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Riemannian metrics

1.1 Introduction

A Riemannian metric is a family of smoothly varying inner products on the tangent spaces of
a smooth manifold. Riemannian metrics are thus infinitesimal objects, but they can be used to
measure distances on the manifold. They were introduced by Riemmann in his seminal work [Rie53]
in 1854. At that time, the concept of a manifold was extremely vague and, except for some known
global examples, most of the work of the geometers focused on local considerations, so the modern
concept of a Riemannian manifold took quite some time to evolve to its present form. We point
out the seemingly obvious fact that a given smooth manifold can be equipped with many different
Riemannian metrics. This is really one of the great insights of Riemann, namely, the separation
between the concepts of space and metric.

1.2 Riemannian metrics

Let M be a smooth manifold. A Riemannian metric g on M is a smooth family of inner products
on the tangent spaces of M . Namely, g associates to each p ∈ M a positive definite symmetric
bilinear form on TpM ,

gp : TpM × TpM → R,

and the smoothness condition on g refers to the fact that the function

p ∈ M → gp(Xp, Yp) ∈ R

must be smooth for every locally defined smooth vector fields X, Y in M . A Riemannian manifold

is a pair (M,g) where M is a differentiable manifold and g is a Riemannian metric on M . Later
on (but not in this chapter), we will often simplify the notation and refer to M as a Riemannian
manifold where the Riemannian metric is implicit.

Let (M,g) be a Riemannian manifold. If (U,ϕ = (x1, . . . , xn)) is a chart of M , a local ex-
pression for g can be given as follows. Let { ∂

∂x1 , . . . ,
∂

∂xn } be the coordinate vector fields, and let
{dx1, . . . , dxn} be the dual 1-forms. For p ∈ U and u, v ∈ TpM , we write

u =
∑

i

ui
∂

∂xi

∣

∣

∣

p
and v =

∑

j

vj
∂

∂xi

∣

∣

∣

p
.
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Then, by bilinearity,

gp(u, v) =
∑

i,j

uivjgp

(

∂

∂xi
,

∂

∂xj

)

=
∑

i,j

gij(p)u
ivj,

where we have set

gij(p) = gp

(

∂

∂xi
,

∂

∂xj

)

.

Note that gij = gji. Hence we can write

(1.2.1) g =
∑

i,j

gij dx
i ⊗ dxj =

∑

i≤j

g̃ij dx
idxj ,

where g̃ii = gii, and g̃ij = 2gij if i < j.
Next, let (U ′, ϕ′ = (x1

′

, . . . , xn
′

)) be another chart of M such that U ∩ U ′ 6= ∅. Then

∂

∂xi′
=

∑

k

∂xk

∂xi′
∂

∂xk
,

so the relation between the local expressions of g with respect to (U,ϕ) and (U ′, ϕ′) is given by

gi′j′ = g

(

∂

∂xi′
,

∂

∂xj′

)

=
∑

k,l

∂xk

∂xi′
∂xl

∂xj′
gkl.

1.2.2 Example The canonical Euclidean metric is expressed in Cartesian coordinates by g =
dx2 + dy2. Changing to polar coordinates x = r cos θ, y = r sin θ yields that

dx = cos θdr − r sin θdθ and dy = sin θdr + r cos θdθ,

so

g = dx2 + dy2

= (cos2 θdr2 + r2 sin2 θdθ2 − 2r sin θ cos θdrdθ) + (sin2 θdr2 + r2 cos2 θdθ2 + 2r sin θ cos θdrdθ)

= dr2 + r2dθ2.

⋆

The functions gij are smooth on U and, for each p ∈ U , the matrix (gij(p)) is symmetric and
positive-definite. Conversely, a Riemannian metric in U can be obviously specified by these data.

1.2.3 Proposition Every smooth manifold can be endowed with a Riemannian metric.

Proof. Let M = ∪αUα be a covering of M by domains of charts {(Uα, ϕα)}. For each α, consider
the Riemannian metric gα in Uα whose local expression ((gα)ij) is the identity matrix. Let {ρα}
be a smooth partition of unity of M subordinate to the covering {Uα}, and define

g =
∑

α

ραgα.
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Since the family of supports of the ρα is locally finite, the above sum is locally finite, and hence g
is well defined and smooth, and it is bilinear and symmetric at each point. Since ρα ≥ 0 for all α
and

∑

α ρα = 1, it also follows that g is positive definite, and thus is a Riemannian metric in M . �

The proof of the preceding proposition suggests the fact that there exists a vast array of Rie-
mannian metrics on a given smooth manifold. Even taking into account equivalence classes of
Riemannian manifolds, the fact is that there many uninteresting examples of Riemannian mani-
folds, so an important part of the work of the differential geometer is to sort out relevant families
of examples.

Let (M,g) and (M ′, g′) be Riemannian manifolds. A isometry between (M,g) and (M ′, g′) is
diffeomorphism f : M → M ′ whose differential is a linear isometry between the corresponding
tangent spaces, namely,

gp(u, v) = g′f(p)(dfp(u), dfp(v)),

for every p ∈ M and u, v ∈ TpM . We say that (M,g) and (M ′, g′) are isometric Riemannian

manifolds if there exists an isometry between them. This completes the definition of the category
of Riemannian manifolds and isometric maps. Note that the set of all isometries of a Riemannian
manifold (M,g) forms a group, called the isometry group of (M,g), with respect to the operation
of composition of mappings, which we will denote by Isom(M,g). Here we quote without proof the
following important theorem [MS39].

1.2.4 Theorem (Myers-Steenrod) The isometry group of a Riemannian manifold has the struc-

ture of a Lie group with respect to the compact-open topology. Its isotropy subgroup at an arbitrary

fixed point is compact.

A local isometry from (M,g) into (M ′, g′) is a smooth map f : M → M ′ satisfying the condition
that every point p ∈ M admits a neighborhood U such that the restriction of f to U is an isometry
onto its image. In particular, f is a local diffeomorphism.

1.3 Examples

The Euclidean space

The Euclidean space is Rn equipped with its standard scalar product. The essential feature of Rn

as a smooth manifold is that, since it is the model space for finite dimensional smooth manifolds, it
admits a global chart given by the identity map. Of course, the identity map establishes canonical
isomorphisms of the tangent spaces of Rn at each of its points with Rn itself. Therefore an
arbitrary Riemannian metric in Rn can be viewed as a smooth family of inner products in Rn. In
particular, by taking the constant family given by the standard scalar product, we get the canonical
Riemannian structure in Rn. In this book, unless explicitly stated, we will always use its canonical
metric when referring to Rn as a Riemannian manifold.

If (x1, . . . , xn) denote the standard coordinates on Rn, then it is readily seen the local expression
of the canonical metric is

(1.3.1) dx21 + · · ·+ dx2n.

More generally, if a Riemannian manifold (M,g) admits local coordinates such that the local
expression of g is as in (1.3.1), then (M,g) is called flat and g is called a flat metric on M . Note
that, if g is a flat metric on M , then the coordinates used to express g as in (1.3.1) immediately
define a local isometry between (M,g) and Euclidean space Rn.
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Riemannian submanifolds and isometric immersions

Let (M,g) be a Riemannian manifold and consider a immersed submanifold ι : N → M . This
means that N is a smooth manifold and ι is an injective immersion. Then the Riemannian metric
g induces a Riemannian metric gN in N as follows. Let p ∈ N . The tangent space TpN can be
viewed as a subspace of TpM via the injective map dιp : TpN → Tι(p)M . We define (gN )p to be
simply the restriction of g to this subspace, namely,

(gN )p(u, v) = gι(p)(dιp(u), dιp(v)),

where u, v ∈ TpN . It is clear that gN is a Riemannian metric. We call gN the induced Riemannian

metric in N , and we call (N, gN ) a Riemannian submanifold of (M,g).
Note that the definition of gN makes sense even if ι is a immersion that is not necessarily

injective. In this case, we call gN the pulled-back metric, write gN = ι∗g, and say that ι : (N, gN ) →
(M,g) is an isometric immersion (of course, any immersion must be locally injective).

A very important particular case is that of Riemannian submanifolds of Euclidean space. His-
torically speaking, the study of Riemannian manifolds was preceded by the theory of curves and
surfaces in R3. In the classical theory, one uses parametrizations instead of local charts, and these
objects are called parametrized curves and parametrized surfaces since they usually already come
with the parametrization. In the most general case, the parametrization is only assumed to be
smooth. One talks about a regular curve or a regular surface if one wants the parametrization to
be an immersion. Of course, in this case it follows that the parametrization is locally an embedding.
This is good enough for the classical theory, since it is really concerned with local computations.

The sphere Sn

The canonical Riemannian metric in the sphere Sn is the Riemannian metric induced by its embed-
ding in Rn as the sphere of unit radius. When one refers to Sn as a Riemannian manifold with its
canonical Riemannian metric, sometimes one speaks of “the unit sphere”, or “the metric sphere”,
or the “Euclidean sphere”, or “the round sphere”. One also uses the notation Sn(R) to specify a
sphere of radius R embedded in RN with the induced metric. In this book, unless explicitly stated,
we will always use the canonical metric when referring to Sn as a Riemannian manifold.

Product Riemannian manifolds

Let (Mi, gi), where i = 1, 2, denote two Riemannian manifolds. Then the product smooth manifold
M = M1 × M2 admits a canonical Riemannian metric g, called the product Riemannian metric,
given as follows. The tangent space of M at a point p = (p1, p2) ∈ M1 × M2 splits as TpM =
Tp1M1 ⊕ Tp2M2. Given u, v ∈ TpM , write accordingly u = u1 + u2 and v = v1 + v2, and define

gp(u, v) = gp1(u1, v1) + gp2(u2, v2).

It is clear that g is a Riemannian metric. Note that it follows from this definition that Tp1M1⊕{0}
is orthogonal to {0} ⊕ Tp2M2. We will sometimes write that (M,g) = (M1, g1)× (M2, g2), or that
g = g1 + g2.

It is immediate to see that Euclidean space Rn is the Riemannian product of n copies of R.

Conformal Riemannian metrics

Let (M,g) be a Riemannian manifold. If f is a nowhere zero smooth function on M , then f2g
defined by

(f2g)p(u, v) = f2(p)gp(u, v),
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where p ∈ M , u, v ∈ TpM , is a new Riemannian metric on M which is said to be conformal to g.
We also say that (M,g) is conformally flat if M can be covered by open sets on each of which g is
conformal to a flat metric.

The real hyperbolic space RHn

To begin with, consider the Lorentzian inner product in Rn+1 given by

〈x, y〉 = −x0y0 + x1y1 + · · · + xnyn,

where x = (x0, . . . , xn), y = (y0, . . . , yn) ∈ Rn+1. We will write R1,n to denote Rn+1 with such a
Lorentzian inner product. Note that if p ∈ R1,n is such that 〈p, p〉 < 0, then the restriction of 〈, 〉
to the orthogonal complement 〈p〉⊥ is positive-definite. Note also that the equation 〈x, x〉 = −1
defines a two-sheeted hyperboloid in R1,n.

Now we can define the real hyperbolic space as the following submanifold of R1,n,

RHn = {x ∈ R1,n | 〈x, x〉 = −1 and x0 > 0 },

equipped with a Riemannian metric g given by the restriction of 〈, 〉 to the tangent spaces at its
points. Since the tangent space of the hyperboloid at a point p is given by 〈p〉⊥, the Riemannian
metric g turns out to be well defined. Actually, this submanifold is sometimes called the hyperboloid
model of RHn (compare exercises 3 and 4). Of course, as a smooth manifold, RHn is diffeomorphic
to Rn.

Riemannian coverings

A Riemannian covering between two Riemannian manifolds is a smooth covering that is also a
local isometry.

Recall that an action of a discrete group Γ on a topological space is called: free if no non-
trivial element of Γ has fixed points; properly discontinuous if any two points of the space have
neighborhoods U and V such that { γ ∈ Γ | γU ∩ V 6= ∅ } is a finite set.

If M̃ is a smooth manifold and Γ is a discrete group acting freely and properly discontinuously
by diffeomorphisms on M̃ , then the quotient space M = M̃/Γ endowed with the quotient topology
admits a unique structure of smooth manifold such that the projection π : M̃ → M is a smooth
regular covering. If we assume, in addition, that M̃ is equipped with a Riemannian metric g̃ and
Γ acts on M̃ by isometries, then we can show that there is a unique Riemannian metric g on M ,
called the quotient metric, so that π : (M̃, g̃) → (M,g) becomes a Riemannian covering, as follows.
Given a point p ∈ M and tangent vectors u, v ∈ TpM , we set

(1.3.2) gp(u, v) = g̃p̃((dπp̃)
−1(u), (dπp̃)

−1(v)),

where p̃ is any point in the fiber π−1(p). We claim that this definition does not depend on the
choice of point in π−1(p). In fact, if p̃′ is another point in π−1(p), there is a unique γ ∈ Γ such that
γ(p̃) = p̃′. Since π ◦ γ = π, the chain rule gives that dπp̃′ ◦ dγp̃ = dπp̃, so

g̃p̃((dπp̃)
−1(u), (dπp̃)

−1(v)) = g̃p̃((dγp̃)
−1(dπp̃′)

−1(u), (dγp̃)
−1(dπp̃′)

−1(v))

= g̃p̃′((dπp̃′)
−1(u), (dπp̃′)

−1(v)),

since dγp̃ : Tp̃M̃ → Tp̃′M̃ is a linear isometry, checking the claim. Next, we show that g is smooth.
In fact, selecting open sets U in M and Ũ in M̃ such that π|Ũ : Ũ → U is a diffeomorphism, we
can rewrite (1.3.2) as

gq(u, v) = g̃π|−1

Ũ
(q)(d(π|

−1
Ũ

)q(u), d(π|−1
Ũ

)q(v)),
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where q ∈ U , which shows that g is smooth in U . Since we can cover M by such sets U , it follows
that g is smooth. Finally, the requirement that π be a local isometry forces g to be given by
formula (1.3.2), and this shows the uniqueness of g.

On the other hand, if we start with a Riemannian manifold (M,g) and a smooth covering
π : M̃ → M , then π is in particular an immersion, so we can endow M̃ with the pulled-back
metric g̃ and π : (M̃ , g̃) → (M,g) becomes a Riemannian covering. Let Γ denote the group of deck
transformations of π : M̃ → M . An element γ ∈ Γ satisfies π◦γ = π. Since π is a local isometry, we
have that γ is a local isometry, and being a bijection, it must be a global isometry. Hence the group
Γ consists of isometries of M̃ . If we assume, in addition, that π : M̃ → M is a regular covering
(for instance, this is true if π : M̃ → M is the universal covering), then M is diffeomorphic to the
orbit space M̃/Γ, and since we already know that π : (M̃ , g̃) → (M,g) is a Riemannian covering,
it follows from the uniqueness result of the previous paragraph that g must be the quotient metric
of g̃.

The real projective space RPn

As a set, RPn is the set of all lines through the origin in Rn+1. It can also be naturally viewed as
a quotient space in two ways. In the first one, we define an equivalence relation among points in
Rn+1 \ {0} by declaring x and y to be equivalent if they lie in the same line, namely, if there exists
λ ∈ R \ {0} such that y = λx. In the second one, we simply note that every line meets the unit
sphere in Rn+1 in two antipodal points, so we can also view RPn as a quotient space of Sn and,
in this case, x, y ∈ Sn are equivalent if and only if y = ±x. Of course, in both cases RPn acquires
the same quotient topology.

Next, we reformulate our point of view slightly by introducing the group Γ consisting of two
isometries of Sn, namely the identity map and the antipodal map. Then Γ obviously acts freely
and properly discontinuously on Sn, and the resulting quotient smooth manifold is plainly RPn.
Furthermore, as the action of Γ is also isometric, RPn immediately acquires a quotient Riemannian
metric.

Flat tori

A lattice Γ in Rn (or, more generally, in a real vector space) is the subset of Rn consisting of integral
linear combinations of the vectors in a fixed basis. Namely, if {v1, . . . , vn} is a basis of Rn, then it
defines a lattice Γ comprising all vectors of the form

∑n
j=1mjvj , where mj ∈ Z. The elements of Γ

can be identified with the translations of Rn that they define and, in this way, Γ becomes a discrete
group acting freely, properly discontinuously and isometrically on Rn (of course, another point of
view is to regard Γ as a discrete subgroup of the additive group of Rn). The quotient Riemannian
manifold Rn/Γ is called a flat torus. Note that Rn/Γ is compact since it coincides with the image
of the projection of {∑n

j=1 xjvj | 0 ≤ xj ≤ 1 }.
As a smooth manifold, Rn/Γ is diffeomorphic to the product of n copies of S1, which we denote

by T n. In fact, define a map f : Rn → T n by setting

f
(

n
∑

j=1

xjvj

)

= (e2πix1 , . . . , e2πixn),

where we view S1 as the set of unit complex numbers. Then f is constant on Γ, so it induces
a smooth bijection f̄ : Rn/Γ → T n. Denote the Riemannian covering Rn → Rn/Γ by π. Then
f = f̄ ◦ π composed on the left with an appropriate chart of T n is simply the identity. It follows
that f̄ is a diffeomorphism.
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We remark that different lattices may give rise to nonisometric flat tori, although they will
always be locally isometric one to the other since they are all isometrically covered by Euclidean
space; in other words, for two given lattices Γ, Γ′, the identity map id : Rn → Rn induces local
isometries Rn/Γ → Rn/Γ′. One can globally distinguish the isometry classes of tori obtained from
different lattices by showing that they have different isometry groups. Let n = 2, and consider

in R2 the lattices Γ, Γ′ respectively generated by the bases {(1, 0), (0, 1)} and {(1, 0), (12 ,
√
3
2 )}.

Then R2/Γ is called a square flat torus and R2/Γ′ is called an hexagonal flat torus. The isotropy
subgroup of the square torus at an arbitrary point is isomorphic to the dihedral group D4 (or order
8) whereas the isotropy subgroup of the hexagonal torus at an arbitrary point is isomorphic to the
dihedral group D3. Hence R2/Γ and R2/Γ′ are not (globally) isometric. In general, for arbitrary
n, Rn/Γ is isometric to the Riemannian product of n copies of S1 if and only if Γ is the lattice
associated to an orthonormal basis of Rn.

The Klein bottle

Let M̃ = R2, let {v1, v2} be a basis of R2, and let Γ be the discrete group of transformations of
R2 generated by

γ1(x1v1 + x2v2) =

(

x1 +
1

2

)

v1 − x2v2 and γ2(x1v1 + x2v2) = x1v1 + (x2 + 1)v2.

It is easy to see that Γ acts freely and properly discontinuously on R2, so we get a quotient manifold
R2/Γ which is called the Klein bottle K2. It is a compact non-orientable manifold, since γ2 reverses
the orientation of R2. It follows that K2 cannot be embedded in R3 by the Jordan-Brouwer
separation theorem; however, it is easy to see that it can immersed there.

Consider R2 equipped with its canonical metric. Note that γ1 is always an isometry of R2, but
so is γ2 if and only if the basis {v1, v2} is orthogonal. In this case, Γ acts by isometries on R2 and
K2 inherits a flat metric so that the projection R2 → K2 is a Riemannian covering.

Riemannian submersions

Let π : M → N be a smooth submersion between two smooth manifolds. Then Vp = ker dπp for
p ∈ M defines a smooth distribution on M which is called the vertical distribution. Clearly, V can
also be given by the tangent spaces of the fibers of π.

In general, there is no canonical choice of a complementary distribution of V in TM , but in the
case in which M comes equipped with a Riemannian metric, one can naturally construct such a
complement H by setting Hp to be the orthogonal complement of Vp in TpM . Then H is a smooth
distribution which is called the horizontal distribution. Note that dπp induces an isomorphism
between Hp and Tπ(p)N for every p ∈ M .

Having this preliminary remarks at hand, we can now define a smooth submersion π : (M,g) →
(N,h) between two Riemannian manifolds to be a Riemannian submersion if dπp induces an isom-
etry between Hp and Tπ(p)N for every p ∈ M . Note that Riemannian coverings are particular cases
of Riemannian submersions.

Let (M,g) and (N,h) be Riemannian manifolds. A quite trivial example of a Riemannian
submersion is the projection (M × N, g + h) → (M,g) (or (M × N, g + h) → (N,h)). More
generally, if f is a nowhere zero smooth function on N , the projection from (M ×N, f2g+ h) onto
(N,h) is a Riemannian submersion. In this case, the fibers of the submersion are not isometric one
to the other. A Riemannian manifold of the form (M ×N, f2g + h) is called a warped product .
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The complex projective space CPn

The definition of CPn is similar to that of RPn in that we replace real numbers by complex
numbers. Namely, as a set, CPn is the set of all complex lines through the origin in Cn+1, so it can
be viewed as the quotient of Cn+1 \ {0} by the multiplicative group C \ {0} as well as the quotient
of the unit sphere S2n+1 of Cn+1 (via its canonical identification with R2n+2) by the multiplicative
group of unit complex numbers S1. Here the action of S1 on S2n+1 is given by multiplication of
the coordinates (since C is commutative, it is unimportant whether S1 multiplies on the left or on
the right).

NowCPn is equipped with a quotient topology. First, we note that the projection S2n+1 → CPn

is an open map. Since the orbits of S1 in S2n+1 are compact, now it is not difficult to see that
the quotient topology is Hausdorff. Moreover, the projection of a countable basis of S2n+1 yields
a countable basis of CPn. Next, there is a convenient way of describing the manifold structure
of CPn. For each p ∈ CPn, we construct a local chart around p. We will use the standard
Hermitian inner product of Cn+1, which we denote by (·, ·). View p as a one-dimensional subspace
of Cn+1 and denote its Hermitian orthogonal complement by p⊥. The subset of all lines which are
not parallel to p⊥ is an open subset of CPn, which we denote by CPn \ p⊥. Fix a unit vector p̃
lying in the line p. The local chart is

ϕp : CPn \ p⊥ → p⊥, q 7→ 1

(q̃, p̃)
q̃ − p̃,

where q̃ is any nonzero vector lying in q. In other words, q meets the affine hyperplane p̃ + p⊥

at a unique point 1
(q̃,p̃) q̃ which we orthogonally project to p⊥ to get ϕp(q). (Note that p⊥ can

be identified with R2n simply by choosing a basis.) The inverse of ϕp is the map that takes
v ∈ p⊥ to the line through p̃ + v. Therefore, for p′ ∈ CPn, we see that the transition map
ϕp′ ◦ (ϕp)−1 : { v ∈ p⊥ | v + p̃ 6∈ p′⊥ } → { v′ ∈ p′⊥ | v′ + p̃′ 6∈ p⊥ } is given by

v 7→ 1

(v + p̃, p̃′)
(v + p̃)− p̃′,

and hence smooth.

Next we prove that the projection π : S2n+1 → CPn is a smooth submersion. Let p̃ ∈ S2n+1.
Since the fibers of π are just the S1-orbits, the vertical space Vp̃ = R(ip̃). It follows that the
horizontal space Hp̃ ⊂ Tp̃S

2n+1 is the Euclidean orthogonal complement of R{p̃, ip̃} = Cp̃ in
C2n+1, namely, p⊥ where p = π(p̃) (recall that the real part of (·, ·) is the Euclidean inner product
in R2n+2, which also induces the Riemannian metric in S2n+1). It suffices to check that dπp̃ is an
isomorphism from Hp̃ onto TpCPn, or, d(ϕp ◦ π)p̃ is an isomorphism from p⊥ to itself. Let v be a
unit vector in p⊥. Then t 7→ cos t p̃+sin t v is a curve in S2n+1 with initial point p̃ and initial speed
v, so using that (cos t p̃+ sin t v, p̃) = cos t we have

d(ϕp ◦ π)p̃(v) =
d

dt

∣

∣

∣

t=0
(ϕp ◦ π)(cos t p̃+ sin t v)

=
d

dt

∣

∣

∣

t=0

1

cos t
(cos t p̃+ sin t v)− p̃

= v,

completing the check.

Finally, we endow CPn with a Riemannian metric which makes π : S2n+1 → CPn into a
Riemannian submersion. The idea is to use the isomorphism dπp̃ : Hp̃ → TpCPn to transfer the
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inner product from Hp̃ to TpCPn. One still has to check that choosing a different point p̃′ in the
fiber π−1(p) yields the same result. This follows from the fact that p̃′ = zp̃ for some z ∈ S1, and
multiplication by z is a linear isometry of Cn+1 which restricts to an isometry of S2n+1 and maps
Hp̃ isometrically onto Hp̃′ . We refer to the next subsection for the proof of smoothness of the metric
just constructed.

The quotient metric on CPn constructed above is classically called the Fubini-Study metric

on CPn.

Quotient manifolds ⋆

In this subsection, we generalize the discussion about CPn. Recall that the action of a Lie group
G on a smooth manifold M by diffeomorphisms is called proper if the associated map

G×M → M ×M, (g, x) 7→ (gx, x)

is a proper map. An equivalent definition is to require that for any compact subsets K, L of M ,
the set { g ∈ G | gK ∩ L } is relatively compact in G. In the case of a discrete group, this notion
coincides with that of a properly discontinuous action. We quote the following result.

1.3.3 Proposition If M̃ is a smooth manifold and G is a Lie group acting freely and properly on

M̃ , then the quotient space M = M̃/G endowed with the quotient topology admits a unique structure

of smooth manifold such that the projection π : M̃ → M is a submersion and a fiber bundle with

typical fiber G.

In the previous proposition, if in addition we assume that M̃ is equipped with a Riemannian
metric g̃ and G acts on M̃ by isometries, then we can show that there is a unique Riemannian
metric g on M , called the quotient metric, so that π : (M̃, g̃) → (M,g) becomes a Riemannian
submersion. Indeed, given a point p ∈ M and tangent vectors u, v ∈ TpM , we set

(1.3.4) gp(u, v) = g̃p̃(ũ, ṽ),

where p̃ is any point in the fiber π−1(p) and ũ, ṽ are the unique vectors in Hp̃ satisfying dπp̃(ũ) = u
and dπp̃(ṽ) = v. The proof that g̃ is well defined is similar to the proof that the quotient metric is
well defined in the case of a Riemannian covering. The proof that g̃ is smooth is also similar, but
needs an extra ingredient. Let Pp̃ : Tp̃M̃ → Hp̃ denote the orthogonal projection. It is known that
π : M̃ → M admits local sections, so let s : U → M̃ be a local section defined on an open set U of
M . Now we can rewrite (1.3.4) as

gq(u, v) = g̃s(q)(Ps(q)dsq(u), Ps(q)dsq(v)),

where q ∈ U . Since V as a distribution is locally defined by smooth vector fields, it is easy to check
that P takes locally defined smooth vector fields on TM to locally defined smooth vector fields on
TM . It follows that g is smooth. Finally, the requirement that π be a Riemannian submersion
forces g to be given by formula (1.3.4), and this shows the uniqueness of g. �

One-dimensional Riemannian manifolds

Let (M,g) be a Riemannian manifold and let γ : [a, b] → M be a piecewise C1 curve. Then the
length of γ is defined to be

(1.3.5) L(γ) =

∫ b

a
gγ(t)(γ

′(t), γ′(t))1/2 dt.

9



It is easily seen that the length of a curve does not change under re parametrization. Moreover,
every regular curve (i.e. satisfying γ′(t) 6= 0 for all t) admits a natural parametrization given by
arc-length. Namely, let

s(t) =

∫ t

a
gγ(τ)(γ

′(τ), γ′(τ))1/2 dτ.

Then
ds

dt
= gγ(t)(γ

′(t), γ′(t))1/2(t) > 0, so s can be taken as a new parameter, and then

L(γ|[a,s]) = s

and

(1.3.6) (γ∗g)t = gγ(t)(γ
′(t), γ′(t))dt2 = ds2.

Suppose now that (M,g) is a one-dimensional Riemannian manifold. Then any connected
component of M is diffeomorphic either to R or to S1. In any case, a neighborhood of any point
p ∈ M can be viewed as a regular smooth curve in M and, in a parametrization by arc-length,
the local expression of the metric g is the same, namely, given by (1.3.6). It follows that all the
one-dimensional Riemannian manifolds are locally isometric among themselves.

Lie groups ⋆

The natural class of Riemannian metrics to be considered in Lie groups is the class of Riemannian
metrics that possesses some kind of invariance, be it left, right or both. Let G be a Lie group.
A left-invariant Riemannian metric on G is a Riemannian metric with respect to which the left
translations of G are isometries. Similarly, a right-invariant Riemannian metric is defined. A
Riemannian metric on G that is both left- and right-invariant is called a bi-invariant Riemannian

metric.
Left-invariant Riemannian metrics (henceforth, left-invariant metrics) are easy to construct on

any given Lie group G. In fact, given any inner product 〈, 〉 in its Lie algebra g, which we identify
with the tangent space at the identity T1G, one sets g1 = 〈, 〉 and uses the left translations to pull
back g1 to the other tangent spaces, namely one sets

gx(u, v) = g1
(

d(Lx−1)x(u) , d(Lx−1)x(v)
)

,

where x ∈ G and u, v ∈ TxG. This defines a smooth Riemannian metric, since g(X,Y ) is constant
(and hence smooth) for any pair (X,Y ) of left-invariant vector fields, and any smooth vector field
on G is a linear combination of left-invariant vector fields with smooth functions as cefficients. By
the very construction of g, the d(Lx)1 for x ∈ G are linear isometries, so the composition of linear
isometries d(Lx)y = d(Lxy)1 ◦ d(Ly)

−1
1 is also a linear isometry for x, y ∈ G. This checks that all

the left-translations are isometries and hence that g is left-invariant. (Equivalently, one can define
g by choosing a global frame of left-invariant vector fields on G and declaring it to be orthonormal
at every point of G.) It follows that the set of left-invariant metrics in G is in bijection with the
set of inner products on g. Of course, similar remarks apply to right-invariant metrics.

Bi-invariant metrics are more difficult to come up with. Starting with a fixed left-invariant
metric g on G, we want to find conditions for g to be also right-invariant. Reasoning similarly as
in the previous paragraph, we see that it is necessary and sufficient that the d(Rx)1 for x ∈ G be
linear isometries. Further, by differentiating the obvious identity Rx = Lx ◦ Inn(x−1) at 1, we get
that

d(Rx)1 = d(Lx)1 ◦Ad(x−1)

10



for x ∈ G. From this identity, we get that g is right-invariant if and only if the Ad(x) : g → g for
x ∈ G are linear isometries with respect to 〈, 〉 = g1. In this case, 〈, 〉 is called an Ad-invariant
inner product on g.

In view of the previous discussion, applying the following proposition to the adjoint repre-
sentation of a compact Lie group on its Lie algebra yields that any compact Lie group admits a

bi-invariant Riemannian metric.

1.3.7 Proposition Let ρ : G → GL(V ) be a representation of a Lie group on a real vector space

V such that the closure ρ(G) is reelatively compact in GL(V ). Then there exists an inner product

〈, 〉 on V with respect to which the ρ(x) for x ∈ G are orthogonal transformations.

Proof. Let G̃ denote the closure of ρ(G) in GL(V ). Then ρ factors through the inclusion
ρ̃ : G̃ → GL(V ) and it suffices to prove the result for ρ̃ instead of ρ. By assumption, G̃ is compact,
so without loss of generality we may assume in the following that G is compact.

Let 〈, 〉0 be any inner product on V and fix a right-invariant Haar measure dx on G. Set

〈u, v〉 =
∫

G
〈ρ(x)u, ρ(x)v〉0 dx,

where u, v ∈ V . It is easy to see that this defines a positive-definite bilinear symmetric form 〈, 〉
on V . Moreover, if y ∈ G, then

〈ρ(y)u, ρ(y)v〉 =

∫

G
〈ρ(x)ρ(y)u, ρ(x)ρ(y)v〉0 dx

=

∫

G
〈ρ(xy)u, ρ(xy)v〉0 dx

= 〈u, v〉,

where in the last equality we have used that dx is right-invariant. Note that we have used the
compactness of G only to guarantee that the above integrands have compact support. �

In later chapters, we will explain the special properties that bi-invariant metrics on Lie groups
have.

Homogeneous spaces ⋆

It is apparent that for a generic Riemannian manifold (M,g), the isometry group Isom(M,g) is
trivial. Indeed, Riemannian manifolds with large isometry groups have a good deal of symmetries.
In particular, in the case in which Isom(M,g) is transitive on M , (M,g) is called a Riemannian

homogeneous space or a homogeneous Riemannian manifold . Explicitly, this means that given any
two points of M there exists an isometry of M that maps one point to the other. In this case, of
course it may happen that a subgroup of Isom(M,g) is already transitive on M .

Let (M,g) be a homogeneous Riemannian manifold, and let G be a subgroup of Isom(M,g)
acting transitively on M . Then the isotropy subgroup H at an arbitrary fixed point p ∈ M is
compact and M is diffeomorphic to the quotient space G/H. In this case, we also say that the
Riemannian metric g on M is G-invariant.

Recall that if G is a Lie group and H is a closed subgroup of G, then there exists a unique struc-
ture of smooth manifold on the quotient G/H such that the projection G → G/H is a submersion
and the action of G on G/H by left translations is smooth. This can be seen as a particular case
of Proposition 1.3.3. A manifold of the form G/H is called a homogeneous space. In some cases,
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one can also start with a homogeneous space G/H and construct G-invariant metrics on G/H.
For instance, if G is equipped with a left-invariant metric that is also right-invariant with respect

to H, then it follows that the quotient G/H inherits a quotient Riemannian metric such that the
projection G → G/H is a Riemannian submersion and the action of G on G/H by left translations
is isometric. In this way, G/H becomes a Riemannian homogeneous space. A particular, important
case of this construction is when the Riemannian metric on G that we start with is bi-invariant; in
this case, G/H is called a normal homogeneous space. In general, a homogeneous space G/H for
arbitrary G, H may admit several distinct G-invariant Riemannian metrics, or may admit no such
metrics at all.

1.4 Exercises

1 Show that the Riemannian product of (0,+∞) and Sn−1 is isometric to the cylinder

C = { (x0, . . . , xn) ∈ Rn+1 | x21 + · · ·+ x2n = 1 and x0 > 0 }.

2 The catenoid is the surface of revolution in R3 with the z-axis as axis of revolution and the
catenary x = cosh z in the xz-plane as generating curve. The helicoid is the ruled surface in
R3 consisting of all the lines parallel to the xy plane that intersect the z-axis and the helicoid
t 7→ (cos t, sin t, t).

a. Write natural parametrizations for the catenoid and the helicoid.
b. Consider the catenoid and the helicoid with the metrics induced from R3, and find the local

expressions of these metrics with respect to the parametrizations in item (a).
c. Show that the local expressions in item (b) coincide, possibly up to a change of coordinates,

and deduce that the catenoid and the helicoid are locally isometric.
d. Show that the catenoid and the helicoid cannot be isometric because of their topology.

3 Consider the real hyperbolic space (RHn, g) as defined in section 1.3. Let Dn be the open unit
disk of Rn embedded in Rn+1 as

Dn = { (x0, . . . , xn) ∈ Rn+1 | x0 = 0 and x21 + · · · + x2n < 1 }.

Define a map f : RHn → Dn by setting f(x) to be the unique point of Dn lying in the line joining
x ∈ RHn and the point (−1, 0, . . . , 0) ∈ Rn+1. Prove that f is a diffeomorphism and, setting
g1 = (f−1)∗g, we have that

g1|x =
4

(1− 〈x, x〉)2
(

dx21 + · · ·+ dx2n
)

,

where x = (0, x1, . . . , xn) ∈ Dn. Deduce that RHn is conformally flat.
(Dn, g1) is called the Poincaré disk model of RHn.

4 Consider the open unit disk Dn = { (x1, . . . , xn) ∈ Rn | x21 + · · · x2n < 1 } equipped with the
metric g1 as in Exercise 3. Prove that the inversion of Rn on the sphere of center (−1, 0, . . . , 0)
and radius

√
2 defines a diffeomorphism f1 from Dn onto the upper half-space

Rn
+ = { (x1, . . . , xn) ∈ Rn | x1 > 0 },

and that the metric g2 = (f−1
1 )∗g1 is given by

g2|x =
1

x21

(

dx21 + · · ·+ dx2n
)

,
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where x = (x1, . . . , xn) ∈ Rn
+.

(Rn
+, g2) is called the Poincaré upper half-space model of RHn.

5 Consider the Poincaré upper half-plane model R2
+ = { (x, y) ∈ R2 | y > 0 } with the metric

g2 = 1
y2

(

dx2 + dy2
)

(case n = 2 in Exercise 4). Check that the following transformations of R2
+

into itself are isometries:

a. τa(x, y) = (x+ a, y) for a ∈ R;

b. hr(x, y) = (rx, ry) for r > 0;

c. R(x, y) =

(

x

x2 + y2
,

y

x2 + y2

)

.

Deduce from (a) and (b) that R+
2 is homogeneous.

6 Use stereographic projection to prove that Sn is conformally flat.

7 Consider the parametrized curve

{

x = t− tanh t
y = 1

cosh t

The surface of revolution in R3 constructed by revolving it around the x-axis is called the pseudo-

sphere. Note that the pseudo-sphere is singular along the circle obtained by revolving the point
(0, 1).

a. Prove that the pseudo-sphere with the singular circle taken away is locally isometric to the
upper half plane model of RH2.

b. Show that the Gaussian curvature of the pseudo-sphere is −1.

8 Let Γ be the lattice in Rn defined by the basis {v1, . . . , vn}, and denote by gΓ the Riemannian
metric that it defines on T n. Show that in some product chart of T n = S1 × · · · × S1 the local
expression

gΓ =
∑

i,j

〈vi, vj〉 dxi ⊗ dxj

holds, where 〈, 〉 denotes the standard scalar product in Rn.

9 Let Γ and Γ′ be two lattices in Rn, and denote by gΓ, gΓ′ the Riemannian metrics that they
define on T n, respectively. Prove that (T n, gΓ) is isometric to (T n, gΓ′) if and only if there exists
an isometry f : Rn → Rn such that f(Γ) = Γ′. (Hint: You may use the result of exercise 2 of
chapter 3.)

10 Let Γ be the lattice of R2 spanned by an orthogonal basis {v1, v2} and consider the associated
rectangular flat torus T 2.

a. Prove that the map γ of R2 defined by γ(x1v1+x2v2) = (x1+
1
2)v1−x2v2 induces an isometry

of T 2 of order two.

b. Prove that T 2 double covers a Klein bottle K2.

11 Prove that Rn \ {0} is isometric to the warped product ((0,+∞) × Sn−1, dr2 + r2g), where r
denotes the coordinate on (0,+∞) and g denotes the standard Riemannian metric on Sn−1.
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12 Let G be a Lie group equal to one of O(n), U(n) of SU(n), and denote its Lie algebra by g.
Prove that for any c > 0

〈X,Y 〉 = −c trace (XY ),

where X, Y ∈ g, defines an Ad-invariant inner product on g.

13 Consider the special unitary group SU(2) equipped with a bi-invariant metric induced from
an Ad-invariant inner product on su(2) as in the previous exercise with c = 1

2 . Show that the map

(

α −β̄
β ᾱ

)

7→
(

α
β

)

where α, β ∈ C and |α|2 + |β|2 = 1, defines an isometry from SU(2) to S3. Here C2 is identified
with R4 and S3 is viewed as the unit sphere in R4.

14 Show that RP 1 equipped with the quotient metric from S1(1) is isometric to S1(12 ). Show
that CP 1 equipped with the Fubini-Study metric is isometric to S2(12).

1.5 Additional notes

§1 Riemannian manifolds were defined as abstract smooth manifolds equipped with Riemannian
metrics. One class of examples of Riemannian manifolds is of course furnished by the Riemannian
submanifolds of Euclidean space. On the other hand, a very deep theorem of Nash [Nas56] states
that every abstract Riemannian manifold admits an isometric embedding into Euclidean space,
so that it can be viewed as an embedded Riemannian submanifold of Euclidean space. In view
of this, one might be tempted to ask why bother to consider abstract Riemannian manifolds in
the first place. The reason is that Nash’s theorem is an existence result: for a given Riemannian
manifold, it does not supply an explicit embedding of it into Euclidean space. Even if an isometric
embedding is known, there may be more than one or there may be no canonical embedding. Also,
an explicit embedding may be too complicated to describe. Finally, a particular embedding is
sometimes distracting because it highlights some specific features of the manifold at the expense of
some other features, which may be undesirable.

§2 From the point of view of foundations of the theory of smooth manifolds, the following
assertions are equivalent for a smooth manifold M whose underlying topological space is assumed
to be Hausdorff but not necessarily second-countable:

a. The topology of M is paracompact.
b. M admits smooth partitions of unity.
c. M admits Riemannian metrics.

In fact, as is standard in the theory of smooth manifolds, second-countability of the topology of
M (together with the Hausdorff property) implies its paracompactness and this is used to prove
the existence of smooth partitions of unity [War83, chapter 1]. Next, Riemannian metrics are
constructed onM by using partitions of unity as we did in Proposition 1.2.3. Finally, the underlying
topology of a Riemannian manifold is metrizable according to Proposition 3.2.3, and every metric
space is paracompact.

§3 The pseudo-sphere constructed in Exercise 7 was introduced by Beltrami [Bel68] in 1868 as a
local model for the Lobachevskyan geometry. This means that the geodesic lines and their segments
on the pseudo-sphere play the role of straight lines and their segments on the Lobachevsky plane.
In 1900, Hilbert posed the question of whether there exists a surface in three-dimensional Euclidean
space whose intrinsic geometry coincides completely with the geometry of the Lobachevsky plane.
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Using a simple reasoning, it follows that if such a surface does exist, it must have constant negative
curvature and be complete (see chapter 3 for the notion of completeness).

As early as 1901, Hilbert solved this problem [Hil01] (see also [Hop89, chapter IX]), and in
the negative sense, so that no complete surface of constant negative curvature exists in three-
dimensional Euclidean space. This theorem has attracted the attention of geometers over a number
of decades, and continues to do so today. The reason for this is that a number of interesting
questions are related to it and to its proof. For instance, the occurrence of a singular circle on the
pseudo-sphere is not coincidental, but is in line with Hilbert’s theorem.
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