
C H A P T E R 5

Variational calculus

5.1 Introduction

We continue to study the problem of minimization of geodesics in Riemannian manifolds that was
started in chapter 3. We already know that geodesics are the locally minimizing curves. Also,
long segments of geodesics need not be minimizing, and the study of this phenomenon in complete
Riemannian manifolds motivates the definition of cut locus.

Herein we take a different standpoint in that we consider finite segments of curves. Namely,
consider a complete Riemannian manifoldM . Given two points p, q ∈M , the Hopf-Rinow theorem
ensures the existence of at least one minimizing geodesic γ joining p and q. It follows that γ is
a global minimum for the length functional L defined in the space of piecewise smooth curves
joining p and q. Of course, the calculus approach to finding global minima of a function is to
differentiate it, compute critical points and decide which of them are local minima by using the
second derivative. In our case, the apparatus of classical calculus of variations can be applied to
carry out this program.

To begin with, we show that the critical points of the length functional in the space of piecewise
smooth curves joining p and q are exactly the geodesic segments, up to reparametrization. The main
result of this chapter is the Jacobi-Darboux theorem that gives a necessary and sufficient condition
for a geodesic segment between p and q to be a local minimum for L. In order to prove this
theorem, we introduce Jacobi fields and conjugate points. Finally, we study the relation between
the concepts of cut locus and conjugate locus. These results will be generalized in chapter 8,�1�

where we will prove the Morse index theorem.
Throughout this chapter, (M,g) denotes a Riemannian manifold.

5.2 The energy functional

Instead of working with the length functional L, we will be working with the energy functional E,
which will be defined in a moment. The reason for that is that the critical point theory of E is very
much related to the one of L and, from a variational calculus point of view, E is easier to work
with than L.

The energy of a piecewise smooth curve γ : [a, b] →M is defined to be

E(γ) =
1

2

∫ b

a
||γ′(t)||2 dt.

The factor 1/2 in this expression is a normalization constant and it is not very important.
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It is interesting to note that, in contrast to L, E is not invariant under reparametrizations of
the curve. On the one hand, this points out to the fact that E is not a geometrical invariant like L.
On the other hand, this can be seen as an advantage since, as we will soon see, critical points of E
come already equipped with a very specific parametrization.

5.2.1 Lemma Let γ : [a, b] →M be a piecewise smooth curve, and let γ(a) = p and γ(b) = q.
a. If γ is minimizing, that is L(γ) = d(p, q), then γ is a geodesic, up to reparametrization.

b. If γ minimizes the energy in the space of piecewise smooth curves defined on [a, b] and joining

p and q, then γ is a minimizing geodesic.

Proof. (a) If γ is minimizing, then it is locally minimizing (Lemma 3.2.5) and hence a geodesic
(Theorem 3.2.6).

(b) In the space of piecewise continuous functions [a, b] → R, consider the scalar product

〈f, g〉 =
∫ b
a f(t)g(t) dt. The Cauchy-Schwarz inequality says that 〈f, g〉2 ≤ ||f ||2||g||2 with the

equality holding if and only if {f, g} is linearly dependent. Applying this to f = ||γ′|| and g = 1
yields that

(∫ b

a
||γ′(t)|| dt

)2

≤ (b− a)

∫ b

a
||γ′(t)||2 dt,

and hence

(5.2.2) L(γ)2 ≤ 2E(γ)(b − a)

with the equality holding if and only if γ is parametrized with constant speed. Let η be any
piecewise smooth curve defined on [a, b] and joining p and q, and assume that it is parametrized
with constant speed. By assumption E(γ) ≤ E(η), so using (5.2.2)

L(γ)2 ≤ 2E(γ)(b − a) ≤ 2E(η)(b − a) = L(η)2.

Since the length of a curve does not depend on its parametrization, this shows that γ is a minimizing
curve. Due to the result of (a), γ is a geodesic, up to reparametrization. Finally, we observe that γ
must be parametrized with constant speed for otherwise it would not minimize the energy by the
same (5.2.2) and the condition of equality thereto pertaining. �

5.3 Variations of curves

A variation of a piecewise smooth curve γ : [a, b] →M is a continuous map H : [a, b]×(−ǫ, ǫ) →M ,
where ǫ > 0, such that H(s, 0) = γ(s) for all s ∈ [a, b], and there exists a subdivision

a = s0 < s1 < · · · < sn = b

such that H|[si−1,si]×(−ǫ,ǫ) is smooth for all i = 1, . . . , n. For each t ∈ (−ǫ, ǫ), the curve

t 7→ H(s, t)

will be denoted by γt. We say that H is a variation with fixed endpoints if H is a variation satisfying

H(a, t) = γt(a) = γ(a) and H(b, t) = γt(b) = γ(b)

for every t ∈ (−ǫ, ǫ). A variation H is called smooth if H : [a, b]× (−ǫ, ǫ) →M is smooth. Finally,
we say that H is a variation through geodesics H is a variation such that γt is a geodesic for every
t ∈ (−ǫ, ǫ).
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For a variation H of a piecewise smooth curve γ : [a, b] →M , we will denote by∇ the connection
induced along H according to Proposition 2.6.1, and we will consider the following vector fields
along H:

∂̄

∂t
= dH

(
∂

∂t

)

and
∂̄

∂s
= dH

(
∂

∂s

)

.

Note that
∂̄

∂s
= γ′t

is discontinuous at s = si. On the other hand, ∂̄
∂t and ∇ ∂

∂t

∂̄
∂t are continuous vector fields; this

is true because [a, b] × (−ǫ, ǫ) = ∪ni=1[si−1, si] × (−ǫ, ǫ) is a decomposition into a finite union of
closed subsets, and the restrictions of those vector fields to [si−1, si] × (−ǫ, ǫ) are continuous for
i = 1, . . . , n. Hence we have that

Y =
∂̄

∂t

∣
∣
∣
t=0

is a piecewise smooth vector field along γ called the variational vector field associated to H. Con-
versely, we have the following result.

5.3.1 Lemma Given a piecewise smooth vector field Y along a piecewise smooth curve γ : [a, b] →
M , there exists a smooth variation H of γ whose associated variational vector field is Y .

Proof. Set H(s, t) = expγ(s)(tY (s)). Since the interval [a, b] is compact, we can find ǫ > 0 such
that H is well defined on [a, b] × (−ǫ, ǫ), and

∂̄

∂t

∣
∣
∣
t=0

= d(expγ(s))0γ(s)(Y (s)) = Y (s).

�

5.3.2 Proposition (First variation of energy) Let γ : [a, b] →M be a piecewise smooth curve,

and let H be a variation of γ with associated variational vector field Y . Then

(5.3.3)
d

dt

∣
∣
∣
t=0

E(γt) =
n∑

i=1

〈Y, γ′〉
∣
∣
∣

s−i

s+i−1

−

∫ b

a
〈Y,∇ ∂

∂s
γ′〉 ds.

Proof. Consider first the case in which γ and H are smooth. Then the integrand of

E(γt) =
1

2

∫ b

a
〈γ′t, γ

′
t〉 ds =

1

2

∫ b

a
〈
∂̄

∂s
,
∂̄

∂s
〉 ds

is smooth and we can compute
d

dt
E(γt) by differentiation under the integral sign, namely,

d

dt
E(γt) =

1

2

∫ b

a

∂

∂t
〈
∂̄

∂s
,
∂̄

∂s
〉 ds

=

∫ b

a
〈∇ ∂

∂t

∂̄

∂s
,
∂̄

∂s
〉 ds(5.3.4)

=

∫ b

a
〈∇ ∂

∂s

∂̄

∂t
,
∂̄

∂s
〉 ds

=

∫ b

a

∂

∂s
〈
∂̄

∂t
,
∂̄

∂s
〉 − 〈

∂̄

∂t
,∇ ∂

∂s

∂̄

∂s
〉 ds.
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Here we have used that ∇ ∂
∂t

∂̄
∂s−∇ ∂

∂s

∂̄
∂t = H∗[

∂
∂t ,

∂
∂s ] = 0, according to Proposition 2.6.2. Evaluating

the above formula at t = 0 gives the desired formula in the case in which γ and H are smooth:

d

dt

∣
∣
∣
t=0

E(γt) = 〈Y, γ′〉
∣
∣
∣

b−

a+
−

∫ b

a
〈Y,∇ ∂

∂s
γ′〉 ds.

The formula in the general case is obtained from this one by observing that the energy is additive
over a union of subintervals. �

5.3.5 Proposition (Critical points of E) Let γ : [a, b] → M be a piecewise smooth curve. We

have that
d

dt

∣
∣
∣
t=0

E(γt) = 0

for every variation with fixed endpoints if and only if γ is a geodesic.

Proof. In the class of variations with fixed endpoints, we have that Y (a) = Y (b) = 0, so
formula (5.3.3) can be rewritten as

(5.3.6)
d

dt

∣
∣
∣
t=0

E(γt) = −

n−1∑

i=1

〈Y, γ′〉
∣
∣
∣

s+i

s−i

−

∫ b

a
〈Y,∇ ∂

∂s
γ′〉 ds.

If γ is a geodesic, then ∇̄ ∂
∂s
γ′ = 0 and γ′ is continuous, so both terms in (5.3.6) vanish proving one

direction of the proposition.
Conversely, suppose that 0 = d

dt

∣
∣
t=0

E(γt) = 0 for every variation with fixed endpoints. Let
f : [a, b] → R be a smooth function such that f(s) > 0 if s 6= si and f(si) = 0 for i = 0, . . . , n,
and set Y = f∇̄ ∂

∂s
γ′. Then Y is a piecewise smooth vector field along γ (note that Y is indeed

continuous at si) with Y (a) = Y (b) = 0, and so it defines via Lemma 5.3.1 a variation {γt} with

fixed endpoints for which (5.3.6) gives that 0 = −
∫ b
a f ||∇ ∂

∂s
γ′||2 ds. This already implies that γ

is a geodesic on (si−1, si) for i = 1, . . . , n. Since γ|[si−1,si] is smooth by assumption, it follows that

∇ ∂
∂s
γ′|si = 0 in the sense of side derivatives.

Next, we take Y to be a smooth vector field along γ satisfying Y (a) = Y (b) = 0 and Y (si) =
γ′(s+i )− γ′(s−i ) for i = 2, . . . , n− 1. Substituting into (5.3.6) now gives that 0 = −

∑n−1
i=2 ||γ′(s+i )−

γ′(s−i )||
2. This of course implies that γ is of class C1. Since we already know that γ|[si−1,si] is a

geodesic for i = 1, . . . , n, this implies that these restrictions are segments of the same geodesic γ
defined on [a, b] by the uniqueness result (Proposition 2.4.3). �

5.3.7 Corollary (Critical points of L) Let γ : [a, b] → M be a piecewise smooth curve. We

have that
d

dt

∣
∣
∣
t=0

L(γt) = 0

for every variation with fixed endpoints if and only if γ is a geodesic, up to reparametrization.

Proof. Let γ̃ = γ ◦ϕ be a reparametrization of γ with constant speed, where ϕ : [a, b] → [a, b] is
an orientation-preserving diffeomorphism. Given a variation H with fixed endpoints of γ, we define
a variation H̃ of γ̃ by setting H̃(s, t) = H(ϕ(s), t), and we denote γ̃t(s) = H̃(s, t) = (γt ◦ ϕ)(s). Of
course L(γt) = L(γ̃t), so we may assume without loss of generalization that γ is parametrized with
constant speed from the outset. Now

d

dt
L(γt) =

∫ b

a

∂

∂t
〈
∂̄

∂s
,
∂̄

∂s
〉1/2 ds =

1

2

∫ b

a
〈
∂̄

∂s
,
∂̄

∂s
〉−1/2 ∂

∂t
〈
∂̄

∂s
,
∂̄

∂s
〉 ds.
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Evaluating at t = 0 and using that ||γ′|| is a constant k 6= 0 gives that

d

dt

∣
∣
∣
t=0

L(γt) =
1

2k

∫ b

a

∂

∂t

∣
∣
∣
t=0

〈
∂̄

∂s
,
∂̄

∂s
〉 ds =

1

k

d

dt

∣
∣
∣
t=0

E(γt).

This shows that L and E have the same critical points, up to reparametrization. Thus the desired
result is an immediate consequence of Proposition 5.3.5. �

5.3.8 Proposition (Second variation of energy) Let γ : [a, b] → M be a unit speed geodesic,

and let H be a piecewise smooth variation of γ with associated variational vector field Y . Then

(5.3.9)
d2

dt2

∣
∣
∣
t=0

E(γt) = 〈∇ ∂
∂t

∂̄

∂t

∣
∣
∣
t=0

, γ′〉
∣
∣
∣

b

a
+

∫ b

a
||Y ′||2 + 〈R(γ′, Y )γ′, Y 〉 ds.

Proof. Starting with formula (5.3.4), we compute that

d2

dt2
E(γt) =

∫ b

a

∂

∂t
〈∇ ∂

∂t

∂̄

∂s
,
∂̄

∂s
〉 ds

=

∫ b

a

∂

∂t
〈∇ ∂

∂s

∂̄

∂t
,
∂̄

∂s
〉 ds

=

∫ b

a
〈∇ ∂

∂t
∇ ∂

∂s

∂̄

∂t
,
∂̄

∂s
〉+ 〈∇ ∂

∂s

∂̄

∂t
,∇ ∂

∂t

∂̄

∂s
〉 ds

=

∫ b

a
〈∇ ∂

∂s
∇ ∂

∂t

∂̄

∂t
,
∂̄

∂s
〉+ 〈R(

∂̄

∂t
,
∂̄

∂s
)
∂̄

∂t
,
∂̄

∂s
〉+

∣
∣
∣

∣
∣
∣∇ ∂

∂s

∂̄

∂t

∣
∣
∣

∣
∣
∣

2
ds

=

∫ b

a

∂

∂s
〈∇ ∂

∂t

∂̄

∂t
,
∂̄

∂s
〉 − 〈∇ ∂

∂t

∂̄

∂t
,∇ ∂

∂s

∂̄

∂s
〉+ 〈R(

∂̄

∂s
,
∂̄

∂t
)
∂̄

∂s
,
∂̄

∂t
〉+

∣
∣
∣

∣
∣
∣∇ ∂

∂s

∂̄

∂t

∣
∣
∣

∣
∣
∣

2
ds

In the fourth equality, we used that ∇ ∂
∂t
∇ ∂

∂s

∂̄
∂t −∇ ∂

∂s
∇ ∂

∂t

∂̄
∂t = R( ∂̄∂t ,

∂̄
∂s)

∂̄
∂t , according to Proposi-

tion 2.6.2. Evaluating this formula at t = 0 yields that

d2

dt2

∣
∣
∣
t=0

E(γt) =

∫ b

a

∂

∂s
〈∇ ∂

∂t

∂̄

∂t

∣
∣
∣
t=0

, γ′〉 − 〈∇ ∂
∂t

∂̄

∂t

∣
∣
∣
t=0

, γ′′〉+ 〈R(γ′, Y )γ′, Y 〉+ ||Y ′||2 ds

Since γ′ and ∇ ∂
∂t

∂̄
∂t are continuous and γ′′ = 0, this proves the desired formula. �

5.4 Jacobi fields

Throughout this section, we fix a geodesic γ : [0, ℓ] → M . The second variation formula (5.3.9)
defines a quadratic form on the space of piecewise smooth vector fields along γ vanishing at 0 and
ℓ whose associated symmetric bilinear form I is called the index form and is clearly given by

I(X,Y ) =

∫ ℓ

0
〈X ′, Y ′〉+ 〈R(γ′,X)γ′, Y 〉 ds.
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Let 0 = s0 < s1 < · · · < sn = ℓ be a subdivision of [0, ℓ] such that X and Y are smooth on [si−1, si]
for i = 1, . . . , n. Since 〈X ′, Y ′〉 = 〈X,Y ′〉′ − 〈X,Y ′′〉 on each [si−1, si], we can write

I(X,Y ) =
n∑

i=1

∫ si

si−1

〈X,Y ′〉′ ds+

∫ ℓ

0
−〈X,Y ′′〉+ 〈R(γ′, Y )γ′,X〉 ds

=

n∑

i=1

〈X,Y ′〉
∣
∣
∣

s−i

s+i−1

+

∫ ℓ

0
〈−Y ′′ +R(γ′, Y )γ′,X〉 ds

= −

n−1∑

i=1

〈Y ′(s+i )− Y ′(s−i ),X〉 +

∫ ℓ

0
〈−Y ′′ +R(γ′, Y )γ′,X〉 ds(5.4.1)

A Jacobi field along γ is a smooth vector field Y along γ (not necessarily vanishing at the
endpoints of γ) such that

(5.4.2) −Y ′′ +R(γ′, Y )γ′ = 0.

Hence the space of Jacobi fields along γ vanishing at the endpoints of γ is contained in the kernel
of I as a bilinear form; it is easy to show that these spaces in fact coincide by using ideas very
similar to the ones in the proof of Proposition 5.3.5 (cf. exercise 2). Equation (5.4.2) is called the
Jacobi equation along γ.

Next, denote by J the space of all Jacobi fields along γ. It is obvious that J is a vector space.
It is also a very simple matter to check that the smooth vector fields along γ given by Y0(s) = γ′(s)
and Y1(s) = sγ′(s) belong to J . The next proposition shows that a Jacobi field Y along γ, being
a solution of a second-order linear ordinary differential equation, is completely determined by its
initial conditions Y (0) ∈ TpM and Y ′(0) ∈ TpM . It follows that J is a finite-dimensional vector
space and dimJ = 2dimM .

5.4.3 Proposition Let γ : [0, ℓ] →M be a geodesic, and put γ(0) = p.
a. Given u, v ∈ Tγ(0)M , there exists a unique Jacobi field Y ∈ J such that Y (0) = u and

Y ′(0) = v.
b. If X, Y ∈ J , then the function 〈X ′, Y 〉 − 〈X,Y ′〉 is constant on [0, ℓ]. It follows that

〈γ′(s), Y (s)〉 = as+ b for some constants a, b ∈ R and s ∈ [0, ℓ].

Proof. (a) Select an orthonormal basis {e1, . . . , en} of TpM with e1 = γ′(0) and extend it to
an orthonormal frame {E1, . . . , En} of parallel vector fields along γ; since γ is a geodesic, E1 = γ′.
Let Y be a smooth vector field along γ. Then we can write Y =

∑n
i=1 fiEi, where fi : [0, ℓ] → R

are smooth functions. In these terms, the Jacobi equation (5.4.2) is

n∑

i=1

−f ′′i + fiR(γ
′, Ei)γ

′ = 0.

Taking the inner product of the left-hand side with Ej yields that

−f ′′j +

n∑

i=2

〈R(γ′, Ei)γ
′, Ej〉fi = 0

for j = 1, . . . , n. This is a system of second-order ordinary linear differential equations for which
the standard theorems of existence and uniqueness of solutions apply, hence, the result.
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(b) In order to prove the constancy of the function, it suffices to differentiate it along γ:

(〈X ′, Y 〉 − 〈X,Y ′〉)′ = (〈X ′′, Y 〉+ 〈X ′, Y ′〉)− (〈X ′, Y ′〉+ 〈X,Y ′′〉)

= 〈R(γ′,X)γ′, Y 〉 − 〈X,R(γ′, Y )γ′〉

= 0,

where we have used the Jacobi equation (5.4.2) and the symmetry of R (Proposition 4.2.1(c)).

Finally, in order to get the last assertion, take X = γ′ in the function. Then 〈γ′, Y ′〉 = 〈γ′, Y 〉′

is a constant. It follows that 〈γ′, Y 〉 has the required form. �

Proposition 5.4.3(b) shows that Y ∈ J satisfies 〈γ′(s), Y (s)〉 = as + b for all s ∈ [0, ℓ] where
a = 〈γ′(0), Y ′(0)〉 and b = 〈γ′(0), Y (0)〉. Writing

Y = (Y − aY1 − bY0) + bY0 + aY1

shows that there exists a splitting

J = J⊥ ⊕RY0 ⊕RY1,

where J⊥ is the subspace of Jacobi fields along γ that are always orthogonal to γ′, namely,

J⊥ = {Y ∈ J | 〈Y (s), γ′(s)〉 = 0 for all s ∈ [0, ℓ] }.

Since Y0 and Y1 always belong to J , it is the subspace J⊥ that can give us effective information
about the geodesic γ, if any.

The next proposition refines the information of Lemma 5.3.1. It also points out to the fact that
the Jacobi fields along a geodesic somehow control the behaviour of the near by geodesics.

5.4.4 Proposition Let γ : [0, ℓ] → M be a geodesic. If H is a smooth variation of γ through

geodesics, then the associated variational vector field Y is a Jacobi field along γ. On the other

hand, every Jacobi field Y along γ is the variational vector field associated to a variation H of γ
through geodesics.

Proof. Suppose first that H is a smooth variation of γ through geodesics and let Y = ∂
∂t

∣
∣
t=0

be

the associated variational vector field. Then, ∇ ∂
∂s

∂̄
∂s = 0, so using Proposition 2.6.2,

∇ ∂
∂s
∇ ∂

∂s

∂̄

∂t
= ∇ ∂

∂s
∇ ∂

∂t

∂̄

∂s
= ∇ ∂

∂t
∇ ∂

∂s

∂̄

∂s
+R(

∂̄

∂s
,
∂̄

∂t
)
∂̄

∂s
= R(

∂̄

∂s
,
∂̄

∂t
)
∂̄

∂s
.

Evaluating this formula at t = 0 gives that Y ′′ = R(γ′, Y )γ′, and hence, Y is a Jacobi field.

Suppose now that Y is a Jacobi field along γ. We construct a variation H of γ as follows. Take
any smooth curve η satisfying η(0) = γ(0) and η′(0) = Y (0). Let X0 and X1 be the parallel vector
fields along η such that X0(0) = γ′(0) and X1(0) = Y ′(0), and let X(t) = X0(t) + tX1(t). Finally,
set H(s, t) = expη(t)(sX(t)).

By construction, H is a variation through geodesics, so ∂̄
∂t

∣
∣
t=0

= dH( ∂∂t )
∣
∣
t=0

is a Jacobi field

along γ by the first part of this proof. Let us compute the initial conditions of ∂̄
∂t

∣
∣
t=0

at s = 0.
Since H(0, t) = η(t), we have

∂̄

∂t

∣
∣
∣
t=0
s=0

= η′(0) = Y (0).
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Moreover,

∂̄

∂s

∣
∣
∣
s=0

= d(expη(t))0η(t)(X(t)) = X(t),

so

∇ ∂
∂s

∂̄

∂t

∣
∣
∣
t=0
s=0

= ∇ ∂
∂t

∂̄

∂s

∣
∣
∣
t=0
s=0

= X ′(0) = X1(0) = Y ′(0).

Since ∂̄
∂t

∣
∣
t=0

and Y are Jacobi fields along γ having the same initial conditions at s = 0, they are
equal, and this finishes the proof of the proposition. �

5.4.5 Scholium Consider a point p ∈ M and two tangent vectors u, v ∈ TpM . Let γ be the

geodesic γ(s) = expp(sv), and let Y be the Jacobi field along γ satisfying Y (0) = 0 and Y ′(0) = u.
Then

Y (s) = d(expp)sv(su)

for all s is the domain of γ.

Proof. This proof is contained in the proof of second assertion in the statement of Proposi-
tion 5.4.4. Indeed, using the notation from that proof, η is the constant curve at p, X0 is the con-
stant vector field γ′(0) = v andX1 is the constant vector field Y

′(0) = u, soH(s, t) = expp(s(v+tu))
and

Y (s) =
∂̄

∂t

∣
∣
∣
(s,0)

= d(expp)sv(su),

as desired. �

5.5 Conjugate points

Let γ(s) = expp(sv) be a geodesic in M , where p ∈M and v ∈ TpM . A point γ(s0), where s0 > 0,
is called a point conjugate to p along γ if there exists a nontrivial Jacobi field Y along γ such that
Y (0) = 0 and Y (s0) = 0; the parameter value s0 is called a conjugate value; note that such a Jacobi
field Y must be everywhere perpendicular to γ. In this case, we also have that p is conjugate to
γ(s0) along γ

−1, so we sometimes say that p and γ(s0) are conjugate points along γ. A point q ∈M
is called a point conjugate to p if q is conjugate to p along some geodesic emanating from p. The
set of all points of M conjugate to p is called the conjugate locus of p.

If q = γ(s0) is conjugate to p along γ(s) = expp(sv), and Y is a Jacobi field along γ such that
Y (0) = 0 and Y (s0) = 0, then Y is everywhere perpendicular to γ′ by Proposition 5.4.3(b). Even
more interesting, Y ′(0) lies in the kernel of the map d(expp)s0v as it follows from Scholium 5.4.5.
Hence, the points conjugate to p are exactly the critical values of expp. The multiplicity of q as a
point conjugate to p along γ is the dimension of the kernel of d(expp)s0v.

Intuitively speaking, the meaning of q being a conjugate point of p along a geodesic γ is that
some nearby geodesics emanating from p must meet γ at q at least in the infinitesimal sense. Before
proceeding with the main result of this section, we prove two lemmas.

5.5.1 Lemma (Gauss, global version) Consider a point p ∈ M , two tangent vectors u, v ∈
TpM , and the geodesic γ(s) = expp(sv). Then

gγ(s)
(
d(expp)sv(u), d(expp)sv(v)

)
= gp(u, v).
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Proof. Note the right-hand-side in the formula is the value at s = 0 of the left-hand-side
of it. Note also that d(expp)sv(v) = γ′(s). Next, let Y denote the Jacobi field along γ with
initial conditions Y (0) = 0 and Y ′(0) = u. On the one hand, we know from Scholium 5.4.5
that d(expp)sv(u) = 1

sY (s) for s 6= 0. On the other hand, decompose u = λv + u1, where u1
is perpendicular to v, and let Y0, Y1 be the Jacobi fields along γ vanishing at s = 0 such that
Y ′
0(0) = λv and Y ′

1(0) = u1. Then Y0(s) = λsγ′(s) and Y (s) = Y0(s) + Y1(s) = λsγ′(s) + Y1(s), so,
if s 6= 0,

gγ(s)
(
d(expp)sv(u), d(expp)sv(v)

)
= gγ(s)

( 1

s
Y (s), γ′(s)

)

= λgγ(s)
(
γ′(s), γ′(s)

)
+

1

s
gγ(s)

(
Y1(s), γ

′(s)
)
.

The first term in the last line of the above calculation is λgp(v, v) = gp(u, v), since the length of the
tangent vector of a geodesic is constant. The second term in there is zero by Proposition 5.4.3(b)
because Y1(0) and Y

′
1(0) are perpendicular to γ′(0), and this proves the formula. �

5.5.2 Lemma Consider a point p ∈ M , and a tangent vector v ∈ TpM . Let ϕ : [0, 1] → TpM
denote the radial segment ϕ(s) = sv, and let ψ : [0, 1] → TpM be an arbitrary piecewise smooth

curve joining the origin 0 to v. Then

L(expp ◦ψ) ≥ L(expp ◦ϕ) = ||v||.

Proof. Without loss of generality, we may assume that ψ(s) 6= 0 for s > 0. In the case in which
ψ is smooth, write ψ(s) = r(s)u(s) where r : (0, 1] → (0,+∞) and u : (0, 1] → Sn−1 are smooth,
and Sn−1 denotes the unit sphere of (TpM,gp). Then

ψ′(s) = r′(s)u(s) + r(s)u′(s)

with 〈u(s), u′(s)〉 = 0. Applying Gauss lemma 5.5.1 twice in the following computation,

||(expp ◦ψ)
′(s)||2 = ||d(expp)ψ(s)(ψ

′(s))||2

= (r′(s))2 ||d(expp)ψ(s)(u(s))||
2

︸ ︷︷ ︸

=||u(s)||2=1

+(r(s))2||d(expp)ψ(s)(u
′(s))||2

≥ (r′(s))2,

we get that

L(expp ◦ψ) ≥

∫ 1

0
|r′(s)| ds ≥ |r(1)− lim

s→0+
r(0)| = ||v||.

In the general case, we repeat the argument above over each subinterval where ψ is smooth and
add up the estimates. �

Next, we prove the main result of this chapter. It gives a sufficient condition and a necessary
condition for a geodesic segment to be locally minimizing.

5.5.3 Theorem (Jacobi-Darboux) Let γ : [0, ℓ] → M be a geodesic segment parametrized with

unit speed and with endpoints γ(0) = p and γ(ℓ) = q.
a. If there are no points conjugate to p along γ, then there exists a neighborhood V of γ in the

C0-topology in the space of piecewise smooth curves parametrized on [0, ℓ] and joining p to q
such that E(η) ≥ E(γ) and L(η) ≥ L(γ) for every η ∈ V . Moreover, if L(η) = L(γ) for some

η ∈ V , then η and γ differ by a reparametrization.
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b. If γ(s0) is conjugate to p along γ for some s0 ∈ (a, b), then there exists a variation {γt} of γ
with fixed endpoints such that E(γt) < E(γ) and L(γt) < L(γ) for sufficiently small t.

Proof. Put γ′(0) = v and define ϕ : [0, ℓ] → TpM by ϕ(s) = sv. By assumption, ϕ(s) is a regular
point of expp for s ∈ [0, ℓ]. Since ϕ([0, ℓ]) is compact, we can cover it by a union ∪ki=1Wi of open
balls Wi ⊂ TpM such that expp is a diffeomorphism of Wi onto an open subset Ui ⊂ M . Choose
a subdivision 0 = s0 < s1 < . . . < sk = ℓ such that ϕ([si−1, si]) ⊂ Wi for all i. Let V be the open
ball centered at γ of radius ǫ > 0, namely, V consists of the piecewise smooth curves η : [0, ℓ] →M
joining p to q and satisfying d(η(s), γ(s)) < ǫ for s ∈ [0, ℓ]. We take ǫ so that η([si−1, si]) ⊂ Ui for
η ∈ V and i = 1, . . . , k. Note that expp(Wi−1 ∩Wi) is an open neighborhood of γ(si−1) contained
in Ui−1 ∩ Ui. We further decrease ǫ, if necessary, so as to obtain that η(si−1) ∈ expp(Wi−1 ∩Wi)
for η ∈ V and i = 2, . . . , k.

For each η ∈ V , we lift η to a piecewise smooth curve ψ in TpM as follows. Define

ψ(s) = (expp |W1)
−1(η(s)) for s ∈ [0, s1].

Note that ψ(0) = 0. Assume that ψ has already been defined on [0, si−1] for some 2 ≤ i ≤ k such
that it satisfies expp(ψ(s)) = η(s) for s ∈ [0, si−1] and ψ(si−1) ∈ Wi−1. Note that these conditions
imply that

expp(ψ(si−1)) = η(si−1) ∈ expp(Wi−1 ∩Wi),

so ψ(si−1) ∈Wi. Hence it makes sense to define

ψ(s) = (expp |Wi
)−1(η(s)) for s ∈ [si−1, si].

This completes the induction step and shows that ψ can be defined on [0, ℓ]. Since η(ℓ) ∈ Wk, we
have ψ(ℓ) = ℓv. By Lemma 5.5.2,

L(η) = L(expp ◦ψ) ≥ L(expp ◦ϕ) = L(γ).

Moreover, since d(expp)ψ(s) is injective for s ∈ [0, ℓ], the proof of the lemma shows that the inequality
is sharp unless u is constant and r′ is nonnegative in the notation of that proof, that is, η coincides
with γ up to reparametrization. As for the assertion concerning the energy, we observe that

E(η) ≥
1

2ℓ
L(η)2 ≥

1

2ℓ
L(γ)2 = E(γ)

by the Cauchy-Schwarz inequality (5.2.2). This proves part (a).
(b) By assumption, there exists a nontrivial Jacobi field Y along γ such that Y (0) = Y (s0) =

0. Owing to the non-triviality of Y , Y ′(s0) 6= 0. Let Z1 be the parallel vector field along γ
with Z1(s0) = −Y ′(s0), construct a smooth function θ : [0, ℓ] → R such that θ(0) = θ(ℓ) = 0
and θ(s0) = 1, and set Z(s) = θ(s)Z1(s). Also, extend Y to a piecewise smooth vector field on
[0, ℓ] by putting Y |[s0,ℓ] = 0, and set Yα(s) = Y (s) + αZ(s) for s ∈ [0, ℓ] and α ∈ R.

Now Yα is a piecewise smooth vector field along γ which is everywhere normal to γ′ and vanishes
at 0 and ℓ. Consider a variation with fixed endpoints {γt} with associated variational vector field Yα.
Then

I(Yα, Yα) = I(Y, Y ) + 2αI(Y,Z) + α2I(Z,Z)

= −2α〈Y ′(s+0 )− Y ′(s−0 ), Z(s0)〉+ α2I(Z,Z)

= −2α||Y ′(s−0 )||
2 + α2I(Z,Z)

< 0,
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where α is chosen sufficiently small so as to ensure the last inequality. Hence E(γt) < E(γ) for
sufficiently small t. Also,

L(γt)
2 ≤ 2ℓE(γt) < 2ℓE(γ) = L(γ)2,

and this completes the proof. �

As a corollary of the theorem of Jacobi-Darboux 5.5.3, we have the following refinement of
Proposition 3.4.2.

5.5.4 Corollary Let M be a complete Riemannian manifold. Then, for each p ∈M , the exponen-

tial map

expp : Dp →M \Cut(p)

is a diffeomorphism.

Proof. We have already seen that expp(Dp) =M \Cut(p). Theorem 5.5.3 implies that a geodesic
γv : [0,+∞) →M , where v ∈ TpM and ||v|| = 1, does not minimize L past its first conjugate point,
so a conjugate point along γv, if existing, must occur at a parameter value s0 ≥ ρ(v). It follows
that expp is a local diffeomorphism at sv for s ∈ [0, ρ(v)). Since v is an arbitrary unit tangent
vector at p, this shows that expp is a local diffeomorphism on Dp. It remains only to check that
expp is injective on Dp. But this is clear since any point in expp(Dp) can be joined to p by a unique
minimal geodesic as was already observed right after the proof of Proposition 3.4.2. �

The first conjugate point along a geodesic γ(s) = expp(sv), where p ∈ M and v ∈ TpM , is the
smallest parameter value s0 > 0 such that γ(s0) is conjugate to p along γ. It also follows from the
theorem of Jacobi-Darboux 5.5.3 that the first conjugate point to p along γ cannot occur before
the cut point; in particular, the conjugate locus of a point is empty if its cut locus is empty. The
following proposition gives more information.

5.5.5 Proposition Let M be a complete Riemannian manifold, and let p ∈ M . Then a point q
belongs to the cut locus Cut(p) if and only if one of the following non-mutually exclusive assertions

is true:

a. There exists at least two distinct minimizing geodesics joining p to q.
b. The point q is the first conjugate point to p along a minimizing geodesic.

In particular, q ∈ Cut(p) if and only if p ∈ Cut(q).

Proof. By Lemma 3.4.1 and Theorem 5.5.3, we already know that the conditions in the statement
are sufficient for q to belong to Cut(p). Conversely, suppose that q ∈ Cut(p). Then we can write
q = expp(ρ(v)v) for some unit vector v ∈ TpM with ρ(v) < +∞. In particular, γ(s) = expp(sv),
where 0 ≤ s ≤ ρ(v), is a minimal geodesic joining p to q. Choose a sequence (sj) of real numbers
such that sj % ρ(v). For each j, there exists a minimal geodesic γj joining p to γ(sj), say γj(s) =
expp(swj), where wj ∈ TpM and ||wj || = 1. Let dj = d(p, γ(sj)), so that γj(dj) = γ(sj). Since
sj > ρ(v), we have that γ|[0,sj ] is not minimal so that dj < sj.

Next, by compactness of the unit sphere in TpM and by passing to a subsequence if necessary,
we may assume that (wj) converges to a unit vector w ∈ TpM . Since the distance d is continuous,
dj = d(p, γ(sj)) → d(p, γ(ρ(v))) = ρ(v). By the taking the limit as j 7→ +∞ in γ(sj) = γj(dj) =
expp(djwj), we get that q = expp(ρ(v)w). Now there are two cases to be considered.

If w 6= v, then η(s) = expp(sw) is a minimizing geodesic joining p to q and η 6= γ, so we are
in situation (a). On the other hand, if w = v, then we already have that expp(djwj) = γ(sj) =
expp(sjv) for all j, where djwj → ρ(v)v and sjv → ρ(v)v. It follows that expp is not locally injective
at ρ(v)v, so ρ(v)v is a singular point of expp. Hence q = expp(ρ(v)v) is conjugate to p along γ.
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Since γ is minimizing on [0, ρ(v)], q must be the first conjugate point to p along γ, and we are in
situation (b).

For the last assertion, one needs to note that conditions (a) and (b) are symmetric in p and q.
This is clear for (a) and follows from Theorem 5.5.3(b) for (b). �

All possibilities given by Proposition 5.5.5 for a point q ∈ Cut(p) can indeed occur: both (a)
and (b); (a) and not (b); (b) and not (a). Comparing the examples in the sequel with the examples
of section 3.5, one immediately finds situations in which the first two possibilities occur. However,
the third possibility — in which q is the first conjugate point along a minimizing geodesic γ and
there is no other minimizing geodesic from p to q — is not so easy to detect. The Heisenberg group
(consisting of upper triangular real matrices of size 3 with 1’s along the diagonal) equipped with
some left-invariant metric provides such an example [Wal97, p. 352].

5.6 Examples

Flat manifolds

For a flat manifold, R ≡ 0, so the Jacobi equation is Y ′′ = 0. Hence Jacobi fields along a geodesic
γ have the form Y (s) = sE1(t) + E2(s), where E1 and E2 are parallel vector fields along γ. For
instance, a Jacobi field Y along a geodesic γ in Euclidean space Rn is of the form Y (s) = u+ sv,
where u, v ∈ Rn. If T n is a flat torus and π : Rn → T n denotes the corresponding Riemannian
covering, then a Jacobi field along the geodesic π ◦ γ in T n is of the form Ȳ (s) = dπγ(s)(Y (s)) =
dπγ(s)(u) + tdπγ(s)(v).

In particular, in a flat manifold there are no conjugate points, so any geodesic segment is a local
minimum for L. Note that in a flat torus there are infinitely many geodesics with given endpoints
p and q, and generically (meaning the case in which q 6∈ Cut(p)) only one of them is a global
minimum.

Manifolds of nonzero constant curvature

Consider first the unit sphere Sn. If γ is a unit speed geodesic and Y is a Jacobi field along γ
which is everywhere perpendicular to γ′, then formula (4.5.2) says that R(γ′, Y )γ′ = −Y , so the
Jacobi equation is Y ′′ = −Y . It follows that Y (s) = cos sE1(s) + sin sE2(s), where E1 and E2

are parallel vector fields along γ which are perpendicular to γ′ (Note that a parallel vector field
along γ which is perpendicular to γ′ is nothing but a constant vector field on the surroundingRn+1

which is perpendicular to the 2-plane spanned by γ(0) and γ′(0).) In particular, if Y vanishes at
s = 0, then E1 = 0. Assuming Y is nontrivial, that is, E2 6= 0, then the conjugate values are
s = π, 2π, 3π, . . .. Therefore the first conjugate point of p = γ(0) along γ is −p, so that the first
conjugate locus coincides with the cut locus; since Y ′(0) can be any vector perpendicular to γ′(0),
the multiplicity of −p is n− 1. Note also that p is conjugate to itself along γ.

Consider now RPn. Since it has the same curvature tensor as Sn, it has also the same Jacobi
equation, the same Jacobi fields and the same conjugate values. However, the difference to Sn is
that now the first conjugate point γ(π) along a geodesic γ coincides with γ(0), so the first conjugate
point occurs after the cut point γ(π2 ). In particular, a geodesic of length π

2 + ǫ, ǫ > 0 small, is a
local minimum for L, but not a global one.

The case of RHn is similar to that of Sn. By (4.5.3), the Jacobi equation is Y ′′ = Y , so the
Jacobi fields along a geodesic γ have the form Y (s) = cosh sE1(s) + sinh sE2(s), where E1 and E2

are parallel vector fields along γ which are perpendicular to γ′. In particular, if Y vanishes at s = 0,
then E1 = 0. Assuming Y is nontrivial, that is, E2 6= 0, there are no conjugate values. Hence the
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conjugate locus of a point is empty. Of course, this result is in line with the remark after the proof
of Corollary 5.5.4 since we already knew that the cut locus of RHn is empty.

CPn

Owing to Proposition 3.5.1, the geodesics of CPn are the projections of the horizontal geodesics
of S2n+1 with respect to the Riemannian submersion π : S2n+1 → CPn. Let γ̃(s) = cos sp̃+ sin sṽ
be a horizontal geodesic of S2n+1, where p̃ ∈ S2n+1 and ṽ ∈ Hp̃ is a unit vector, and consider
the geodesic γ = π ◦ γ̃ of CPn. It follows that the Jacobi fields along γ are projections of some
Jacobi fields along γ̃. Note that whereas a Jacobi field along γ is associated to a variation of γ̃
through horizontal geodesics, this does not imply that the associated Jacobi field along γ̃ must
be horizontal. In the following, we want to describe the conjugate points along γ, so we need to
describe the Jacobi fields along γ that vanish at s = 0 and are everywhere orthogonal to γ′.

Consider first the variation through horizontal geodesics

H̃0(s, t) = eit · γ̃(s) = cos s(cos t+ sin t(ip̃)) + sin s(cos t+ sin t(iṽ)).

The associated Jacobi field is
Ỹ0(s) = iγ̃(s),

and it coincides with the restriction of the vertical vector field (4.5.9) along γ̃. Of course, the
corresponding variation of γ is trivial and, accordingly, Ỹ0 projects down to a trivial Jacobi field
along γ.

Next, consider an arbitrary Jacobi field Ỹ along γ̃ associated to a variation through horizontal
geodesics and with the property that it projects down to a Jacobi field Y along γ such that Y (0) = 0
and 〈Y, γ′〉 ≡ 0. We already know that Ỹ (s) = cos sẼ1(s)+sin sẼ2(s) for some parallel vector fields
E1, E2 along γ̃. The condition that 0 = Y (0) = dπp̃(Ỹ ) imposes that Ỹ (0) must be vertical, namely,
a multiple of ip. Since Ỹ0 projects down to zero and the Jacobi fields along a geodesic form a vector
space, we can add a suitable multiple of Ỹ0 to Ỹ and assume that Ỹ (0) = 0. Now E1 = 0 and
Ỹ (s) = sin sE2(s). We must have 〈Ỹ , γ̃′〉 ≡ 0, so E2(s) is a constant vector ũ ∈ Rn+1 orthogonal
to p̃ and ṽ. A variation associated to Ỹ is

H̃(s, t) = cos s p̃+ sin s(cos t ṽ + sin t ũ).

Note that γ̃t is horizontal if and only if γ̃′t(0) = cos tṽ+sin tũ is orthogonal to ip̃ if and only if ũ ⊥ ip̃.
We compute

〈Ỹ (s), iγ̃(s)〉 = 〈sin s ũ, cos s(ip̃) + sin s(iṽ)〉

= sin2 s〈ũ, iṽ〉.

Now there are two cases. If ũ ⊥ iṽ, then Ỹ is a horizontal vector field and the corresponding Jacobi
field is Y (s) = sin sU(s), where U(s) is the parallel vector field along γ with U(0) = dπp̃(ũ); the
space of such Jacobi fields is 2n− 2-dimensional and the associated conjugate values are multiples
of π. On the other hand, if ũ = iṽ, then the horizontal component of Ỹ is

Ỹ (s)− sin2 s(iγ̃(s)) = sin s(iṽ)− sin2 s(cos s(ip̃) + sin s(iṽ))

= sin s(cos s2(iṽ)− sin s cos s(ip̃))

= sin s cos s(iγ̃′(s)).

In this case, Y (s) = sin s cos s(Jv) = 1
2 sin 2s(Jv), where v = γ′(0) = dπp̃(ṽ); the space of such

Jacobi fields is one-dimensional and the associated conjugate values are multiples of π/2. Finally,
it follows from our considerations that the first conjugate locus of a point coincides with the cut
locus.
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Lie groups

Let G be a Lie group equipped with a bi-invariant metric. In this example, we will describe the
conjugate locus of a point in G. By homogeneity, it suffices to compute the conjugate locus of the
identity. Denote by g the Lie algebra of G. Any geodesic through 1 has the form γ(t) = exp tX for
some X ∈ g. Let {E1, . . . , En} be a basis of g. Consider the Jacobi equation −Y ′′ +R(γ′, Y )γ′ = 0
along γ. Write Y (t) =

∑n
i=1 yi(t)Ei where yi are smooth functions on R. Note that γ′(t) =

d(Lγ)1γ
′(0) = Xγ(t). Then

Y ′′ =
∑

i

y′′i Ei + 2y′i∇XEi + yi∇X∇XEi

and
R(γ′, Y )γ′ = R(X,Y )X =

∑

i

yi
(
∇X∇Ei

X −∇[X,Ei]X
)
.

A simple calculation using the formula (2.7.8) for the Levi-Cività connection, yields that the Jacobi
equation along γ has the form

(5.6.1) Y ′′ + adXY
′ = 0.

Recall that adX is a skew-symmetric endomorphism of g ∼= T1G with respect to the metric at the
identity, so there exists an adX-invariant orthogonal decomposition

g = V0 ⊕

r⊕

j=1

Vj

where V0 is the kernel of adX and for j = 1, . . . , r we have dimVj = 2 and the eigenvalues of adX
on Vj are ±iλj, λj 6= 0. Now the general solution of (5.6.1) has the form

(5.6.2) Y (t) = C + Y0t+
r∑

j=1

cos(λjt)Yj +
sin(λjt)

λj
adXYj

where Yj ∈ Vj for j = 0, . . . , r and C ∈ g. Therefore the space of Jacobi fields vanishing at t = 0 is
spanned by

Y0t− Yj + cos(λjt)Yj +
sin(λjt)

λj
adXYj

where Yj ∈ Vj for j = 1, . . . , r. This Jacobi field can vanish again only if Y0 = 0; in this case, it
is periodic and vanishes exactly when t is a multiple of 2π/λj . We finally deduce that the points
conjugate to 1 along γ are γ(2πk/λj), where k ∈ Z, with multiplicity dimVj. In particular, the
multiplicity of a conjugate point is always even.

5.7 Additional notes

§1 One can recover the results of this chapter by replacing variational calculus by standard calculus
on infinite-dimensional smooth manifolds as follows. To begin with, it is necessary to consider a
larger class of curves to work with, namely, the absolutely continuous curves γ : [a, b] →M joining
p to q with square-integrable ||γ′||. This is a metric space with respect to the distance

d(γ1, γ2) = sup
t∈[a,b]

d(γ1(t), γ2(t)) +

(∫ b

a
||γ′1(s)− γ′2(s)||

2 ds

)1/2

.

82



Plainly, E and L are continuous functions with respect to this distance. Next, there is a natural
way of endowing this space with the structure of a smooth Hilbert manifold. We will not discuss
the details of this construction, for which the interested reader is referred to [Kli95].�2� It turns
out that E becomes a smooth function and the first and second variation formulas correspond to
its first two derivatives. The main results of this chapter can then be fashioned in the context of
Morse theory in Hilbert spaces.

§2 In 1921-30, in the three editions of Blaschke’s book [Bla30], it was discussed the problem of
whether it is true that a closed surface in R3 with the property that the first conjugate locus of
any point reduces to a single point must be isometric to S2; he called surfaces with this property
wiedersehens surfaces. Blaschke studied a number of features of these surfaces and showed, among
other things, that: they can be equivalently defined by requiring that the first conjugate point
always occurs at the same distance; all of their geodesics are closed and of the same length (hence
their name in German); they are homeomorphic to S2. Of course, if we admit abstract 2-dimensional
Riemannian manifolds, then RP 2 also shares this property. In 1963, L. Green [Gre63] proved that
a S2 and RP 2 are indeed the only examples. Later, the work of Weinstein [Wei74], Berger-
Kazdan [BK80] and Yang [Yan80] extended this result to all dimensions proving that a simply-
connected n-dimensional wiedersehens manifold is isometric to Sn.

§3 More generally, it is natural ask to which extent the conjugate locus structure restricts the
topological, differentiable or metric structure of a n-dimensional Riemannian manifold M [War67].
The case of empty conjugate locus will be discussed in the additional notes of chapter 6. The
case in which the first tangential conjugate locus of every point p ∈ M is a round hypersphere in
(TpM,gp) of the same radius is exactly the subject of §2 above. Consider now the case in which
the first tangential conjugate locus of every p is a round sphere in TpM of the same radius but
the multiplicity of the corresponding conjugate points is possibly less than maximal. Namely, we
assume that there exists a number ℓ > 0 and an integer k between 1 and n− 1 such that, for every
p ∈M and every geodesic starting at p, the first conjugate point of p occurs at distance ℓ and has
multiplicity k; such a manifold is called an Allamigeon-Warner manifold [Bes78, chap. 5]. We have
already seen that Sn and CPn are examples of simply-connected Allamigeon-Warner manifolds;
other examples are the quaternionic projective spaces HPn and the Cayley projective plane CaP 2,
manifolds that we will discuss later in this book (indeed, we will see that the spheres Sn and the
compact projective spaces RPn, CPn, HPn, CaP 2 are collectively known as the compact rank one

symmetric spaces). Non-simply-connected examples are given by quotients of those; for instance,
RPn and lens spaces.

§4 A somehow more specialized condition on a manifold is requiring that the cut-locus structure
of each point be similar to that of a compact rank one symmetric space; see [Bes78, chap. 5]. Namely,
for distinct points p and q in a complete Riemannian manifold M , the link from p to q is the subset
Λ(p, q) of the unit sphere UqM of TqM comprising of the vectors of the form −γ′(d(p, q)) ∈ TqM ,
where γ : [0, d(q, p)] →M is a unit speed minimizing geodesic joining p to q. A compact Riemannian
manifold M is called a Blaschke manifold if for every p ∈ M and q ∈ Cut(p), the link Λ(p, q) is a
great sphere of UqM ; here it is not required that the tangential cut-locus at a point is a round sphere,
but this follows from the definition. It is known that a Blaschke manifold is Allamigeon-Warner,
and both concepts are equivalent in the simply-connected case. Note that Λ(p, q) equals UqM
for Sn, it consists of two antipodal points of UqM for RPn, and it consists of a great circle of UqM
for CPn. One sees that Λ(p, q) is a great 3-sphere of UqM for HPn and a great 7-sphere of UqM
for CaP 2. The Blaschke conjecture asserts that every Blaschke manifold is isometric to a compact
rank one symmetric space. This is one the famous yet open problems in geometry, with many
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partial results proved. The book [Bes78] contains a discussion of this conjecture as well as more
general discussions of Riemannian manifolds all of whose geodesics are closed; see [Rez94] for a
more recent bibliography.

5.8 Exercises

1 Let γ : [a, b] → M be a geodesic parametrized with unit speed in a Riemannian manifold M ,
and let H be a piecewise smooth variation of γ with associated variational vector field Y . Show
that
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dt2
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∣
∣
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∂
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∫ b
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∣
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∣
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∣
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a
+

∫ b

a
||Y ′

⊥||
2 + 〈R(γ′, Y⊥)γ

′, Y⊥〉 ds,

where Y⊥ = Y − 〈Y, γ′〉γ′ is the normal component of Y .

2 Let γ : [0, ℓ] → M be a geodesic in a Riemannian manifold M . Consider the index form I on
the space of piecewise smooth vector fields along γ vanishing at 0 and ℓ. Prove that the kernel of I
consists precisely of the Jacobi fields along γ vanishing at 0 and ℓ. (Hint: Use the formula (5.4.1),
and for a given element Y in the kernel of I, choose suitable elements X as it was done in the proof
of Proposition 5.3.5).

3 Let N1 and N2 be two closed submanifolds of a complete Riemannian manifold M . Assume
that one of N1, N2 is compact.

a. Prove that there exist points p1 ∈ N1 and p2 ∈ N2 such that d(N1, N2) = d(p1, p2).

b. Prove that there exists a geodesic γ of M joining p1 and p2 and that L(γ) = d(N1, N2).

c. Prove that γ is perpendicular to N1 (resp. N2) at p1 (resp. p2). (Hint: Use the first variation
formula.)

4 Let γ : [a, b] → M be a geodesic in a Riemannian manifold, and let γ(a) = p and γ(b) = q.
Prove that if p and q are not conjugate along γ, then given u ∈ TpM and v ∈ TqM , there exists a
unique Jacobi field J along γ such that J(a) = u and J(b) = v.

5 Let M be a Riemannian manifold, and let X be a Killing field on M .

a. If γ is a geodesic in M , prove that the restriction J = X ◦ γ of X to a vector field along γ is
a Jacobi field.

b. If M is complete and p ∈M , prove that X is completely determined by the values of X(p) ∈
TpM and (∇X)p ∈ End(TpM).

c. Deduce from part (b) that the dimension of the Lie algebra of Killing fields on M is bounded
by 1

2n(n+ 1), where n = dimM .

6 Let M be a Riemannian manifold and let X be a Killing field on M . Prove that

∇U∇VX −∇∇UVX +R(X,U)V = 0

for all smooth vector fields U and V on M . (Hint: Use Exercise 5(a).)
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7 Let (M,g) be a Riemannian manifold, fix p ∈M and choose an orthonormal basis {e1, . . . , en}
of TpM . Let ǫ > 0 be such that expp : B(0p, ǫ) ⊂ TpM → M is a diffeomorphism onto its image
U , and use it to define a local coordinates x1, . . . , xn around p. Let v ∈ TpM be a unit vector and
consider the geodesic t 7→ expp(tv). Show that the coefficients of the metric in this chart admit
expansions

gij(expp tv) = δij + 〈R(v, ei)v, ej〉
t2

3
+ O(t3),

where 1 ≤ i, j ≤ n, 0 < t < ǫ, and O(t3) denotes a term such that O(t3)/t2 → 0 as t → 0. (Hint:
Use the result of Scholium 5.4.5.)

8 Let (M,g) be a compact Riemannian manifold.
a. Prove that if the Ricci tensor of M is negative definite everywhere, th en the isometry

group Iso(M,g) is finite. (Hint: Use exercise 6 and the divergence theorem (exercise 11
in chapter 4) to show that there are no nontrivial Killing fields on M .)

b. Prove that if the Ricci tensor ofM is negative semi-definite everywhere, then any Killing field
is parallel.

9 Let G be a Lie group equipped with a bi-invariant metric. Use exercise 12 of chapter 2 and
exercise 5(a) above to show that the restriction of a left-invariant or right-invariant vector field
along a geodesic γ is a Jacobi field. Deduce that a general Jacobi field along γ has the form J1+J2,
where J1 = X1 ◦ γ, J2 = X2 ◦ γ, X1 is left-invariant and X2 is right-invariant. Reconcile this result
with formula (5.6.2).
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