑

α ραω where each term has compact support. By lin-
earity, it suffices to prove Stokes’ formula for ραω which has support con-
tained in Uα. Since Uα is diffeomorhic to an open set in R

n or Rn
+, cases 1

and 2 imply that the formula holds on Uα, so

∫

M
dραω =

∫

Uα

dραω =

∫

∂Uα

ραω =

∫

∂M
ραω,

which concludes the proof of the theorem. �

4.3 De Rham Cohomology

De Rham theory, named after Georges de Rham, is a cohomology theory
in the realm of smooth manifolds and “constitutes in some sense the most
perfect example of a cohomology theory” (Bott and Tu). The de Rham com-
plex of a smooth manifold is defined as a differential invariant, but turns
out to be a topological invariant (we will not prove that, but in the next
section we shall see that its an invariant of the smooth homotopy type).

The most basic invariant of a topological spaceX is perhaps its number
of connected components. In terms of continuous functions, a component
is characterized by the property that on it every locally constant continuous
function is globally constant. If we define H0(X) to be the vector space of
real valued locally constant continuous functions on X, then dimH0(X) is
the number of connected components of X. Of course, in case X = M is a
smoothmanifold andwe defineH0(M) to be the vector space of real valued
locally constant smooth functions onM , again dimH0(X) is the number of
connected components ofM .

In seeking to define Hk(M) for k > 0, assume for simplicity M is an
open subset of Rn with coordinates (x1, . . . , xn). In this case, the locally
constant smooth functions f onM are exactly those satisfying

df =
∑

i

∂f

∂xi
dxi = 0.

Therefore H0(M) appears as the space of solutions of a differential equa-
tion. In case k > 0, points and functions are replaced by k-dimensional
submanifolds and k-forms, respectively. For instance, if k = 1, a 1-form
ω =

∑

i ai, dxi defines a function on smooth paths

γ 7→

∫

γ
ω
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and we look for locally constant functions, namely, those left unchanged
under a small perturbation of γ keeping the endpoints fixed. In general,
if we homotope γ to a nearby curve with endpoints fixed, the difference
between the line integrals is given by the integral of dω along the spanned
surface, owing to Stokes’ theorem. Therefore the condition of local con-
stancy is here dω = 0 or, equivalently, the system of partial differential
equations

(4.3.1)
∂ai
∂xj

−
∂aj
∂xi

= 0

for all i, j. On the other hand,
∫

γ df = f(q) − f(p) where p, q are the end-
points of γ, so 1-forms of type df yield trivial solutions of (4.3.1). This sug-
gest thatH1(M) be defined as the vector space of locally constant line inte-
grals modulo the trivially constant ones, and similarly for bigger k.

4.3.2 Definition Let M be a smooth manifold. A k-form ω on M is called
closed if dω = 0, and it is called exact if ω = dη for some (k − 1)-form η on
M . These conditions define subspaces of the real vector space of k-forms
onM . Since d2 = 0, every exact form is closed. The k-th de Rham cohomology
space ofM is the quotient vector space

Hk(M) = {closed k-forms}/{exact k-forms}.

4.3.3 Examples (a) For any smooth manifold M of dimension n, there are
no exact 0-forms and all n-forms are closed. MoreoverH0(M) = R

p where
p is the number of connected components ofM , and Hk(M) = 0 for k > n
since in this case there are no nonzero k-forms.

(b) Let ω = f(x)dx be a 1-form on R. Then ω = dg where g(x) =
∫ x
0 f(t) dt. Therefore every 1-form on R is exact and hence H1(R) = 0. It
follows fromPoincaré lemma to be proved in the next section thatHk(Rn) =
0 for all k > 0.

(c) Owing to Stokes’ theorem, an n-form ω on an n-dimensional ori-
entedmanifoldM (without boundary) can be of the form dη for a compactly
supported (n − 1)-form η only if

∫

M ω = 0; in particular, if M is compact,
ω can be exact only if

∫

M ω = 0. On the other hand, if M is compact and
orientable, let (U, x1, . . . , xn) be a positively oriented local coordinate sys-
tem and let f be a non-negative smooth function with compact support
contained in U . Then ω = f dx1 ∧ · · · ∧ dxn defines an n-form onM with
∫

M ω > 0 and hence Hn(M) 6= 0. We will see later that “integration over
M” defines an isomorphismHn(M) ∼= R for compact connected orientable
M .

(d) The 1-form

ω =
−y dx+ x dy

x2 + y2
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onM = R
2 \ {(0, 0)} is easily checked to be closed by a direct calculation.

Let ι : S1 →M be the unit circle. If ω is exact, ω = df for some f ∈ C∞(M),
then d(ι∗f) = ι∗df = ι∗ω, and also ι∗ω is exact, but

∫

S1 ι
∗ω = 2π 6= 0, so this

cannot happen, owing to (c). It follows thatH1(M) 6= 0.

(e) ConsiderM = S1. The polar cooordinate function θ on S1 is defined
only locally, but any two determinations of the angle differ by a constant
multiple of 2π, so its differential is a well defined 1-form called the “an-
gular form” and usually denoted by dθ, although it is not globally exact
(be careful!). It is easily seen that ι∗ω = dθ, where ω is as in (d), and so
H1(S1) 6= 0. We next show that

∫

S1 : Ω1(S1) → R induces an isomorphism
H1(S1) → R. Every 1-form is closed, so we need only to identify its ker-
nel with the exact 1-forms. Since dθ never vanishes, any 1-form α on S1

can be written as α = f dθ where f ∈ C∞(S1). Now
∫

S1 α = 0 says that
∫ 2π
0 f(eit) dt = 0, so

g̃(t) =

∫ t

0
f(eis) ds

is a smooth, 2π-periodic function on R which induces g ∈ C∞(S1) such
that g(eit) = g̃(t) for all t ∈ R. It is clear that dg = α, completing the
argument.

4.3.4 Exercise Prove that the restriction of ω from Example 4.3.3(d) to the
half-plane x > 0 is exact.

Induced maps in cohomology

Let f : M → N be smooth. Since d(f∗ω) = f∗(dω) for any ω ∈ Ω∗(N), f∗ω
is closed if ω is closed, and it is exact if ω is exact. Thus there is an induced
homomorphism

f∗ : Hk(N) → Hk(M)

for each k ≥ 0. In addition, if g : N → P is smooth, then

(g ◦ f)∗ = f∗ ◦ g∗.

Of course, the identity map id : M → M induces the identity map in
cohomology. Such properties show that de Rham cohomology defines a
family of contravariant functors and, in particular, a diffeomorphism f :
M → N induces an isomorphism between all the corresponding cohomol-
ogy spaces. Thus de Rham cohomology is a differential invariant of smooth
manifolds. We will prove later that it is a homotopy invariant.



4.4. HOMOTOPY-INVARIANCE OF COHOMOLOGY 97

4.4 Homotopy-invariance of cohomology

Let f , g :M → N be smooth maps between smooth manifolds. A (smooth)
homotopy between f and g is a smooth map F :M × [0, 1] → N such that

{

F (p, 0) = f(p)
F (p, 1) = g(p)

for p ∈M . If there exists a homotopy between f and g, we say that they are
homotopic.

4.4.1 Proposition Let f , g be homotopic maps. Then the induced maps in de
Rham cohomology

f∗, g∗ : Hk(N) → Hk(M)

are equal.

The proof of this propositon is given below. First, we need to make
some remarks. For t ∈ [0, 1], consider the inclusions it given by

it(p) = (p, t)

for p ∈M , and consider the natural projection π :M × [0, 1] →M given by
π(p, t) = p. Then, obviously,

π ◦ it = idM

implying that
i∗tπ

∗ = id in Ωk(M) and Hk(M).

We consider the projection t : M × [0, 1] → [0, 1]. Then there exist a
“vertical” vector field ∂

∂t and a 1-form dt onM × [0, 1]. Note that ker dπ is

spanned by ∂
∂t .

4.4.2 Lemma Let ω ∈ Ωk(M × [0, 1]). Then we can write

(4.4.3) ω = ζ + dt ∧ η

where ζ ∈ Ωk(M×[0, 1]) has the property that it vanishes if some of its arguments
belongs to ker dπ, and η ∈ Ωk−1(M × [0, 1]) has the same property.

Proof. Set η = i ∂
∂t
ω and ζ = ω − dt ∧ η. Since

i ∂
∂t
η = i ∂

∂t
i ∂
∂t
ω = 0,

it is clear that η has the claimed property. Similarly,

i ∂
∂t
ζ = i ∂

∂t
ω − i ∂

∂t
(dt ∧ η)

= η − i ∂
∂t
dt ∧ η + dt ∧ i ∂

∂t
η

= η − η + 0

= 0,
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as desired, where we have used that interior multiplication is an anti-deri-
vation. �

We define the homotopy operator

Hk : Ωk(M × [0, 1]) → Ωk−1(M)

by the formula

(Hkω)p(v1, . . . , vk−1) =

∫ 1

0
η(p,t)(dit(v1), . . . , dit(vk−1)) dt,

where ω is decomposed as in (4.4.3) and p ∈ M , v1, . . . , vk−1 ∈ TpM . Note
that Hk is “integration along the fiber of π”. For simplicity, we henceforth
drop the subscript and just writeH for the homotopy operator.

Proof of Propostion 4.4.1. Let ω ∈ Ωk(M × [0, 1]). We first claim that

(4.4.4) dHω +Hdω = i∗1ω − i∗0ω.

The proof is by direct computation: since this is a pointwise identity, we
can work in a coordinate system. Let (U, x1, . . . , xn) be a coordinate system
inM . Then (U×[0, 1], x1◦π, . . . , xn◦π, t) is a coordinate system inM×[0, 1]
and we can write

ω|U×[0,1] =
∑

I

aIdxI + dt ∧
∑

J

bJdxJ

where aI , bJ are smooth functions on U × [0, 1] and I , J are increasing
multi-indices. In U × [0, 1], we have:

Hω =
∑

J

(
∫ 1

0
bJdt

)

dxJ ,

dHω =
∑

J,i

(
∫ 1

0

∂bJ
∂xi

dt

)

dxi ∧ dxJ ,

dω =
∑

I,i

∂aI
∂xi

dxi ∧ dxI +
∑

I

∂aI
∂t

dt ∧ dxI − dt ∧
∑

J,i

∂bJ
∂xi

dxi ∧ dxJ ,

Hdω =
∑

I

(
∫ 1

0

∂aI
∂t

dt

)

dxI −
∑

J,i

(
∫ 1

0

∂bJ
∂xi

dt

)

dxi ∧ dxJ .

It follows that

dHω +Hdω|p =
∑

I

(
∫ 1

0

∂aI
∂t

(p, t) dt

)

dxI

=
∑

I

(aI(p, 1) − aI(p, 0))dxI

= i∗1ω − i∗0ω|p,
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as claimed.
Suppose now that F : M × [0, 1] → N is a homotopy between f and

g. Let α be a closed k-form in N representing the cohomology class [α] ∈
Hk(N). Applying identity (4.4.4) to ω = F ∗α yields

dHF ∗α+HF ∗dα = i∗1F
∗α− i∗0F

∗α.

Since dα = 0 and F ◦ i0 = f , F ◦ i1 = g, we get

d (HF ∗α) = g∗α− f∗α.

Hence g∗α and f∗α are cohomologous. �

Two smooth manifolds M and N are said to have the same homotopy
type (in the smooth sense) and are called homotopy equivalent (in the smooth
sense) if there exist smooth maps f :M → N and g : N →M such that g◦f
and f ◦g are smoothly homotopic to the identity maps onM andN , respec-
tively. Each of the maps f and g is then called a homotopy equivalence, and
f and g are called inverses up to homotopy or homotopy inverses. A manifold
homotopy equivalent to a point is called contractible.

4.4.5 Corollary A homotopy equivalence between smooth manifolds induces an
isomorphism in de Rham cohomology.

4.4.6 Corollary (Poincaré Lemma) The de Rham cohomology of Rn (or a star-
shaped open subset of Rn) isR in dimension zero and zero otherwise:

Hk(Rn) =

{

R if k = 0,
0 if k > 0.

Consider an inclusion ι : A → M . A map r : M → A satisfying r ◦ ι =
idA is called a retraction. A special case of homotopy equivalence is the case
in which ι ◦ r : M → M is homotopic to idM ; if that happens, r is called a
deformation retraction ofM onto A and A is called a deformation retract ofM .

4.4.7 Exercise Check that r : R2 \ {0} → S1 given by r(x) = x
||x|| is a defor-

mation retraction. Compare with Examples 4.3.3(d) and (e).

4.4.8 Lemma There exists no smooth retraction r : B̄n → ∂B̄n from the closed
ball onto its boundary.

Proof. The case n = 1 is easy as a retraction is surjective, the closed
interval B̄1 is connected and its boundary is disconnected. Assume n ≥ 2
and suppose, to the contrary, that such a retraction r exists. From r ◦ ι =
id∂B̄n we deduce that ι∗r∗ = id and thus that r∗ : Hn−1(∂B̄n) → Hn−1(B̄n)
is injective. However ∂B̄n = Sn−1 and Hn−1(Sn−1) 6= 0 (Example 4.3.3(c))
whereasHn−1(B̄n) = 0 (Corollary 4.4.6), which is a contradiction. �
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4.4.9 Theorem (Smooth Brouwer’s fixed point theorem) Let f : B̄n → B̄n

be a smooth map. Then there exists p ∈ B̄n such that f(p) = p. In other words,
every smooth self-map of the closed n-ball admits a fixed point.

Proof. Suppose, on the contrary, that f(x) 6= x for all x ∈ B̄n. The
half-line originating at f(x) and going through x meets ∂B̄n at a unique
point; call it r(x). It is easy to see that this defines a smooth retraction
r : B̄n → ∂B̄n which is prohibited by Lemma 4.4.8. �

4.4.10 Remark The theorem is not true in the case of the open n-ball, as is
easily seen.

For the next result, consider the unit sphere ι : Sn → R
n+1. It is useful

to have an explicit expression for a non-zero element in Hn(Sn) (Exam-
ple 4.1.5):

(4.4.11) ω = (−1)i
1

xi
dx1 ∧ · · · ∧ ˆdxi ∧ · · · dxn+1

on xi 6= 0 for i = 1, . . . , n+ 1.

4.4.12 Theorem (Hairy ball theorem) Let X be a smooth vector field on S2m.
Then there exists p ∈ S2m such that Xp = 0. In other words, every smooth vector
field on an even-dimensional sphere has a zero.

Proof. Suppose, on the contrary, thatX never vanishes. By rescaling, we
may assume thatX is a unit vector field with respect to the metric induced
from Euclidean space. Set

Ft : S
2m → S2m, Ft(p) = cos t p+ sin tX(p).

It is clear that Ft defines a homotopy between the identity map and the
antipodal map of S2m:

F0 = idS2m and Fπ = −idS2m .

Note that

F ∗
π (xi ◦ ι) = −xi ◦ ι.

It follows that

F ∗
πω = (−1)2m+1ω = −ω,

where ω is as in (4.4.11). On the other hand,

F ∗
0 ω = ω,

and by Proposition 4.4.1, F ∗
0 ω and F ∗

πω are cohomologous, which contra-
dicts the fact that ω is not cohomologous to zero. �
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4.4.13 Remark Theorems 4.4.9 and 4.4.12 can be extended to the continu-
ous category by using appropriate approximation results.

We close this section computing the de Rham cohomology of the n-
sphere. The argument is a nice presentation of the “Mayer-Vietoris prin-
ciple” in a very special case.

4.4.14 Proposition The de Rham cohomology of Sn vanishes except in dimen-
sions 0 and n.

Proof. We may assume n > 1. We prove first that H1(Sn) = 0. Let ω
be a closed 1-form on Sn. We must show that ω is exact. Decompose Sn

into the union of two open sets U and V , where U in a neighborhood of the
northern hemisphere diffeomorphic to an open n-ball, V is a neighborhood
of the southern hemisphere diffeomorphic to an open n-ball, and U ∩ V is
a neighborhood of the equator which is diffeomorphic to Sn−1 × (−1, 1).
Since U and V are contractible, ω|U = df for a smooth function f on U and
ω|V = dg for a smooth function g on V . In general on U ∩V , f and g do not
agree, but the difference h := f |U∩V − g|U∩V has dh = ω|U∩V − ω|U∩V = 0.
Since n > 1, Sn−1 is connected and thus h is a constant. Setting

k :=

{

f on U ,
g + h on V ,

defines a smooth function on Sn such that dk = ω, as we wished.
We proceed by induction. Let ω be a closed k-form on Sn for 1 < k < n.

We shall prove that ω is exact using the same decomposition Sn = U ∩V as
above and the induction hypothesis. As above, ω|U = dα for a (k− 1)-form
α on U an ω|V = dβ for a (k−1)-form β on V . Let γ = α|U∩V −β|U∩V . Then
dγ = 0. Since γ is a closed (k − 1)-form on U ∩ V and U ∩ V is homotopy
equivalent to Sn−1, by the induction hypothesis, γ = dξ for a (k − 2)-form
on U ∩V . Let {ρU , ρV } be a partition of unity subordinate to {U, V }. Setting

η :=

{

α− d(ρV ξ) on U ,
β + d(ρU ξ) on V ,

defines a (k−1)-form on Sn such that dη = ω. This completes the induction
step and the proof of the theorem. �

4.4.15 Remark The “Mayer-Vietoris principle” indeed yields a long exact
sequence in cohomology. One nice application is to show that the de Rham
cohomology spaces of a compact manifold are always finite-dimensional.

4.5 Degree theory

Our first aim is to prove that the top dimensional de Rham cohomology of
a compact connected orientable smooth manifold is one-dimensional. We
start with a lemma in Calculus.
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4.5.1 Lemma Let f be a smooth function on R
n with support in the open cube

Cn = (−1, 1)n and
∫

Rn

f dx1 · · · dxn = 0.

Then there exist smooth functions f1, . . . , fn onR
n with support in Cn such that

f =
n
∑

i=1

∂fi
∂xi

.

Proof. By induction on n. If n = 1, we simply define f1(x1) =
∫ x1

−∞ f(t) dt.

If n ≥ 2, define a smooth function g on R
n−1 by

g(x1, . . . , xn−1) =

∫ +∞

−∞
f(x1, . . . , xn−1, t) dt.

Then g has total integral zero by Fubini’s theorem, and clearly support con-
tained in Cn−1, so by the induction hypothesis we can write

g =

n−1
∑

i=1

∂gi
∂xi

for smooth functions gi on R
n−1 with support in Cn−1. Now choose a

smooth function ρ on R with support in (−1, 1) and total integral 1, and
define fjR

n → R by

fj(x1, . . . , xn−1, xn) = gj(x1, . . . , xn−1)ρ(xn)

for j = 1, . . . , n− 1. Clearly the fj have support in C
n. Set

h = f −
n−1
∑

i=1

∂fj
∂xj

and

fn(x1, . . . , xn−1, xn) =

∫ xn

−∞
h(x1, . . . , xn−1, t) dt

Clearly h has support in Cn, so the same is true of fn and we are done. �

4.5.2 Lemma Let ω be an n-form onR
n with support contained in the open cube

C such that
∫

Rn ω = 0. Then there exists an (n − 1)-form η on R
n with support

contained in C such that dη = ω.

Proof. The Poincaré lemma yields η with dη = ω but does not give
information about the support of η. Instead, write ω = f dx1 ∧ · · · ∧ dxn for
f ∈ C∞(Rn). Then suppf ⊂ C and

∫

Rn f dx1 · · · dxn = 0, so f =
∑

i
∂fi
∂xi

as

in Lemma 4.5.1, and thus ω = dη where η =
∑

i(−1)i−1fi dx1 ∧ · · · ∧ ˆdxi ∧
· · · ∧ dxn. �
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4.5.3 Proposition If M is a compact connected orientable smooth manifold of
dimension n, then Hn(M) = R.

Proof. By compactness, there is a finite cover {U1, . . . , Um} by coordinate
neighborhoods diffeomorphic to the open cubeC . Let ω0 be a bump n-form
as in Example 4.3.3(c) with support contained in U1 and total integral 1.
Then ω0 defines a non-zero cohomology class in Hn(M). We shall prove
that any n-form ω onM is cohomologous to a multiple of ω0, namely, ω =
c ω0 + dη for some c ∈ R and some (n − 1)-form η. Using a partition of
unity {ρi} subordinate to {Ui}, we can write ω =

∑m
i=1 ρiω where ρiω is an

n-form with support in Ui. By linearity, it suffices to prove the result for
ρiω, so we may assume from the outset that the support of ω is contained
in Uk, for some k = 1, . . . ,m.

Owing to the connectedness ofM , we can find a chain Ui1 , . . . , Uir such
that Ui1 = U1, Uir = Uk and Uij ∩ Uij+1 6= ∅ for all j = 1, . . . , r − 1. For all
j = 1, . . . , r − 1, choose an n-form ωj with support in Uij ∩ Uij+1 and total
integral 1. Now ω0 − ω1 has support in Ui1 = U1 and total integral zero, so
by Lemma 4.5.2, there exists η1 with support in U1 such that

ω0 − ω1 = dη1.

Next, ω1−ω2 has support in Ui2 and total integral zero, so the lemma yields
η2 with support in Ui2 such that

ω1 − ω2 = dη2.

Continuing, we find ηj with support in Uij such that

ωj−1 − ωj = dηj

for all j = 1, . . . , r − 1. Adding up, we get

ω0 − ωr−1 = dη

where η =
∑r−1

j=1 ηj . Now Uir = Uk contains the support of ω and ωr−1, and

ω − cωr−1 has total integral zero, where c =
∫

M ω. By applying the lemma
again,

ω − cωr−1 = dζ

and hence
ω = cω0 + d(ζ − cη)

as required. �

4.5.4 Corollary Let M be a compact connected oriented smooth manifold of di-
mension n. Then “integration overM”

∫

M
: Hn(M) → R
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is a well defined linear isomorphism which is positive precisely on the cohomology
classes defined by nowhere vanishing n-forms belonging to the orientation ofM .

Proof. By Stokes’ formula, the integral of an exact form is zero, so the
integral of an n-form depends only on its cohomology class and thus the
map is well defined. By the theorem,Hn(M) is one dimensional and there
exist bump n-forms with non-zero integral, so the map is an isomorphism.

Let ω be a nowhere vanishing n-form belonging to the orientation ofM ,
choose an oriented atlas {(Uα, ϕα = (xα1 , . . . , x

α
n))} and a partition of unity

{ρα} subordinate to {Uα}. Then ω =
∑

α ραω, where ραω has support in Uα

and on which its local representation is of the form fα dx
α
1 ∧ · · · ∧ dxαn for a

non-negative smooth function fα on Uα. It follows that

∫

M
ω =

∑

α

∫

ϕα(Uα)
(fα ◦ ϕ−1

α ) dx1 · · · dxn > 0

since fα ≥ 0 and it is positive somewhere. Conversely, if ω′ is an n-form
with

∫

M ω′ > 0, then ω′ is cohomologous to cω, where c =
∫

M ω′/
∫

M ω > 0,
and cω and ω are nowhere vanishing n-forms defining the same orientation
onM . �

Let f : M → N be a smooth map between compact connected oriented
manifolds of the same dimension n. Let ωM , ωN be n-forms on M , N ,
respectively, with total integral one. Then f∗ : Hn(N) → Hn(M) carries
[ωN ] to a multiple of [ωM ]; this number is called the degree of f , denoted
deg f . It follows from Proposition 4.4.1 that homotopicmaps have the same
degree.

4.5.5 Remark In case N = Sn, Hopf’s degree theorem [GP10] asserts that
non-homotopic maps have different degrees. For the case n = 1, see Prob-
lem 18.

4.5.6 Proposition Let f :M → N be a smooth.

a. The degree of f is an integer.

b. For all ω ∈ Ωn(N),
∫

M
f∗ω = (deg f)

∫

N
ω

c. If q ∈ N is a regular value of f , then

deg f =
∑

p∈f−1(q)

sgn(det dfp) (finite sum)



4.5. DEGREE THEORY 105

Proof. (b) follows from the commutativity of the diagram

Hn(N)
f∗
> Hn(M)

R

∫

N
∨

deg f
> R

∫

M
∨

and (a) follows from (c). Let us prove (c).
Since q is a regular value and dimM = dimN , f is a local diffeomor-

phism at each p ∈ f−1(q). In particular, f−1(q) is discrete and thus finite,
due to the compactness of M . Write f−1(q) = {p1, . . . , pm} and choose
open neighborhoods Ũi of pi and Vi of q such that f : Ũi → Vi is a diffeo-
morphism for all i = 1, . . . ,m. Setting V = ∩m

i=1Vi and Ui = Ũi ∩ f
−1(V ),

now f : Ui → V is a diffeomorphism for all i. Moreover, f(M \ ∪m
i=1Ũi)

is a compact subset of N disjoint from q, so by further shrinking V we can
ensure that f−1(V ) = ∪m

i=1Ui.
Let α be an n-form on N with total integral one and support contained

in V . Then f∗α is an n-form on M with support in ∪m
i=1Ui. In view of

Exercise 4.1.6
∫

Ui

f∗α = sgn(det dfpi)

∫

V
α = sgn(det dfpi)

where we consider the determinant of the Jacobian matrix of f at pi relative
to orientation-preserving local charts around pi and q, so its sign is +1 if
dfpi : TpiM → TqN preserves orientation and −1 if it reverses orientation.
It follows that

deg f =

∫

M
f∗α =

p
∑

i=1

∫

Ui

f∗α =

p
∑

i=1

sgn(det dfpi),

as desired. �

4.5.7 Corollary The degree of a non-surjective map is zero.

4.5.8 Remark There always exists a regular value of f by Sard’s theorem [GP10].

4.5.9 Example Consider S1 as the set of unit complex numbers. Then f :
S1 → S1 given by f(z) = zn is smooth and has degree n, which we can
show as follows. Recall the angular form dθ generatesH1(S1). Removal of
one point does not change the integral below on the left hand side, and h :
(0, 2π) → S1 \ {1}, h(x) = eix is an orientation-preserving diffeomorphism,
so

∫

S1

f∗dθ =

∫ 2π

0
h∗f∗dθ =

∫ 2π

0
(f ◦ h)∗dθ
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where (f ◦ h)∗dθ is exact on (0, 2π) and in fact equal to

d(f ◦ h)∗θ = d(θ ◦ f ◦ h) = n dx

therefore
∫

S1

f∗dθ =

∫ 2π

0
n dx = 2πn = n ·

∫

S1

dθ,

as we wished.

4.5.10 Example Let f : S1 → R
2 be a smooth map. Its image is a circle in

the plane. Fix a point q not in this circle. The winding numberW (f, q) of f
with respect to q is the degree of the map u : S1 → S1 given by

u(x) =
x− q

||x− q||
.

Note that W (f, q1) = W (f, q2) if q1 and q2 lie in the same connected com-
ponent of the complement of the image of f .

Introducing the complex variable z = x+ iy we have

−y dx+ x dy

x2 + y2
= ℑ

{

1

z
dz

}

(compare Examples 4.3.3(d)). Using this formula, it is easy to arrive at the
complex integral for the winding number,

(4.5.11) W (f, q) =
1

2πi

∫

C

dz

z − q
dz,

where C is the image of f (Cauchy 1825).

4.5.12 Example Let f , g : S1 → R
3 be two smooth maps. Their images

yield two circles inR
3 which we suppose to be disjoint. The linking number

Lk(f, g) is the degree of the map F : S1 × S1 → S2 given by

F (x, y) =
f(x)− g(y)

||f(x)− g(y)||
.

If ft, gt : S
1 → R

3 are homotopies of f , g such that ft and gt have disjoint
images for all t, then Lk(ft, gt) is independent of t.

In case f , g : S1 → S3, one chooses q ∈ S3 not in the image of those
maps and performs stereographic projection S3 \ {q} → R

3 to define their
linking number. Moving q continuously yields homotopies of f , g, so since
the union of the images of f and g does not disconnect S3, this definition
does not depend on the choice of q.
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According to Problems 5 and 9, the volume form of S2, normalized to
have total integral 1, is

dA =
1

4π
(x1 dx2 ∧ dx3 + x2 dx3 ∧ dx1 + x3 dx1 ∧ dx2) .

Since

F ∗dA =
∂F

∂x
×
∂F

∂y
,

an easy calculation yields the formula for the linking number (Gauss 1833)

(4.5.13) Lk(f, g) =

∫

S1

∫

S1

f(x)− g(y)

||f(x)− g(y)||3
·
df

dx
×
dg

dy
dxdy

4.5.14 Example We can generalize Example 4.5.10 as follows. Let f : M →
R

n+1 be a smooth map from a compact, connected oriented manifold M
of dimension n. If q ∈ R

n+1 does not lie in the image of f , the winding
numberW (f, q) of f with respect to q is the degree of the map u :M → Sn

given by

u(x) =
f(x)− q

||f(x)− q||
.

It records how f “wraps” around q.

4.5.15 Exercise Check formulae (4.5.11) and (4.5.13).

4.6 The Borsuk-Ulam theorem

The Borsuk-Ulam theorem is one of the most applied theorems in topol-
ogy. It was conjectured by Ulam at the Scottish Cafe in Lvov. The the-
orem proven in one form by Borsuk in 1933 has several other equivalent
formulations and many different proofs. One, well-known of these was
first proven by Lyusternik and Shnirel´man in 1930. A host of extensions
and generalizations, and numerous interesting applications to areas that
include combinatorics, differential equations and even economics, add to
its importance.

4.6.1 Lemma Let F : B̄n → R
n be a smooth map. Denote the restriction of F to

the boundary ∂B̄n by f and let q ∈ R
n be a point that does not lie in the image

of f . Then the winding numberW (f, q) equals the number of preimages of q under
F counted with signs according to whether F preserves or reverses orientation at
the point, as in Proposition 4.5.6.

Proof. Suppose first that q does not lie in the image of F . LetFt : S
n−1 →

R
n be defined by Ft(x) = F ((1− t)x) for 0 ≤ t ≤ 1. Then f0 = f and

ut(x) =
Ft(x)− q

||Ft(x)− q||
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defines an homotopy from u0 to the constant map u1. This shows that
W (f, q) = deg(u0) = deg(u1) = 0.

Suppose next that F−1(q) = {p1, . . . , pk}, and let Bi be a small ball
around pi such that theBi’s are disjoint one another and from the boundary
of B̄n. Let fi : ∂Bi → R

n be the restriction of F . Note that W (fi, q) = ±1
according to whetherF preserves or reverses orientation at pi. On the other

hand, setX = B̄n \
⋃k

i=1Bi. The map

u(x) =
F (x)− q

||F (x)− q||

is well defined and smooth on X. By Problem 19, degu|∂X = 0. It follows
that

W (f, a) = degu|∂B̄n

=
k
∑

i=1

deg u|∂Bi

=
k
∑

i=1

W (fi, q)

=

k
∑

i=1

sgn(det dFpi),

as we wished. �

Amap f : Sn → R
n+1 will be called odd or antipode-preserving if f(−x) =

−f(x) for all x ∈ Sn, where −x denotes the antipodal point of x.

4.6.2 Theorem (Borsuk-Ulam) An odd smooth map f : Sn → Sn has odd de-
gree.

Proof. We proceed by induction on n. The initial case n = 1 is Prob-
lem 23. Next assume the result true for n− 1 and let f : Sn → Sn be an odd
map.

Let g : Sn−1 → Sn be the restriction of f to the equator. By Sard’s
theorem, there is q ∈ Sn which is a regular value of both f and g. This
means that q is not in the image of g (by dimensional reasons) and the
oriented number of preimages of q under f is the degree d of f .

By composing f with a rotation, we may assume that q is the north
pole. Since f is odd (and f does not hit q along the equator), the south
pole−q is also a regular value of f , and f hits q in the southern hemisphere
as many times as it hits −q in the northern hemisphere Sn

+. Let f+ denote
the restriction of f to S+

n . Now d is the oriented number of preimages of
{±q} under f+. Another way is to consider the orthogonal projection π :
Sn
+ → B̄n to the equatorial plane and note that d is the oriented number
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of preimages of 0 under π ◦ f+. Since 0 does not lie in the image of π ◦
g, Lemma 4.6.1 implies that d = W (π ◦ g, 0) = deg( π◦g

||π◦g||) which, by the

induction hypothesis, is odd as π◦g
||π◦g|| : S

n−1 → Sn−1 is an odd map. �

4.6.3 Corollary Let f1, . . . , fn be smooth functions on Sn. Then there is a pair of
antipodal points ±p ∈ Sn such that

f1(p) = f1(−p), . . . , fn(p) = fn(−p).

Proof. Let f : Sn → R
n have components fi and suppose, to the con-

trary, that g(x) = f(x)− f(−x) never vanishes. Then h : Sn → Sn defined
by

h(x) =

(

g(x)

||g(x)||
, 0

)

is an odd smooth map that never hits the points (0, . . . , 0,±1) ∈ Sn. By
Corollart 4.5.7, degh = 0 contradicting Theorem 4.6.2. �

A popular illustration of Corollary 4.6.3 in case n = 2 is that if a baloon
is deflated and laid flat on the floor then at least two antipodal points end
up on top of one another. A meteorological formulation states that at any
given time there are two antipodal points on the surface of Earth with iden-
tical temperature and pressure (although anyone who has ever touched a
griddle-hot stove knows that temperature needs not be a continuous func-
tion!)

4.7 Maxwell’s equations

Maxwell’s equations are a set of partial differential equations that, together
with the Lorentz force law, form the foundation of classical electrodynam-
ics, classical optics, and electric circuits. These fields in turn underlie mod-
ern electrical and communications technologies. Maxwell’s equations de-
scribe how electric and magnetic fields are generated and altered by each
other and by charges and currents. They are named after the Scottish physi-
cist and mathematician James Clerk Maxwell who published an early form
of those equations between 1861 and 1862.

The electric field

~E(t) = (E1, E2, E3)

and the magnetic field

~B(t) = (B1, B2, B3)
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are vector fields onR
3. Maxwell’s equations are

div ~E = 4πρ

div ~B = 0

curl ~E = −
∂ ~B

∂t

curl ~B =
∂ ~E

∂t
+ 4π ~J

where ρ is the electric charge density and ~J = (J1, J2, J3) is the electric current
density.

Minkowski spacetime is R
4 with coordinates (t, x1, x2, x3) and an inner

product of signature (− + ++). The electromagnetic field is F ∈ Ω2(R4)
given by

F = (E1dx1 + E2dx2 + E3dx3) ∧ dt

+B1dx2 ∧ dx3 +B2dx3 ∧ dx1 +B3dx1 ∧ dx2

We use the Hodge star (Problem 11 in Chapter 2) to write

∗F = −(B1dx1 +B2dx2 +B3dx3) ∧ dt

+E1dx2 ∧ dx3 + E2dx3 ∧ dx1 +E3dx1 ∧ dx2

The source is J ∈ Ω3(R4) given by

J = ∗(−ρ dt+ J1 dx1 + J2 dx2 + J3 dx3)

= ρdx1 ∧ dx2 ∧ dx3(4.7.1)

−dt ∧ (J1dx2 ∧ dx3 + J2dx3 ∧ dx1 + J3dx1 ∧ dx2).

NowMaxwell’s equations are equivalent to

dF = 0

d ∗ F = 4πJ

The second equation says in particular that J is exact, thus dJ = 0. Com-
puting dJ from (4.7.1) we get the law of conservation of charge

dρ

dt
+ div ~J = 0.

Integrating throughout over a compact domainW inR
3 with smooth bound-

ary, and using the Divergence theorem (see Problem 9), we obtain

∫

∂W
( ~J · ~n) dA = −

d

dt

∫

W
ρ dxdydz.
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The left-hand side represents the total amount of charge flowing outwards
through the surface ∂W per unit time. The right-hand side represents the
amont by which the charge is decreasing inside the regionW per unit time.
In other words, charge does not disappear into or is created of out of noth-
ingness — it decreases in a region of space only becase it flows into other
regions. This is an important test of Maxwell’s equations since all experi-
mental evidence points to charge conservation.

The geometrization of Maxwell’s equations on the twentieth century
lead to a vast generalization in the form of the so called Yang-Mills equa-
tions, which describe not only electromagnetism but also the strong and
weak nuclear forces, but this is much beyond the scope of these modest
notes.

4.8 Problems

§ 4.1

1 Let M be a smooth manifold of dimension n and let f : M → R
n+1

be an immersion. Prove that M is orientable if and only if there exists a
nowhere vanishing smooth vector field X along f such that Xp is normal
to dfp(TpM) in R

n+1 for all p ∈M .

2 Prove thatRPn is orientable if and only if n is odd.

3 Show that the global n-form constructed in Example 4.1.5 in the case of
Sn can be given as the restriction of

α =
n+1
∑

i=1

(−1)i−1xi dx1 ∧ · · · ∧ ˆdxi ∧ · · · ∧ dxn+1

to Sn, up to a constant multiple.

4 (Integration on a Riemannian manifold) Let (M,g) be a Riemannianman-
ifold of dimension n.
a. On any coordinate neighborhoodU , construct a local orthonormal frame
E1, . . . , En, that is, a set of n smooth vector fields on U which is or-
thonormal at every point of U . (Hint: Apply the Gram-Schmidt pro-
cess to the coordinate vector fields.)

b. Let ω1, . . . , ωn be the 1-forms dual to an orthonormal frame onU . This
is called a local orthonormal coframe on U . Suppose now ω′

1, . . . , ω
′
n is a

local orthonormal coframe on U ′. Prove that

ω1 ∧ · · · ∧ ωn = ±ω′
1 ∧ · · · ∧ ω′

n

at each point of U ∩ U ′.
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c. Deduce that in caseM is orientable, the locally defined n-forms ω1 ∧
· · · ∧ ωn can be pieced together to yield a globally defined nowhere
vanishing n-form volM onM satisfying

volM (E1, . . . , En) = 1

for every positive local orthonormal frame E1, . . . , En. This form is
called the volume form of the oriented Riemannian manifold M and
its integral is called the volume ofM .

d. Show that for a positively oriented basis v1, . . . , vn of TpM , we have

(volM )p(v1, . . . , vn) =
√

det (gp(vi, vj)).

Deduce that, in local coordinates (U,ϕ = (x1, . . . , xn)),

volM =
√

det(gij) dx
1 ∧ · · · ∧ dxn.

5 Consider the unit sphere Sn in R
n+1 as a Riemannian manifold where,

for each p ∈ Sn, the inner product on the tangent space TpS
n is obtained by

restriction of the standard scalar product in R
n+1. Recall the n-form α on

Sn given in Exercise 3. LetX be the outward unit normal vector field along
Sn.
a. Show that

αp = ιXp(dx1 ∧ · · · ∧ dxn+1|p)

for all p ∈ Sn.
b. Deduce from (a) that α is the volume form of Sn with respect to some

orientation.
c. In case n = 2, compute the volume of S2.

§ 4.2

6 Let γ : [a, b] → M be a smooth curve, and let γ(a) = p, γ(b) = q. Show
that if ω = df for a smooth function f onM , then

∫ b

a
γ∗ω = f(q)− f(p).

7 Let γ : [a, b] → M be a smooth curve, and let h : [c, d] → [a, b] a smooth
map with h(c) = a and h(d) = b. Show that

∫ b

a
γ∗ω =

∫ d

c
(γ ◦ h)∗ω

for every 1-form ω onM .
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8 A closed curve inM is a smooth map γ : S1 → M . For a 1-form ω onM ,
define the line integral of ω around γ as

∫

γ
ω :=

∫

S1

γ∗ω.

a. Write the line integral in local coodinates in case the image of γ lies in
a coordinate neighborhood ofM .

b. Show that
∫

γ
ω =

∫ 2π

0
(γ ◦ h)∗ω

where h : [0, 2π] → S1 is given by h(t) = eit.

9 Let S be an orientable smooth manifold of dimension 2, let f : S →
R

3 be an immersion, and let ~n be a unit normal vector field along f as in
Problem 1. Consider the Riemannian metric induced by the immersion f ,
that is,

gp(u, v) = dfp(u) · dfp(v)

for all p ∈M and u, v ∈ TpM .

a. Prove that the volume form (see Problem 4) of (S, g) is given by

dA = n1 dx2 ∧ dx3 + n2 dx3 ∧ dx1 + n3 dx1 ∧ dx2

where n1, n2, n3 are the components of ~n in R
3 and each dxi is re-

stricted to S.

b. Assume f is an inclusion, S is the boundary of a a compact domain

W in R
3, and ~F is a smooth vector field on W . Show that Stokes’

formula 4.2.5 specializes to the classical Divergence theorem:

∫

S
(~F · ~n) dA =

∫

W
(div ~F ) dx1dx2dx3.

§ 4.3

10 Let α and β be closed differential forms. Show that α ∧ β is closed. In
addition, if β is exact, show that α ∧ β is exact.

11 Let α = (2x+ y cos xy) dx+ (x cos xy) dy be a 1-form on R
2. Show that

α is exact by finding a smooth function f onR
2 such that df = α.

12 Prove that T 2 and S2 are not diffeomorphic by using de Rham coho-
mology.
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13 a. Prove that every closed 1-form on the open subset A in R
3 given

by

1 <

(

3
∑

i=1

x2i

)1/2

< 2

is exact.
b. Give an example of a 2-form on A which is closed but not exact.
c. Prove that A is not diffeomorphic to the open ball in R

3.

§ 4.4

14 Assume M = ∂P where P is a compact smooth manifold and let f :
M → N be a smooth map. Prove that if f extends to a smooth map F :
P → N then

∫

M f∗ω = 0 for every closed n-form ω in N , where n = dimN .

15 Assume M is a compact smooth manifold of dimension m and f , g :
M → N are homotopic maps. Prove that

∫

M
f∗ω =

∫

M
g∗ω

for every closedm-form ω in N .

16 Prove that a 1-form ω on a smooth manifold M has
∫

γ ω = 0 for every

closed curve γ inM if and only if it is exact. (Hint: Show that f(p) =
∫ p
p0
ω

is well defined and satisfies df = ω.)

17 Prove that H1(M) = 0 for a simply-connected smooth manifold M .
(Hint: By approximation results, a smooth manifold is simply-connected if
and only if every smooth closed curve is smoothly homotopic to a point.)

§ 4.5

18 Let f : S1 → S1 be a smooth map.
a. Prove that there exists a smooth map g : R → R such that f(eit) =
eig(t) and g(t+2π) = g(t) + 2πd for all t ∈ R, where d is the degree of
f integer.

b. Use part (a) to show that if f , g : S1 → S1 have the same degree then
they are homotopic. Deduce that homotopy classes of smooth maps
S1 → S1 are classified by their degree.

19 Let f : M → N be a smooth map between orientable manifolds of the
same dimension where N is connected. AssumeM is the boundary ∂P of
a compact smooth manifold P and f extends to a smooth map F : P → N .
Prove that deg f = 0.
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20 (Fundamental theorem of algebra) Let f(z) = zk + ak−1z
k−1 + · · ·+ a0

be a complex polynomial.
a. Consider the extended complex plane C̄ := C ∪ {∞} and show that
z : C̄ \ {∞} → C ∼= R

2, 1
z : C̄ \ {0} → C ∼= R

2 define a smooth atlas
on C̄. (Hint: Use Proposition 1.2.10.) Use stereographic projection
from the north and south poles to construct a diffeomorphism S2 ∼=
C̄.

b. Extend f to a map f̃ : C̄ → C̄ by putting f̃(∞) = ∞. Check that f̃ is
smooth using the atlas constructed in (a).

c. Show that f̃ is smoothly homotopic to g : C̄ → C̄ where g(z) = zk.
What is the degree of g?

d. Deduce from (c) that f is surjective. In particular, there exists z0 ∈ C

such that f(z0) = 0.

21 Define the Hopf map π : S3 → S2 by π(z0, z1) = (2z0z̄1, |z0|
2 − |z1|

2),
where we view S3 ⊂ C

2 and S2 ⊂ C×R.
a. Show that the level sets of π are circles of the form {eit · p | t ∈ R} for

some p ∈ S3.
b. Compute the linking number of π−1(0, 1) and π−1(0,−1).

22 LetM be a compact connected orientable surface (2-dimensional man-
ifold) inR

3. Consider the Riemannian metric obtained by restriction of the
scalar product of R3 to the tangent spaces ofM .
a. According to Exercise 1, there exists a smooth normal unit vector field

alongM inR
3. Use the canonical parallelism inR

3 to view this vector
field as a smooth map g : M → S2; this map is called the Gauss map
ofM ; check that it is uniquely defined, up to sign.

b. For p ∈ M , the differential dgp : TpM → Tg(p)S
2 where TpM and

Tg(p)S
2 can again be identified under the canonical parallelism inR

3.
The Gaussian curvature κ(p) ofM at p is the determinant det(dgp), and
does not depend on the choice of sign in (a). Prove that

κ volM = g∗volS2 .

c. Use (b) and the Gauss-Bonnet theorem to conclude that the degree of
the Gauss map is half the Euler characteristic ofM :

deg g =
1

2
χ(M).

§ 4.6

23 Use Problem 18(a) to show that an odd smooth map f : S1 → S1 has
odd degree.

24 Prove that there exists no antipode-preserving smooth map f : Sn →
Sn−1.


