
C H A P T E R 2

Tensor fields and differential forms

2.1 Multilinear algebra

Let V be a real vector space. In this section, we construct the tensor algebra
T (V ) and the exterior algebra Λ(V ) over V . Elements of T (V ) are called
tensors on V . Later we will apply these constructions to the tangent space
TpM of a manifold M and let p vary in M , similarly to the definition of the
tangent bundle.

Tensor algebra

All vector spaces are real and finite-dimensional. Let V and W be vector
spaces. It is less important what the tensor product of V and W is than
what it does. Namely, a tensor product of V andW is a vector space V ⊗W
together with a bilinear map ι : V ×W → V ⊗W such that the following
universal property holds: for every vector space U and every bilinear map
B : V ×W → U , there exists a unique linear map B̃ : V ⊗W → U such that
B̃ ◦ ι = B.

V ⊗W

V ×W

ι
∧

B
> U

B̃
.....................>

There are different ways to construct V ⊗W . It does not actually matter
which one we choose, in view of the following exercise.

2.1.1 Exercise Prove that the tensor product of V and W is uniquely de-
fined by the universal property. In other words, if (V ⊗1W, ι1), (V ⊗2W, ι2)
are two tensor products, then there exists an isomorphism ℓ : V ⊗1 W →
V ⊗2 W such that ℓ ◦ ι1 = ι2.

We proceed as follows. Start with the canonical isomorphism V ∗∗ ∼= V
between V and its bidual. It says that we can view an element v in V as
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42 C H A P T E R 2. TENSOR FIELDS AND DIFFERENTIAL FORMS

the linear map on V ∗ given by f 7→ f(v). Well, we can extend this idea
and consider the space Bil(V,W ) of bilinear forms on V × W . Then there
is a natural map ι : V × W → Bil(V,W )∗ given by ι(v,w)(b) = b(v,w) for
b ∈ Bil(V,W ). We claim that (Bil(V,W )∗, ι) satisfies the universal property:
given a bilinear map B : V × W → U , there is an associated map U∗ →
Bil(V,W ), f 7→ f ◦B; let B̃ : Bil(V,W )∗ → U∗∗ = U be its transpose.

2.1.2 Exercise Check that B̃ ◦ ι = B.

2.1.3 Exercise Let {ei}, {fj} be bases of V , W , respectively. Define bij ∈
Bil(V,W ) to be the bilinear form whose value on (ek, fℓ) is 1 if (k, ℓ) = (i, j)
and 0 otherwise. Prove that {bij} is a basis of Bil(V,W ). Prove also that
{i(ei, fj)} is the dual basis of Bil(V,W )∗. Deduce that the image of ι spans
Bil(V,W )∗ and hence B̃ as in Exercise 2.1.2 is uniquely defined.

Now that V ⊗W is constructed, we can forget about its definition and
keep in mind its properties only (in the same way as when we work with
real numbers and we do not need to know that they are equivalence classes
of Cauchy sequences), namely, the universal property and those listed in
the sequel. Henceforth, we write v ⊗ w = ι(v,w) for v ∈ V and w ∈ W .

2.1.4 Proposition Let V andW be vector spaces. Then:
a. (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w;
b. v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗w2;
c. av ⊗ w = v ⊗ aw = a(v ⊗ w);

for all v, v1, v2 ∈ V ; w, w1, w2 ∈ W ; a ∈ R.

2.1.5 Proposition Let U , V and W be vector spaces. Then there are canonical
isomorphisms:

a. V ⊗W ∼= W ⊗ V ;
b. (V ⊗W )⊗ U ∼= V ⊗ (W ⊗ U);
c. V ∗ ⊗W ∼= Hom(V,W ); in particular, dimV ⊗W = (dimV )(dimW ).

2.1.6 Exercise Prove Propositions 2.1.4 and 2.1.5.

2.1.7 Exercise Let {e1, . . . , em} and {f1, . . . , fn} be bases for V and W , re-
spectively. Prove that {ei ⊗ fj : i = 1, . . . ,m and j = 1, . . . , n} is a basis
for V ⊗W .

2.1.8 Exercise LetA = (aij) be a realm×nmatrix, viewed as an element of
Hom(Rn,Rm). Use the canonical inner product in R

n to identify (Rn)∗ ∼=
R

n. What is the element of Rn ⊗R
m that corresponds to A?

Taking V = W and using Proposition 2.1.5(b), we can now inductively
form the tensor nth power ⊗nV = ⊗n−1V ⊗ V for n ≥ 1, where we adopt
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the convention that ⊗0V = R. The tensor algebra T (V ) over V is the direct
sum

T (V ) =
⊕

r,s≥0

V r,s

where
V r,s = (⊗rV )⊗ (⊗sV ∗)

is called the tensor space of type (r, s). The elements of T (V ) are called tensors,
and those of V r,s are called homogeneous of type (r, s). The multiplication ⊗,
read “tensor”, is theR-linear extension of

(u1 ⊗ · · · ⊗ ur1 ⊗ u∗1 ⊗ · · · ⊗ u∗s1)⊗ (v1 ⊗ · · · ⊗ vr2 ⊗ v∗1 ⊗ · · · ⊗ v∗s2)

= u1 ⊗ · · · ⊗ ur1 ⊗ v1 ⊗ · · · ⊗ vr2 ⊗ u∗1 ⊗ · · · ⊗ u∗s1 ⊗ v∗1 ⊗ · · · ⊗ v∗s2 .

T (V ) is a non-commutative, associative graded algebra, in the sense that
tensor multiplication is compatible with the natural grading:

V r1,s1 ⊗ V r2,s2 ⊂ V r1+r2,s1+s2 .

Note that V 0,0 = R, V 1,0 = V , V 0,1 = V ∗, so real numbers, vectors and
linear forms are examples of tensors.

Exterior algebra

Even more important to us will be a certain quotient of the subalgebra
T+(V ) =

⊕

k≥0 V
k,0 of T (V ). Let I be the two-sided ideal of T+(V ) gener-

ated by the set of elements of the form

(2.1.9) v ⊗ v

for v ∈ V .

2.1.10 Exercise Prove that another set of generators for I is given by the
elements of the form u⊗ v + v ⊗ u for u, v ∈ V .

The exterior algebra over V is the quotient

Λ(V ) = T+(V )/I.

The inducedmultiplication is denoted by ∧, and read “wedge” or “exterior
product”. In particular, the class of v1⊗· · ·⊗vk modulo I is denoted v1∧· · ·∧
vk. This is also a graded algebra, where the space of elements of degree k is

Λk(V ) = V k,0/I ∩ V k,0.

Since I is generated by elements of degree 2, we immediately get

Λ0(V ) = R and Λ1(V ) = V.

Λ(V ) is not commutative, but we have:
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2.1.11 Proposition α ∧ β = (−1)kℓβ ∧ α for α ∈ Λk(V ), β ∈ Λℓ(V ).

Proof. Since v ⊗ v ∈ I for all v ∈ V , we have v ∧ v = 0. Since R is not a
field of characteristic two, this relation is equivalent to v1 ∧ v2 = −v2 ∧ v1
for all v1, v2 ∈ V .

By linearity, we may assume that α = u1 ∧ · · · ∧ uk, β = v1 ∧ · · · ∧ vℓ.
Now

α ∧ β = u1 ∧ · · · ∧ uk ∧ v1 ∧ · · · ∧ vℓ

= −u1 ∧ · · · ∧ uk−1 ∧ v1 ∧ uk ∧ v2 · · · ∧ vℓ

= u1 ∧ · · · ∧ uk−1 ∧ v1 ∧ v2 ∧ uk ∧ v3 · · · ∧ vℓ

= · · ·

= (−1)ℓu1 ∧ · · · ∧ uk−1 ∧ v1 ∧ · · · ∧ vℓ ∧ uk

= (−1)2ℓu1 ∧ · · · ∧ uk−2 ∧ v1 ∧ · · · ∧ vℓ ∧ uk−1 ∧ uk

= · · ·

= (−1)kℓβ ∧ α,

as we wished. �

2.1.12 Lemma If dimV = n, then dimΛn(V ) = 1 and Λk(V ) = 0 for k > n.

Proof. Let {e1, . . . , en} be a basis of V . Since

(2.1.13) {ei1 ⊗ · · · ⊗ eik : i1, . . . , ik ∈ {1, . . . , n}}

is a basis of V k,0 (see Exercise 2.1.7), the image of this set under the pro-
jection V k,0 → Λk(V ) is a set of generators of Λk(V ). Taking into account
Proposition 2.1.11 yields Λk(V ) = 0 for k > n and that Λn(V ) is generated
by e1 ∧ · · · ∧ en, so we need only show that this element is not zero.

Suppose, on the contrary, that e1 ⊗ · · · ⊗ en ∈ I. Then e1 ⊗ · · · ⊗ en is
a linear combination of elements of the form α ⊗ v ⊗ v ⊗ β where v ∈ V ,
α ∈ V k,0, β ∈ V ℓ,0 and k + ℓ + 2 = n. Writing α (resp. β) in terms of the
basis (2.1.13), we may assume that the only appearing base elements are of
the form e1 ⊗ · · · ⊗ ek (resp. en−ℓ+1 ⊗ · · · ⊗ en). It follows that we can write

(2.1.14) e1 ⊗ · · · ⊗ en =
n−2∑

k=0

ck e1 ⊗ · · · ⊗ ek ⊗ vk ⊗ vk ⊗ ek+3 ⊗ · · · ⊗ en

where ck ∈ R and vk ∈ V for all k. Finally, write vk =
∑n

i=1 aikei for ak ∈ R.
Form = 0, . . . , n− 2, the coefficient of

e1 ⊗ · · · ⊗ em ⊗ em+2 ⊗ em+1 ⊗ em+3 ⊗ · · · ⊗ en

on the right hand side of (2.1.14) is

cm am+2,mam+1,m,
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thus zero. However, the coefficient of e1 ⊗ · · · ⊗ en on the right hand side is

n−2∑

k=0

ck ak+1,kak+2,k,

hence also zero, a contradiction. �

2.1.15 Proposition If {e1, . . . , en} be a basis of V , then

{ei1 ∧ · · · ∧ eik : i1 < · · · < ik}

is a basis of Λk(V ) for all 0 ≤ k ≤ n; in particular, dimΛk(V ) =
(
n
k

)
.

Proof. Fix k ∈ {0, . . . , n}. The above set is clearly a set of generators of
Λk(V ) and we need only show linear independence. Suppose

∑

ai1···ikei1 ∧ · · · ∧ eik = 0,

which we write as
∑

aIeI = 0

where the I denotes increasing k-multi-indices, and e∅ = 1. Multiply
through this equation by eJ , where J is an increasing n − k-multi-index,
and note that eI ∧ eJ = 0 unless I is the multi-index Jc complementary
to J , in which case eJc ∧ eJ = ±e1 ∧ · · · ∧ en. Since e1 ∧ · · · ∧ en 6= 0 by
Lemma 2.1.12, this shows that aI = 0 for all I . �

2.2 Tensor bundles

Cotangent bundle

In the same way as the fibers of the tangent bundle of M are the tangent
spaces TpM for p ∈ M , the fibers of the cotangent bundle of M will be the
dual spaces TpM

∗. Indeed, form the disjoint union

T ∗M =
⋃̇

p∈M
TpM

∗.

There is a natural projection π∗ : T ∗M → M given by π(τ) = p if τ ∈ TpM
∗.

Recall that every local chart (U,ϕ) of M induces a local chart ϕ̃ : π−1(U) →
R

n×R
n = R

2n of TM , where ϕ̃(v) = (ϕ(π(v)), dϕ(v)), and thus a map ϕ̃∗ :
(π∗)−1(U) → R

n × (Rn)∗ = R
2n, ϕ̃∗(τ) = (ϕ(π∗(τ)), ((dϕ)∗)−1(τ)), where

(dϕ)∗ denotes the transpose map of dϕ and we have identified R
n = R

n∗

using the canonical Euclidean inner product. The collection

(2.2.1) {((π∗)−1(U), ϕ̃∗) | (U,ϕ) ∈ A},
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for an atlasA ofM , satisfies the conditions of Proposition 1.2.10 and defines
a Hausdorff, second-countable topology and a smooth structure on T ∗M
such that π∗ : TM → M is smooth.

A section of T ∗M is a map ω : M → T ∗M such that π∗ ◦ ω = idM .
A smooth section of T ∗M is also called a differential form of degree 1 or dif-
ferential 1-form. For instance, if f : M → R is a smooth function then
dfp : TpM → R is an element of TpM

∗ for all p ∈ M and hence defines a
differential 1-form df onM .

If (U, x1, . . . , xn) is a system of local coordinates on M , the differentials
dx1, . . . , dxn yield local smooth sections of T ∗M that form the dual basis to
∂

∂x1
, . . . , ∂

∂xn
at each point (recall (1.3.7)). Therefore any section ω of T ∗M

can be locally written as ω|U =
∑n

i=1 aidxi, and one proves similarly to
Proposition 1.6.4 that ω is smooth if and only if the ai are smooth functions
on U , for every coordinate system (U, x1, . . . , xn).

2.2.2 Exercise Prove that the differential of a smooth function onM indeed
gives a a smooth section of T ∗M by using the atlas (2.2.1).

Tensor bundles

We now generalize the construction of the tangent and cotangent bundles
using the notion of tensor algebra. LetM be a smooth manifold. Set:

T r,s(M) =
⋃

p∈M(TpM)r,s tensor bundle of type (r, s) over M ;

Λk(M) =
⋃

p∈M Λk(TpM
∗) exterior k-bundle over M ;

Λ(M) =
⋃

p∈M Λ(TpM
∗) exterior algebra bundle over M .

Then T r,s(M), Λk(M) and Λ(M) admit natural structures of smooth man-
ifolds such that the projections onto M are smooth. If (U, x1, . . . , xn) is a
coordinate system on M , then the bases { ∂

∂xi
|p}

n
i=1 of TpM and {dxi|p}

n
i=1

of TpM
∗, for p ∈ U , define bases of (TpM)r,s, Λk(TpM

∗) and Λ(TpM). For
instance, a section ω of Λk(M) can be locally written as

(2.2.3) ω|U =
∑

i1<···<ik

ai1···ikdxi1 ∧ · · · ∧ dxik ,

where the ai1,...,ik are functions on U .

2.2.4 Exercise Check that T 1,0(M) = TM , T 0,1(M) = T ∗M = Λ1(M)
and Λ0(M) = M ×R.

The smooth sections of T r,s(M), Λk(M), Λ∗(M) are respectively called
tensor fields of type (r, s), differential k-forms, differential forms on M . For in-
stance, a section ω of Λk(M) is a differential k-form if and only if the func-
tions ai in all its local representations (2.2.3) are smooth.
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We will denote the space of differential k-forms on M by Ωk(M) and
the space of all differential forms on M by Ω∗(M). Note that Ω∗(M) is a
graded algebra over R with wedge multiplication and a module over the
ring C∞(M).

It follows from Problems 4 and 7(a) that a differential k-form ω on M
is an object that, at each point p ∈ M , yields a map ωp that can be evalu-
ated on k tangent vectors v1, . . . , vk at p to yield a real number, with some
smoothness assumption. The meaning of the next proposition is that we
can equivalently think of ω as being an object that, evaluated at k vector
fieldsX1, . . . ,Xk yields the smooth function

ω(X1, . . . ,Xk) : p 7→ ωp(X1(p), . . . ,Xk(p)).

We first prove a lemma.
Hereafter, it shall be convenient to denote theC∞(M)-module of smooth

vector fields onM by X(M).

2.2.5 Lemma Let

ω : X(M) × · · · × X(M)
︸ ︷︷ ︸

k factors

→ C∞(M)

be a C∞(M)-multilinear map. Then the value of ω(X1, . . . ,Xk) at any given
point p depends only on the values of X1, . . . ,Xk at p.

Proof. For simplicity of notation, let us do the proof for k = 1; the case
k > 1 is similar. We first show that if X|U = X ′|U for some open subset U
of M , then ω(X)|U = ω(X ′)|U . Indeed let p ∈ U be arbitrary, take an open
neighborhood V of p such that V̄ ⊂ U and a smooth function λ ∈ C∞(M)
with λ|V̄ = 1 and suppλ ⊂ U (Exercise 1.5.1). Then

ω(X)(p) = λ(p)ω(X)(p)

= (λ(ω(X)))(p)

= ω(λX)(p)

= ω(λX ′)(p)

= λ(ω(X ′)))(p)

= λ(p)ω(X ′)(p)

= ω(X ′)(p),

where in the third and fifth equalities we have used C∞(M)-linearity of ω,
and in the fourth equality we have used that λX = λX ′ as vector fields
onM .

Finally, we prove that ω(X)(p) depends only on X(p). By linearity, it
suffices to prove that X(p) = 0 implies ω(X)(p) = 0. Let (W,x1, . . . , xn)
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be a coordinate system around p and write X|W =
∑n

i=1 ai
∂
∂xi

for ai ∈
C∞(W ). By assumption, ai(p) = 0 for all i. Let λ be a smooth function on
M with support contained in W and such that it is equal to 1 on an open
neighborhood U of p with Ū ⊂ W . Define also

X̃i =

{
λ ∂
∂xi

onW

0 onM \ Ū
and ãi =

{
λai onW
0 onM \ Ū .

Then X̃ :=
∑n

i=1 ãiX̃i is a globally defined smooth vector field on M such
that X̃|U = X|U and we can apply the result in the previous paragraph to
write

ω(X)(p) = ω(X̃)(p)

=

(
n∑

i=1

ãiω(X̃i)

)

(p)

=

n∑

i=1

ãi(p)ω(X̃i)(p)

= 0

because ãi(p) = ai(p) = 0 for all i. �

2.2.6 Proposition Ω∗(M) is canonically isomorphic as a C∞(M)-module to the
C∞(M)-module of alternating C∞(M)-multilinear maps

(2.2.7) X(M)× · · · ×X(M)
︸ ︷︷ ︸

k factors

→ C∞(M)

Proof. Let ω ∈ Ωk(M). Then ωp ∈ Λk(TpM
∗) ∼= Λk(TpM)∗ ∼= Ak(TpM)

for every p ∈ M , owing to Problems 4 and 7(a), namely, ωp can be consid-
ered to be an alternating k-multilinear form on TpM . Therefore, for vector
fieldsX1, . . . ,Xk on M ,

ω̃(X1, . . . ,Xk)(p) := ωp(X1(p), . . . ,Xk(p))

defines a smooth function on M , ω̃(X1, . . . ,Xk) is C∞(M)-linear in each
argumentXi, thus ω̃ is an alternating C∞(M)-multilinear map as in (2.2.7).

Conversely, let ω̃ be a C∞(M)-multilinear map as in (2.2.7). Due to
Lemma 2.2.5, we have ω̃p ∈ Ak(TpM) ∼= Λk(TpM

∗), namely, ω̃ defines a
section ω of Λk(M): given v1, . . . , vk ∈ TpM , choose X1, . . . ,Xk ∈ X(M)
such thatXi(p) = vi for all i and put

ωp(v1, . . . , vk) := ω̃(X1, . . . ,Xk)(p).

The smoothness of the section ω follows from the fact that, in a coordinate
system (U, x1, . . . , xn), we can write ω|U =

∑

i1<···<ik
ai1···ikdxi1 ∧ · · · ∧ dxik
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where ai1···ik(q) = ωq(
∂

∂xi1

∣
∣
q
, . . . , ∂

∂xik

∣
∣
q
) = ω̃( ∂

∂xi1

, . . . , ∂
∂xik

)(q) for all q ∈ U ,

and thus ai1···ik ∈ C∞(U). It follows that ω is a differential k-form onM . �

Henceforth we will not distinguish between differential k-forms and
alternating multilinear maps (2.2.7). Similarly to Proposition 2.2.6:

2.2.8 Proposition The C∞(M)-module of tensor fields of type (r, s) on M is
canonically isomorphic to the C∞(M)-module of C∞(M)-multilinear maps

Ω1(M)× · · · × Ω1(M)
︸ ︷︷ ︸

r factors

×X(M)× · · · × X(M)
︸ ︷︷ ︸

s factors

→ C∞(M).

2.3 The exterior derivative

Recall that Λ0(M) = M × R, so a smooth section of this bundle is a map
M → M × R of the form p 7→ (p, f(p)) where f ∈ C∞(M). This shows
that Ω0(M) ∼= C∞(M). Furthermore, we have seen that the differential
of f ∈ C∞(M) can be viewed as a differential 1-form df ∈ Ω1(M), so we
have an operator C∞(M) → Ω1(M), f 7→ df . In this section, we extend
this operator to an operator d : Ω∗(M) → Ω∗(M), called exterior derivative,
mapping Ωk(M) to Ωk+1(M) for all k ≥ 0. It so happens that d plays an
extremely important rôle in the theory of smooth manifolds.

2.3.1 Theorem There exists a unique R-linear operator d : Ω∗(M) → Ω∗(M)
with the following properties:

a. d
(
Ωk(M)

)
⊂ Ωk+1(M) for all k ≥ 0 (d has degree +1);

b. d(ω ∧ η) = dω ∧ η + (−1)k ω ∧ dη for every ω ∈ Ωk(M), η ∈ Ωℓ(M)
(d is an anti-derivation);

c. d2 = 0;
d. df is the differential of f for every f ∈ C∞(M) ∼= Ω0(M).

Proof. We start with uniqueness, so let d be as in the statement. The first
case is when M is a coordinate neighborhood (U, x1, . . . , xn). Then any
ω ∈ Ωk(U) can be written as ω =

∑

I aIdxI , where I runs over increasing
multi-indices (i1, . . . , ik) and aI ∈ C∞(U), and we get

dω =
∑

I

d(aI dxi1 ∧ · · · ∧ dxik) (by R-linearity)

=
∑

I

d(aI) ∧ dxi1 ∧ · · · ∧ dxik

+
k∑

r=1

(−1)r−1 aI dxi1 ∧ · · · ∧ d(dxir ) ∧ · · · ∧ dxik (by (b))(2.3.2)

=
∑

I

n∑

r=1

∂aI
∂xr

dxr ∧ dxi1 ∧ · · · ∧ dxik (by (c) and (d).)
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Next we go to the case of a general manifold M and show that d is a
local operator, in the sense that (dω)|U = 0 whenever ω|U = 0 and U is an
open subset of M . So assume ω|U = 0, take an arbitrary point p ∈ U , and
choose λ ∈ C∞(M) such that 0 ≤ λ ≤ 1, λ is flat equal to 1 on M \ U and
has support disjoint from V̄ , where V is a neighborhood of p with V̄ ⊂ U .
Then ω = λω on the entireM so that, using (b) we get

(dω)p = d(λω)p = dλp ∧ ωp
︸︷︷︸

=0

+λ(p)
︸︷︷︸

=0

dωp = 0,

as wished.

To continue, we verify that d induces an operator dU on Ω∗(U) satis-
fying (a)-(d) for every open subset U of M . So given ω ∈ Ωk(U) and
p ∈ U , construct ω̃ ∈ Ωk(M) which coincides with ω on a neighborhood
V of p with V̄ ⊂ U , as usual by means of a bump function, and define
(dUω)p := (dω̃)p. The definition is independent of the chosen extension,
as d is a local operator. It is easy to check that dU indeed satisfies (a)-(d);
for instance, for (b), note that ω̃ ∧ η̃ is an extension of ω ∧ η and hence
dU (ω ∧ η)p = (d(ω̃ ∧ η̃))p = (dω̃)p ∧ η̃p + (−1)degω̃ω̃p ∧ (dη̃)p = (dUω)p ∧
ηp + (−1)degωωp ∧ (dUη)p. Note also that the collection {dU} is natural with
respect to restrictions, in the sense that if U ⊂ V are open subsets of M then
dV |U = dU .

Finally, for ω ∈ Ω∗(M) and a coordinate neighborhood (U, x1, . . . , xn),
on one hand dU (ω|U ) is uniquely defined by formula (2.3.2). On the other
hand, ω itself is an extension of ω|U , and hence (dω)p = (dU (ω|U ))p for
every p ∈ U . This proves that dω is uniquely defined.

To prove existence, we first use formula (2.3.2) to define an R-linear
operator dU onΩk(U) for every coordinate neighborhoodU ofM . It is clear
that dU satisfies (a) and (d); let us prove that it also satisfies (b) and (c). So
let ω =

∑

I aIdxI ∈ Ωk(U). Then dUω =
∑

I daI ∧ dxI and

d2Uω =
∑

I,r

dU

(
∂aI
∂xr

dxr ∧ dxI

)

=
∑

I,r,s

∂2aI
∂xs∂xr

dxs ∧ dxr ∧ dxI

= 0,
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since
∂2aI

∂xs∂xr
is symmetric and dxs∧dxr is skew-symmetric in r, s. Let also

η =
∑

J bJdxJ . Then ω ∧ η =
∑

I,J aIbJdxI ∧ dxJ and

dU (ω ∧ η) =
∑

I,J

dU (aIbJdxI ∧ dxJ )

=
∑

I,J,r

∂aI
∂xr

bJdxr ∧ dxI ∧ dxJ +
∑

I,J,s

aI
∂bJ
∂xs

dxs ∧ dxI ∧ dxJ

=




∑

I,r

∂aI
∂xr

dxr ∧ dxI



 ∧

(
∑

J

bJdxJ

)

+(−1)|I|

(
∑

I

aIdxI

)

∧




∑

J,s

∂bJ
∂xs

dxs ∧ dxJ





= dUω ∧ η + (−1)degωω ∧ dUη,

where we have used Proposition 2.1.11 in the third equality to write dxs ∧
dxI = (−1)|I|dxI ∧ dxs.

We finish by noting that the operators dU for each coordinate system U
of M can be pieced together to define a global operator d. Indeed for two
coordinate systemsU and V , the operators dU and dV induce two operators
on Ω∗(U ∩ V ) satisfying (a)-(d) by the remarks above which must coincide
by the uniqueness part. Note also that the resulting d satisfies (a)-(d) since
it locally coincides with some dU . �

2.3.3 Remark We have constructed the exterior derivative d as an operator
between sections of vector bundles which, locally, is such that the local
coordinates of dω are linear combinations of partial derivatives of the local
coordinates of ω (cf. 2.3.2). For this reason, d is called a differential operator.

Pull-back

A nice feature of differential forms is that they can always be pulled-back
under a smooth map. In contrast, the push-forward of a vector field under
a smooth map need not exist if the map is not a diffeomorphism.

Let f : M → N be a smooth map. The differential dfp : TpM → Tf(p)

at a point p in M has a transpose map (dfp)
∗ : Tf(p)N

∗ → TpM
∗ and there

is an induced algebra homomorphism δfp := Λ((dfp)
∗) : Λ(Tf(p)N

∗) →
Λ(TpM

∗) (cf. Problem 6). For varying p ∈ M , this yields map δf : Λ∗(N) →
Λ∗(M). Recall that a differential form ω on N is a section of Λ∗(N). The
pull-back of ω under f is the section of Λ∗(M) given by f∗ω = δf ◦ ω ◦ f , so
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that the following diagram is commutative:

Λ∗(M) <
δf

Λ∗(N)

M

f∗ω
∧

f
> N

ω
∧........

(We prove below that f∗ω is smooth, so that it is in fact a differential form
on M . This fact would also follow from the formula f∗ω = δf ◦ ω ◦ f if we
checked that δf is a smooth.) In more detail, we have

(f∗ω)p = δf(ωf(p))

for all p ∈ M . In particular, if ω is a k-form, then (f∗ω)p ∈ Λk(TpM
∗) =

Λk(TpM)∗ = Ak(TpM) and

(2.3.4) (f∗ω)p(v1, . . . , vk) = ωf(p)(dfp(v1), . . . , dfp(vk))

for all v1, . . . , vk ∈ TpM .

2.3.5 Exercise Let f : M → N be a smooth map.
a. In the case of 0-forms, that is smooth functions, check that f∗(g) =

g ◦ f for all g ∈ Ω0(N) = C∞(N).
b. In the case ω = dg ∈ Ω1(N) for some g ∈ C∞(N), check that f∗(dg) =

d(g ◦ f).

2.3.6 Proposition Let f : M → N be a smooth map. Then:
a. f∗ : Ω∗(N) → Ω∗(M) is a homomorphism of algebras;
b. d ◦ f∗ = f∗ ◦ d;
c. (f∗ω)(X1, . . . ,Xk)(p) = ωf(p)(df(X1(p)), . . . , df(Xk(p))) for all ω ∈

Ω∗(N) and all X1, . . . ,Xk ∈ X(M).

Proof. Result (c) follows from (2.3.4). The fact that f∗ is compatible
with the wedge product is a consequence of Problem 6(b) applied to local
expressions of the form (2.2.3). For (a), it only remains to prove that f∗ω is
actually a smooth section of Λ∗(M) for a differential form ω ∈ Ω∗(M). So
let p ∈ M , choose a coordinate system (V, y1, . . . , yn) of N around f(p) and
a neighborhood U of p in M with f(U) ⊂ V . Since f∗ is linear, we may
assume that ω is a k-form. As ω is smooth, we can write

ω|V =
∑

I

aIdyi1 ∧ · · · ∧ dyik .

It follows from Exercise 2.3.5 that

(2.3.7) f∗ω|U =
∑

I

(aI ◦ f) d(yi1 ◦ f) ∧ · · · ∧ d(yik ◦ f),
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which indeed is a smooth form on U . Finally, (b) is proved using (2.3.7):

d(f∗ω)p = d

(
∑

I

(aI ◦ f) d(yi1 ◦ f) ∧ · · · ∧ d(yik ◦ f)

)
∣
∣
∣
p

=
∑

I

(d(aI ◦ f) ∧ d(yi1 ◦ f) ∧ · · · ∧ d(yik ◦ f)) |p

= f∗

(
∑

I

daI ∧ dyi1 ∧ · · · ∧ dyik

)
∣
∣
∣
p

= f∗(dω)p,

as desired. �

2.4 The Lie derivative of tensors

In section 1.6, we defined the Lie derivative of a smooth vector field Y on
M with respect to another smooth vector field X by using the flow {ϕt} of
X to identify different tangent spaces of M along an integral curve of X.
The same idea can be used to define the Lie derivative of a differential form
ω or tensor field S with respect to X. The main point is to understand the
action of {ϕt} on the space of differential forms or tensor fields.

So let {ϕt} denote the flow of a vector field X on M , and let ω be a
differential form on M . Then the pull-back ϕ∗

tω is a differential form and
t 7→ (ϕ∗

tω)p is a smooth curve in Λ(TpM
∗), for all p ∈ M . The Lie derivative

of ω with respect toX is the section LXω of Λ(M) given by

(2.4.1) (LXω)p =
d

dt

∣
∣
∣
t=0

(ϕ∗
tω)p.

We prove below that LXω is smooth, so it indeed yields a differential form
on M . In view of (2.3.4), it is clear that the Lie derivative preserves the
degree of a differential form.

We extend the definition of Lie derivative to an arbitrary tensor field S
of type (r, s) as follows. Suppose

Sϕt(p) = v1 ⊗ · · · ⊗ vr ⊗ v∗1 ⊗ · · · ⊗ v∗s .

Then we define (ϕ∗
tS)p ∈ (TpM)r,s to be

dϕ−t(v1)⊗ · · · ⊗ dϕ−t(vr)⊗ δϕt(v
∗
1)⊗ · · · ⊗ δϕt(v

∗
s)

and put

(2.4.2) (LXS)p =
d

dt

∣
∣
∣
t=0

(ϕ∗
tS)p.
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One can view definition 2.4.1 as the operator in the quotient obtained from
definition 2.4.2 in the sense that the exterior algebra is a subquotient of the
tensor algebra.

Before stating properties of the Lie derivative, it is convenient to intro-
duce two more operators. ForX ∈ X(M) and ω ∈ Ωk+1(M) with k ≥ 0, the
interior multiplication ιXω ∈ Ωk(M) is the k-differential form given by

ιXω(X1, . . . ,Xk) = ω(X,X1, . . . ,Xk)

for X1, . . . ,Xk ∈ X(M), and ιX is zero on 0-forms.

2.4.3 Exercise Prove that ιXω is indeed a smooth section of Λk−1(M) for
ω ∈ Ωk(M). Prove also that ιX is an anti-derivation in the sense that

ιX(ω ∧ η) = ιXω ∧ η + (−1)kω ∧ ιXη

for ω ∈ Ωk(M) and η ∈ Ωℓ(M). (Hint: For the last assertion, it suffices to
check the identity at one point.)

Let V be a vector space. The contraction ci,j : V r,s → V r−1,s−1 is the
linear map that operates on basis vectors as

v1 ⊗ · · · ⊗ vr ⊗ v∗1 ⊗ · · · ⊗ v∗s

7→ v∗j (vi) v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vr ⊗ v∗1 ⊗ · · · v̂∗j ⊗ · · · ⊗ v∗s .

It is easy to see that ci,j extends to a map T r,s(M) → T r−1,s−1(M).

2.4.4 Exercise Let V be a vector space. Recall the canonical isomorphism
V 1,1 ∼= Hom(V, V ) = End(V ) (Proposition 2.1.5). Check that c1,1 : V 1,1 →
V 0,0 is the trace map tr : End(V ) → R.

2.4.5 Proposition Let X be a smooth vector field on M . Then:
a. LXf = X(f) for all f ∈ C∞(M).
b. LXY = [X,Y ] for all X ∈ X(M).
c. LX is a type-preservingR-linear operator on the space T (M) of tensor fields

on M .
d. LX : T (M) → T (M) is a derivation, in the sense that

LX(S ⊗ S′) = (LXS)⊗ S′ + S ⊗ (LXS′)

e. LX : T (M) → T (M) commutes with contractions:

LX(c(S)) = c(LXS)

for any contraction c : T r,s(M) → T r−1,s−1(M).
f . LX is a degree-preservingR-linear operator on the space of differential forms

Ω(M) which is a derivation and commutes with exterior differentiation.



2.4. THE LIE DERIVATIVE OF TENSORS 55

g. LX = ιX ◦ d+ d ◦ ιX on Ω(M) (Cartan’s magical formula)
h. For ω ∈ Ωk(M) andX0, . . . ,Xk ∈ X(M), we have:

LX0
ω(X1, . . . ,Xk) = X0(ω(X1, . . . ,Xk))

−

k∑

i=1

ω(X1, . . . ,Xi−1, [X0,Xi],Xi+1, . . . ,Xk).

i. Same assumption as in (h), we have:

dω(X0, . . . ,Xk) =

k∑

i=0

(−1)iXiω(X0, . . . , X̂i, . . . ,Xk)

+
∑

i<j

(−1)i+jω([Xi,Xj ],X0, . . . , X̂i, . . . , X̂j , . . . ,Xk).

Proof. (a) follows from differentiation of (ϕ∗
t f)p = f(ϕt(p)) at t = 0.

(b) was proved in section 1.6. The type-preserving part of (c) is clear from
the definition. For (d), differentiate the obvious formula ϕ∗

t (S ⊗ S′)|p =
(ϕ∗

tS)p ⊗ (ϕ∗
tS

′)p at t = 0; the derivation property follows using the fact
that tensor multiplication is R-bilinear. Smoothness of LXS as a section of
T r,s(M) is proved noting that LX is a local operator and expressingLXS in
a system of local coordinates, see below for the analogous argument in the
case of differential forms. This covers (c) and (d).

(e) follows from the easily checked fact that ϕ∗
t commutes with con-

tractions. As a consequence, which we will use below, if ω ∈ Ω1(M) and
Y ∈ X(M) then ω(Y ) = c(Y ⊗ ω) so

X(ω(Y )) = LX(c(Y ⊗ ω)) (using (a))

= c(LX(Y ⊗ ω))

= c(LXY ⊗ ω + Y ⊗ LXω) (using (d))

= ω([X,Y ]) + LXω(Y ) (using (b));

in other words,

(2.4.6) LXω(Y ) = X(ω(Y ))− ω([X,Y ]).

For (f), we first remark that LX is a derivation as a map from Ω(M) to
non-necessarily smooth sections of Λ(M): this is a pointwise check, and
follows from the fact that (ϕt)

∗ defines an automorphism of the algebra
Ω(M). Next, check that LX commutes with d on functions using (2.4.6):

LX(df)(Y ) = X(df(Y ))− df([X,Y ])

= X(Y (f))− [X,Y ](f)

= Y (X(f))

= d(X(f))(Y )

= d(LXf)(Y )
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for all f ∈ C∞(M) and Y ∈ X(M). To continue, note that LX is a local oper-
ator: formula (2.4.1) shows that LXω|U depends only on ω|U , for any open
subset U of M , and the same applies for (2.4.1). Finally, to see that LXω is
smooth for any ω ∈ Ω(M), we may assume that ω has degree k and work
in a coordinate system (U, x1, . . . , xn), where ω has a local representation as
in (2.2.3). Using the above collected facts:

LXω|U =
∑

i1<···<ik

X(ai1···ik) dxi1 ∧ · · · ∧ dxik

+
k∑

j=1

ai1···ikdxi1 ∧ · · · ∧ d(X(xij )) ∧ · · · ∧ dxik

as wished. This formula can also be used to show that LX commutes with
d in general.

To prove (g), let PX = d◦ιX+ιX◦d. ThenPX andLX are local operators,
derivations of Ω(M), that coincide on functions and commmute with d.
Since any differential form is locally a sum of wedge products of functions
and differentials of functions, it follows that LX = PX .

The case k = 1 in (h) is formula (2.4.6). The proof for k > 1 is completely
analogous.

Finally, (i) is proved by induction on k. The initial case k = 0 is imme-
diate. Assuming (i) holds for k − 1, one proves it for k by starting with (h)
and using (g) and the induction hypothesis. �

2.4.7 Exercise Carry out the calculations to prove (h) and (i) in Proposi-
tion 2.4.5.

2.5 Vector bundles

The tangent, cotangent and and all tensor bundles we have constructed so
far are smooth manifolds of a special kind in that they have a fibered struc-
ture over another manifold. For instance, TM fibers over M so that the
fiber over any point p in M is the tangent space TpM . Moreover, there is
some control on how the fibers vary with the point. In case of TM , this
is reflected on the way a chart (π−1(U), ϕ̃) is constructed from a given
chart (U,ϕ) of M . Recall that ϕ̃ : π−1(U) → R

n × R
n where ϕ̃(v) =

(ϕ(π(v)), dϕ(v)). So ϕ̃ induces a diffeomorphism ∪p∈UTpM → ϕ(U) × R
n

so that each fiber TpM is mapped linearly and isomorphically onto {ϕ(p)}×
R

n. We could also compose this mapwith ϕ−1× id to get a diffeomorphism

TM |U := ∪p∈UTpM → ϕ(U) ×R
n → U ×R

n.

Of course each TpM is abstractly isomorphic to R
n, where n = dimM ,

but here we are saying that the part of TM consisting of fibers lying over
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points in U is diffeomorphic to a product U ×R
n in such a way that TpM

corresponds to {p} ×R
n. This is the idea of a vector bundle.

2.5.1 Definition A (smooth) vector bundle of rank k over a smooth man-
ifold M is a smooth manifold E, called the total space, together with a
smooth projection π : E → M such that:

a. Ep := π−1(p) is a vector space of dimension k for all p ∈ M ;
b. M can be covered by open sets U such that there exists a diffeomor-

phism E|U = π−1(U) → U ×R
k mapping Ep linearly and isomorphi-

cally onto {p} ×R
k for all p ∈ U .

The trivial vector bundle of rank k over M is the direct product M ×R
k

with the projection onto the first factor. A vector bundle of rank k = 1 is
also called a line bundle.

An equivalent definition of vector bundle, more similar in spirit to the
definition of smooth manifold, is as follows.

2.5.2 Definition A (smooth) vector bundle of rank k over a smooth mani-
foldM is a setE, called the total space, togetherwith a projection π : E → M
with the following properties:

a. M admits a covering by open sets U such that there exists a bijection
ϕU : E|U = π−1(U) → U × R

k satisfying π = π1 ◦ ϕU , where π1 :
U ×R

k → U is the projection onto the first factor. Such a ϕU is called
a local trivialization.

b. Given local trivializations ϕU , ϕV with U ∩V 6= ∅, the change of local
trivialization or transition function

ϕU ◦ ϕ−1
V : (U ∩ V )×R

k → (U ∩ V )×R
k

has the form
(x, a) 7→ (x, gUV (x)a)

where
gUV : U ∩ V → GL(k,R)

is smooth.

2.5.3 Exercise Prove that the family of transition functions {gUV } in Defi-
nition 2.5.2 satisfies the cocycle conditions:

gUU (x) = id (x ∈ U )

gUV (x)gV W (x)gWU (x) = id (x ∈ U ∩ V ∩W )

2.5.4 Exercise LetM be a smooth manifold.
a. Prove that for a vector bundle π : E → M as in Definition 2.5.2, the

total space E has a natural structure of smooth manfifold such that π
is smooth and the local trivializations are diffeomorphisms.
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b. Prove that Definitions 2.5.1 and 2.5.2 are equivalent.

2.5.5 Example In this example, we construct a very important example of
vector bundle which is not a tensor bundle, called the tautological (line) bun-
dle over RPn. Recall that a point p in real projective space M = RPn is a
1-dimensional subspace of Rn+1 (Example 1.2.9). Set E = ∪̇p∈MEp where
Ep is the subspace of R

n+1 corresponding to p, namely, Ep consists of vec-
tors v ∈ R

n+1 such that v ∈ p. Let π : E → M map Ep to p. We will prove
that this is a smooth vector bundle by constructing local trivializations and
using Definition 2.5.2. Recall the atlas {ϕi}

n+1
i=1 of Example 1.2.9. Set

ϕ̃i : π
−1(Ui) → Ui ×R v 7→ (π(v), xi(v)).

This is a bijection and the cocycle

gij(x1, . . . , xn+1) = xi/xj ∈ GL(1,R) = R \ {0}

is smooth on Ui ∩ Uj , as wished.

2.6 Problems

§ 2.1

1 Let V be a vector space and let ι : V n → ⊗nV be defined as ι(v1, . . . , vn) =
v1 ⊗ · · · ⊗ vn, where V n = V × · · · × V (n factors on the right hand side).
Prove that ⊗nV satisfies the following universal property: for every vector
space U and every n-multilinear map T : V n → U , there exists a unique
linear map T̃ : ⊗nV → U such that T̃ ◦ ι = T .

⊗nV

V n

ι
∧

T
> U

T̃
...................>

2 Prove that ⊗nV is canonically isomorphic to the dual space of the space
n-multilinear forms on V n. (Hint: Use Problem 1.)

3 Let V be a vector space. An n-multilinear map T : V n → U is called
alternating if T (vσ(1), . . . , vσ(n)) = (sgn σ)T (v1, . . . , vn) for every v1, . . . , vn ∈
V and every permutation σ of {1, . . . , n}, where sgn denotes the sign ±1 of
the permutation.

Let ι : V n → Λn(V ) be defined as ι(v1, . . . , vn) = v1∧· · ·∧vn. Note that ι
is alternating. Prove thatΛnV satisfies the following universal property: for
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every vector space U and every alternating n-multilinear map T : V n → U ,
there exists a unique linear map T̃ : Λn(V ) → U such that T̃ ◦ ι = T .

ΛnV

V n

ι
∧

T
> U

T̃
...................>

4 Denote the vector space of all alternating multilinear forms V n → R by
An(V ). Prove that Λn(V ) is canonically isomorphic to An(V )∗.

5 Prove that v1, . . . , vk ∈ V are linearly independent if and only if v1∧· · ·∧
vk 6= 0.

6 Let V andW be vector spaces and let T : V → W be a linear map.
a. Show that T naturally induces a linear map Λk(T ) : Λk(V ) → Λk(W ).

(Hint: Use Problem 3.)
b. Show that the maps Λk(V ) for various k induce an algebra homomor-

phism Λ(T ) : Λ(V ) → Λ(W ).
c. Let now V = W and n = dimV . The operator Λn(T ) is multiplication

by a scalar, as dimΛn(V ) = 1; define the determinant of T to be this
scalar. Any n×nmatrixA = (aij) can be viewed as the representation
of a linear operator on R

n with respect to the canonical basis. Prove
that

detA =
∑

σ

(sgnσ) ai,σ(i) · · · an,σ(n),

where sgnσ is the sign of the permutation σ and σ runs over the set of
all permutations of the set {1, . . . , n}. Prove also that the determinant
of the product of two matrices is the product of their determinants.

d. Using Problem 7(a) below, prove that the transpose map Λk(T )∗ =
Λk(T ∗).

7 Let V be vector space.
a. Prove that there is a canonical isomorphism

Λk(V ∗) ∼= Λk(V )∗

given by

v∗1 ∧ · · · ∧ v∗k 7→ ( u1 ∧ · · · ∧ uk 7→ det(v∗i (uj)) ) .

b. Let α, β ∈ V ∗ ∼= Λ1(V ∗) ∼= A1(V ). Show that α ∧ β ∈ Λ2(V ∗), viewed
as an element of Λ2(V )∗ ∼= A2(V ) is given by

α ∧ β (u, v) = α(u)β(v) − α(v)β(u)

for all u, v ∈ V .
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8 Let V be a vector space.

a. In analogy with the exterior algebra, construct the symmetric algebra
Sym(V ), a commutative graded algebra, as a quotient of T (V ).

b. Determine a basis of the homogeneous subspace Symn(V ).
c. State and prove that Symn(V ) satisfies a certain universal property.
d. Show that the Symn(V ) is canonically isomorphic to the dual of the

space Sn(V ) of symmetric n-multilinear forms V n → R.

In view of (d), Sym(V ∗) is usually defined to be the space P(V ) of polyno-
mials on V .

9 An element of Λn(V ) is called decomposable if it lies in the subset Λ1(V )∧
· · · ∧ Λ1(V ) (n factors).

a. Show that in general not every element of Λn(V ) is decomposable.
b. Show that, for dimV ≤ 3, every homogeneous element in Λ(V ) is

decomposable.
c. Let ω be a differential form. Is ω ∧ ω = 0?

10 Let V be an oriented vector space equipped with a non-degenerate
symmetric bilinear form (we do not require positive-definiteness from the
outset). Let dimV = n.

a. Prove there exists an element ω ∈ Λn(V ) such that

ω = e1 ∧ · · · ∧ en

for every positively oriented orthonormal basis {e1, . . . , en} of V .
b. Show that the bilinear map

Λk(V )× Λn−k(V ) → Λn(V ), (α, β) 7→ α ∧ β

together with the isomorphism

R → Λn(V ), a 7→ aω

define a canonical isomorphism

Λk(V ) → (Λn−k(V ))∗.

c. Check that the bilinear form on V induces an isomorphism V ∼= V ∗,
which induces an isomorphismΛn−k(V ) ∼= Λn−k(V ∗) via Problem 6(a).

d. Combine the isomorphims of (b) and (c) with that in Problem 7(a) to
get a linear isomorphism

∗ : Λk(V ) → Λn−k(V )

for 0 ≤ k ≤ n, called the Hodge star.
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e. Assume the inner product is positive definite and let {e1, . . . , en} be a
positively oriented orthonormal basis of V . Show that

∗1 = e1 ∧ · · · ∧ en, ∗(e1 ∧ · · · ∧ en) = 1,

and

∗(e1 ∧ · · · ∧ ek) = ek+1 ∧ · · · ∧ en.

Show also that

∗∗ = (−1)k(n−k)

on Λk(V ).

§ 2.2

11 LetM be a smooth manifold. A Riemannian metric g on M is an assign-
ment of positive definite inner product gp on each tangent space TpM which
is smooth in the sense that g(X,Y )(p) = gp(X(p), Y (p)) defines a smooth
function for every X, Y ∈ X(M). A Riemannian manifold is a smooth mani-
fold equipped with a Riemannian metric.

a. Show that a Riemannian metric g onM is the same as a tensor field g̃
of type (0, 2) which is symmetric, in the sense that g̃(Y,X) = g̃(X,Y )
for every X, Y ∈ X(M), with the additional property of positive-
definiteness at each point.

b. Fix a local coordinate system (U, x1, . . . , xn) onM .

(i) Let g be a Riemannianmetric onM . Show that g|U =
∑

i,j gijdxi⊗

dxj where gij = g( ∂
∂xi

, ∂
∂xj

) ∈ C∞(U), gij = gji and the matrix

(gij) is everywhere positive definite.
(ii) Conversely, given functions gij = gji ∈ C∞(U) such that the

matrix (gij) is positive definite everywhere in M , show how to
define a Riemannian metric on U .

c. Use part (b)(ii) and a partition of unity to prove that every smooth
manifold can be equipped with a Riemannian metric.

d. On a Riemannian manifold M there exists a natural diffeomorphism
TM ≈ T ∗M taking fibers to fibers. (Hint: There exist linear isomor-
phisms v ∈ TpM 7→ gp(v, ·) ∈ TpM

∗).

§ 2.3

12 Consider R3 with coordinates (x, y, z). In each case, decide whether
dω = 0 or there exists η such that dη = ω.

a. ω = yzdx+ xzdy + xydz.

b. ω = xdx+ x2y2dy + yzdz.

c. ω = 2xy2dx ∧ dy + zdy ∧ dz.
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13 (The operator d onR
3) Identify 1- and 2-forms onR

3 with vector fields
on R

3, and 0- and 3-forms on R
3 with smooth functions on R

3, and check
that:

d on 0-forms is the gradient;
d on 1-forms is the curl;
d on 2-forms is the divergent.

Also, interpret d2 = 0 is those terms.

§ 2.4

14 LetM andN be smoothmanifolds whereM is connected, and consider
the projection π : M × N → N onto the second factor. Prove that a k-
form ω on M ×N is of the form π∗η for some k-form η on N if and only if
ιXω = LXω = 0 for everyX ∈ X(M ×N) satisfying dπ ◦X = 0.

15 LetM be a smooth manifold.
a. Prove that ιX ιX = 0 for everyX ∈ X(M).
b. Prove that ι[X,Y ]ω = LXιY ω − ιY LXω for every X, Y ∈ X(M) and

ω ∈ Ωk(M).

§ 2.5

16 TheWhitney sumE1⊕E2 of two vector bundles π1 : E1 → M , π2 : E2 →
M is a vector bundle π : E = E1 ⊕ E2 → M where Ep = (E1)p ⊕ (E2)p for
all p ∈ M .

a. Show that E1 ⊕ E2 is indeed a vector bundle by expressing its local
trivializations in terms of those of E1 and E2 and checking the condi-
tions of Definition 2.5.2.

b. Similarly, construct the tensor product bundle E1 ⊗ E2 and the dual
bundle E∗.


