
C H A P T E R 3

Lie groups

Lie groups are amongst the most important examples of smoothmanifolds.
At the same time, almost all usually encountered examples of smooth man-
ifolds are related to Lie groups, in away or another. A Lie group is a smooth
manifold with an additional, compatible structure of group. Here compati-
bility refers to the fact that the group operations are smooth (another point
of view is to regard a Lie group as a group with an additional structure of
manifold...). The reader can keep in mind the matrix group GL(n,R) of
non-singular real n × n matrices (Examples 1.2.7) in which the n2 matrix
coefficients form a global coordinate system. The conjuction of the smooth
and the group structures allows one to give a more explicit description
of the differential invariants attached to a manifold. For this reason, Lie
groups form a class of manifolds suitable for testing general hypotheses
and conjectures. The same remarks apply to homogeneous spaces, which
are certain quotients of Lie groups.

3.1 Basic definitions and examples

A Lie group G is a smooth manifold endowed with a group structure such
that the group operations are smooth. More concretely, the multiplication
map µ : G × G → G and the inversion map ι : G → G are required to be
smooth.

3.1.1 Examples (a) The Euclidean space R
n with its additive vector space

structure is a Lie group. Since the multiplication is commutative, this is an
example of a Abelian (or commutative) Lie group.

(b) Themultiplicative group of nonzero complex numbersC×. The sub-
group of unit complex numbers is also a Lie group, and as a smooth mani-
fold it is diffeomorphic to the circle S1. This is also an Abelian Lie group.

(c) If G and H are Lie groups, the direct product group structure turns
the product manifold G×H into a Lie group.
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64 C H A P T E R 3. LIE GROUPS

(d) It follows from (b) and (c) that the n-torus T n = S1×· · ·×S1 (n times)
is a Lie group. Of course, T n is a compact connected Abelian Lie group.
Conversely, we will see in Theorem 3.5.3 that every compact connected
Abelian Lie group is an n-torus.

(e) If G is a Lie group, the connected component of the identity of G,
denoted by G◦, is also a Lie group. Indeed, G◦ is open in G, so it inherits
a smooth structure from G just by restricting the local charts. Since µ(G◦ ×
G◦) is connected and µ(1, 1) = 1, we must have µ(G◦×G◦) ⊂ G◦. Similarly,
ι(G◦) ⊂ G◦. SinceG◦ ⊂ G is an open submanifold, it follows that the group
operations restricted to G◦ are smooth.

(f) Any finite or countable group endowed with the discrete topology
becomes a 0-dimensional Lie group. Such examples are called discrete Lie
groups.

(g) We now turn to some of the classical matrix groups. The general
linear groupGL(n,R) is a Lie group since the entries of the product of two
matrices is a quadratic polynomial on the entries of the two matrices, and
the entries of inverse of a non-singular matrix is a rational function on the
entries of the matrix.

Similarly, one defines the complex general linear group of order n, which is
denoted byGL(n,C), as the group consisting of all nonsingular n×n com-
plex matrices, and checks that it is a Lie group. Note that dimGL(n,C) =
2n2 and GL(1,C) = C

×.
We have already encountered the orthogonal group O(n) as a closed

embedded submanifold of GL(n,R) in 1.4.14. Since O(n) is an embedded
submanifold, it follows from Theorem 1.4.9 that the group operations of
O(n) are smooth, and henceO(n) is a Lie group.

Similarly toO(n), one checks that the

SL(n,R) = {A ∈ GL(n,R) | det(A) = 1} (real special linear group)

SL(n,C) = {A ∈ GL(n,C) | det(A) = 1} (complex special linear group)

U(n) = {A ∈ GL(n,C) | AA∗ = I} (unitary group)

SO(n) = {A ∈ O(n) | det(A) = 1} (special orthogonal group)

SU(n) = {A ∈ U(n) | det(A) = 1} (special unitary group)

are Lie groups, where A∗ denotes the complex conjugate transpose matrix
of A. Note thatU(1) = S1.

Lie algebras

For an arbitrary smooth manifold M , the space X(M) of smooth vector
fields on M is an infinite-dimensional vector space over R. In addition,
we have already encountered the Lie bracket, a bilinear map [·, ·] : X(M)×
X(M) → X(M) satisfying:
a. [Y,X] = −[X,Y ];
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b. [[X,Y ], Z] + [[Y,Z],X] + [[Z,X], Y ] = 0 (Jacobi identity);
for everyX, Y ∈ X(M). In general, a vector space with a bilinear operation
satisfying (a) and (b) above is called a Lie algebra. So X(M) is Lie algebra
overR.

It turns out in case of a Lie group G, we can single out a finite dimen-
sional subalgebra of X(M). For that purpose, let us first introduce transla-
tions in G. The left translation defined by g ∈ G is the map Lg : G → G,
Lg(x) = gx. It is a diffeomorphism of G, its inverse being given by Lg−1 .
Similarly, the right translation defined by g ∈ G is the map Rg : G → G,
Rg(x) = xg. It is also a diffeomorphism of G, and its inverse is given by
Rg−1 .

The translations in G define canonical identifications between the tan-
gent spaces to G at different points. For instance, dLg : ThG → TghG is
an isomorphism for every g, h ∈ G. This allows us to consider invariant
tensors, the most important case being that of vector fields. A vector field
X on G is called left-invariant if d(Lg)x(Xx) = Xgx for every g, x ∈ X. This
condition is simply dLg ◦ X = X ◦ Lg for every g ∈ G; equivalently, X is
Lg-related to itself, or yet Lg∗X = X (since Lg is a diffeomorphism), for all
g ∈ G. We can similarly define right-invariant vector fields, but most often
we will be considering the left-invariant variety. Note that left-invariance
and right-invariance are the same property in case of an Abelian group.

3.1.2 Lemma Every left invariant vector field X in G is smooth.

Proof. Let f be a smooth function defined on a neighborhood of 1 in G,
and let γ : (−ǫ, ǫ) → G be a smooth curve with γ(0) = 1 and γ′(0) = X1.
Then the value ofX on f is given by

Xg(f) = dLg(X1)(f) = X1(f ◦ Lg) =
d

dt

∣

∣

∣

t=0
f(gγ(t)) =

d

dt

∣

∣

∣

t=0
f ◦ µ(g, γ(t)),

and hence, it is a smooth function of g. �

Let g denote the set of left invariant vector fields on G. It follows that g
is a vector subspace of X(M). Further, g is a subalgebra of X(M), for given
X, Y ∈ g, we have by Proposition 1.6.18 that

Lg∗[X,Y ] = [Lg∗X,Lg∗Y ] = [X,Y ],

for every g ∈ G. Finally, we explain why g is finite-dimensional: the map
X ∈ g 7→ X1 defines a linear isomorphism between g and the tangent space
to G at the identity T1G, since any left invariant vector field is completely
defined by its value at the identity.

The discussion above shows that to any Lie group G is naturally asso-
ciated a (real) finite-dimensional Lie algebra g of the same dimension as G,
consisting of the left invariant vector fields on G. This Lie algebra is the
infinitesimal object associated to G and, as we shall see, completely deter-
mines its local structure.
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3.1.3 Examples (The Lie algebras of some known Lie groups)
(i) The left-invariant vector fields on R

n are precisely the constant vec-
tor fields, namely, the linear combinations of coordinate vector fields (in the
canonical coordinate system) with constant coefficients. The bracket of two
constant vector fields on R

n is zero. It follows that the Lie algebra of Rn

is Rn itself with the null bracket. In general, a vector space equipped with
the null bracket is called an Abelian Lie algebra.

(ii) The Lie algebra of the direct product G ×H is the direct sum of Lie
algebras g⊕ h, where the bracket is taken componentwise.

(iii) Owing to the skew-symmetry of the Lie bracket, every one-dimensional
Lie algebra is Abelian. In particular, the Lie algebra of S1 is Abelian. It fol-
lows from (ii) that also the Lie algebra of T n is Abelian.

(iv) G and G◦ have the same Lie algebra.
(v) The Lie algebra of a discrete group is {0}.

3.1.4 Examples (Some abstract Lie algebras)
(i) Let A be any real associative algebra and set [a, b] = ab − ba for a,

b ∈ A. It is easy to see that A becomes a Lie algebra.
(ii) The cross-product × on R

3 is easily seen to define a Lie algebra
structure.

(iii) If V is a two-dimensional vector space and X, Y ∈ V are linearly
independent, the conditions [X,X] = [Y, Y ] = 0, [X,Y ] = X define a Lie
algebra structure on V .

(iv) If V is a three-dimensional vector space spanned by X, Y , Z , the
conditions [X,Y ] = Z , [Z,X] = [Z, Y ] = 0 define a Lie algebra structure
on V , called the (3-dimensional) Heisenberg algebra. It can be realized as a Lie
algebra of smooth vector fields onR

3 as in Example 1.6.15(b).

3.1.5 Exercise Check the assertions of Examples 3.1.3 and 3.1.4.

3.2 The exponential map

For a Lie group G, we have constructed its most basic invariant, its Lie
algebra g. Our next stepwill be to present the fundamental map that relates
G and g, namely, the exponential map exp : g → G.

Matrix exponential

Recall that the exponential of a matrix A ∈ M(n,R) (or M(n,C)) is given
by the formula:

eA = I +A+
1

2
A2 +

1

3!
A3 + · · ·

=
∞
∑

n=0

1

n!
An.
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Since ||
∑n

k=0
1
k!A

k|| ≤ e||A|| for all n ≥ 0, the series is absolutely conver-
gent on the entire M(n,R); here || · || denotes the usual Euclidean norm in

M(n,R) = R
n2
. In case n = 1, we recover the usual exponential map on

the line. In general, note that:

a. e0 = I ;

b. eA+B = eAeB if A and B commute.

Indeed, to check (b) notice that one can compute the product of eA and eB

by multiplying the individual terms and rearranging, by absolute conver-
gence. In particular:

c. e(s+t)A = esAetB for all s, t ∈ R;

d. eA is invertible and (eA)−1 = e−A.

View t ∈ R 7→ etA as a curve inM(n,R). The last property worth mention-
ing is

e. d
dt

∣

∣

t=t0
etA = Aet0A = et0AA.

Flow of left-invariant vector fields

LetG be a Lie group, and let g denote its Lie algebra.

3.2.1 Proposition Every left-invariant vector field is complete.

Proof. Given X ∈ g, there exists a maximal integral curve γX : (a, b) →
G of X with 0 ∈ (a, b) (a, b ∈ [−∞,∞]) and γX(0) = 1; namely, γ′X(t) =
XγX(t). Since

d

dt

∣

∣

∣

t=t0
Lg(γX(t)) = d(Lg)(XγX (t0)) = XLg(γX(t0)),

we have that Lg ◦ γX is an integral curve of X starting at g. In particular,
if b < ∞, by taking g = γ(s) with s very close to b, this shows that γX can
be extended beyond b, leading to a contradiction. Similarly, one sees that
a = −∞. HenceX is complete. �

Now the integral curve γX of any X ∈ g starting at the identity is de-
fined on R. The exponential map of G is the map exp : g → G defined by
expX = γX(1).

Note that d
ds

∣

∣

s=s0
γX(ts) = tγ′X(ts0) = tX(γX(ts0)). This implies γX(ts) =

γtX(s) for all s, t ∈ R and therefore

γX(t) = γtX(1)

= exp(tX),(3.2.2)

namely, every integral curve of a left-invariant vector field through the
identity factors through the exponential map.
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3.2.3 Exercise Check that the flow {ϕt} of a left-invariant vector field X is
given by ϕt = Rexp tX (recall that Rg denotes a right-translation). What is
the corresponding result for right-invariant vector fields?

Moreover, we state:

3.2.4 Proposition The exponential map exp : g → G is smooth and it is a local
diffeomorphism at 0.

Proof. Smoothness follows from general properties of flows, namely,
smooth dependence on parameters of solutions of ODE’s. Moreover, d exp0 :
T0g ∼= g → T1G ∼= g is the identity, since

d exp0(X) =
d

dt

∣

∣

∣

t=0
exp(tX) = ϕ′

X(0) = X.

Thus, exp is a diffeomorphism from a neighborhood of 0 in g onto a neigh-
borhood of 1 in G by the Inverse Function Theorem (1.3.8). �

Recall that the identity componentG◦ is an open subgroup of G.

3.2.5 Proposition G◦ is generated as a group by any neighborhood U of 1 in G◦,
namely,

G◦ =
⋃

n≥1

Un,

where Un denotes the set of n-fold products of elements in U . In particular, G◦ is
generated by exp[g].

Proof. By replacing U by U ∩ U−1, if necessary, we may assume that
U = U−1. Define V = ∪n≥0U

n and consider the relation in G◦ given by
g ∼ g′ if and only if g−1g′ ∈ V . Note that this is an equivalence relation,
and equivalence classes are open as g′ ∼ g implies g′U ∼ g, where g′U is an
open neighborhood of g′. Hence V = G◦. �

The case ofGL(n,R)

Recall that G = GL(n,R) inherits its manifold structure as an open sub-
set of the Euclidean space M(n,R). In particular, the tangent space at the
identity TIG = M(n,R). Let A ∈ M(n,R) and denote by Ã ∈ g the
corresponding left-invariant vector field on G. For any g ∈ G, we have
Ãg = (dLg)(A) = gA (matrix multiplication on the right hand side).

Using property (e) of the matrix exponential,

d

dt

∣

∣

∣

t=t0
etA = et0AA = Ãet0A

shows that t 7→ etA is the integral curve of Ã through the identity, namely

exp Ã = eA
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for all A ∈ M(n,R).

Finally, to determine the Lie bracket in g, we resort to (1.6.22). Let A,
B ∈M(n,R), denote by Ã, B̃ the corresponding left-invariant vector fields
on G, let {ϕt = RetA} be the flow of Ã (cf. Exercise 3.2.3):

[A,B] = [Ã, B̃]I

= (LÃB̃)I

=
d

dt

∣

∣

∣

t=0
dϕ−t(B̃ϕt(I))

=
d

dt

∣

∣

∣

t=0
etABe−tA

= AB −BA.

Note that the Lie algebra structure in M(n,R) is induced from its associa-
tive algebra structure as in Example 3.1.4(i). The space M(n,R) with this
Lie algebra structure will be denoted by gl(n,R).

The case of GL(n,C) is completely analogous.

3.3 Homomorphisms and Lie subgroups

A (Lie group) homomorphism between Lie groupsG andH is map ϕ : G→ H
which is both a group homomorphism and a smooth map. ϕ is called an
isomorphism if, in addition, it is a diffeomorphism. An automorphism of a
Lie group is an isomorphism of the Lie group with itself. A (Lie algebra)
homomorphism between Lie algebras g and h is a linear map Φ : g → h

which preserves brackets. Φ is called an isomorphism if, in addition, it is
bijective. An automorphism of a Lie algebra is an isomorphism of the Lie
algebra with itself.

3.3.1 Exercise For a homomorphism ϕ : G → H , check that Lϕ(g) ◦ ϕ =
ϕ ◦ Lg for all g ∈ G.

A homomorphism ϕ : G→ H between Lie groups induces a linear map
dϕ1 : T1G → T1H and hence a linear map dϕ : g → h. Indeed, if X is a left
invariant vector field on G, let X ′ be the unique left invariant vector field
onH such thatX ′

1 = dϕ1(X1) and put dϕ(X) = X ′.

3.3.2 Proposition If ϕ : G → H is a homomorphism between Lie groups then
dϕ : g → h is a homomorphism between the corresponding Lie algebras.

Proof. Let X ∈ g. We first claim that X and X ′ := dϕ(X) are ϕ-related.
In fact,

X ′
ϕ(g) = d(Lϕ(g))1(X

′
1) = d(Lϕ(g) ◦ ϕ)1(X1) = d(ϕ ◦ Lg)1(X1) = dϕg(Xg),
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proving the claim. Now, if Y ∈ g, then Y and ϕ(Y ) are ϕ-related. Therefore
[X,Y ] and [dϕ(X), dϕ(Y )] are ϕ-related and thus

dϕ([X,Y ]1) = [dϕ(X), dϕ(Y )]ϕ(1),

or

dϕ([X,Y ]) = [dϕ(X), dϕ(Y )].

This shows that dϕ is a Lie algebra homomorphism. �

Let G be a Lie group. A Lie subgroup of G is an immersed submanifold
(H,ϕ) of G such thatH is a Lie group and ϕ : H → G is a homomorphism.

3.3.3 Remark Similarly as in the case of immersed submanifolds (Prob-
lem 19 in Chapter 1), we consider two Lie subgroups (H1, ϕ1) and (H2, ϕ2)
of G equivalent if there exists a Lie group isomorphism α : H1 → H2 such
that ϕ1 = ϕ2 ◦ α. This is an equivalence relation in the class of Lie sub-
groups ofG and each equivalence class contains a unique representative of
the form (A, ι), whereA is a subset ofG (an actual subgroup) and ι : A→ G
is the inclusion. So we lose no generality in assuming that a Lie subgroup of
G is an abstract subgroup H of G which is an immersed submanifold of G
and a Lie group with respect to the operations induced fromG; namely, the
multiplication and inversion inGmust restrict to smoothmapsH×H → H
and H → H , respectively.

3.3.4 Example The skew-line (R, f) in T 2 (Example 1.4.2) is an example of
a Lie subgroup of T 2 which is not closed.

If g is a Lie algebra, a subspace h of g is called a Lie subalgebra if h is
closed under the bracket of g.

LetH be a Lie subgroup ofG, say, ι : H → G is the inclusion map. Since
ι is an immersion, dι : h → g is an injective homomorphism of Lie algebras,
and we may and will view h as a Lie subalgebra of g. Conversely, as our
most important application of Frobenius’ theorem, we have:

3.3.5 Theorem (Lie) Let G be a Lie group, and let g denote its Lie algebra. If h
is a Lie subalgebra of g, then there exists a unique connected Lie subgroup H of G
such that the Lie algebra of H is h.

Proof. We have that h is a subspace of g and so defines a subspace h(1) :=
{X(1) |X ∈ h} of T1G. LetD be the left-invariant distribution onG defined
by h, namely,Dg = dLg(h(1)) for all g ∈ G. ThenD is a smooth distribution,
as it is globally generated by left-invariant vector fields X1, . . . ,Xk in h.
The fact that D is involutive follows from (and is equivalent to) h being a
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Lie subalgebra of g. In fact, supposeX and Y lie in D over the open subset
U of G. Write X =

∑

i aiXi, Y =
∑

j bjXj for ai, bj ∈ C∞(U). Then

[X,Y ] =
∑

i,j

aibj [Xi, Yj ] + aiXi(bj)Xj − bjXj(ai)Xi

also lies in D, as [Xi, Yj ] ∈ h.

By Frobenius theorem (1.7.10), there exists a unique maximal integral
manifold ofD passing through 1, which we callH . SinceD is left-invariant,
for every h ∈ H , Lh−1(H) = h−1H is also a maximal integral manifold of
D, and it passes through through h−1h = 1. This implies h−1H = H , by
uniqueness. It follows that H is a subgroup of G. The operations induced
by G on H are smooth because H is an initial submanifold, due to Propo-
sition 1.7.3. This proves that H is a Lie group. Its Lie algebra is h because
h consists precisely of the elements of g whose value at 1 lies in D1 = T1H ,
and these are exacly the elements of the Lie algebra of H .

Suppose nowH ′ is another Lie subgroup of Gwith Lie algebra h. Then
H ′ must also be an integral manifold of D through 1. By the maximality of
H , we have H ′ ⊂ H , and the inclusion map is smooth by Proposition 1.7.3
and thus an immersion. NowH ′ is an open submanifold ofH and contains
a neighborhood of 1 in H . Owing to Propostion 3.2.5, H ′ = H . �

3.3.6 Corollary There is a bijective correspondence between connected Lie sub-
groups of a Lie group and subalgebras of its Lie algebra.

3.3.7 Example Let G be a Lie group. A subgroup H of G which is an
embedded submanifold of G is a Lie subgroup of G by Proposition 1.4.9.
It follows from Example 1.4.14(b) that O(n) is a closed Lie subgroup of
GL(n,R). Similarly, the other matrix groups listed in Examples 3.1.1(g)
are closed Lie subgroups of GL(n,R), except that SL(n,C) is a closed Lie
subgroup of GL(n,C). In particular, the Lie bracket in those subgroups is
given by [A,B] = AB −BA.

3.3.8 Exercise Show that the Lie algebras of the matrix groups listed in Ex-
amples 3.1.1(g) are respectively as follows:

o(n) = {A ∈ gl(n,R) | A+At = 0}
sl(n,R) = {A ∈ gl(n,R) | trace(A) = 0}
sl(n,C) = {A ∈ gl(n,C) | trace(A) = 0}

u(n) = {A ∈ gl(n,C) | A+A∗ = 0}
so(n) = o(n)

su(n) = {A ∈ u(n) | trace(A) = 0}
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ALie group homomorphismϕ : R → G is called a (smooth) one-parameter
subgroup. Note that such a ϕ is the integral curve of X := dϕ(1) ∈ g, and
we have seen in (3.2.2) that ϕ(t) = exp(tX) for all t ∈ R.

More generally, letϕ : G→ H be a homomorphism betweenLie groups.
Then, for a left invariant vector field X on G, t 7→ ϕ(expG(tX)) is a one-
parameter subgroup of H with d

dt

∣

∣

t=0
ϕ(expG tX) = dϕ(X1). In view of the

above,

(3.3.9) ϕ ◦ expGX = expH ◦dϕ(X),

for everyX ∈ g. In particular, ifK is a Lie subgroup ofG, then the inclusion
map ι : K → G is a Lie group homomorphism, so that the exponential map
of G restricts to the exponential map of K , and the connected component
ofK is generated by expG[k], where k is the Lie algebra ofK . It follows also
that

(3.3.10) k = {X ∈ g : expG(tX) ∈ K, for all t ∈ R}.

Indeed, let X ∈ g with expG(tX) ∈ K for all t ∈ R. Since K is an
integral manifold of an involutive distribution (compare Theorem 3.3.5),
t 7→ expG(tX) defines a smooth map R → K and thus a one-parameter
subgroup of K . Therefore expG(tX) = i ◦ expK(tX ′) for some X ′ ∈ k, and
henceX = di(X ′).

3.4 Covering Lie groups

Let G be a connected Lie group. Consider the universal covering π : G̃ →
G. By Problem 5 in Chapter 1 or the results in Appendix A, G̃ has a unique
smooth structure for which π is a local diffeomorphism.

3.4.1 Theorem Every connected Lie group G has a simply-connected covering
π : G̃→ G such that G̃ is a Lie group and π is a Lie group homomorphism.

Proof. Consider the smooth map α : G̃ × G̃ → G given by α(g̃, h̃) =
π(g̃)π(h̃)−1. Choose 1̃ ∈ π−1(1). As G̃ is simply-connected, so is G̃× G̃. By
the lifting criterion, there exists a unique map smooth α̃ : G̃× G̃→ G̃ such
that π ◦ α̃ = α and α̃(1̃, 1̃) = 1̃. Put

g̃−1 := α̃(1̃, g̃), g̃h̃ := α̃(g̃, h̃−1)

for g̃, h̃ ∈ G̃. These operations are shown to make G̃ into a group by use of
the uniqueness part in the lifting criterion. As an example,

(3.4.2) π(g̃1̃) = πα̃(g̃, 1̃−1) = α(g̃, 1̃−1) = π(g̃)π(1̃−1)−1 = π(g̃)

since 1̃−1 = α̃(1̃, 1̃) = 1̃ and π(1̃) = 1. Identity (3.4.2) shows that g̃ 7→ g̃1̃
is a lifting of g̃ 7→ π(g̃), G̃ → G, to a map G̃ → G̃ which takes 1̃ to 1̃ · 1̃ =
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α̃(1̃, 1̃−1) = α̃(1̃, 1̃) = 1̃. However, the identity map of G̃ is also a lifting
of g̃ 7→ π(G̃) which takes 1̃ to 1̃. By uniqueness, both liftings coincide and
g̃1̃ = g̃ for all g̃ ∈ G̃.

Now G̃ is a group. Since α̃ is smooth, G̃ is a Lie group. Finally,

π(g̃−1) = πα̃(1̃, g̃) = α(1̃, g̃) = π(1̃)π(g̃)−1 = π(g̃)−1

and

π(g̃h̃) = πα̃(g̃, h̃−1) = α(g̃, h̃−1) = π(g̃)π(h̃−1)−1 = π(g̃)π(h̃).

Hence, π : G̃→ G is a Lie group homomorphism. �

3.4.3 Remark It follows from Lemma 3.4.4(c) and Theorem 3.7.7 that the
structure of Lie group on the universal covering G̃ of G is unique, up to
isomorphism.

3.4.4 Lemma Let ϕ : G→ H be a homomorphism between Lie groups. Consider
the induced homomorphism between the corresponding Lie algebras dϕ : g → h.
Then:
a. dϕ is injective if and only if the kernel of ϕ is discrete.
b. dϕ is surjective if and only if ϕ(G◦) = H◦.
c. dϕ is bijective if and only if ϕ is a topological covering (here we assume G

andH connected).

Proof. (a) If dϕ : g → h is injective, then ϕ is an immersion at 1 and
thus everywhere by Exercise 3.3.1. Therefore ϕ is locally injective and
hence kerϕ is discrete. Conversely, if dϕ : g → h is not injective, ker dϕg

is positive-dimensional for all g ∈ G and thus defines a smooth distribu-
tion D. Note that X lies in D if and only if X is ϕ-related to the null vector
field on H . It follows that D is involutive. The maximal integral manifold
ofD through the identity is collapsed to a point under ϕ implying that kerϕ
is not discrete.

(b) Since ϕ ◦ exp = exp ◦dϕ and G◦ is generated by exp[g], we have that
ϕ(G◦) is the subgroup of H◦ generated by exp[dϕ(g)], thus ϕ(G◦) = H◦ if
dϕ is surjective. On the other hand, if dϕ is not surjective, dϕ(g) is a proper
subalgebra of h to which there corresponds a connected, proper subgroup
K of H◦, and exp[dϕ(g)] generatesK .

(c) AssumeG,H connected. If ϕ is a covering then ker dϕ is discrete and
ϕ is surjective, so dϕ is an isomorphism by (a) and (b). Conversely, suppose
that dϕ : g → h an isomorphism. Then ϕ is surjective by (b). Let U be a
neighborhood of 1 in G such that ϕ : U → ϕ(U) := V is a diffeomorphism.
We can chooseU so thatU∩ker dϕ = {1} by (a). Thenϕ−1(V ) = ∪n∈kerϕnU ,
and this is a (disjoint union) for ng = n′g′ with n, n′ ∈ kerϕ and g, g′ ∈ U
implies gg′−1 = n−1n′ ∈ kerϕ and so ϕ(g) = ϕ(g′) and then g = g′. Since
ϕ ◦ Ln = ϕ for n ∈ kerϕ, we also have that ϕ|nU is a diffeomorphism onto
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V . This shows that V is an evenly covered neighborhood of 1. Now hV
is an evenly covered neighborhood of any given h ∈ H , and thus ϕ is a
covering. �

3.4.5 Theorem Let G1, G2 be Lie groups, and assume that G1 is connected and
simply-connected. Then, given a homomorphism Φ : g1 → g2 between the Lie
algebras, there exists a unique homomorphism ϕ : G1 → G2 such that dϕ = Φ.

Proof. The graph ofΦ, h = {(X,Φ(X)) : X ∈ g1 is a subalgebra of g1⊕g2.
Let H be the subgroup of G1 ×G2 defined by h (Theorem 3.3.5). Consider
the projections

Φi : g1 ⊕ g2 → gi, ϕi : G1 ×G2 → Gi,

for i = 1, 2. Since Φ1|h : h → g1 is an isomorphism, we have that Φ =
Φ2 ◦ (Φ1|h)−1 and ϕ1 : H → G1 is a covering. Since G1 is simply-connected,
ϕ1|H : H → G1 is an isomorphism of Lie groups, and we can thus define
ϕ = ϕ2 ◦ (ϕ1)

−1. This proves the existence part. The uniqueness part comes
from the fact that dϕ = Φ specifies ϕ in a neighborhood of 1 (by using the
exponential map as in (3.3.9)), and G1 is generated by this neighborhood.

�

3.5 The adjoint representation

LetG be a Lie group, and denote its Lie algebra by g. The noncommutativ-
ity of G is organized by the adjoint representation. In order to introduce it,
let g ∈ G, and define a map Inng : G → G by Inng(x) = gxg−1. Then Inng
is an automorphism of G, which is called the inner automorphism defined by
g. The differential d(Inng) : g → g defines an automorphism of g, which we
denote by Adg. Then

AdgX =
d

dt

∣

∣

∣

t=0
Inn(g)(exp tX) =

d

dt

∣

∣

∣

t=0
g exp tXg−1.

3.5.1 Example In case G = GL(n,R), Inng is the restriction of the linear map
M(n,R) → M(n,R), X 7→ gXg−1, so AdgX = d(Inng)1(X) = gXg−1.

This defines a homomorphism

Ad : g ∈ G→ Adg ∈ GL(g),

which is called the adjoint representation of G on g.
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We have

(AdgX)1 = (dLg)(dRg−1)X1

= (dRg−1)(dLg)X1

= (dRg−1)(Xg)

= (dR−1
g ◦X ◦Rg)(1)

=
(

(Rg−1)∗X
)

1
.

Recall that GL(g) is itself a Lie group isomorphic to GL(n,R), where
n = dim g. Its Lie algebra consists of all linear endomorphisms of g with
the bracket [A,B] = AB − BA and it is denoted by gl(g). Note that Adg =
D2F (g, 1), where F : G × G → G is the smooth function F (g, x) = gxg−1,
so the linear endomorphism Adg of g depends smoothly on g. Now Ad :
g ∈ G → Adg ∈ GL(g) is homomorphism of Lie groups and its differential
d(Ad) defines the adjoint representation of g on g:

ad : X ∈ g → adX =
d

dt

∣

∣

∣

t=0
Adexp tX ∈ gl(g).

Since ϕt = Rexp tX is the flow of X, we get

adXY =
d

dt

∣

∣

∣

t=0
Adexp tXY =

d

dt

∣

∣

∣

t=0

(

(Rexp(−tX))∗Y
)

1
= (LXY )1 = [X,Y ].

As an important special case of (3.3.9), we have

AdexpX = eadX

= I + adX +
1

2
ad2X +

1

3!
ad3X + · · ·

for all X ∈ g.

3.5.2 Lemma For given X, Y ∈ g, we have that [X,Y ] = 0 if and only if
expX expY = expY expX. In that case, exp(t(X + Y )) = exp tX exp tY
for all t ∈ R. It follows that a connected Lie group is Abelian if and only if its Lie
algebra is Abelian.

Proof. The first assertion is a special case of Proposition 1.6.23 using that
ϕt = Rexp tX is the flow of X and ψs = Rexp sY is the flow of Y . The second
one follows from noting that both t 7→ exp(t(X+Y )) and t 7→ exp tX exp tY
are one-parameter groups with initial speed X + Y . Finally, we have seen
that g is Abelian if and only if exp[g] is Abelian, but the latter generatesG◦.

�

3.5.3 Theorem Every connected Abelian Lie group G is isomorphic to R
n−k ×

T k. In particular, a simply-connected Abelian Lie group is isomorphic to Rn and
a compact connected Abelian Lie group is isomorphic to T n.
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Proof. It follows from Lemma 3.5.2 that g is Abelian and exp : g → G
is a homomorphism, where g ∼= R

n as a Lie group, thus exp is a smooth
covering by Lemma 3.4.4(c). Hence G is isomorphic to the quotient of Rn

by the discrete group ker exp. �

3.6 Homogeneous manifolds

LetG be a Lie group and letH be a closed subgroup. Consider the setG/H
of left cosets ofH inG equippedwith the quotient topologywith respect to
the projection π : G→ G/H . Note also that left multiplication inG induces
a map λ : G×G/H → G/H , namely, λ(g, xH) = (gx)H , and that

(3.6.1) π ◦ Lg = λg ◦ π

for all g ∈ G, where λg(p) = λ(g, p) for p ∈ G/H .

3.6.2 Lemma A closed Lie subgroup H of a Lie group G must have the induced
topology.

Proof. We need to prove that the inclusion map ι : H → G is an embed-
ding. Since ι commuteswith left translations, it suffices to find an open sub-
set V ofH such that the restriction ι|V is an embedding intoG. By the proof
of Theorem 3.3.5, there exists a distinguished chart (U,ϕ = (x1, . . . , xn)) of
G around 1 such that H ∩ U consists of at most countably many plaques,
each plaque being a slice of the form

xk+1 = ck+1, . . . , xn = cn

for some ck+1, . . . , cn ∈ R, where k = dimH . Denote by τ : Rn = R
k ×

R
n−k → R

n−k the projection. Let Ũ be a compact neighborhood of 1 con-
tained in U . Now H ∩ Ũ is compact, so τ(H ∩ Ũ) is a non-empty closed
countable subset of Rn−k which by the Baire category theorem must have
an isolated point. This point specifies a isolated plaque V of H in U along
which ι is an open mapping and hence a homeomorphism onto its image,
as desired. �

3.6.3 Theorem If G is a Lie group and H is a closed subgroup of G, then there
is a unique smooth structure on the topological quotient G/H such that λ : G ×
G/H → G/H is smooth. Moreover, π : G → G/H is a surjective submersion
and dimG/H = dimG− dimH .

Proof. For an open set V of G/H we have that π−1(π(V )) =
⋃

g∈G gV
is a union of open sets and thus open. This shows that π is an open map
and hence the projection of a countable basis of open sets of G yields a
countable basis of open sets of G/H . To prove that G/H is Hausdorff, we
use closedness of H . Indeed it implies that the equivalence relation R ⊂
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G×G, defined by specifying that g ∼ g′ if and only if g−1g′ ∈ H , is a closed
subset of G×G. Now if gH 6= g′H in G/H then (g, g′) 6∈ R and there exist
open neighborhoodsW of g andW ′ of g′ inG such that (W ×W ′)∩R = ∅.
It follows that π(W ) and π(W ′) are disjoint neighborhoods of g and g′ in
G/H , respectively.

We first construct a local chart of G/H around p0 = π(1) = 1H . Re-
call from Proposition 3.2.4 and (3.3.9) that the exponential map exp = expG

gives a parametrization of G around the identity element and restricts to
the exponential map of h. Denote the Lie algebras of G and H by g and h,
resp., and choose a complementary subspace m to h in g. We can choose a
product neighborhood of 0 in g of the form U0 × V0, where U0 is a neigh-
borhood of 0 in h, V0 is a neighborhood of 0 in m such that the map

f : V0 × U0 → G, f(X,Y ) = expX expY

is a diffeomorphism from onto its image (apply the Inverse Function Theo-
rem 1.3.8 to f ). Owing to Lemma 3.6.2,H has the topology induced fromG,
so we may choose a neighborhoodW of 1 inG such thatW ∩H = exp(U0).
We also shrink V0 so that (expV0)

−1 expV0 ⊂ W . Now we claim that
π ◦exp |V0 is injective. Indeed, if π(expX) = π(expX ′) for someX,X ′ ∈ V0,
then (expX)−1 expX ′ ∈ H ∩ W = exp(U0), so expX ′ = expX expY for
some Y ∈ U0. Since f is injective on U0 × V0, this implies that X ′ = X
and Y = 0 and proves the claim. Note expV0 expU0 is open in G, so the
image π(exp V0) = π(exp V0 expU0) is open in G/H . We have shown that
π ◦ exp defines a homeomorphism from V0 onto the open neighborhood
V = π(expV0) of p in G/H , whose inverse can then be used to define a
local chart (V, ψ) of G/H around p0.

Now the collection {(V g, ψg)}g∈G defines an atlas of G/H , where V g =
gV and ψg = ψ ◦Lg−1 , and we need to check the its smoothness. Suppose g,

g′ ∈ G are such that V g ∩ V g′ 6= ∅, and that p = (g expX)H = (g′ expX ′)H
is an element there, namely, ψg(p) = X and ψg′(p) = X ′. Then expX ′ =
(g′)−1g expXh ∈ expV0 for some h ∈ H , so there exists a neighborhood Ṽ0
of X in V0 such that (g′)−1g(exp Ṽ0)h ⊂ V0, and thus ψg′ ◦ (ψg)−1|Ṽ0

can be
written as the composite map

τ ◦ log ◦Rh ◦ L(g′)−1g ◦ exp,

where log denotes the inverse map of exp : U0 × V0 → exp(U0 × V0), and
τ : g → m denotes the projection along h. Hence the change of charts
ψg′ ◦ (ψg)−1 is smooth.
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The local representation of π is τ in the above charts is τ , namely, there
is a commutative diagram

g expV0 expU0
π

> V g

U0 × V0

f−1 ◦ Lg−1

∨
τ

> V0

Lg ◦ π ◦ exp
∧

which shows that π is a submersion. Similarly, the commutative diagram

G× g expV0 > G

G× V g

id× π
∨

λ|G×V g
> G/H

π
∨

proves that λ is smooth. The uniqueness of the smooth structure follows
from Proposition 3.6.4 below. �

LetM be a smoothmanifold and letG be a Lie group. An action ofG on
M is a smoothmap µ : G×M →M such that µ(1, p) = p and µ(g, λ(g′, p)) =
µ(gg′, p) for all p ∈ M and g, g′ ∈ G. For brevity of notation, in case µ is
fixed and clear from the context, we will simply write µ(g, p) = gp.

An action of G isM is called transitive if for every p, q ∈ M there exists
g ∈ G such that gp = q. In this case, M is called homogeneous under G, G-
homogeneous, or simply a homogeneous manifold. Examples of homogeneous
manifolds are given by the quotientsG/H , whereH is closed Lie subgroup
of G, according to Theorem 3.6.3. Conversely, the next proposition that
every homogeneous manifold is of this form. For an action of G onM and
p ∈M , the isotropy group at p is the subgroupGp ofG consisting of elements
that fix p, namely, Gp = { g ∈ G | gp = p }. Plainly, Gp is a closed subgroup
of G, and so a Lie subgroup of G, owing to Theorem 3.7.1 below.

3.6.4 Proposition Let µ : G ×M → M be a transitive action of a Lie group G
on a smooth manifold M . Fix p0 ∈ M and let H = Gp0 be the isotropy group at
p0. Define a map

f : G/H →M, f(gH) = µ(g, p0).

Then f is well-defined and a diffeomorphism.

Proof. It is easy to see that f is well-defined, bijective and smooth. We
can write f ◦ π = ω, where ω : G → M is the “orbit map” ω(g) = gp0. For
X ∈ g, we have

dω1(X) =
d

ds

∣

∣

∣

s=0
(exp sX)p0 = d(exp(−sX))

d

dt

∣

∣

∣

t=s
(exp tX)p0,
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so X ∈ ker dω1 if and only if exp tX ∈ H for all t ∈ R if and only if X
belongs to the Lie algebra h of H , due to (3.3.10). Since df1H ◦ dπ1 = dω1

and ker dπ1 = h, this implies that f is an immersion at 1H , and thus an
immersion everywhere by the equivariance property f ◦ λg = µg ◦ f for
all g ∈ G.

This already implies that dimG/H ≤ dimM and that (G/H, f) is a sub-
manifold of M , but the strict inequality cannot hold as f is bijective and
the image of a smooth map from a smooth manifold into a strictly higher
dimensional smooth manifold has null measure (this result follows from
the statement that the image of a smooth map R

n → R
n+k with k > 0 has

null measure, and the second countability of smooth manifolds). It follows
that f is a local diffeomorphism and hence a diffeomorphism. �

3.6.5 Examples (a) Let {e1, . . . , en} be the canonical basis of Rn and view
elements of Rn as column-vectors (n× 1 matrices). Then GL(n,R) acts on
R

n by left-multiplication:

(3.6.6) GL(n,R)×R
n → R

n

The basis {ei} is orthonormal with respect to the standard scalar product
in R

n. The orthogonal group O(n) precisely consists of those elements of
GL(n,R) whose action on R

n preserves the lengths of vectors. In particu-
lar, the action (3.6.6) restricts to an action

(3.6.7) O(n)× Sn−1 → Sn−1

which is smooth, since Sn−1 is an embedded submanifold of Rn. The ac-
tion (3.6.7) is transitive due to the facts that any unit vector can be com-
pleted to an orthonormal basis of Rn, and any two orthonormal bases of
R

n differ by an orthogonal transformation. The isotropy group of (3.6.7)
at e1 consists of transformations that leave the orthogonal complement e⊥1
invariant, and indeed any orthogonal transformation of e⊥1

∼= R
n−1 can oc-

cur. It follows that the isotropy group is isomorphic to O(n− 1) and hence

Sn−1 = O(n)/O(n− 1)

presents the unit sphere as a homogeneous space, where a the diffeomor-
phism is given by gO(n−1) 7→ g(e1). If we use only orientation-preserving
transformations on R

n, also the elements of the isotropy group will act by
orientation-preserving transformations and hence

Sn−1 = SO(n)/SO(n − 1).

(b) The group SO(n) also acts transtively on the set of lines through the
origin in R

n. Besides the orthogonal transformations of e⊥1 , the isotropy
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group at the line Re1 now also contains transformations that map e1 to
−e1. It follows that

RPn = SO(n)/O(n− 1)

where O(n− 1) is identified with the subgroup of SO(n) consisting of ma-
trices of the form

(

detA 0
0 A

)

where A ∈ O(n− 1).
(c) Let {e1, . . . , en} be the canonical basis ofCn. It is a unitary basis with

respect to the standard Hermitian inner product inC
n. Similarly to (a), one

shows that U(n) and SU(n) act transitively on the set of unit vectors ofCn,
namely, the sphere S2n−1. More interesting is to consider the setCPn−1 of
one-dimensional complex subspaces of Cn. This set is homogeneous under
SU(n) and the isotorpy group at the line Ce1 consists of matrices of the
form

(

(detA)−1 0
0 A

)

where A ∈ U(n− 1). It follows from Theorem 3.6.3 thatCPn−1 is a smooth
manifold and

CPn−1 = SU(n)/U(n − 1)

as a homogeneous manifold.
(d) Let {e1, . . . , en} be the canonical basis of Rn, and let Vk(R

n) be the
set of orthonormal k-frames inR

n, that is, ordered k-tuples of orthonormal
vectors in R

n. There is an action

O(n)× Vk(R
n) → Vk(R

n), g · (v1, . . . , vk) = (gv1, . . . , gvk)

which is clearly transitive. The isotropy group at (e1, . . . , ek) is the sub-
group of O(n) consisting of matrices of the form

(3.6.8)

(

I 0
0 A

)

where A ∈ O(n− k). The resulting homogeneous space

Vk(R
n) = O(n)/O(n− k)

is called the Stiefel manifold of k-frames inR
n. Note that the restricted action

of SO(n) on Vk(R
n) is also transitive and

Vk(R
n) = SO(n)/SO(n− k).

3.7 Additional results

In this section, we state without proofs some important, additional results
about basic Lie theory, and add some remarks.



3.7. ADDITIONAL RESULTS 81

Closed subgroups

3.7.1 Theorem Let G be a Lie group, and let A be a closed (abstract) subgroup of
G. Then A admits a unique manifold structure whch makes it into a Lie group;
moreover, the topology in this manifold structure must be the relative topology.

3.7.2 Corollary Let ϕ : G → H be a homomorphism of Lie groups. Then A =
kerϕ is a closed Lie subgroup of G with Lie algebra a = ker dϕ.

Proof. A is a closed subgroup and hence a Lie subgroup of G by Theo-
rem 3.7.1. The rest follows from (3.3.9) and (3.3.10). �

Continuous homomorphisms

3.7.3 Theorem Let ϕ : G → H be a continuous homomorphism between Lie
groups. Then ϕ is smooth.

3.7.4 Definition A topological group is an abstract group equipped with a
topology such that the group operations are continuous maps.

3.7.5 Corollary A Hausdorff second countable locally Euclidean group G can
have at most one smooth structure making it into a Lie group.

Proof. Let [A] and [B] two such smooth structures on G. The identity
map (G, [A]) → (G, [B]) is a homomorphism and a homeomorphism, and
hence a diffeomorphism by Theorem 3.7.3. �

Hilbert’s fifth problem is the fifth mathematical problem posed by David
Hilbert in his famous address to the International Congress of Mathemati-
cians in 1900. One (restricted) interpretation of the problem in modern
language asks whether a connected (Hausdorff second countable) locally
Euclidan group admits a smooth structure which makes it into a Lie group.
In 1952, A. Gleason proved that a locally compact group satisfying the “no-
small subgroups” (NSS) condition (compare Problem 11) is a Lie group,
and then immediately afterwards Montgomery and Zippin used Gleason’s
result to prove inductively that locally Euclidean groups of any dimension
satisfy NSS. The two papers appeared together in the same issue of the An-
nals of Mathematics. Here one says that a topological group satisfies NSS
if there exists a neighborhood of the identity which contains no subgroups
other than the trivial group. (Actually, the above is not quite the full story;
Gleason assumed a weak form of finite dimensionality in his original ar-
gument that NSS implies Lie, but shortly thereafter Yamabe showed that
finite dimensionality was not needed in the proof.)
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Theorem of Ado

A (real) representation of a Lie algebra g is a homomorphism ϕ : g →
gl(n,R); if, in addition, ϕ is injective, it is called a faithful representation.

A faithful representation of a Lie algebra g can be thought of a “linear
picture” of g and allows one to view g as a Lie algebra of matrices.

3.7.6 Theorem (Ado) Every Lie algebra admits a faithful representation.

3.7.7 Theorem There is a bijective correspondence between isomorphism classes
of Lie algebras and isomorphism classes of simply-connected Lie groups.

Proof. If g is a Lie algebra, then g is isomorphic to a Lie subalgebra of
gl(n,R) by Theorem 3.7.6. Owing to Theorem 3.3.5, there is a connected
Lie subgroup of GL(n,R) with Lie algebra g. Due to Theorem 3.4.1 and
Lemma 3.4.4(c), there is also a simply-connected Lie group with Lie alge-
bra g. Two simply-connected Lie groups with isomorphic Lie algebras are
isomorphic in view of Theorem 3.4.5. �

Theorem of Yamabe

3.7.8 Theorem (Yamabe) An arcwise connected subgroup of a Lie group is a Lie
subgroup.

3.7.9 Corollary LetG be a connected Lie group and let A and B be connected Lie
subgroups. Then the subgroup (A,B) generated by the commutators

S = {aba−1b−1 : a ∈ A, b ∈ B}

is a Lie subgroup of G. In particular, the commutator of G, (G,G), is a Lie sub-
group of G.

Proof. As a continuous image of A × B, S is arcwise connected, and so
is T = S ∪ S−1, since S ∩ S−1 ∋ 1. As a continuous image of T × · · · × T
(n factors) also T n is arcwise connected and hence so is (A,B) = ∪n≥1T

n,
since it is an increasing union of arcwise connected subsets. The result
follows from Yamabe’s theorem 3.7.8. �

3.7.10 Example In general, the subgroup (A,B) does not have to be closed
for closed connected subgroupsA andB ofG, even ifG is simply-connected.
Indeed, take G to be the simply-connected covering of SL(4,R), and let a
and b be one-dimensional and respectively spanned by









0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0









and









0 0 0 0
1 0 0 0
0 0 0 0

0 0
√
2 0









.
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Then A and B are closed one-dimensional subgroups isomorphic to R but
their commutator is a dense line in a torus.

3.8 Problems

§ 3.1

1 Let α, β : (−ǫ, ǫ) → G be smooth curves in a Lie group G such that
α(0) = β(0) = 1, and consider γ(t) = α(t)β(t). Prove that γ̇(0) = α̇(0) +
β̇(0). (Hint: consider the multiplication map µ : G×G→ G and show that
dµ(v,w) = dµ((v, 0) + (0, w)) = v +w for v, w ∈ T1G.)

2 a. Show that

SO(2) =

{(

a b
−b a

)

: a, b ∈ R, a2 + b2 = 1

}

.

Deduce that SO(2) is diffeomorphic to S1.
b. Show that

SU(2) =

{(

α β
−β̄ ᾱ

)

: α, β ∈ C, |α|2 + |β|2 = 1

}

.

Deduce that SU(2) is diffeomorphic to S3.

3 Let

H3 =











1 x z
0 1 y
0 0 1



 : x, y, z ∈ R







.

a. Prove that H3 is closed under matrix multiplication and it has the
structure of a Lie group (the so called Heisenberg group).

b. Show that A = ∂
∂x , B = ∂

∂y + x ∂
∂z , C = ∂

∂z are left-invariant vector
fields. Compute their Lie brackets.

c. Describe the Lie algebra of H3.

4 Classify all real Lie algebras of dimension two and three.

5 Let G = O(n).
a. Show that G◦ ⊂ SO(n).
b. Prove that any element in SO(n) is conjugate in G to a matrix of the

form




















Rt1
. . .

Rtp

1
. . .

1
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where Rt is the 2× 2 block
(

cos t − sin t
sin t cos t

)

and t1, . . . , tp ∈ R.
c. Deduce from the above that SO(n) is connected. Conclude thatO(n)

has two connected components and SO(n) is the identity component.

§ 3.2

6 Show that

exp

(

0 −t
t 0

)

=

(

cos t − sin t
sin t cos t

)

for t ∈ R.

7 Give examples of matrices A, B ∈ gl(2,R) such that eA+B 6= eAeB .

8 In this problem, we show that the exponential map in a Lie group does
not have to be surjective.
a. Show that every element g in the image of exp : g → G has a square

root, namely, there is h ∈ G such that h2 = g.
b. Prove that traceA2 ≥ −2 for any A ∈ SL(2,R) (Hint: A satisfies its

characteristic polynomialX2 − 2(traceX)X + (detX)I = 0.)

c. Deduce from the above that

(

−2 0
0 −1

2

)

does not lie in the image of

exp : sl(2,R) → SL(2,R).

9 LetX ∈ sl(2,R). Show that

eX =















cosh(− detX)1/2I + sinh(− detX)1/2

(− detX)1/2
X if detX < 0,

cos(detX)1/2I + sin(detX)1/2

(detX)1/2
X if detX > 0,

I +X if detX = 0.

10 (Polar decomposition of matrices)
a. Prove that any g ∈ GL(n,R) can be written as g = hkwhere h ∈ O(n)

and k is a positive-definite symmetric matrix.
b. Prove that the exponential map defines a bijection between the space

of real symmetric matrices and the set of real positive-definite sym-
metric matrices. (Hint: Prove it first for diagonal matrices.)

c. Deduce from the above that GL(n,R) is diffeomorphic to O(n) ×
R

n(n+1)
2 .

11 Let G be a Lie group. Prove that it does not have small subgroups; i.e.,
prove the existence of an open neighborhood of 1 such that {1} is the only
subgroup of G entirely contained in U .
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12 For a connected Lie group, prove that the second-countability of its
topology is a consequence of the other conditions in the definition of a Lie
group. (Hint: Use Proposition 3.2.5).

§ 3.3

13 Check that

A+ iB ∈ GL(n,C) 7→
(

A B
−B A

)

∈ GL(2n,R)

defines an injective homomorphism ϕ ofGL(n,C) onto a closed subgroup
of GL(2n,R). Check also that ϕ restricts to an injective homomorphism of
U(n) onto a closed subgroup of SO(2n).

14 Prove that a discrete normal subgroup of a connected Lie group is cen-
tral.

15 Determine the center of SU(n).

16 Construct a diffeomorphism between U(n) and S1 × SU(n). Is it an
isomorphism of Lie groups?

§ 3.4

17 ConsiderG = SU(2) and its Lie algebra g = su(2).
a. Check that

g =

{(

ix y + iz
−y + iz −ix

)

: x, y, z ∈ R

}

.

b. Identify g with R
3 and check that det : g → R corresponds to the

usual quadratic form onR
3. Check also thatAdg preserves this quadratic

form for all g ∈ G.
c. Deduce form the above that there is a smooth homomorphismSU(2) →

SO(3) which is the simply-connected covering of SO(3).

§ 3.5

18 Prove that the kernel of the adjoint representation of a connected Lie
group coincides with its center.

19 Let A be a connected subgroup of a connected Lie group G. Prove that
A is a normal subgroup of G if and only if the Lie algebra a of A is an ideal
of the Lie algebra g of G.

§ 3.6
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20 a. Let Grk(R
n) be the set of k-dimensional subspaces of Rn. Prove

that
Grk(R

n) = SO(n)/S(O(k) ×O(n− k)).

This is called the Grassmann manifold of k-planes in R
n.

b. Consider now the setGr+k (R
n) of oriented k-dimensional subspaces of

R
n, and prove that

Grk(R
n) = SO(n)/SO(k) × SO(n− k).

This is called the Grassmann manifold of oriented k-planes in R
n.

c. Define the GrassmannmanifoldGrk(C
n) of k-planes inC

n and prove
that

Grk(C
n) = U(n)/ [U(k)× U(n− k)]

= SU(n)/S(U(k) × SU(n− k)).


