
C H A P T E R 2

Connections

2.1 Introduction

Contemplate Rn. Of course, the presence of the identity map as a global chart allows one to
canonically identify the tangent spaces of Rn at its various points with Rn itself. Therefore, a
smooth vector field X in Rn can be viewed simply as a smooth map X : Rn → Rn. Thus, one has
a canonical way of differentiating vector fields in Rn, namely, if X, Y : Rn → Rn are two vector
fields, then the derivative of Y along X is the directional derivative dY (X) = X(Y ).

Whereas a smooth manifold M comes already equipped with a notion of derivative of smooth
maps, there is no canonical way to differentiate vector fields on M . We solve this problem by
considering all possible ways of defining derivatives of vector fields. Any such choice is called a
connection. The name originates from the fact that, at least along a given curve, a connection
provides a way to identify (“connect”) tangent spaces of M at different points; this is the idea of
parallel transport along the curve. A geodesic is then a curve whose velocity vector is constant in
this sense.

The main consequence of the theory of connections for Riemannian geometry is that a Rieman-
nian metric on M uniquely specifies a connection on M , called the Levi-Cività connection. In the
case in which M is a surface in R3, for the Levi-Cività connection on M we recover the derivative
in R3 projected back to M .

Connections can be defined in a variety of ways. We will use the Koszul formalism.

2.2 Connections

LetM be a smooth manifold. A (Koszul) connection inM is a bilinear map∇ : Γ(TM)×Γ(TM) →
Γ(TM), where we write ∇XY instead of ∇(X,Y ), such that

a. ∇fXY = f∇XY , and

b. ∇X(fY ) = X(f)Y + f∇XY (Leibniz rule)

for every X, Y ∈ Γ(TM) and f ∈ C∞(M).

Let ∇ be a connection in a smooth manifold M . We want to analyse of the dependence of ∇
on its arguments. To begin with, we claim that, for a given open set U in M , (∇XY )|U depends
only on X|U and Y |U . Indeed, let X ′, Y ′ ∈ Γ(TM) be vector fields satisfying X ′|U = X|U and
Y ′|U = Y |U . Fix p ∈ U . Construct a smooth function f on M with support contained in U and
such that f ≡ 1 on some neighborhood V of p with V ⊂ V̄ ⊂ U . Then, using part (a) in the
definition of connection and the fact that fX = fX ′ on M ,

(∇XY )p = f(p)(∇XY )p = (f∇XY )p = (∇fXY )p = (∇fX′Y )p = f(p)(∇X′Y )p = (∇X′Y )p
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This shows that ∇XY = ∇X′Y on U . Next, note that fY = fY ′ on M implies that ∇X(fY ) =
∇X(fY ′), so the Leibniz rule and the facts that f(p) = 1, Xp(f) = 0 imply that (∇XY )p =
(∇XY ′)p. Since p was taken to be an arbitrary point in U , ∇XY = ∇XY ′ on U , and this completes
the check of the claim.

2.2.1 Remark In a moment, we will refine the above discussion and show that, for a given point
p ∈ M , the value of (∇XY )p depends only on Xp and the restriction of Y along a smooth curve
γ : (−ǫ, ǫ) → M with γ(0) = p and γ′(0) = Xp. Indeed, this is a consequence of the expression of
the connection (2.2.4).

Choose a chart (U,ϕ = (x1, . . . , xn)) of M around p. We know from the above that ∇XY |U =
∇X|U (Y |U ). Write

X|U =
∑

j

aj
∂

∂xj
and Y |U =

∑

k

bk
∂

∂xk

for ai, bj ∈ C∞(U). Then, using the defining properties of a connection, in the open set U ,

∇XY = ∇X

(

∑

k

bk
∂

∂xk

)

=
∑

k

X(bk)
∂

∂xk
+ bk∇X

∂

∂xk

=
∑

j,k

aj
∂bk

∂xj
∂

∂xk
+
∑

j,k

ajbk∇ ∂

∂xj

∂

∂xk

=
∑

i,j

aj
∂bi

∂xj
∂

∂xi
+
∑

i,j,k

ajbkΓi
jk

∂

∂xi
,

where we have set

∇ ∂

∂xj

∂

∂xk
=
∑

k

Γi
jk

∂

∂xi
.

It follows that the local representation of ∇XY in the chart (U,ϕ) is

(2.2.2) ∇XY =
∑

i





∑

j

aj
∂bi

∂xj
+
∑

j,k

Γi
jka

jbk





∂

∂xi
.

In particular,

(2.2.3) (∇XY )p =
∑

i





∑

j

aj(p)
∂bi

∂xj
(p) +

∑

j,k

Γi
jk(p)a

j(p)bk(p)





∂

∂xi

∣

∣

∣

p
.

It is also convenient to rewrite the preceding formula in the following form

(2.2.4) (∇XY )p =
∑

i



Xp(b
i) +

∑

j,k

Γi
jk(p)a

j(p)bk(p)





∂

∂xi

∣

∣

∣

p
.

Note that this formula involves only the values of the aj , bk at p, and the directional derivatives of
the bi in the direction of Xp, so the claim in Remark 2.2.1 is checked.
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The smooth functions Γi
jk are called the Christoffel symbols of ∇ with respect to the chosen

chart. The Christoffel symbols of a connection satisfy a complicated rule of change upon change of
coordinates, which will be used in the proof of Proposition 2.3.1. For the moment, we just want to
remark that the Christoffel symbols can be used to specify a connection locally. For instance, one
could set Γi

jk identically zero in a given chart (U,ϕ) and then define a connection for vector fields
on U . Doing this for a family of charts whose domains cover the manifold, and noting that a convex
linear combination of connections is still a connection, a smooth partition of unity can be thus used
to define a global connection in M in analogy with the argument in tbe proof of Proposition 1.2.3.
This proves that connections exist in any given manifold.

Rather than insisting in the argument of the preceding paragraph, it is better to use Proposi-
tion 2.2.5 below in order to construct a connection in a given manifold. Indeed, in an n-dimensional
smooth manifold, we need n3 smooth functions Γi

jk to specify a connection locally, and we need

n2 smooth functions gij to specify a Riemannian metric locally, recall (1.2.1). Even taking into
account equivalence classes of such objects, it is apparent that there exist “more” connections in a
given smooth manifold than the already large amount of available Riemannian metrics. The point
is that, as shown by the next proposition, a Riemannian manifold admits a preferred connection.

2.2.5 Proposition Let (M,g) be a Riemannian manifold. Then there exists a unique connection
∇ in M , called the Levi-Cività connection, such that:

a. Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ), and

b. ∇XY −∇Y X − [X,Y ] = 0

for every vector fields X, Y , Z ∈ Γ(TM).

Proof. The strategy of the proof is to first use the two conditions in the statement to deduce
a formula for ∇. This formula is called the Koszul formula, and this proves uniqueness. The next
steps, which are easy but tedious and will be skipped, are to use the Koszul formula to define the
connection, and to check the defined object indeed satisfies the defining conditions of a connection
and the conditions in the statement of this theorem.

Let X, Y and Z be vector fields in M . The so-called permutation trick is to use condition (a)
to write

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ)

Y g(Z,Z) = g(∇Y Z,X) + g(Z,∇Y X)

−Zg(X,Z) = −g(∇ZX,Y )− g(X,∇ZY ),

add up these equations, and use condition (b) to arrive at the Koszul formula:

g(∇XY,Z) =

1

2

(

Xg(Y,Z) + Y g(Z,X) − Zg(X,Y ) + g([X,Y ], Z) + g([Z,X], Y ) + g([Z, Y ],X)
)

(2.2.6)

Note that this formula uniquely defines ∇XY , since Z is arbitrary and g is nondegenerate. �

The condition (a) in Proposition 2.2.5 is usually refered to as saying that the connection ∇ is
compatible with the metric g, or that ∇ is a metric connection. The condition (b) expresses the
fact that the torsion of ∇, which is defined as the left-hand-side therein, is nul.

Henceforth, in this book, for a given Riemannian manifold, we will always use the Levi-Cività
connection in order to differentiate tangent vectors.

19



2.2.7 Example Consider the upper half-plane R2
+ = { (x, y) ∈ R2 | y > 0 } endowed with the

Riemannian metric g = 1
y2
(dx2 + dy2). In this example, we show a practical method to compute

the Levi-Cività connection of (R2
+, g). Start with g( ∂

∂x ,
∂
∂x) =

1
y2
: differentiate it with respect to y

and use Proposition 2.2.5(a) to write

2g

(

∇ ∂
∂y

∂

∂x
,
∂

∂x

)

=
∂

∂y

(

1

y2

)

= −2
1

y3
,

so

(2.2.8) g

(

∇ ∂
∂y

∂

∂x
,
∂

∂x

)

= −
1

y3
;

similarly, differentiate it with respect to x to get

g

(

∇ ∂
∂x

∂

∂x
,
∂

∂x

)

= 0.

Next, consider g( ∂
∂y ,

∂
∂y ) =

1
y2 ; differentiation with respect to x and y yields respectively

(2.2.9) g

(

∇ ∂
∂x

∂

∂y
,
∂

∂y

)

= 0, g

(

∇ ∂
∂y

∂

∂y
,
∂

∂y

)

= −
1

y3
.

We use Proposition 2.2.5(b) in the form of

∇ ∂
∂x

∂

∂y
−∇ ∂

∂y

∂

∂x
=

[

∂

∂x
,
∂

∂y

]

= 0,

where the last equality holds because ∂
∂x and ∂

∂y are coordinate vector fields. Now differentiation

of g( ∂
∂x ,

∂
∂y ) = 0 gives that

g

(

∇ ∂
∂x

∂

∂x
,
∂

∂y

)

= −g

(

∂

∂x
,∇ ∂

∂x

∂

∂y

)

= −g

(

∂

∂x
,∇ ∂

∂y

∂

∂x

)

=
1

y3
,

where we have used (2.2.8) in the last equality, and it also gives

g

(

∇ ∂
∂y

∂

∂y
,
∂

∂x

)

= −g

(

∂

∂y
,∇ ∂

∂y

∂

∂x

)

= 0,

where we have used the first formula of (2.2.9) in the last equality. Since ∂
∂x and ∂

∂y are orthogonal
everywhere, it easily follows from the above formulas that















∇ ∂
∂x

∂
∂x = 1

y
∂
∂y

∇ ∂
∂x

∂
∂y = − 1

y
∂
∂x

∇ ∂
∂y

∂
∂y = − 1

y
∂
∂y

⋆
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2.3 Parallel transport along a curve

Let (M,g) be a Riemannian manifold, and denote by ∇ its Levi-Cività connection.
A vector field along a curve γ : I → M , I ⊂ R an interval, is a map X : I → TM such that

X(t) ∈ Tγ(t)M for all t. If γ is a smooth curve, the most obvious example of a vector field aong γ
is its tangent vector field γ′(t). In general, if γ is an embedding, then any vector field along γ can
be extended to a smooth vector field in M defined on a neighborhood of the image of γ. On the
other hand, if γ is not an embedding, then there are vector fields along γ that do not come from
vector fields defined on open subsets of M . An example is given by taking γ to be a curve with
self-intersections, or even a constant curve.

The set of smooth vector fields along a curve γ : I → M will be denoted Γ(γ∗TM). The
connection ∇ in M induces a derivative of vector fields along γ as follows.

2.3.1 Proposition Let γ : I → M be a smooth curve. Then there exists a unique linear map ∇
dt :

Γ(γ∗TM) → Γ(γ∗TM), called the covariant derivative along γ, satisfying the following conditions:
a. ∇

dt(fX) = df
dtX + f ∇

dtX for every smooth function f : I → R.
b. If X admits an extension to a vector field X̄ defined on a open subset U of M , then

(

∇

dt
X

)

(t) = (∇γ′(t)X̄)γ(t)

for every t satisfying γ(t) ∈ U .

Proof. We first prove the uniqueness result. Suppose first that the image of γ lies in the domain
of one chart (U,ϕ = (x1, . . . , xn)). Then we can write γ(t) = (x1(t), . . . , xn(t)), so

γ′(t) =
∑

j

(xj)′(t)
∂

∂xj

∣

∣

∣

γ(t)
.

If X is a vector field along γ, we can also write

X(t) =
∑

k

ak(t)
∂

∂xk

∣

∣

∣

γ(t)
.

Note that, although in general X cannot be extended to a vector field defined on an open set of
M , X is written as a linear combination of vector fields that admit such extensions. So, if we have
a linear map as in the statement, then

∇

dt
X =

∑

k

(ak)′
∂

∂xk
+ ak∇γ′(t)

∂

∂xk

=
∑

i

(ai)′
∂

∂xi
+
∑

j,k

ak(xj)′∇ ∂

∂xj

∂

∂xk

=
∑

i

(ai)′
∂

∂xi
+
∑

i,j,k

ak(xj)′Γi
jk

∂

∂xi

=
∑

i



(ai)′ +
∑

j,k

Γi
jk(x

j)′ak





∂

∂xi
(2.3.2)

In general, one sees by a argument analogous to that used in section 2.2 that (∇dtX)|J depends
only on X|J for any open subinterval J of I, and the image of γ can be covered by finitely many
domains of charts, so the local expressions show that ∇

dt is uniquely defined, if it exists.
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In order to prove existence, one uses the local expression to define ∇
dt in the domain of a chart.

Then, one needs to show that the definition is independent of the choice of chart. Here it is
necessary to use the rule of change for the Christoffel symbols (cf. Exercise 3). Finally, one easily
checks that the defined map satisfies the two conditions in the statement. �

A vector field X along a smooth curve γ : I → R is called parallel if ∇
dtX = 0 on I. This

definition can be obviously extended to include curves that are only piecewise smooth.

2.3.3 Proposition Let γ : I → M be a piecewise smooth curve, and let t0 ∈ I. Given a vector v ∈
Tγ(t0)M , there exists a unique parallel vector field X along γ such that X(t0) = v.

Proof. Suppose first that I is bounded. The image of γ can be covered by finitely many domains
of charts of M . Thus, without loss of generality, we may assume that the image of γ lies in the
domain of one chart (U,ϕ = (x1, . . . , xn)). Write γ(t) = (x1(t), . . . , xn(t)) and

X(t) =
∑

k

ak(t)
∂

∂xk

∣

∣

∣

γ(t)
.

Then, equation (2.3.2) implies that ∇
dtX = 0 is equivalent to

(2.3.4) (ai)′ +
∑

j,k

Γi
jk(x

j)′ak = 0

for all i. This is a system of ordinary linear differential equations of first order in the unknowns
a1, . . . , an, which is known to have unique solutions defined on all of I for given initial conditions.
In our case, the initial conditions are given by ak(t0) = dxk(v).

In the general case, we can cover I by the union of a chain of increasing bounded intervals,
construct X along each bounded interval, and use the uniqueness result to see that so constructed
vector fields piece together to yield a global solution. �

It follows from the proof of the preceding proposition that the map that assigns to a vector
v ∈ Tγ(t0)M a parallel vector field X ∈ Γ(γ∗TM) with X(t0) = v is linear. Evaluating X at
another time t1 gives thus a linear map P γ

t1,t0 : Tγ(t0)M → Tγ(t1)M which will be called the parallel
translation map along γ from t0 to t1.

2.3.5 Proposition Let γ : I → M be a piecewise smooth curve. Then the parallel translation
maps along γ enjoys the following properties:

a. P γ
t0,t0 is the identity map of Tγ(t0)M ;

b. P γ
t2,t1 ◦ P

γ
t1,t0 = P γ

t2,t0 (chain rule);
c. P γ

t0,t1 = (P γ
t1,t0)

−1;
d. P γ

t1,t0 : Tγ(t0)M → Tγ(t1)M is an isometry;

for every t0, t1, t2 ∈ I.

Proof. Assertions (a), (b) and (c) are immediate. We show that assertion (d) is a consequence
of condition (a) in the definition of a connection (in fact, it is equivalent to that condition) as
follows. If X is a parallel vector field along γ, then ∇X

dt = 0 along γ, so

d

dt
g(X(t),X(t)) = 2g(

(

∇

dt
X

)

(t),X(t)) = 0,

and the norm of X is constant along γ. �
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2.3.6 Example We now use the result of Example 2.2.7 to describe the parallel transport map
along the curve γ(t) = (t, y0) in (R2

+, g), where y0 > 0. Denote by X(t) = a(t) ∂
∂x + b(t) ∂

∂y a smooth
vector field along γ, where a, b : R → R are smooth functions. Then

∇

dt
X = a′

∂

∂x
+ a∇ ∂

∂x

∂

∂x
+ b′

∂

∂y
+ b∇ ∂

∂y

∂

∂y

=

(

a′ −
b

y0

)

∂

∂x
+

(

b′ +
a

y0

)

∂

∂y
,

so the condition that X be parallel is that
{

a′ = ωb
b′ = −ωa

where ω = y−1
0 . The general solution of this system of first-order ordinary differential equations is

a(t) = a0 cosωt+ b0 sinωt

b(t) = −a0 sinωt+ b0 cosωt

where (a(0), b(0)) = (a0, b0). It follows that

P γ
t,0

(

a0
∂

∂x
+ b0

∂

∂y

)

= (a0 cosωt+ b0 sinωt)
∂

∂x
+ (−a0 sinωt+ b0 cosωt)

∂

∂y

which is merely rotation in the Euclidean sense at a constant rate; note that the rate ω → ∞
as y0 → 0. ⋆

2.4 Geodesics

Let (M,g) be a Riemannian manifold, and denote by ∇ its Levi-Cività connection.
A smooth curve γ : I → M , I ⊂ M an interval, is called a geodesic if and only if ∇

dtγ
′ = 0 on

I. Thus we require that the tangent vector field γ′ be parallel along γ. According to 2.3.5(d), this
implies that the length of γ′ must be constant. We also refer to the latter property as saying that γ
is a curve parametrized with constant speed or γ is a curve parametrized proportional to arc-length.
Observe that constant curves are geodesics.

We can get the local expression of the geodesic equation immediately from (2.3.4). Let γ : I →
M be a smooth curve whose image lies in the domain of a chart (U,ϕ = (x1, . . . , xn)) of M . Writing
γ(t) = (x1(t), . . . , xn(t)), we have that ∇

dtγ
′ = 0 if and only if

(2.4.1) (xi)′′ +
∑

j,k

Γi
jk(x

j)′(xk)′ = 0

for all i. Note that this is a second order system of non-linear ordinary differential equations in the
unknowns x1, . . . , xn, for which we have a local existence and uniqueness result. Indeed, we quote
the following theorem from [Spi70].

2.4.2 Theorem Consider the second order system of ordinary differential equations

σ′′ = F
(

σ, σ′
)

,

where F : Rn × Rn → Rn is a smooth map, in the unknown σ : I → Rn, I ⊂ R an open
interval. Then, given (x0, a0) ∈ Rn ×Rn, there exists a neighborhood U × V of (x0, a0) and δ > 0
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such that, for any (x, a) ∈ U × V , there is a unique solution σx,a : (−δ, δ) → Rn with initial
conditions σx,a(0) = x and σ′

x,a(0) = a. Moreover, the map Σ : U × V × (−δ, δ) → M , defined by
Σ(x, a, t) = σx,a(t), is smooth.

It also follows from the theory of ordinary differential equations that any solution of the geodesic
equation (2.4.1) is automatically smooth. Equation (2.4.1) has a particular homogeneity feature
that we explore now. Namely, if γ : (a, b) → M is a solution of (2.4.1), then it is immediate to
check that for every k ∈ R \{0} the curve η : (ak ,

b
k ) → R defined by η(t) = γ(kt) is also a solution.

2.4.3 Proposition Given p ∈ M , there exists a neighborhood U of p and ǫ > 0 such that, for
any q ∈ U and v ∈ TqM with gq(v, v)

1/2 ≤ ǫ, there is a unique geodesic γv : (−2, 2) → M such
that γv(0) = q and γ′v(0) = v. Moreover, the map Γ : ∪q∈UB(0q, ǫ) × (−2, 2) → M defined by
Γ(v, t) = γv(t) is smooth.

Proof. Let (V, ϕ) be a local chart ofM around p, and consider the map dϕ : TM |V → ϕ(V )×Rn.
The geodesic equation in M corresponds via dϕ to a second order differential equation for curves on
ϕ(V )×Rn, to which we apply Theorem 2.4.2. We deduce that there exists an open neighborhood
of 0p in TM such that for every v ∈ W there exists a unique geodesic γv : (−δ, δ) → M such
that γv(0) = π(v) and γ′v(0) = v, where π : TM → M is the projection, and γv(t) is smooth on
(v, t) ∈ W × (−δ, δ). By continuity of g, we may shrink W and assume that it is of the form

W = { v ∈ TM |U : gπ(v)(v, v)
1/2 < ǫ′ }

for some open neighborhood U of p in M and some ǫ′ > 0 (cf. Exercise 1). The homogeneity of
the geodesic equation refered to above yields that multipliying the length of v by δ/2 makes the
interval of definition of γv to be multiplied by 2/δ. Therefore we can take ǫ = ǫ′δ/2 and we are
done. �

Henceforth, in this book, for p ∈ M and v ∈ TpM , we will denote by γv the unique geodesic with
initial conditions γv(0) = p and γ′v(0) = v. Note that the homogeneity of the geodesic equation
yields that γkv(t) = γv(kt). It follows from Proposition 2.4.3 that there exists open neighborhood
Ω of the zero section in TM consisting of vectors v such that γv(1) is defined. The exponential map

exp : Ω → M

is defined by setting exp(v) = γv(1). It follows from the last assertion in Proposition 2.4.3 that
the exponential map is smooth. Sometimes we will also write expp = exp |TpM for p ∈ M . Now
γv(t) = γtv(1) = expp(tv) for v ∈ TpM and sufficiently small t.

2.4.4 Proposition Let p ∈ M . Then:
a. The exponential map expp maps an open neighborhood of 0p ∈ TpM diffeomorphically onto

an open neighborhood of p in M .
b. There exists an open neighborhood U of p and ǫ > 0 such that, for any q ∈ U , there exists a

unique v ∈ TpM with gp(v, v)
1/2 < ǫ such that expp v = q.

Proof. We compute the differential d(expp)0p : T0p(TpM) → TpM . Recall that expp(tv) =
γtv(1) = γv(t) for v ∈ TpM . Differentiating this equation with respect to t at t = 0 yields that

(2.4.5) d(expp)0p(v) = γ′v(0) = v.

Hence d(expp)0p is the identity, where as usual we have identified T0p(TpM) with TpM . It follows
from the inverse function theorem that expp maps an open neighborhood of 0p in TpM , which can
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be taken of the form B(0p, ǫ) for some ǫ > 0, diffeomorphically onto an open neighborhood of p in
M . Parts (a) and (b) follow. �

The neighborhood of p given in the previous proposition is usually called a normal neighborhood
of p. Hence we have that any point in a normal neighborhood of p can be joined to p by a unique
geodesic in that neighborhood. Next, we want to improve this result in the sense of connecting two
movable points in a neighborhood of p by a geodesic. We need a lemma.

2.4.6 Lemma Let π : TM → M be the projection. Then, given p ∈ M , the map

Φ : Ω → M ×M, Φ(v) = (π(v), exp(v))

is a local diffeomorphism from an open neighborhood W of 0p in TM onto an open neighborhood of
(p, p) in M ×M .

Proof. The result follows from the inverse function theorem if we can show that dΦ0p :
T0p(TM) → TpM ⊕TpM is an isomorphism. Each vector in the tangent space T0p(TM) is the tan-
gent vector at t = 0 to a curve c in TM passing through 0p at t = 0. First, let c(t) = tv ∈ TM where
v ∈ TpM . Then dΦ0p(c

′(0)) = d
dt

∣

∣

t=0
Φ(c(t)) = d

dt

∣

∣

t=0
(p, expp(tv)) = (0, v) by equation (2.4.5).

Next, let c(t) = 0γ(t) ∈ Tγ(t)M ⊂ TM , where γ is a curve in M with γ(0) = p and γ′(0) = v ∈ TpM .

Then dΦ0p(c
′(0)) = d

dt

∣

∣

t=0
Φ(0γ(t)) =

d
dt

∣

∣

t=0
(γ(t), γ(t)) = (v, v). The two calculations together imply

that dΦ0p is surjective and hence, by dimensional reasons, an isomorphism. �

2.4.7 Proposition Given p ∈ M , there exists an open neighborhood U of p and ǫ > 0 such that:
a. For any x, y ∈ U , there exists a unique v ∈ TxM with gx(v, v)

1/2 < ǫ such that expx v = y.
Set γv(t) = expx(tv).

b. The map Ψ : U × U × [0, 1] defined by Ψ(x, y, t) = γv(t) is smooth.
c. For all x ∈ U , the map expx is a diffeomorphism from B(0x, ǫ) onto a normal neighborhood

of x containing U .

Proof. (a) Let W be a neighborhood of 0p in TM such that Φ(v) = (π(v), exp(v)) is a diffeo-
morphism of W onto a neighborhood of (p, p) in M ×M as in Lemma 2.4.6. By shrinking W , if
necessary, we may assume that W = ∪x∈V B(0x, ǫ) for some open neighborhood V of p and some
ǫ > 0. Let U be a neighborhood of p in M such that U ×U ⊂ Φ(W ). Then, for any (x, y) ∈ U ×U ,
there is a unique v ∈ W such that Φ(v) = (x, y), meaning that there is a unique v ∈ B(0x, ǫ) such
that expx v = y.

(b) This follows immediately from the fact that Ψ(x, y, t) = exp(tΦ−1(x, y)).
(c) Since B(0x, ǫ) ⊂ W , the map Φ is a diffeomorphism from B(0x, ǫ) onto its image. But, for

fixed x ∈ U , Φ(v) = (x, expx(v)) for v ∈ B(0x, ǫ). �

The set U in the preceding proposition is a normal neighborhood of each of its points; we will
call such a set U an ǫ-totally normal neighborhood of p. Note that it is not claimed that the
geodesic γv is that proposition is entirely contained in U . However, it is possible to work a bit
harder and find a possibly smaller totally normal neighborhood of p with that property. �1�

2.4.8 Example In order to complete our analysis of the Riemannian manifold (R2
+, g) of Exam-

ples 2.2.7 and 2.3.6, we now determine its geodesics. So let γ(t) = (x(t), y(t)) be a smooth curve
in R2

+. Then γ′ = x′ ∂
∂x + y′ ∂

∂y and

∇

dt
γ′ = x′′

∂

∂x
+ x′

∇

dt

∂

∂x
+ y′′

∂

∂y
+ x′

∇

dt

∂

∂y
.

�1�
Ref?
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We also have
∇

dt

∂

∂x
= x′∇ ∂

∂x

∂

∂x
+ y′∇ ∂

∂y

∂

∂x
= −

y′

y

∂

∂x
+

x′

y

∂

∂y
,

and
∇

dt

∂

∂y
= x′∇ ∂

∂x

∂

∂y
+ y′∇ ∂

∂y

∂

∂y
= −

x′

y

∂

∂x
−

y′

y

∂

∂y
,

so
∇

dt
γ′ =

(

x′′ − 2
x′y′

y

) ∂

∂x
+
(

y′′ +
x′2 − y′2

y

) ∂

∂y
.

Therefore the geodesic equations are

(2.4.9)

{

x′′ − 2x′y′

y = 0

y′′ + x′2−y′2

y = 0

Note that x(t) = x0 is a solution of (2.4.9); indeed, the second equation gives that
(

y′

y

)′

=
y′′y − y′2

y2
= 0,

so y(t) = y0e
kt where y0 > 0 and k ∈ R. This shows that the vertical lines are geodesics. Note

that in the parametrization that we obtained, they are defined on all of R.
Next, suppose that γ is a geodesic which is not a vertical line. By the uniqueness result for

geodesics, it follows that x′(t) 6= 0 for all t in the domain of γ. The first equation of (2.4.9) then
gives

x′′

x′
= 2

y′

y

from where we get that
(log(x′))′ = (2 log y)′

and hence that

(2.4.10) x′ = cy2

for some real constant c which may be assumed to be positive by reversing the orientation of γ, if
necessary. Of course γ is parametrized with constant speed, which for simplicity we assume it is 1;
then 1

y2
(x′2 + y′2) = 1; substituing (2.4.10) gives that

dy

y
√

1− c2y2
= ±dt

Direct integration then yields
arcsech (cy) = ±t− t0,

and changing the initial point we may assume that t0 = 0. Then

(2.4.11) y(t) = Rsech t

where R = c−1 > 0. Finally, equation (2.4.10) implies that

(2.4.12) x(t) = x0 +R tanh t

for some x0 ∈ R. Note that equations (2.4.12) and (2.4.11) are defined on all of R, and they
parametrize the semi-circle of center (x0, 0) and radius R in R2

+.
Any geodesic of (R+

2 , g) is of one of the above types. Indeed, given initial conditions for a
geodesic, it is readily seen that there exists a (unique) vertical line or semi-circle as above satisfying
the given initial conditions. ⋆
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2.5 Isometries and Killing fields

It is more or less clear that isometries should preserve any object canonically associated to a
Riemannian manifold. Let (M,g) and (M ′, g′) be Riemannian manifolds, denote by ∇ and ∇′ the
corresponding Levi-Cività connections, and let f : M → M ′ be an isometry. It follows from the
Koszul formula (2.2.6) that f maps ∇ to ∇′ is the sense that

∇′
f∗Xf∗Y = f∗(∇XY )

where X, Y ∈ Γ(TM). In particular, if γ : I → M is a geodesic of (M,g) then f ◦ γ : I → M ′ is a
geodesic of (M ′, g′).

It is interesting to rephrase the last assertion in terms the exponential map. Namely, if f is an
isometry of (M,g), p ∈ M and v ∈ TpM lies in the domain of expp, then dfp(v) lies in the domain
of expf(p) and

f(expp(v)) = expf(p)(dfp(v)).

In particular, if p is a fixed point of f then, on a normal neighborhood of p, we can write

f = expp ◦ dfp ◦ exp
−1
p ;

namely, exp−1
p defines a local chart on a normal neighborhood of p that linearizes f .

A Killing vector field (sometimes, simply a Killing field) on a Riemannian manifold (M,g) is a
smooth vector field X on M whose local flow {ϕt} consists of local isometries of M , namely, ϕ∗

t g = g
wherever defined. By differentiation with respect to t, we immediately see that this condition is
equivalent to the vanishing of Lie derivative of g with respect to X,

LXg = 0,

or equivalently,

(2.5.1) Xg(Y,Z) = g([X,Y ], Z) + g(Y, [X,Z])

for every Y , Z ∈ Γ(TM).

2.5.2 Proposition Let (M,g) be a Riemannian manifold.
a. The set of Killing fields on M form a Lie subalgebra of the Lie algebra of smooth vector fields

on M .
b. A smoothy vector field X ∈ Γ(TM) is a Killing field if and only if

g(∇Y X,Z) + g(∇ZX,Y ) = 0

for every Y , Z ∈ Γ(TM), i. e. (∇X)p is skew-symmetric as a linear operator on TpM for all
p ∈ M .

Proof. (a) The set of Killing fields on M is a subspace of Γ(TM) because LXg = 0 is linear in
X, and closed under the Lie bracket because L[X,Y ] = [LX , LY ] for all X, Y ∈ Γ(TM).

(b) Using that the Levi-Cività connection is compatible with the metric and has no torsion
(Proposition 2.2.5(a) and (b)), equation (2.5.1) is seen to be equivalent to

g(∇XY,Z) + g(Y,∇XZ) = g(∇XY −∇Y X,Z) + g(Y,∇XZ −∇ZX),

which implies the result. �
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2.5.3 Remark In chapter 3 we will see that Killing fields are complete if M is e. g. compact, and
in chapter 5 we will bound the dimension of the Lie algebra of Killing fields on M by 1

2n(n + 1),
where n = dimM .

Recall that the set Isom(M,g) of all isometries of a Riemannian manifold (M,g) forms a sub-
group of the group of all diffeomorphisms of M , which has the structure of a Lie group with respect
to the compact-open topology; moreover, the map Isom(M,g) × M → M is smooth [KN96]. In
particular, if all Killing fields are complete, then the Lie algebra of Isom(M,g) is naturally identified
with the Lie algebra of Killing fields of M .

2.6 Induced connections

At this juncture, it is convenient to introduce the following extension of Proposition 2.3.1. We will
be using it especially in the case dimN = 2.

2.6.1 Proposition Let N be a smooth manifold, and let ϕ : N → M be a smooth map. Then there
exists a unique bilinear map ∇ϕ : Γ(TN)× Γ(ϕ∗TM) → Γ(ϕ∗TM), called the induced connection
along ϕ, satisfying the following conditions:

a. ∇ϕ
fXY = f∇ϕ

XY ;

b. ∇ϕ(fY ) = X(f)Y + f∇ϕ
XY ;

c. If Y admits an extension to a vector field Ŷ defined on a open subset U of M , then

(

∇ϕ
XY
)

p
=
(

∇dϕ(Xp)Ŷ
)

ϕ(p)

for every p ∈ ϕ−1(U);
where X ∈ Γ(TN), Y ∈ Γ(ϕ∗TM) and f : N → R is a smooth function.

2.6.2 Proposition Let ϕ : N → M be a smooth map, let X, Y ∈ Γ(TN) be vector fields in N and
let U , V ∈ Γ(ϕ∗TM) be vector fiels along ϕ. Then the following identities hold:

∇ϕ
X(ϕ∗Y )−∇ϕ

Y (ϕ∗X)− ϕ∗[X,Y ] = 0, and

X g(U, V ) = g(∇ϕ
XU, V ) + g(∇ϕ

XV,U).

2.7 Examples

The Euclidean space

We claim that the Levi-Cività connection ∇ in Rn coincides with the usual derivative. In fact, let
(x1, . . . , xn) denote the standard global coordinates in Rn. We have that

g

(

∂

∂xi
,

∂

∂xj

)

= δij and

[

∂

∂xi
,

∂

∂xj

]

= 0

for all i, j. Plugging these relations into the Koszul formula (2.2.6) gives that ∇ ∂

∂xi

∂
∂xj = 0 for all

i, j, namely, all the Christoffel symbols Γi
jk = 0. If

X =
∑

j

aj
∂

∂xj
and Y =

∑

k

bk
∂

∂xk
,

28



for ai, bj ∈ C∞(Rn), then, using formula (2.2.2),

∇XY =
∑

i





∑

j

aj
∂bi

∂xj





∂

∂xi
= X(Y ) = dY (X),

proving the claim. We also get, from equation (2.3.4), that a vector field X along a curve γ :
[a, b] → M , given as

X(t) =
∑

k

ak(t)
∂

∂xk

∣

∣

∣

γ(t)
,

is parallel if and only the ak are constant functions, namely, the parallel vector fields in Rn are the
constant vector fields. It follows that the parallel transport map along γ from a to b is given by
the differential of the translation map, that is,

P γ
b,a = d(τv)γ(a),

where τv is the translation in Rn by the vector v = γ(b)− γ(a), and, in particular, is independent
of the curve γ joining γ(a) and γ(b). Finally, the geodesic equation (2.4.1) in Rn is

(xi)′′ = 0

for all i, so the geodesics are the lines. Hence

expp(v) = p+ v

for p ∈ Rn and v ∈ TpR
n = Rn.

Product Riemannian manifolds

Let (Mi, gi), where i = 1, 2, denote two Riemannian manifols and consider the product Riemannian
manifold (M,g) = (M1, g1)× (M2, g2). Let Ui ∈ Γ(TMi), where i = 1, 2, be arbitrary vector fields.
Of course, U1 and U2 can be identified with vector fields on M , and it follows from the construction
of (M,g) that [U1, U2] = 0 and g(U1, U2) = 0 in M .

Now, suppose that X, Y , Z ∈ Γ(TM) can be decomposed as X = X1 +X2 and Y = Y1 + Y2,
Z = Z1 + Z2, where Xi, Yi, Zi ∈ Γ(TMi) for i = 1, 2 (not every vector field on M admits such a
decomposition!). Note that

Xg(Y,Z) = X1g1(Y1, Z1) +X2g2(Y2, Z2)

and

g([X,Y ], Z) = g1([X1, Y1], Z1) + g2([X2, Y2], Z2).

It then follows from the Koszul formula (2.2.6) applied three times that

g(∇XY,Z) = g1(∇
1
X1

Y1, Z1) + g2(∇
2
X2

Y2, Z2)

= g(∇1
X1

Y1 +∇2
X2

Y2, Z),

where ∇ denotes the Levi-Cività connection of M and ∇i denotes the Levi-Cività connection of Mi

for i = 1, 2. Since g is nondegenerate and any tangent vector to M can be extended to a vector field
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Z which decomposes as Z1 + Z2, this calculation yields the following formula for the Levi-Cività
connection of a Riemannian product:

(2.7.1) ∇XY = ∇1
X1

Y1 +∇2
X2

Y2.

It follows from this formula that the Christoffel symbol Γi
jk of ∇ is zero unless all the three

indices i, j, k correspond to coordinates of the same factor Mℓ, where ℓ = 1 or 2, in which case Γi
jk

is a function on Mℓ and a Christofell symbol of ∇ℓ. Therefore if γ is a curve in M with components
γ1 in M1 and γ2 in M2, and X is a vector field along γ, then we can decompose X = X1 + X2

where Xi is a vector field along γi, and equation (2.3.2) gives ∇X
dt = ∇X1

dt + ∇X2

dt . In particular, X
is parallel along γ if and only if Xi is parallel along Mi for i = 1, 2. As γ′(t) = γ′1(t) + γ′2(t), in
particular yet, γ is a geodesic if and only if γi is a geodesic of Mi for i = 1, 2.

Riemannian submanifolds and isometric immersions

Let (M,g), (M,g) be Riemannian manifolds, and suppose that ι : M → M is an isometric immer-
sion. We would like to relate the Levi-Cività connections ∇ of M and ∇ of M . Since this is a local
problem, we can work in a neighborhood a point p ∈ M and assume that ι is the inclusion map.
Now the tangent bundle TM is a subbundle of TM , the metric g is the restriction of g, and every
vector field on M admits an extension to a vector field on M .

Let X, Y and Z be vector fields on M , and let X , Y and Z be extensions of those vector fields
to vector fields on M . Note that [X,Y ] is an extension of [X,Y ] to a vector field on M . It follows
from two applications of the Koszul formula (2.2.6) that

2g((∇XY )p, Zp) = 2g((∇XY )p, Zp)

= S ±Xp g(Y,Z) ± g([X,Y ]p, Zp)

= S ±Xp g(Y ,Z)± g([X,Y ]p, Zp)

= 2g((∇XY )p, Zp)

= 2g((∇XY )p, Zp),

where S denotes cyclic summation in X, Y , Z. Since (∇XY )p ∈ TpM and Zp can be any element
of TpM , it follows that

(2.7.2) (∇XY )p = Πp

(

(∇XY )p
)

,

where Πp : TpM → TpM is the orthogonal projection.
The most important case is that of Riemannian submanifolds of Euclidean space. If M is a

Riemannian submanifold of Rn, then formula (2.7.2) implies that a smooth curve γ in M is a
geodesic of M if and only if its second derivative γ′′ in Rn is everywhere normal to M ; in other
words, the geodesics of M are the “curves with normal acceleration”.

The sphere Sn

Let p ∈ Sn and v ∈ TpS
n. We now determine the unique geodesic γ of Sn with initial conditions

γ(0) = p and γ′(0) = v. If v = 0, then γ is a constant curve, so we may assume that v 6= 0. Since
p and v are orthogonal vectors in Rn+1, they span a 2-dimensional subspace which we denote by
E. Let f : Rn+1 → Rn+1 be the linear reflection on E. Then f is an orthogonal transformation
of Rn+1 and leaves Sn+1 invariant. Now every orthogonal transformation of Rn+1 is an isometry.
Since Sn+1 has the induced metric from Rn+1, f restricts to an isometry of Sn which we denote
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by the same letter. Owing to the fact that an isometry maps geodesics to geodesics, the curve
γ̃ = f ◦ γ is a geodesic of Sn. Since f leaves E pointwise fixed, the initial conditions of γ̃ are
γ̃(0) = f(γ(0)) = f(p) = p and γ̃′(0) = f(γ′(0)) = f(v) = v, namely, the same as those of γ.
By the uniqueness of geodesics with given initial conditions, we have that γ̃ = γ, or, what is the
same, f(γ(t)) = γ(t) for all t in the domain of γ. It follows that γ is contained in E and thus must
coincide with the great circle Sn ∩E parametrized with constant speed on its domain of definition.
This argument shows that the great circles are locally geodesics; but then, the great circles are
geodesics.

In particular, the geodesics of Sn parametrized by arc-length are periodic of period 2π. Finally,
we have the formula

expp(v) = cos(||v||)p + sin(||v||)
v

||v||

for v 6= 0.

Riemannian coverings

Let π : (M̃, g̃) → (M,g) be a Riemannian covering.

2.7.3 Proposition The geodesics of (M,g) are the projections of the geodesics of (M̃, g̃), and the
geodesics of (M̃, g̃) are the liftings of the geodesics of (M,g).

Proof. Suppose γ̃ and γ are continuous curves in M̃ , M such that π ◦ γ̃ = γ. Since π is a
local isometry, it maps a sufficiently small arc of γ̃ isometrically onto a small arc of γ. It follows
that γ̃ is a geodesic if and only if γ is a geodesic. This shows that the classes of curves described
in the statement of the proposition are indeed geodesics. Now we need only to remark that every
continuous curve in M is the projection of any of its continuous liftings in M̃ , and every continuous
curve in M̃ is the continuous lifting of its projection to M . �

The real projective space

We apply Proposition 2.7.3 to the Riemannian covering map π : Sn → RPn. The geodesics of Sn

have already been determined as being the great circles parametrized with constant speed, so the
geodesics of RPn are the projections of those. In particular, since π identifies antipodal points of
Sn, the geodesics of RPn paramerized by arc-length are periodic of period π.

Flat tori

Let Γ be a lattice in Rn and consider the induced Riemannian metric gΓ on T n. We apply Propo-
sition 2.7.3 to the Riemannian covering map π : Rn → (T n, gΓ) to deduce that the geodesics of
(T n, gΓ) are simply the projections of the straight lines in Rn. In this way, we see that some
geodesics of (T n, gΓ) are periodic and some are dense in T n.

Next, let Γ′ be another lattice in Rn. We have already remarked that (T n, gΓ) and (T n, gΓ′)
are generally non-isometric. Nevertheless, there exists a unique affine transformation f of Rn that
maps Γ to Γ′, and hence induces a diffeomorphism f̄ : Rn/Γ → Rn/Γ′ such that the diagram

Rn f
−−−−→ Rn





y





y

Rn/Γ
f̄

−−−−→ Rn/Γ′
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is commutative. In general, f̄ is not an isometry, but since f maps straight lines to straight lines,
f̄ maps the geodesics of (T n, gΓ) to the geodesics of (T n, gΓ′). Hence we get an example of two
non-isometric metrics on the same smooth manifold with the same geodesics.

Lie groups ⋆

Let G be a Lie group and denote its Lie algebra by g. In this example, we will describe the
Levi-Cività connection associated to a bi-invariant metric on G. We start with a definition and a
proposition.

We say that an inner product 〈, 〉 on g is ad-invariant if the identity

(2.7.4) 〈adZX,Y 〉+ 〈X, adZY 〉 = 0

holds for every X, Y , Z ∈ g.

2.7.5 Proposition Every Ad-invariant inner product on g is ad-invariant, and the converse holds
if G is connected.

Proof. Let 〈, 〉 be an inner product on g. It being Ad-invariant means that

(2.7.6) 〈AdgX,AdgY 〉 = 〈X,Y 〉

for every g ∈ G and X, Y ∈ g. In particular, taking g = exp tZ for Z ∈ g and differentiating at
t = 0 yields identity (2.7.4).

Assume now that G is connected and 〈, 〉 is ad-invariant. Then (2.7.4) holds; note that what it
is really saying is that f ′

X,Y (0) = 0 for all X, Y ∈ g, where

fX,Y (t) = 〈Adexp tZX,Adexp tZY 〉,

and from this information we will show that fX,Y (t) = fX,Y (0). Indeed, since t 7→ Adexp tZ is a
homomorphism,

fX,Y (t+ s) = fX′,Y ′(t)

where X ′ = Adexp sZX and Y ′ = Adexp sZY . Differentiating this identity at t = 0 gives that
f ′
X,Y (s) = f ′

X′,Y ′(0) = 0. Since s ∈ R is arbitrary, this implies that fX,Y is constant, as desired.

So far we have shown that (2.7.6) holds if g lies in the image of exp. But there exists an open
neighborhood U of the identity of G contained in the image of exp, and it is known that U generates
G as a group due to the connectedness of G. Since g 7→ Adg is a homomorphism, this finally implies
that (2.7.6) holds for every g ∈ G. �

Let g be a bi-invariant metric on G. Now we are ready to use the Koszul formula (2.2.6) to
compute the Levi-Cività connection on left-invariant vector fields. Let X, Y , Z ∈ g. Since X and
Y are left-invariant vector fields and g is a left-invariant metric, g(X,Y ) is a constant function on
G. Therefore Zg(X,Y ) = 0. Similarly, Y g(Z,X) = Zg(X,Y ) = 0. Regarding the other terms
of (2.2.6), the preceding proposition shows that g1 is an ad-invariant inner product on g, so

(2.7.7) g([Z,X], Y ) + g(X, [Z, Y ]) = g1(adZX,Y ) + g1(X, adZ , Y ) = 0.

We deduce that

(2.7.8) ∇XY =
1

2
[X,Y ]
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for all X, Y ∈ g (this formula shows in particular that ∇XY is also a left-invariant vector field, but
this fact of course also follows from general properties of isometries, cf. section 2.5). An important
application of this formula is that ∇XX = 0 for all ∈ g, and this means that every one-parameter
subgroup of G thorough the identity is a geodesic. This is also equivalent to saying that the
exponential map of G as a Lie group and the exponential map of G as the Riemannian manifold
(G, g) coincide. Of course, the geodesics of G through an arbitrary point are left-translates of
one-parameter subgroups, namely, of the form t 7→ g exp tX for g ∈ G and X ∈ g.

2.8 Exercises

1 Let (M,g) be a Riemannian manifold, consider its tangent bundle TM , and fix a point p ∈ M .
Prove that any open neighborhood W of 0p in TM contains a neighborhood of the form

⋃

x∈U

B(0x, ǫ) = { v ∈ TM |U : gπ(v)(v, v)
1/2 < ǫ }

for some open neighborhood U of p in M and some ǫ > 0.

2 Let A, B be nowhere zero smooth functions on R2 and consider the Riemannian metric g =
A2 dx2 +B2 dy2, where x, y are the standard coordinates on R2.

a. Compute the Christoffel symbols of g.
b. Write down the geodesic equations of g.

3 Let (xi) be a system of local coordinates on a smooth manifold M which is equipped with a
connection ∇, and consider the Christoffel symbols Γk

ij which are defined by ∇ ∂

∂xi

∂
∂xj =

∑

k Γ
k
ij

∂
∂xk .

If (xi
′

) is another system of local coordinates on M , prove that the following transformation law
holds:

Γk′

i′j′ =
∑

i,j,k

Γk
ij

∂xi

∂xi′
∂xj

∂xj′
∂xk

′

∂xk
+
∑

k

∂2xk

∂xi′∂xj′
∂xk

′

∂xk
.

Use this law to check that formula (2.3.2) defines ∇X
dt independently of choice of local chart.

4 Let M be a Riemannian manifold of dimension n. Given p ∈ M , prove that there exists an open
neighborhood U of p, and n smooth vector fields E1, . . . , En defined on U which are orthonormal
at each point of U and such that (∇Ei

Ej)p = 0 for all i, j.

5 Let M be a Riemannian manifold. Suppose X is a smooth vector field along a smooth curve
γ : I → M . If φ : J → I is a diffeomorphism, define the reparametrizations η = γ◦φ and Y = X ◦φ.

a. Show that Y is a smooth vector field along η.
b. Denote by t, s the parameters along γ, η, resp., where t = φ(s), and prove that

(

∇

ds
Y

)

(s) =

(

∇

dt
X

)

(φ(s))φ′(s)

for s ∈ J .
c. Deduce that the parallelism of a vector field along a curve does not depend on the parametriza-

tion.

6 Let M be a Riemannian manifold. The goal of this exercise is to characterize the curves on M
that are geodesics up to a reparametrization.
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a. Assume γ : R → M is a geodesic, φ : R → R is a diffeomorphism and η : R → M is given by
η = γ ◦ φ. Show that there exists a smooth function f : R → R such that ∇η′η

′ = fη′.
b. Conversely, suppose that η : R → M satisfies ∇η′η

′ = fη′ for some smooth function f :
R → R, and show that there exists a diffeomorphism φ : R → R such that γ = η ◦ φ−1 is a
geodesic.

7 In this exercise, we describe the geodesics of the real hyperbolic space.
a. Describe the geodesics of RHn in the hyperboloid model using an argument very similar to

the one which was used in the case of Sn.
b. Use the result of (a) to describe the geodesics of RHn in Poincaré’s disk and upper half-space

models (cf. exercises 3 and 4 of chapter 1).
c. Check that in the case in which n = 2, the result of (b) coincides with he result of Exam-

ple 2.4.8.

8 Consider the Poincaré upper half-plane model R2
+ = { (x, y) ∈ R2 | y > 0 } with the metric

g = 1
y2

(

dx2 + dy2
)

.

a. Prove that any geodesic of R2
+ is the fixed point set of some isometry. (Hint: Use Exam-

ple 2.4.8 and Exercise 5 of chapter 1; conjugate R by appropriate isometries of the form τa,
hr.) Such isometries deserve to be called reflections. Show that the differential of a reflection
at a fixed point p is a reflection of TpR

2
+ on a straight line.

b. Show that the composition of reflections on two geodesics through the point p = (0, 1) yields
an isometry that fixes that point and induces a rotation on the tangent space. Show also
that any rotation of TpR

2
+ arises in this way. Deduce that the isometry group of R+

2 acts
transitively on the unit tangent bundle (namely, the set of unit tangent vectors).

A Riemannian manifold with the property that its isometry group acts transitively on its unit
tangent bundle is called isotropic.

9 Let M be a smooth manifold equipped with a connection ∇. If γ : (−ǫ, ǫ) → M is a smooth
curve and X is a smooth vector field along γ, prove the following formula:

(∇

dt
X
)

0
= lim

t→0

P γ
0,tX(t)−X(0)

t
.

(Hint: Write X as a linear combination of the vectors in a parallel frame along γ.)

10 Let M be a Riemannian manifold and consider its Levi-Cività connection ∇. If X is a smooth
vector field on M and {ϕt} denotes its local flow, and v ∈ TM , prove the following formula:

∇vX =
∇

dt

∣

∣

∣

t=0
d(ϕt)pv.

(Hint: Use the first identity in Proposition 2.6.1 in order to commute two different derivatives.)

2.9 Additional notes

§1 The development of the idea of connection presented here, usually called an affine connec-
tion�2�, took some time to evolve to that form. Starting around 1868, Elwin Christoffel became
interested in the theory of invariants and wrote six papers on that topic. In these, he introduced

�2�
?
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the Christoffel symbols and solved the local equivalence problem for quadratic differential forms by
essentially introducing the Riemann-Christoffel curvature tensor. These results influenced Gregorio
Ricci-Curbastro in Padua to begin his investigations in 1884 on quadratic differential forms. In
four papers between 1888 and 1892, Ricci-Curbastro exposed the technique of absolute differential
calculus, a new invariant formalism originally constructed to deal with the transformation theory
of partial differential equations, which he used to study the transformation theory of quadratic
differential forms. A pupil of him, Tulio Levi-Civita, wrote a dissertation, published in 1893,
where he developed the calculus of tensors including covariant differentiation, bulding on ideas
from Ricci-Curbastro and Lie’s then recently appeared theory of transformation groups. In 1900,
Ricci (using this name for the first time instead of his full name) jointly with Levi-Civita published
a fundamental paper [RL00] in which preface they state:

”The algorithm of absolute differential calculus, the instrument matériel of the methods
. . . can be found complete in a remark due to Christoffel. But the methods themselves
and the advantages they offer have their raison d’être and their source in the intimate
relationships that join them to the notion of an n-dimensional variety, which we owe to
the brilliant minds of Gauss and Riemann. . . . Being thus associated in an essential way
with V n, it is the natural instrument of all those studies that have as their subject, such
a variety, or in which one encounters as a characteristic element a positive quadratic
form of the differentials of n variables or of their derivatives.”

When in 1915 Albert Einstein used tensor calculus to explain theory of relativity, Levi-Cività initi-
ated and kept mathematical correspondence with him until 1917. In that year, inspired by Einstein’s
general theory of relativity, Levi-Cività made what is probably his most important contribution to
mathematics: the introduction of the concept of parallel displacement. His book [Lev05] on abso-
lute diferential calculus, originally a collection of lecture notes in Italian, also contains applications
to general relativity.

Soon it was realized that connections existed independent of the Riemannian metric. Between
the years of 1918 and 1923, Hermann Weyl’s efforts towards the unification of electromagnetism
and gravitation brought in new ideas and placed the concept of parallel displacement of a tangent
vector at the base of the definition of an affine connection on a smooth manifold. Tensor calculus
was systematized by Jan Schouten (who discovered the idea of parallel displacement independently
in 1918) in his book Ricci-Kalkül in 1924 (entirely rewritten in 1954). At the same time, Élie
Cartan introduced in the 1920’s projective and conformal connections and, more generally, a new
concept of a connection on a manifold. However, at that time, Cartan faced difficulty trying to
express notions for which there was no truly suitable language. In [Ehr51], Charles Ehresmann
gave a rigorous global definition of a Cartan connection as a special case of a more general notion
of connection on a principal bundle, today called an Ehresmann connection or simply a connection,
which is mostly considered to be the definitive one. The axiomatic approach to affine connections
that we use in this book is due to Jean-Louis Koszul (cf. [Nom54]). For more details on the history
of connections, see the introduction of [Str34]. For the general theory of connections on principal
bundles, see [KN96].

§2 The idea of parallel displacement is a simple though deep notion in geometry. Consider a
2-sphere Σ touching a 2-plane π at a point p. Now let Σ roll over π so that the touching point traces
a curve γ in Σ, and let q be the endpoint of γ. Suppose v is a vector tangent to π at p. Of course,
there is a unique vector v′ which is tangent to π at q and parallel to v in the plane. The parallelism
of Levi-Cività says that v′, regarded as vector tangent to Σ at q, is the parallel displacement of v,
regarded as a vector tangent to Σ at p, along γ. More generally, one can replace Σ by a 2-surface
at let it roll over π to define the parallel displacement of vectors on Σ.
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