Covering manifolds

In this appendix, we summarize some properties of covering spaces in the context of smooth manifolds.

A.1 Topological coverings

Recall that a (topological) *covering* of a space X is another space \tilde{X} with a continuous map $\pi: \tilde{X} \to X$ such that X is a union of evenly covered open set, where a connected open subset U of X is called *evenly covered* if

$$(A.1.1) \pi^{-1}U = \cup_{i \in I} \tilde{U}_i$$

is a disjoint union of open sets \tilde{U}_i of \tilde{X} , each of which is mapped homeomorphically onto U under π . In particular, the fibers of π are discrete subsets of \tilde{X} . It also follows from the definition that \tilde{X} has the Hausdorff property if X does. Further it is usual, as we shall do, to require that X and \tilde{X} be connected, and then the index set I can be taken the same for all evenly covered open sets.

A.1.2 Examples (a) $\pi : \mathbf{R} \to S^1$, $\pi(t) = e^{it}$ is a covering.

(b) $\pi: S^{\overline{1}} \to S^1$, $\pi(z) = z^n$ is a covering for any nonzero integer n.

(c) $\pi:(0,3\pi)\to S^1$, $\pi(t)=e^{it}$ is a local homemeomorphism which is not a covering, since $1\in S^1$ does not admit evenly covered neighborhoods.

A.2 Fundamental groups

Covering spaces are closely tied with fundamental groups. The *fundamental* group $\pi_1(X,x_0)$ of a topological space X with basepoint x_0 is defined as follows. As a set, it consists of the homotopy classes of continuous loops based at x_0 . The concatenation of such loops is compatible with the equivalence relation given by homotopy, so it induces a group operation on $\pi_1(X,x_0)$ making it into a group. If X is arcwise connected, the isomorphism class

of the fundamental group is independent of the choice of basepoint (indeed for $x_0, x_1 \in X$ and c a continuous path from x_0 to x_1 , conjugation by c^{-1} induces an isomorphism from $\pi_1(X,x_0)$ and $\pi_1(X,x_1)$) and thus is sometimes denoted by $\pi_1(X)$. Finally, a continuous map $f: X \to Y$ between topological spaces with $f(x_0) = y_0$ induces a homomorphism $f_\#: \pi_1(X,x_0) \to \pi_1(Y,y_0)$ so that the assignment $(X,x_0) \to \pi_1(X,x_0)$ is functorial. Of course the fundamental group is trivial if and only if the space is simply-connected.

Being locally Euclidean, a smooth manifold is locally arcwise connected and locally simply-connected. A connected space X with such local connectivity properties admits a simply-connected covering space, which is unique up to isomorphism; an isomorphism between coverings $\pi_1: \tilde{X}_1 \to X$ and $\pi_2: \tilde{X}_2 \to X$ is a homeomorphism $f: \tilde{X}_1 \to \tilde{X}_2$ such that $\pi_2 \circ f = \pi_1$. More generally, there exists a bijective correspondance between isomorphism classes of coverings $\pi: (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ and subgroups of $\pi_1(X, x_0)$ given by $(\tilde{X}, \tilde{x}_0) \mapsto \pi_\#(\pi_1(\tilde{X}, \tilde{x}_0))$; moreover, a change of basepoint in \tilde{X} corresponds to passing to a conjugate subgroup $\pi_1(X, x_0)$.

A.3 Smooth coverings

Suppose $\pi: \tilde{M} \to M$ is a covering where M is a smooth manifold. Then there is a natural structure of smooth manifold on \tilde{M} such that the projection π is smooth. In fact, for every chart (U,π) of M where U is evenly covered as in (A.1.1), take a chart $(\tilde{U}_i,\varphi\circ\pi|_{\tilde{U}_i})$ for \tilde{M} . This gives an atlas of \tilde{M} , which is smooth because for another chart (V,ψ) of M, V evenly covered by $\bigcup_{i\in I} \tilde{V}_i$ and $\tilde{U}_i\cap \tilde{V}_j\neq\varnothing$ for some $i,j\in I$, we have that the transition map

$$(\psi \circ \pi|_{\tilde{V}_j})(\varphi \circ \pi|_{\tilde{U}_i})^{-1} = \psi \circ \varphi^{-1}$$

is smooth. We already know that \tilde{M} is a Hausdorff space. It is possible to choose a countable basis of connected open sets for M which are evenly covered. The connected components of the preimages under π of the elements of this basis form a basis of connected open sets for \tilde{M} , which is countable as long as the index set I is countable, but this follows from the countability of the fundamental group $\pi_1(M)^1$. Now, around any point in \tilde{M} , π admits a local representation as the identity, so it is a local diffeomorphism. Note that we have indeed proved more: M can be covered by evenly covered neighborhoods U such that the restriction of π to a connected component of $\pi^{-1}U$ is a diffeomorphism onto U. This is the definition of a *smooth covering*. Note that a topologic covering whose covering map is smooth need not be a smooth covering (e.g. $\pi: \mathbf{R} \to \mathbf{R}$, $\pi(x) = x^3$).

¹Ref?

Next, we can formulate basic results in covering theory for a smooth covering $\pi: \tilde{M} \to M$ of a smooth manifold M. Fix basepoints $\tilde{p} \in \tilde{M}$, $p \in M$ such that $\pi(\tilde{p}) = p$. We say that a map $f: N \to M$ admits a lifting if there exists a map $\tilde{f}: N \to \tilde{M}$ such that $\pi \circ \tilde{f} = f$.

A.3.1 Theorem (Lifting criterion) Let $q \in f^{-1}(p)$. A smooth map $f: N \to M$ admits a smooth lifting $\tilde{f}: N \to \tilde{M}$ with $\tilde{f}(q) = \tilde{p}$ if and only if $f_{\#}(\pi_1(N,q)) \subset \pi_{\#}(\pi_1(\tilde{M},\tilde{p}))$. In that case, if N is connected, the lifting is unique.

Taking $f: N \to M$ to be the universal covering of M in Theorem A.3.1 shows that the universal covering of M covers any other covering of M and hence justifies its name.

A.4 Deck transformations

For a topological covering $\pi: \tilde{X} \to X$, a deck transformation or covering transformation is an isomorphism $\tilde{X} \to \tilde{X}$, namely, a homeomorphism $f: \tilde{X} \to \tilde{X}$ such that $\pi \circ f = \pi$. The deck transformations form a group under composition. It follows from uniqueness of liftings that a deck transformation is uniquely determined by its action on one point. In particular, the only deck transformation admitting fixed points is the identity. Since a smooth covering map $\pi: \tilde{M} \to M$ is a local diffeomorphism, in this case the equation $\pi \circ f = \pi$ implies that deck transformations are diffeomorphisms of \tilde{M} .

An action of a (discrete) group on a topological space (resp. smooth manifold) is a homomorphism from the group to the group of homeomorphisms (resp. diffeomorphisms) of the space (resp. manifold). For a smooth manifold M, we now recall the canonical action of $\pi_1(M, p)$ on its universal covering \tilde{M} by deck transformations. First we remark that by the lifting criterion, given $q \in M$ and $\tilde{q}_1, \tilde{q}_2 \in \pi^{-1}(q)$, there is a unique deck transformation mapping \tilde{q}_1 to \tilde{q}_2 . Now let γ be a continuous loop in M based at p representing an element $[\gamma] \in \pi_1(M,p)$. By the remark, it suffices to describe the action of $[\gamma]$ on a point $\tilde{p} \in \pi^{-1}(p)$, which goes as follows: lift γ uniquely to a path $\tilde{\gamma}$ starting at \tilde{p} ; then $[\gamma] \cdot \tilde{p}$ is by definition the endpoint of $\tilde{\gamma}$, which sits in the fiber $\pi^{-1}(p)$. The definition independs of the choice made, namely, if we change γ to a homotopic curve, we get the same result. This follows from Theorem A.3.1 applied to the homotopy, as it is defined on a square and a square is simply-connected. Since $\pi:M\to M$ is the universal covering, every deck transformation is obtained in this way from an element of $\pi_1(M, p)$.

As action of a (discrete) group Γ on a topological space X is called *free* if no nontrivial element of Γ has fixed points, and it is called *proper* if any two points $x, y \in X$ admit open neighborhoods $U \ni x, V \ni y$ such that $\{\gamma \in \Gamma \mid \gamma U \cap V \neq \varnothing\}$ is finite. The action of $\pi_1(M,p)$ on the universal

covering \tilde{M} by deck transformations has both properties. In fact, we have already remarked it is free. To check properness, let \tilde{p} , $\tilde{q} \in \tilde{M}$. If these points lie in the same orbit of $\pi_1(M,p)$ or, equivalently, the same fiber of π , the required neighborhoods are the connected components of $\pi^{-1}(U)$ containing \tilde{p} and \tilde{q} , resp., where U is an evenly covered neighborhood of $\pi(\tilde{p}) = \pi(\tilde{q})$. On the other hand, if $\pi(\tilde{p}) =: p \neq q := \pi(\tilde{p})$, we use the Hausdorff property of M to find disjoint evenly covered neighborhoods $U \ni p, V \ni q$ and then it is clear that the connected component of $\pi^{-1}(U)$ containing \tilde{p} and the connected component of $\pi^{-1}(V)$ containing \tilde{q} do the job.

Conversely, we have:

A.4.1 Theorem If the group Γ acts freely and properly on a smooth manifold \tilde{M} , then the quotient space $M = \Gamma \backslash \tilde{M}$ endowed with the quotient topology admits a unique structure of smooth manifold such that the projection $\pi: \tilde{M} \to M$ is a smooth covering.

Proof. The action of Γ on \tilde{M} determines a partition into equivalence classes or *orbits*, namely $\tilde{p} \sim \tilde{q}$ if and only if $\tilde{q} = \gamma \tilde{p}$ for some $\gamma \in \Gamma$. The orbit through \tilde{p} is denoted $\Gamma(\tilde{p})$. The quotient space $\Gamma \backslash \tilde{M}$ is also called *orbit space*.

The quotient topology is defined by the condition that $U\subset M$ is open if and only if $\pi^{-1}(U)$ is open in \tilde{M} . In particular, for an open set $\tilde{U}\subset \tilde{M}$ we have $\pi^{-1}(\pi(\tilde{U}))=\cup_{\gamma\in\Gamma}\gamma(\tilde{U})$, a union of open sets, showing that $\pi(\tilde{U})$ is open and proving that π is an open map. In particular, π maps a countable basis of open sets in \tilde{M} to a countable basis of open sets in M.

The covering property follows from the fact that Γ is proper. In fact, let $\tilde{p} \in \tilde{M}$. From the definition of proeprness, we can choose a neighborhood $\tilde{U} \ni \tilde{p}$ such that $\{\gamma \in \Gamma \mid \gamma \tilde{U} \cap \tilde{U} \neq \varnothing \}$ is finite. Using the Hausdorff property of \tilde{M} and the freeness of Γ , we can shrink \tilde{U} so that this set becomes empty. Now the map π identifies all disjoint homeomorphic open sets γU for $\gamma \in \Gamma$ to a single open set $\pi(U)$ in M, which is then evenly covered.

The Hausdorff property of M also follows from properness of Γ . Indeed, let $p, q \in M$, $p \neq q$. Choose $\tilde{p} \in \pi^{-1}(p)$, $\tilde{q} \in \pi^{-1}(q)$ and neighborhoods $\tilde{U} \ni \tilde{p}$, $\tilde{V} \ni \tilde{q}$ such that $\{\gamma \in \Gamma \mid \gamma \tilde{U} \cap \tilde{V} \neq \varnothing\}$ is finite. Note that $\tilde{q} \notin \Gamma(\tilde{p})$, so by the Hausdorff property for \tilde{M} , we can shrink \tilde{U} so that this set becomes empty. Since π is open, $U := \pi(\tilde{U})$ and $V := \pi(\tilde{V})$ are now disjoint neighborhoods of p and q, respectively.

Finally, we construct a smooth atlas for M. Let $p \in M$ and choose an evenly covered neighborhood $U \ni p$. Write $\pi^{-1}U = \cup_{i \in I} \tilde{U}_i$ as in (A.1.1). By shrinking U we can ensure that \tilde{U}_i is the domain of a local chart $(\tilde{U}_i, \tilde{\varphi}_i)$ of \tilde{M} . Now $\varphi_i := \tilde{\varphi}_i \circ (\pi|_{\tilde{U}_i})^{-1} : U \to \mathbf{R}^n$ defines a homeomorphism onto the open set $\tilde{\varphi}_i(\tilde{U}_i)$ and thus a local chart (U, φ_i) of M. The domains of such charts cover M and it remains only to check that the transition maps

are smooth. So let V be another evenly covered neighborhood of p with $\pi^{-1}V=\cup_{j\in I}\tilde{V}_j$ and associated local chart $\psi_j:=\tilde{\psi}_j\circ(\pi|_{\tilde{V}_j})^{-1}:U\to\mathbf{R}^n$ where $(\tilde{V}_j,\tilde{\psi}_j)$ is a local chart of \tilde{M} . Then

(A.4.2)
$$\psi_j \circ \varphi_i^{-1} = \tilde{\psi}_j \circ (\pi|_{\tilde{V}_j})^{-1} \circ \pi \circ \tilde{\varphi}_i^{-1}$$

However, $(\pi|_{\tilde{V}_j})^{-1} \circ \pi$ is realized by a unique element $\gamma \in \Gamma$ in a neighborhood of $\tilde{p}_i = \pi|_{\tilde{U}_i}^{-1}(p)$. Since Γ acts by diffeomorphisms, this shows that the transtion map (A.4.2) is smooth and finishes the proof.