CHAPTER 3

Lie groups

Lie groups are amongst the most important examples of smooth manifolds.
At the same time, almost all usually encountered examples of smooth man-
ifolds are related to Lie groups, in a way or another. A Lie group is a smooth
manifold with an additional, compatible structure of group. Here compati-
bility refers to the fact that the group operations are smooth (another point
of view is to regard a Lie group as a group with an additional structure of
manifold...). The reader can keep in mind the matrix group GL(n,R) of
non-singular real n x n matrices (Examples 1.2.7) in which the n? matrix
coefficients form a global coordinate system. The conjuction of the smooth
and the group structures allows one to give a more explicit description
of the differential invariants attached to a manifold. For this reason, Lie
groups form a class of manifolds suitable for testing general hypotheses
and conjectures. The same remarks apply to homogeneous spaces, which
are certain quotients of Lie groups.

3.1 Basic definitions and examples

A Lie group G is a smooth manifold endowed with a group structure such
that the group operations are smooth. More concretely, the multiplication
map p : G x G — G and the inversion map ¢ : G — G are required to be
smooth.

3.1.1 Examples (a) The Euclidean space R" with its additive vector space
structure is a Lie group. Since the multiplication is commutative, this is an
example of a Abelian (or commutative) Lie group.

(b) The multiplicative group of nonzero complex numbers C*. The sub-
group of unit complex numbers is also a Lie group, and as a smooth mani-
fold it is diffeomorphic to the circle S*. This is also an Abelian Lie group.

(c) If G and H are Lie groups, the direct product group structure turns
the product manifold G x H into a Lie group.
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(d) It follows from (b) and (c) that the n-torus T = S* x- - - x S (n times)
is a Lie group. Of course, T is a compact connected Abelian Lie group.
Conversely, we will see in Theorem 3.5.3 that every compact connected
Abelian Lie group is an n-torus.

(e) If G is a Lie group, the connected component of the identity of G,
denoted by G°, is also a Lie group. Indeed, G° is open in G, so it inherits
a smooth structure from G just by restricting the local charts. Since p(G° x
G°) is connected and p(1,1) = 1, we must have p(G° x G°) C G°. Similarly,
t(G°) C G°. Since G° C G is an open submanifold, it follows that the group
operations restricted to G° are smooth.

(f) Any finite or countable group endowed with the discrete topology
becomes a 0-dimensional Lie group. Such examples are called discrete Lie
groups.

(g) We now turn to some of the classical matrix groups. The general
linear group GL(n, R) is a Lie group since the entries of the product of two
matrices is a quadratic polynomial on the entries of the two matrices, and
the entries of inverse of a non-singular matrix is a rational function on the
entries of the matrix.

Similarly, one defines the complex general linear group of order n, which is
denoted by GL(n, C), as the group consisting of all nonsingular n x n com-
plex matrices, and checks that it is a Lie group. Note that dim GL(n,C) =
2n? and GL(1,C) = C*.

We have already encountered the orthogonal group O(n) as a closed
embedded submanifold of GL(n,R) in 1.4.14. Since O(n) is an embedded
submanifold, it follows from Theorem 1.4.9 that the group operations of
O(n) are smooth, and hence O(n) is a Lie group.

Similarly to O(n), one checks that the

SL(n,R) = {Ae€ GL(n,R)| det(A) =1} (real special linear group)
SL(n,C) = {Ae€GL(n,C)| det(A) =1} (complex special linear group)
U(n) = {AeGL(n,C)|AA* =1} (unitary group)
SO(n) = {Ae€O(n)| det(A) =1} (special orthogonal group)
SU((n) = {Ae€U(n)| det(A) =1} (special unitary group)

are Lie groups, where A* denotes the complex conjugate transpose matrix
of A. Note that U(1) = S*.

Lie algebras

For an arbitrary smooth manifold M, the space X(M) of smooth vector
fields on M is an infinite-dimensional vector space over R. In addition,
we have already encountered the Lie bracket, a bilinear map [-,] : X(M) x
X(M) — X(M) satisfying;:

a. [V, X]=-[X,Y];
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b. [[X,Y], Z]+ Y, Z],X] + [[Z, X], Y] = 0 (Jacobi identity);
for every X,Y € X(M). In general, a vector space with a bilinear operation
satisfying (a) and (b) above is called a Lie algebra. So X(M) is Lie algebra
over R.

It turns out in case of a Lie group GG, we can single out a finite dimen-
sional subalgebra of X(M ). For that purpose, let us first introduce transla-
tions in G. The left translation defined by g € G is the map L, : G — G,
Ly(z) = gw. It is a diffeomorphism of G, its inverse being given by L 1.
Similarly, the right translation defined by g € G is the map R, : G — G,
Ry(x) = xg. Itis also a diffeomorphism of G, and its inverse is given by
R,-1.

’ The translations in G define canonical identifications between the tan-
gent spaces to G at different points. For instance, dL, : T;,G — T,,G is
an isomorphism for every g, h € G. This allows us to consider invariant
tensors, the most important case being that of vector fields. A vector field
X on G is called left-invariant if d(Lgy),(X,) = X4 for every g, € X. This
condition is simply dL, 0 X = X o L, for every g € G; equivalently, X is
L 4-related to itself, or yet L, X = X (since L, is a diffeomorphism), for all
g € G. We can similarly define right-invariant vector fields, but most often
we will be considering the left-invariant variety. Note that left-invariance
and right-invariance are the same property in case of an Abelian group.

3.1.2 Lemma Every left invariant vector field X in G is smooth.

Proof. Let f be a smooth function defined on a neighborhood of 1 in G,
and let v : (—€,e) — G be a smooth curve with v(0) = 1 and 7/(0) = X;.
Then the value of X on f is given by

X,(f) = dLy(X0)(F) = Xi(fo L) = | flart) = 2|~ Fonutg ()

and hence, it is a smooth function of g. O

Let g denote the set of left invariant vector fields on G. It follows that g
is a vector subspace of X(M). Further, g is a subalgebra of X(M), for given
X,Y € g, we have by Proposition 1.6.18 that

L[ X, Y] = [Lg X, Lg,Y] = [X,Y],

for every g € G. Finally, we explain why g is finite-dimensional: the map
X € g — X, defines a linear isomorphism between g and the tangent space
to G at the identity 771G, since any left invariant vector field is completely
defined by its value at the identity.

The discussion above shows that to any Lie group G is naturally asso-
ciated a (real) finite-dimensional Lie algebra g of the same dimension as G,
consisting of the left invariant vector fields on G. This Lie algebra is the
infinitesimal object associated to G' and, as we shall see, completely deter-
mines its local structure.
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3.1.3 Examples (The Lie algebras of some known Lie groups)

(i) The left-invariant vector fields on R" are precisely the constant vec-
tor fields, namely, the linear combinations of coordinate vector fields (in the
canonical coordinate system) with constant coefficients. The bracket of two
constant vector fields on R" is zero. It follows that the Lie algebra of R"
is R" itself with the null bracket. In general, a vector space equipped with
the null bracket is called an Abelian Lie algebra.

(ii) The Lie algebra of the direct product G x H is the direct sum of Lie
algebras g @ b, where the bracket is taken componentwise.

(iii) Owing to the skew-symmetry of the Lie bracket, every one-dimensional
Lie algebra is Abelian. In particular, the Lie algebra of S is Abelian. It fol-
lows from (ii) that also the Lie algebra of 7" is Abelian.

(iv) G and G° have the same Lie algebra.

(v) The Lie algebra of a discrete group is {0}.

3.1.4 Examples (Some abstract Lie algebras)

(i) Let A be any real associative algebra and set [a,b] = ab — ba for q,
b € A. Itis easy to see that A becomes a Lie algebra.

(ii) The cross-product x on R? is easily seen to define a Lie algebra
structure.

(iii) If V' is a two-dimensional vector space and X, Y € V are linearly
independent, the conditions [X, X]| = [Y,Y] = 0, [X,Y] = X define a Lie
algebra structure on V.

(iv) If V is a three-dimensional vector space spanned by X, Y, Z, the
conditions [X,Y] = Z, [Z, X] = [Z,Y] = 0 define a Lie algebra structure
on V, called the (3-dimensional) Heisenberg algebra. It can be realized as a Lie
algebra of smooth vector fields on R? as in Example 1.6.15(b).

3.1.5 Exercise Check the assertions of Examples 3.1.3 and 3.1.4.

3.2 The exponential map

For a Lie group G, we have constructed its most basic invariant, its Lie
algebra g. Our next step will be to present the fundamental map that relates
G and g, namely, the exponential map exp : g — G.

Matrix exponential

Recall that the exponential of a matrix A € M(n,R) (or M(n, C)) is given
by the formula:

1 1
e = TH+A+ZAP+ A3+
2 3!
SA”
n:On'
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Since || > ), %AkH < ellll for all n > 0, the series is absolutely conver-
gent on the entire M(n, R); here || - || denotes the usual Euclidean norm in
M(n,R) = R™. In case n = 1, we recover the usual exponential map on
the line. In general, note that:

a. ¥ =1;

b. eAtB = e4eP if Aand B commute.
Indeed, to check (b) notice that one can compute the product of e/ and e?
by multiplying the individual terms and rearranging, by absolute conver-
gence. In particular:

c. eBTHA — esAetB forall 5, t € R;

d. e is invertible and (e4)™! = e=4.
View t € R + €/ as a curve in M(n, R). The last property worth mention-
ing is

e. %!t:to et = Aetod = glod 4,

Flow of left-invariant vector fields

Let G be a Lie group, and let g denote its Lie algebra.

3.2.1 Proposition Every left-invariant vector field is complete.

Proof. Given X € g, there exists a maximal integral curve vx : (a,b) —
G of X with 0 € (a,b) (a, b € [—00,¢]) and vx(0) = 1; namely, 7 (t) =
X, ()- Since

d

Tl La(rx () = d(Lg)(Xox 1)) = Xy (rx (10
=to

we have that L, o yx is an integral curve of X starting at g. In particular,
if b < oo, by taking g = 7(s) with s very close to b, this shows that yx can
be extended beyond b, leading to a contradiction. Similarly, one sees that
a = —oo. Hence X is complete. O

Now the integral curve vx of any X € g starting at the identity is de-
fined on R. The exponential map of G is the map exp : g — G defined by
exp X = yx(1).

Note that d% sms VX (t5) = v (tso) = tX (yx (tso)). This implies yx (ts) =
vx (s) for all s, t € R and therefore

x(t) = mx(1)
(3.2.2) = exp(tX),

namely, every integral curve of a left-invariant vector field through the
identity factors through the exponential map.
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3.2.3 Exercise Check that the flow {¢;} of a left-invariant vector field X is
given by ¢; = Regpix (recall that R, denotes a right-translation). What is
the corresponding result for right-invariant vector fields?

Moreover, we state:

3.2.4 Proposition The exponential map exp : g — G is smooth and it is a local
diffeomorphism at 0.

Proof. Smoothness follows from general properties of flows, namely,
smooth dependence on parameters of solutions of ODE’s. Moreover, d expy, :
Tog = g — T1G = g is the identity, since

d
dexpo(X) = 2| exp(tX) = ¢ (0) = X,
Thus, exp is a diffeomorphism from a neighborhood of 0 in g onto a neigh-
borhood of 1 in G by the Inverse Function Theorem (1.3.8). O

Recall that the identity component G° is an open subgroup of G.

3.2.5 Proposition G° is generated as a group by any neighborhood U of 1 in G°,

namely,
G° = U Un,
n>1
where U™ denotes the set of n-fold products of elements in U. In particular, G° is
generated by explg].

Proof. By replacing U by U N U™}, if necessary, we may assume that
U = UL Define V = Un>oU" and consider the relation in G° given by
g ~ ¢ if and only if g~'¢’ € V. Note that this is an equivalence relation,
and equivalence classes are open as ¢’ ~ g implies ¢'U ~ g, where ¢’'U is an
open neighborhood of ¢’. Hence V' = G°. O

The case of GL(n,R)

Recall that G = GL(n, R) inherits its manifold structure as an open sub-
set of the Euclidean space M(n, R). In particular, the tangent space at the
identity 7;G = M(n,R). Let A € M(n,R) and denote by A ¢ g the
corresponding left-invariant vector field on G. For any g € G, we have
A, = (dL,)(A) = gA (matrix multiplication on the right hand side).

Using property (e) of the matrix exponential,

d

tA to A 1
— et =e""A =A 4
dt lt=tq e

shows that ¢ — ¢!/ is the integral curve of A through the identity, namely

exp A = et
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forall A € M(n,R).
Finally, to determine t~he~Lie bracket in g, we resort to (1.6.22). Let A4,
B € M(n,R), denote by A, B the corresponding left-invariant vector fields
on G, let {¢y = R.:a} be the flow of A (cf. Exercise 3.2.3):
[A’ B] = [A’ B]I
= (LiB)1

do—t(Byy(n))

d
_‘ AABe—tA
dt It=0

= AB - BA.

4
dt lt=0

Note that the Lie algebra structure in M(n, R) is induced from its associa-
tive algebra structure as in Example 3.1.4(i). The space M(n, R) with this
Lie algebra structure will be denoted by gl(n, R).

The case of GL(n, C) is completely analogous.

3.3 Homomorphisms and Lie subgroups

A (Lie group) homomorphism between Lie groups G and H ismap ¢ : G — H
which is both a group homomorphism and a smooth map. ¢ is called an
isomorphism if, in addition, it is a diffeomorphism. An automorphism of a
Lie group is an isomorphism of the Lie group with itself. A (Lie algebra)
homomorphism between Lie algebras g and h is a linear map @ : g — b
which preserves brackets. @ is called an isomorphism if, in addition, it is
bijective. An automorphism of a Lie algebra is an isomorphism of the Lie
algebra with itself.

3.3.1 Exercise For a homomorphism ¢ : G — H, check that L) o ¢ =
polLgforall g e G.

A homomorphism ¢ : G — H between Lie groups induces a linear map
dyp1 : T'G — T1H and hence a linear map dy : g — b. Indeed, if X is a left
invariant vector field on G, let X’ be the unique left invariant vector field
on H such that X| = dy;(X;) and put dp(X) = X'.

3.3.2 Proposition If ¢ : G — H is a homomorphism between Lie groups then
dy : g — b is a homomorphism between the corresponding Lie algebras.

Proof. Let X € g. We first claim that X and X’ := dp(X) are p-related.
In fact,

Xip(g) = ULp(g))1(X1) = d(Ly(g) © 0)1(X1) = d(p 0 Lyg)1(X1) = dipg(Xy),
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proving the claim. Now, if Y € g, then Y and ¢(Y") are op-related. Therefore
[X,Y] and [dp(X),dp(Y")] are ¢-related and thus

dgp([X, Y]l) = [d@(X)7 d@(Y)]¢(1)7

or
dp([X,Y]) = [dp(X), de(Y)].

This shows that dy is a Lie algebra homomorphism. 0

Let G be a Lie group. A Lie subgroup of G is an immersed submanifold
(H, ¢) of G such that H is a Lie group and ¢ : H — G is a homomorphism.

3.3.3 Remark Similarly as in the case of immersed submanifolds (Prob-
lem 19 in Chapter 1), we consider two Lie subgroups (H1, ¢1) and (Hz, ¢2)
of G equivalent if there exists a Lie group isomorphism « : H; — Hj such
that ¢1 = 2 o a. This is an equivalence relation in the class of Lie sub-
groups of G and each equivalence class contains a unique representative of
the form (A, ¢), where A is a subset of G (an actual subgroup)and ¢ : A — G
is the inclusion. So we lose no generality in assuming that a Lie subgroup of
G is an abstract subgroup H of G which is an immersed submanifold of G
and a Lie group with respect to the operations induced from G; namely, the
multiplication and inversion in G must restrict to smooth maps H x H — H
and H — H, respectively.

3.3.4 Example The skew-line (R, f) in 72 (Example 1.4.2) is an example of
a Lie subgroup of T2 which is not closed.

If g is a Lie algebra, a subspace § of g is called a Lie subalgebra if b is
closed under the bracket of g.

Let H be a Lie subgroup of G, say, ¢ : H — G is the inclusion map. Since
¢is an immersion, d¢ : h — g is an injective homomorphism of Lie algebras,
and we may and will view § as a Lie subalgebra of g. Conversely, as our
most important application of Frobenius’ theorem, we have:

3.3.5 Theorem (Lie) Let G be a Lie group, and let g denote its Lie algebra. If b
is a Lie subalgebra of g, then there exists a unique connected Lie subgroup H of G
such that the Lie algebra of H is b.

Proof. We have that h is a subspace of g and so defines a subspace h(1) :=
{X(1) | X € b} of T1G. Let D be the left-invariant distribution on G defined
by b, namely, D, = dL4(h(1)) forall g € G. Then D is a smooth distribution,
as it is globally generated by left-invariant vector fields X;,..., X} in b.
The fact that D is involutive follows from (and is equivalent to) b being a
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Lie subalgebra of g. In fact, suppose X and Y lie in D over the open subset
Uof G. Write X =3, a;X;, Y =, b; X for a;, b € C°°(U). Then

Zaz Xi, j + aiXi(bj)Xj - ijj(ai)Xi

also lies in D, as [ X;, Y] € b.

By Frobenius theorem (1.7.10), there exists a unique maximal integral
manifold of D passing through 1, which we call H. Since D is left-invariant,
for every h € H, L,,~1(H) = h™'H is also a maximal integral manifold of
D, and it passes through through h='h = 1. This implies h"'H = H, by
uniqueness. It follows that H is a subgroup of G. The operations induced
by G on H are smooth because H is an initial submanifold, due to Propo-
sition 1.7.3. This proves that H is a Lie group. Its Lie algebra is h because
h consists precisely of the elements of g whose value at 1 lies in Dy = T1 H,
and these are exacly the elements of the Lie algebra of H.

Suppose now H’ is another Lie subgroup of G with Lie algebra h. Then
H' must also be an integral manifold of D through 1. By the maximality of
H,wehave H' C H, and the inclusion map is smooth by Proposition 1.7.3
and thus an immersion. Now H’ is an open submanifold of H and contains
a neighborhood of 1 in H. Owing to Propostion 3.2.5, H' = H. ]

3.3.6 Corollary There is a bijective correspondence between connected Lie sub-
groups of a Lie group and subalgebras of its Lie algebra.

3.3.7 Example Let G be a Lie group. A subgroup H of G which is an
embedded submanifold of G is a Lie subgroup of G' by Proposition 1.4.9.
It follows from Example 1.4.14(b) that O(n) is a closed Lie subgroup of
GL(n,R). Similarly, the other matrix groups listed in Examples 3.1.1(g)
are closed Lie subgroups of GL(n, R), except that SL(n, C) is a closed Lie
subgroup of GL(n, C). In particular, the Lie bracket in those subgroups is
given by [A, B] = AB — BA.

3.3.8 Exercise Show that the Lie algebras of the matrix groups listed in Ex-
amples 3.1.1(g) are respectively as follows:

o(n) = {Acgl(n,R)|A+ A" =0}
sl(n,R) = {Ae€gl(n,R)| trace(A) =0}
sl(n,C) = {Ae€gl(n,C)| trace(A) = 0}

u(n) = {Aegl(n,C)|A+ A" =0}

so(n) = o(n)
su(n) = {A€u(n)]| trace(A) =0}
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A Lie group homomorphism ¢ : R — G'is called a (smooth) one-parameter
subgroup. Note that such a ¢ is the integral curve of X := dy(1) € g, and
we have seen in (3.2.2) that p(t) = exp(tX) forall t € R.

More generally, let ¢ : G — H be ahomomorphism between Lie groups.
Then, for a left invariant vector field X on G, t — (exp%(tX)) is a one-
parameter subgroup of H with % | tzogo(expG tX) = de(X1). In view of the
above,

(3.3.9) @ oexp® X = exp!? odp(X),

forevery X € g. In particular, if K is a Lie subgroup of G, then the inclusion
map ¢ : K — G'is a Lie group homomorphism, so that the exponential map
of G restricts to the exponential map of K, and the connected component
of K is generated by exp“[¢], where ¢ is the Lie algebra of K. It follows also
that

(3.3.10) t={X eg:exp¥(tX) € K, forallt € R}.

Indeed, let X € g with exp®(tX) € K for all t € R. Since K is an
integral manifold of an involutive distribution (compare Theorem 3.3.5),
t — exp’(tX) defines a smooth map R — K and thus a one-parameter
subgroup of K. Therefore exp®(tX) = i o exp’ (tX’) for some X’ € &, and
hence X = di(X’).

3.4 Covering Lie groups

Let G be a connected Lie group. Consider the universal covering 7 : G —
G. By Problem 5 in Chapter 1 or the results in Appendix A, G has a unique
smooth structure for which = is a local diffeomorphism.

3.4.1 Theorem Every connected Lie group G has a simply-connected covering
7 : G — G such that G is a Lie group and w is a Lie group homomorphism.

Proof. Consider the smooth map « : G x G — G given by (g, h)
7(g)m(h)~. Choose 1 € 7~'(1). As G is simply-connected, so is G x G. By
the lifting criterion, there exists a unique map smooth & : G’ x G — G such
that 7o @ = e and @(1,1) = 1. Put

g t=a(,5), gh:=a(ghr?

for §, h € G. These operations are shown to make G into a group by use of
the uniqueness part in the lifting criterion. As an example,

(3.4.2) m(g1) = M~f5=a@i”>=ﬂmﬂfﬁ*=w@)

since 17! = a(1,1) = (1) = 1. Identity (3.4.2) shows that g — g1

1 an
is a lifting of g — 7(g), G’ G, toamap G — G which takes 1to1-1 =
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&(1,17Y) = a(1,1) = 1. However, the identity map of G is also a lifting
of § — m(G) which takes 1 to 1. By uniqueness, both liftings coincide and
gl =gforall g e G.

Now G is a group. Since @ is smooth, G'is a Lie group. Finally,

(g ") =ma(1,9) = a(l,§) =a(D)n(g) " =m(5)~"

and

Hence, 7 : G — Gisa Lie group homomorphism. O

3.4.3 Remark It follows from Lemma 3.4.4(c) and Theorem 3.7.7 that the
structure of Lie group on the universal covering G of G is unique, up to
isomorphism.

3.4.4 Lemma Let ¢ : G — H be a homomorphism between Lie groups. Consider
the induced homomorphism between the corresponding Lie algebras dy : g — b.
Then:
a. dy is injective if and only if the kernel of ¢ is discrete.
b. dy is surjective if and only if o(G°) = H®.
c. dy is bijective if and only if o is a topological covering (here we assume G
and H connected).

Proof. (a) If dp : g — b is injective, then ¢ is an immersion at 1 and
thus everywhere by Exercise 3.3.1. Therefore ¢ is locally injective and
hence ker ¢ is discrete. Conversely, if dp : g — b is not injective, ker dy,
is positive-dimensional for all g € G and thus defines a smooth distribu-
tion D. Note that X lies in D if and only if X is op-related to the null vector
field on H. It follows that D is involutive. The maximal integral manifold
of D through the identity is collapsed to a point under ¢ implying that ker ¢
is not discrete.

(b) Since ¢ o exp = exp ody and G° is generated by exp|g|, we have that
©(G®) is the subgroup of H® generated by expldp(g)], thus p(G°) = H® if
dy is surjective. On the other hand, if dy is not surjective, dy(g) is a proper
subalgebra of h to which there corresponds a connected, proper subgroup
K of H®, and expldp(g)] generates K.

(c) Assume G, H connected. If ¢ is a covering then ker dy is discrete and
¢ is surjective, so dy is an isomorphism by (a) and (b). Conversely, suppose
that dp : g — bh an isomorphism. Then ¢ is surjective by (b). Let U be a
neighborhood of 1 in G such that ¢ : U — ¢(U) := V is a diffeomorphism.
We can choose U so that UnNker dyp = {1} by (a). Then ¢~ (V) = Upeker pnU,
and this is a (disjoint union) for ng = n’¢g’ withn, n’ € kerpand g, ¢/ € U
implies g¢'~' = n~!n’ € kerp and so ¢(g) = ¢(g') and then g = ¢'. Since
po L, = ¢ forn € ker ¢, we also have that ¢|nU is a diffeomorphism onto
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V. This shows that V is an evenly covered neighborhood of 1. Now AV
is an evenly covered neighborhood of any given h € H, and thus ¢ is a
covering. O

3.4.5 Theorem Let G, G be Lie groups, and assume that G is connected and
simply-connected. Then, given a homomorphism ® : g, — gy between the Lie
algebras, there exists a unique homomorphism ¢ : Gi — Go such that dp = .

Proof. The graphof @, h = {(X, ®(X)) : X € g, is a subalgebra of g, ©gs.
Let H be the subgroup of G x G defined by b (Theorem 3.3.5). Consider
the projections

Q191D gy — Gy ;i : G1 x Gy = G,

for i = 1, 2. Since ®;|h : h — g; is an isomorphism, we have that ® =
g0 (P1|h)"Land ¢ : H — Gy is a covering. Since G is simply-connected,
v1|H : H — G is an isomorphism of Lie groups, and we can thus define
¢ = p20(p1)~ L. This proves the existence part. The uniqueness part comes
from the fact that dyp = @ specifies ¢ in a neighborhood of 1 (by using the
exponential map as in (3.3.9)), and G| is generated by this neighborhood.
O

3.5 The adjoint representation

Let G be a Lie group, and denote its Lie algebra by g. The noncommutativ-
ity of G is organized by the adjoint representation. In order to introduce it,
let g € G, and define a map Inn, : G — G by Inny(z) = gzg~'. Then Inn,
is an automorphism of G, which is called the inner automorphism defined by
g. The differential d(Inng) : g — g defines an automorphism of g, which we
denote by Ad,. Then

d d 1
AdyX = pn tZOInn(g)(exp tX) = 7,9 exp tXg .

3.5.1 Example In case G = GL(n,R), Inn, is the restriction of the linear map
M(n,R) = M(n,R), X — gXg~!,s0 AdyX = d(Inny);(X) = gXg~'.

This defines a homomorphism
Ad:ge G — Ady € GL(g),

which is called the adjoint representation of G on g.
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We have
(Ang ) 1

= ((Rg-1).X) 1

Recall that GL(g) is itself a Lie group isomorphic to GL(n, R), where
n = dimg. Its Lie algebra consists of all linear endomorphisms of g with
the bracket [A, B] = AB — BA and it is denoted by gl(g). Note that Ad, =
DsF(g,1), where F : G x G — G is the smooth function F(g,r) = gzg~!,
so the linear endomorphism Ad, of g depends smoothly on g. Now Ad :
g € G = Ad,; € GL(g) is homomorphism of Lie groups and its differential
d(Ad) defines the adjoint representation of g on g:

ad: X €eg—adx = Adexth € g[(g)

"
dt lt=0
Since ¢y = Rexptx is the flow of X, we get

d
adxY = —

d
dt tZOAdexthY = @‘t:o ((Rexp(ftX))*Y)l = (LXY)l = [X, Y]

As an important special case of (3.3.9), we have

Adexp X = eadX

1

1
= I—i—adx+§ad§(+§ad§(—|—---

forall X € g.

3.5.2 Lemma For given X, Y € g, we have that [X,Y]| = 0 if and only if
expXexpY = expYexpX. In that case, exp(t(X +Y)) = exptXexptYy
forall t € R. It follows that a connected Lie group is Abelian if and only if its Lie
algebra is Abelian.

Proof. The first assertion is a special case of Proposition 1.6.23 using that
0t = Rexpix is the flow of X and ¢y = Rexp sy is the flow of Y. The second
one follows from noting thatboth ¢t — exp(t(X+Y))and t — exptX exptY
are one-parameter groups with initial speed X + Y. Finally, we have seen
that g is Abelian if and only if exp[g] is Abelian, but the latter generates G°.

O

3.5.3 Theorem Every connected Abelian Lie group G is isomorphic to R"™% x
T*. In particular, a simply-connected Abelian Lie group is isomorphic to R™ and
a compact connected Abelian Lie group is isomorphic to T™.
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Proof. 1t follows from Lemma 3.5.2 that g is Abelian and exp : g — G
is a homomorphism, where g = R" as a Lie group, thus exp is a smooth
covering by Lemma 3.4.4(c). Hence G is isomorphic to the quotient of R"
by the discrete group ker exp. O

3.6 Homogeneous manifolds

Let G be a Lie group and let H be a closed subgroup. Consider the set G/H
of left cosets of H in G equipped with the quotient topology with respect to
the projection 7 : G — G//H. Note also that left multiplication in G induces
amap A\ : G x G/H — G/H,namely, \(g,zH) = (gz)H, and that

(3.6.1) moLy=Agom
for all g € G, where \;(p) = A(g,p) forp € G/H.

3.6.2 Lemma A closed Lie subgroup H of a Lie group G must have the induced
topology.

Proof. We need to prove that the inclusion map ¢ : H — G is an embed-
ding. Since « commutes with left translations, it suffices to find an open sub-
set V of H such that the restriction ¢|y is an embedding into G. By the proof
of Theorem 3.3.5, there exists a distinguished chart (U, ¢ = (x1,...,2,)) of
G around 1 such that H N U consists of at most countably many plaques,
each plaque being a slice of the form

Li+1 = Ck+1y --+y Tn = Cn

for some ciy1,...,¢, € R, where k = dim H. Denote by 7 : R" = RF x
R"* — R"* the projection. Let U be a compact neighborhood of 1 con-
tained in U. Now H N U is compact, so 7(H N U) is a non-empty closed
countable subset of R"~* which by the Baire category theorem must have
an isolated point. This point specifies a isolated plaque V' of H in U along
which ¢ is an open mapping and hence a homeomorphism onto its image,
as desired. O

3.6.3 Theorem If G is a Lie group and H is a closed subgroup of G, then there
is a unique smooth structure on the topological quotient G /H such that X : G x
G/H — G/H is smooth. Moreover, = : G — G/H is a surjective submersion
and dim G/H = dim G — dim H.

Proof. For an open set V of G/H we have that 7~ 1(7(V)) = Ugec 9V
is a union of open sets and thus open. This shows that 7 is an open map
and hence the projection of a countable basis of open sets of G yields a
countable basis of open sets of G/H. To prove that G/H is Hausdorff, we
use closedness of H. Indeed it implies that the equivalence relation R C
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G x G, defined by specifying that g ~ ¢ if and only if g~1¢’ € H, is a closed
subset of G x G. Now if gH # ¢'H in G/H then (g,¢’) ¢ R and there exist
open neighborhoods W of g and W' of ¢’ in G such that (W x W/)NR = @.
It follows that 7(W) and 7(W') are disjoint neighborhoods of g and ¢’ in
G/ H, respectively.

We first construct a local chart of G/H around pg = 7(1) = 1H. Re-
call from Proposition 3.2.4 and (3.3.9) that the exponential map exp = exp®
gives a parametrization of G around the identity element and restricts to
the exponential map of . Denote the Lie algebras of G and H by g and b,
resp., and choose a complementary subspace m to h in g. We can choose a
product neighborhood of 0 in g of the form Uy x Vj;, where Uy is a neigh-
borhood of 0 in §, V; is a neighborhood of 0 in m such that the map

f:VoxUy— G, f(X,)Y)=expXexpY

is a diffeomorphism from onto its image (apply the Inverse Function Theo-
rem 1.3.8 to f). Owing to Lemma 3.6.2, H has the topology induced from G,
so we may choose a neighborhood W of 1 in G such that W N H = exp(Up).
We also shrink Vg so that (expVp) 'expVy € W. Now we claim that
moexp |y, is injective. Indeed, if m(exp X ) = w(exp X') for some X, X' € 1},
then (exp X) texp X' € HNW = exp(Up), so exp X’ = exp X expY for
some Y € Up. Since f is injective on Uy x Vj, this implies that X' = X
and Y = 0 and proves the claim. Note exp Vjexp Uy is open in G, so the
image m(exp Vp) = m(exp Vpexp Up) is open in G/H. We have shown that
7 o exp defines a homeomorphism from Vj onto the open neighborhood
V = 7w(exp V) of p in G/H, whose inverse can then be used to define a
local chart (V, ) of G/H around py.

Now the collection {(V'9,19)}4cc defines an atlas of G/H, where V9 =
gV and 99 = ¢po L -1, and we need to check the its smoothness. Suppose g,
¢ € G aresuch that VINVY +# @, and that p = (gexp X)H = (¢ exp X')H
is an element there, namely, 19(p) = X and ¢¢ (p) = X’. Then exp X’ =
(¢')"*gexp Xh € exp Vp for some h € H, so there exists a neighborhood V;
of X in Vj such that (¢')~'g(exp Vp)h C Vp, and thus 49 o (¢~")_1|‘~,0 can be
written as the composite map

TologoRp o Ly-14 0 exp,

where log denotes the inverse map of exp : Uy x Vo — exp(Up x V), and
7 : g — m denotes the projection along . Hence the change of charts
Y9 o (19)~1 is smooth.
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The local representation of 7 is 7 in the above charts is 7, namely, there
is a commutative diagram

T
gexpVpexpUy —— VY

f—l OLg_IJ/ TLgowoexp

Uy x Vg ——=W
T

which shows that 7 is a submersion. Similarly, the commutative diagram

GxgexplVg ———> G

] I

GxVI—>G/H
GXxV9
proves that A is smooth. The uniqueness of the smooth structure follows
from Proposition 3.6.4 below. O

Let M be a smooth manifold and let G be a Lie group. An action of G on
M isasmoothmap p : GXxM — M such that u(1,p) = pand u(g, A(¢',p)) =
u(gg',p) for all p € M and ¢, ¢ € G. For brevity of notation, in case fx is
fixed and clear from the context, we will simply write 1.(g, p) = gp.

An action of G is M is called transitive if for every p, g € M there exists
g € G such that gp = ¢. In this case, M is called homogeneous under G, G-
homogeneous, or simply a homogeneous manifold. Examples of homogeneous
manifolds are given by the quotients G/H, where H is closed Lie subgroup
of G, according to Theorem 3.6.3. Conversely, the next proposition that
every homogeneous manifold is of this form. For an action of G on M and
p € M, the isotropy group at p is the subgroup G, of G consisting of elements
that fix p, namely, G, = {g € G | gp = p }. Plainly, G, is a closed subgroup
of G, and so a Lie subgroup of G, owing to Theorem 3.7.1 below.

3.6.4 Proposition Let ;1 : G x M — M be a transitive action of a Lie group G
on a smooth manifold M. Fix po € M and let H = G, be the isotropy group at
po. Define a map

f:G/H =M, f(gH) = u(g,po)-
Then f is well-defined and a diffeomorphism.

Proof. It is easy to see that f is well-defined, bijective and smooth. We
can write f o m = w, where w : G — M is the “orbit map” w(g) = gpo. For
X € g, we have

dwi (X) = 4 (exp sX)po = d(exp(—sX)) d

ds l1s=0 @ t:s(exp tX)pm
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so X € kerdw if and only if exptX € H for all t € R if and only if X
belongs to the Lie algebra h of H, due to (3.3.10). Since dfi1g o dm = dw;
and ker dm; = b, this implies that f is an immersion at 1H, and thus an
immersion everywhere by the equivariance property f o Ay = g4 o f for
all g € G.

This already implies that dim G/H < dim M and that (G/H, f) is a sub-
manifold of M, but the strict inequality cannot hold as f is bijective and
the image of a smooth map from a smooth manifold into a strictly higher
dimensional smooth manifold has null measure (this result follows from
the statement that the image of a smooth map R" — R"* with k > 0 has
null measure, and the second countability of smooth manifolds). It follows
that f is a local diffeomorphism and hence a diffeomorphism. O

3.6.5 Examples (a) Let {ey,...,e,} be the canonical basis of R" and view
elements of R" as column-vectors (n x 1 matrices). Then GL(n,R) acts on
R" by left-multiplication:

(3.6.6) GL(n,R) x R" = R"

The basis {e;} is orthonormal with respect to the standard scalar product
in R". The orthogonal group O(n) precisely consists of those elements of
GL(n,R) whose action on R" preserves the lengths of vectors. In particu-
lar, the action (3.6.6) restricts to an action

(3.6.7) O(n) x §"~ 1 — gn~1

which is smooth, since S”~! is an embedded submanifold of R". The ac-
tion (3.6.7) is transitive due to the facts that any unit vector can be com-
pleted to an orthonormal basis of R", and any two orthonormal bases of
R" differ by an orthogonal transformation. The isotropy group of (3.6.7)
at e; consists of transformations that leave the orthogonal complement ei-
invariant, and indeed any orthogonal transformation of e = R™~! can oc-
cur. It follows that the isotropy group is isomorphic to O(n — 1) and hence

S =0(n)/O(n —1)

presents the unit sphere as a homogeneous space, where a the diffeomor-
phism is given by gO(n — 1) — g(e1). If we use only orientation-preserving
transformations on R", also the elements of the isotropy group will act by
orientation-preserving transformations and hence

S"1 = 80(n)/SO(n — 1).

(b) The group SO(n) also acts transtively on the set of lines through the
origin in R". Besides the orthogonal transformations of ei, the isotropy



80 CHAPTERS3. LIE GROUPS

group at the line Re; now also contains transformations that map e; to
—ej. It follows that
RP" =50(n)/O(n—1)

where O(n — 1) is identified with the subgroup of SO(n) consisting of ma-
trices of the form
detA 0
(55
where A € O(n —1).

(c) Let {eq,..., e} be the canonical basis of C". It is a unitary basis with
respect to the standard Hermitian inner product in C”. Similarly to (a), one
shows that U(n) and SU (n) act transitively on the set of unit vectors of C",
namely, the sphere S?"~!. More interesting is to consider the set CP" ! of

one-dimensional complex subspaces of C™. This set is homogeneous under
SU(n) and the isotorpy group at the line Ce; consists of matrices of the

form
(det A)~1 0
0 A

where A € U(n — 1). It follows from Theorem 3.6.3 that CP"~! is a smooth
manifold and
CP" 1 =S8U(n)/U(n—1)

as a homogeneous manifold.

(d) Let {ey,...,e,} be the canonical basis of R", and let V;(R") be the
set of orthonormal k-frames in R", that is, ordered k-tuples of orthonormal
vectors in R". There is an action

O(n) x Viz(R™) = V&x(R"™), g¢g-(v1,...,0k) = (gu1,...,gv%)

which is clearly transitive. The isotropy group at (e, ...,ex) is the sub-
group of O(n) consisting of matrices of the form

(3.6.8) ( é 31 >

where A € O(n — k). The resulting homogeneous space
Vi(R") = O(n)/O(n — k)

is called the Stiefel manifold of k-frames in R". Note that the restricted action
of SO(n) on Vi (R") is also transitive and

Ve(R") = SO(n)/SO(n — k).
3.7 Additional results

In this section, we state without proofs some important, additional results
about basic Lie theory, and add some remarks.
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Closed subgroups

3.7.1 Theorem Let G be a Lie group, and let A be a closed (abstract) subgroup of
G. Then A admits a unique manifold structure whch makes it into a Lie group;
moreover, the topology in this manifold structure must be the relative topology.

3.7.2 Corollary Let ¢ : G — H be a homomorphism of Lie groups. Then A =
ker ¢ is a closed Lie subgroup of G with Lie algebra a = ker de.

Proof. A'is a closed subgroup and hence a Lie subgroup of G by Theo-
rem 3.7.1. The rest follows from (3.3.9) and (3.3.10). O

Continuous homomorphisms

3.7.3 Theorem Let ¢ : G — H be a continuous homomorphism between Lie
groups. Then ¢ is smooth.

3.7.4 Definition A topological group is an abstract group equipped with a
topology such that the group operations are continuous maps.

3.7.5 Corollary A Hausdorff second countable locally Euclidean group G can
have at most one smooth structure making it into a Lie group.

Proof. Let [A] and [B] two such smooth structures on G. The identity
map (G, [A]) — (G, [B]) is a homomorphism and a homeomorphism, and
hence a diffeomorphism by Theorem 3.7.3. O

Hilbert’s fifth problem is the fifth mathematical problem posed by David
Hilbert in his famous address to the International Congress of Mathemati-
cians in 1900. One (restricted) interpretation of the problem in modern
language asks whether a connected (Hausdorff second countable) locally
Euclidan group admits a smooth structure which makes it into a Lie group.
In 1952, A. Gleason proved that a locally compact group satisfying the “no-
small subgroups” (NSS) condition (compare Problem 11) is a Lie group,
and then immediately afterwards Montgomery and Zippin used Gleason’s
result to prove inductively that locally Euclidean groups of any dimension
satisfy NSS. The two papers appeared together in the same issue of the An-
nals of Mathematics. Here one says that a topological group satisfies NSS
if there exists a neighborhood of the identity which contains no subgroups
other than the trivial group. (Actually, the above is not quite the full story;
Gleason assumed a weak form of finite dimensionality in his original ar-
gument that NSS implies Lie, but shortly thereafter Yamabe showed that
finite dimensionality was not needed in the proof.)



82 CHAPTERS3. LIE GROUPS

Theorem of Ado

A (real) representation of a Lie algebra g is a homomorphism ¢ : g —
gl(n, R); if, in addition, ¢ is injective, it is called a faithful representation.

A faithful representation of a Lie algebra g can be thought of a “linear
picture” of g and allows one to view g as a Lie algebra of matrices.

3.7.6 Theorem (Ado) Every Lie algebra admits a faithful representation.

3.7.7 Theorem There is a bijective correspondence between isomorphism classes
of Lie algebras and isomorphism classes of simply-connected Lie groups.

Proof. If g is a Lie algebra, then g is isomorphic to a Lie subalgebra of
gl(n,R) by Theorem 3.7.6. Owing to Theorem 3.3.5, there is a connected
Lie subgroup of GL(n,R) with Lie algebra g. Due to Theorem 3.4.1 and
Lemma 3.4.4(c), there is also a simply-connected Lie group with Lie alge-
bra g. Two simply-connected Lie groups with isomorphic Lie algebras are
isomorphic in view of Theorem 3.4.5. O

Theorem of Yamabe

3.7.8 Theorem (Yamabe) An arcwise connected subgroup of a Lie group is a Lie
subgroup.

3.7.9 Corollary Let G be a connected Lie group and let A and B be connected Lie
subgroups. Then the subgroup (A, B) generated by the commutators

S ={aba b7 : ac A, bec B}

is a Lie subgroup of G. In particular, the commutator of G, (G, G), is a Lie sub-
group of G.

Proof. As a continuous image of A x B, S is arcwise connected, and so
isT = SUS™ !, since SN S~ 5 1. As a continuous image of T x - x T
(n factors) also T is arcwise connected and hence so is (4, B) = U,>1T",
since it is an increasing union of arcwise connected subsets. The result
follows from Yamabe’s theorem 3.7.8. ]

3.7.10 Example In general, the subgroup (4, B) does not have to be closed
for closed connected subgroups A and B of G, even if G is simply-connected.
Indeed, take G to be the simply-connected covering of SL(4,R), and let a
and b be one-dimensional and respectively spanned by

0
0
0

V2

and

co oo
co o~
co oo
o~ oo
oo~ o
cocoo
cococo
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Then A and B are closed one-dimensional subgroups isomorphic to R but
their commutator is a dense line in a torus.

3.8 Problems

§3.1

1 Leta, B : (—¢,¢) — G be smooth curves in a Lie group G such that
a(0) = B(0) = 1, and consider (t) = a(t)5(t). Prove that 4(0) = &(0) +
3(0). (Hint: consider the multiplication map p : G x G — G and show that
dp(v,w) = du((v,0) + (0,w)) = v +w for v, w € T1G.)

2 a. Show that
SO(2):{< _a,b Z) ta, beR, a2+b2:1}.

Deduce that SO(2) is diffeomorphic to S?.
b. Show that

SU®:{<33§>:mB€QkW+WP:%.

Deduce that SU(2) is diffeomorphic to S3.

1 =z =z
H? = 01 vy |: zyzeR,.
0 0 1

a. Prove that H3 is closed under matrix multiplication and it has the
structure of a Lie group (the so called Heisenberg group).

b. Show that A = 300 B = a% + m%, = % are left-invariant vector
tields. Compute their Lie brackets.

c. Describe the Lie algebra of H®.

3 Let

4 Classify all real Lie algebras of dimension two and three.

5 LetG = O(n).
a. Show that G° C SO(n).
b. Prove that any element in SO(n) is conjugate in G to a matrix of the

form
Ry,
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where R; is the 2 x 2 block

cost —sint
sint cost
and tq,...,t, € R.

c. Deduce from the above that SO(n) is connected. Conclude that O(n)
has two connected components and SO(n) is the identity component.

§3.2
ox 0 —t\ [ cost —sint
PUt o ~ \ sint cost

7 Give examples of matrices A, B € gl(2, R) such that eA+5 £ e4eB.

6 Show that

fort € R.

8 In this problem, we show that the exponential map in a Lie group does
not have to be surjective.
a. Show that every element g in the image of exp : g — G has a square
root, namely, there is h € G such that h? = g.
b. Prove that trace A2 > —2 for any A € SL(2,R) (Hint: A satisfies its
characteristic polynomial X2 — 2(trace X)X + (det X)I = 0.)
c. Deduce from the above that _02 _O

exp : 5[(2,R) — SL(2,R).

1 ) does not lie in the image of
2

9 Let X € sl(2,R). Show that

cosh(— det X)1/2] + SmhCdet M2 v yg ot X < 0,

x (= de/tX)l/2
H 1/2
€” =19 cos(det X)V/2T + %x if det X > 0,
I+X if det X = 0.

10 (Polar decomposition of matrices)

a. Prove thatany g € GL(n, R) can be writtenas g = hk where h € O(n)
and £k is a positive-definite symmetric matrix.

b. Prove that the exponential map defines a bijection between the space
of real symmetric matrices and the set of real positive-definite sym-
metric matrices. (Hint: Prove it first for diagonal matrices.)

c. Deduce from the above that GL(n,R) is diffeomorphic to O(n) x

n(n+1)
2

11 Let G be a Lie group. Prove that it does not have small subgroups; i.e.,
prove the existence of an open neighborhood of 1 such that {1} is the only
subgroup of G entirely contained in U.
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12 For a connected Lie group, prove that the second-countability of its
topology is a consequence of the other conditions in the definition of a Lie
group. (Hint: Use Proposition 3.2.5).

§3.3

13 Check that

A B

A+iB € GL(n,C) — < B A

) € GL(2n,R)

defines an injective homomorphism ¢ of GL(n, C) onto a closed subgroup
of GL(2n, R). Check also that ¢ restricts to an injective homomorphism of
U(n) onto a closed subgroup of SO(2n).

14 Prove that a discrete normal subgroup of a connected Lie group is cen-
tral.

15 Determine the center of SU(n).

16 Construct a diffeomorphism between U(n) and S! x SU(n). Is it an
isomorphism of Lie groups?

§3.4

17 Consider G = SU(2) and its Lie algebra g = su(2).
a. Check that

_ i Y+ iz )
g_{<—y+iz Cir ) .:c,y,zGR}.

b. Identify g with R® and check that det : g — R corresponds to the
usual quadratic form on R3. Check also that Ad, preserves this quadratic
form forall g € G.

c. Deduce form the above that there is a smooth homomorphism SU(2) —
SO(3) which is the simply-connected covering of SO(3).

§3.5

18 Prove that the kernel of the adjoint representation of a connected Lie
group coincides with its center.

19 Let A be a connected subgroup of a connected Lie group G. Prove that
A is a normal subgroup of G if and only if the Lie algebra a of A is an ideal
of the Lie algebra g of G.

§3.6
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20 a. Let Gri(R") be the set of k-dimensional subspaces of R". Prove
that
Gri(R"™) = 50(n)/S(O(k) x O(n — k)).

This is called the Grassmann manifold of k-planes in R".
b. Consider now the set Gr;" (R") of oriented k-dimensional subspaces of
R", and prove that

Grx(R™) = SO(n)/SO(k) x SO(n — k).

This is called the Grassmann manifold of oriented k-planes in R".
c. Define the Grassmann manifold Gry(C"™) of k-planes in C" and prove
that

Gri(C") = Un)/[U(k) x Uln— k)
= SUn)/SWUk) x SU(n — k)).



