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C H A P T E R 0

Preliminaries

0.1 Introduction

The richness of Riemannian geometry is that it has many ramifications and connections to other
fields in mathematics and physics. Probably by the very same reasons, it requires quite a lot of
language and machinery to get going. In this chapter, we assemble a collection of results and
techniques about smooth manifolds and vector fields that we will use in later chapters to develop
the theory. Most of the proofs are given and in other cases references are supplied. Despite that,
the pace is quick and the absolute beginner is strongly encouraged to supplement the text with
other sources.

0.2 Smooth manifolds

The theory of smooth manifolds is a natural and very useful generalization of the differential
calculus on Rn. Namely, a smooth manifold is an object that, in the small, looks like a piece of
Euclidean space. More formally, a smooth manifold of dimension n is a topological space M that
can be covered by open sets {Uα}α, each of which is homeomorphic to an open subset of Euclidean
space under a map ϕα : Uα → Rn; the pair (Uα, ϕα) is called a local chart ; moreover, the following
important compatibility condition is required: the transition maps

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

must be smooth for all α, β. The family {(Uα, ϕα)}α is called a smooth atlas. For technical reasons,
one also requires thatM be Hausdorff and second-countable, and that the smooth atlas {(Uα, ϕα)}α
be maximal. The basic idea behind this definition is that one can carry some notions and results
of differential calculus on Rn to smooth manifolds via the local charts, the compatibility condition
ensuring well defined objects.

A local chart ϕ : U → Rn has as components functions usually denoted xi : U → R. In this
way, a local chart ϕ = (x1, . . . , xn) : U → Rn is sometimes also called a system of local coordinates,
and a transition map is called a change of local coordinates.

0.2.1 Examples (First examples of smooth manifolds)

(a) Of course, Rn is a smooth manifold with the identity map as chart. More generally, any
real vector space is a smooth manifold, simply by choosing a basis and identifying with Rn.

(b) An open subset U of a smooth manifold M is also a smooth submanifold: one restricts the
local charts of M to U .

c© Claudio Gorodski 2012



(c) The product M ×N of smooth manifolds, with the product topology, is naturally a smooth
manifold: typical charts have the form ϕα × ψβ : Uα × Vβ → Rm ×Rn = Rm+n, where ϕα : Uα →
Rm, ψβ : Uβ → Rn are charts of M , N , respectively. Note that dimM ×N = dimM + dimN .

(d) It follows from (a) and (b) that the group GL(n,R) of invertible real matrices of size n is
a smooth manifold. ⋆

Embedded submanifolds

Let N be a smooth manifold of dimension n+k. A subsetM of N is called an embedded submanifold
of N of dimension n if M has the topology induced from N and, for every p ∈ M , there exists
a local chart (U,ϕ) of N with p ∈ U such that ϕ(U ∩M) = ϕ(U) ∩ Rn, where we view Rn as a
subspace of Rn+k in the standard way. We say that (U,ϕ) is a local chart of N adapted to M .
Note that in this case the adapted chart (U,ϕ) induces a local chart (U ∩M,ϕ|U∩M ) of M so that
M is a smooth manifold in its own right (here the compatibility conditions for the local charts of
M follow from those for the local charts of N adapted to M).

0.2.2 Examples (Examples of embedded submanifolds)
(a) An open subset of a smooth manifold is an embedded submanifold of the same dimension.
(b) The graph of a smooth mapping f : U → Rm, where U is an open subset of Rn, is a smooth

submanifold of Rn+m of dimension n. In fact, an adapted local chart is given by ϕ : U ×Rm →
U ×Rm, ϕ(p, q) = (p, q−f(p)), where p ∈ Rm and q ∈ Rn. More generally, if a subset M of Rm+n

can be covered by open sets each of which is the graph of a smooth mapping from an open subset
of Rn into Rm, then M is an embedded submanifold of Rn+m.

(c) It follows from (b) that the n-sphere

Sn = { (x1, . . . , xn+1) | x21 + · · ·x2n+1 = 1 }

is an n-dimensional embedded submanifold of Rn+1.
(d) The product of n-copies of the circle S1 is a n-dimensional manifold called the n-torus and

denoted by Tn. ⋆

Smooth mappings

A smooth mapping between two smooth manifolds is defined to be a continuous mapping whose
local representations with respect to charts on both manifolds is smooth. Namely, let M and N be
two smooth manifolds and let Ω ⊂ M be open. A continuous map f : Ω → N is called smooth if
and only if

ψ ◦ f ◦ ϕ−1 : ϕ(Ω ∩ U) → ψ(V )

is smooth as a map between open sets of Euclidean spaces, for every local charts (U,ϕ) of M and
(V, ψ) of N . Clearly, the composition of two smooth maps is again smooth.

A smooth map f : M → N between smooth manifolds is called a diffeomorphism if it is
invertible and the inverse f−1 : N → M is also smooth. Also, f : M → N is called a local
diffeomorphism if every p ∈ M admits an open neighborhood U such that f(U) is open and f
defines a diffeomorphism from U onto f(U).

Tangent space and differential

Since arbitrary smooth manifolds in principle do not come with an embedding into an Euclidean
space, the tangent space must be constructed abstractly. The philosophy amounts to use the
“differential” (not yet defined) of the local charts of M around p to model the tangent space at p.
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Let M be a smooth manifold of dimension n, and let p ∈ M . The tangent space of M at p is
the set TpM of all pairs (a, ϕ) — where a ∈ Rn and (U,ϕ) is a local chart around p — quotiented
by the equivalence relation

(a, ϕ) ∼ (b, ψ) if and only if d(ψ ◦ ϕ−1)ϕ(p)(a) = b.

It follows form the chain rule in Rn that this is indeed an equivalence relation, and we denote the
equivalence class of (a, ϕ) be [a, ϕ]. Each such equivalence class is called a tangent vector at p. For
a fixed local chart (U,ϕ) around p, the map

a ∈ Rn 7→ [a, ϕ] ∈ TpM

is a bijection, and it follows from the linearity of d(ψ ◦ ϕ−1)ϕ(p) that we can use it to transfer the
vector space structure of Rn to TpM . Note that dimTpM = dimM .

Let (U,ϕ = (x1, . . . , xn)) be a local chart of M , and denote by {e1, . . . , en} the canonical basis
of Rn. The coordinate vectors at p are with respect to this chart are defined to be

∂

∂xi

∣
∣
∣
p
= [ei, ϕ].

Note that

(0.2.3)

{
∂

∂x1

∣
∣
∣
p
, . . . ,

∂

∂xn

∣
∣
∣
p

}

is a basis of TpM .
In the case of Rn, for each p ∈ Rn there is a canonical isomorphism Rn → TpR

n given by

(0.2.4) a 7→ [a, id],

where id is the identity map of Rn. Usually we will make this identification without further
comment. In particular, TpR

n and TqR
n are canonically isomorphic for every p, q ∈ Rn. In the

case of a general smooth manifold M , obviously there are no such canonical isomorphisms.
Next, let f : M → N be a smooth map between smooth manifolds. Fix a point p ∈ M , and

local charts (U,ϕ) of M around p, and (V, ψ) of N around q = f(p). The differential of f at p is
the linear map

dfp : TpM → TqN

given by
[a, ϕ] 7→ [d(ψ ◦ f ◦ ϕ−1)ϕ(p)(a), ψ].

It is easy to check that this definition does not depend on the choices of local charts. Using
the identification (0.2.4), one checks that dϕp : TpM → Rn and dψq : TpM → Rn are linear
isomorphisms and

dfp = (dψq)
−1 ◦ d(ψ ◦ f ◦ ϕ−1)ϕ(p) ◦ dϕp.

It is also a simple exercise to prove the following important proposition.

0.2.5 Proposition (Chain rule) Let M , N , P be smooth manifolds. If f :M → N and g : N →
P are smooth maps, then g ◦ f :M → P is a smooth map and

d(g ◦ f)p = dgf(p) ◦ dfp

for p ∈M .

3



Consider now the case of a smooth map f : M → R. Then dfp : TpM → Tf(p)R ∼= R. For
v ∈ TpM , the number

v(f) = dfp(v)

is called the directional derivative of f with respect to v. Fix a coordinate chart (U,ϕ = (x1, . . . , xn))
around p and apply this to f = xi. Since xj ◦ ϕ−1 : ϕ(U) → R is just the restriction of the linear
projection onto the jth coordinate of Rn, for any v =

∑n
i=1 ai

∂
∂xi

|p, we have

v(xj) = d(xj)p(v) = d(xj ◦ ϕ−1)ϕ(p)

(
n∑

i=1

aiei

)

= aj ,

showing that
{dx1|p, . . . , dxn|p}

is the basis of TpM
∗ dual of the basis (0.2.3).

Finally, a smooth curve in M is simply a smooth map γ : (a, b) →M where (a, b) is an interval
of R. One can also consider smooth curves γ in M defined on a closed interval [a, b]. This simply
means that γ admits a smooth extension to an open interval (a − ǫ, b + ǫ) for some ǫ > 0. If
γ : (a, b) →M is a smooth curve, the tangent vector to γ at t ∈ (a, b) is

γ̇(t) = dγt(e1) ∈ Tγ(t)M,

where e1 = 1 ∈ R.

Tangent and cotangent bundles

There is a situation in which we want to endow a set X with no natural topology with a structure
of smooth manifold. In that case there is a way of using charts to define the topology and smooth
structure simultaneously. Namely, fix an integer n, and let {Uα}α∈A be a countable covering of
X by arbitrary subsets, on each of which is defined a bijective map ϕα : Uα → Rn onto an open
subset of Rn such that the sets ϕα(Uα ∩Uβ), ϕβ(Uα ∩Uβ) are open in Rn and the transition maps
ϕβ ◦ϕ−1

α : ϕα(Uα ∩Uβ) → ϕβ(Uα ∩Uβ) are homeomorphisms for all α, β ∈ A. Then one can define
a topology on X by declaring the ϕα to be homeomorphisms or, in other words, that the collection

{ϕ−1
α (W ) |W open in Rn, α ∈ A}

be a basis for a topology τ on X. The countability of A ensures that τ is second-countable, but
it is not automatically Hausdorff, and this property has to be checked case-by-case. If indeed τ is
Hausdorff, the collection {(Uα, ϕα)}α∈A is automatically a smooth atlas for (X, τ).

Perhaps the most important example of the above is the tangent bundle of a smooth manifold.
For a smooth manifoldM , there is a canonical way of assembling together all of its tangent spaces at
its various points. The resulting object turns out to admit a natural structure of smooth manifold
of twice the dimension of M and even the structure of a vector bundle which we will discuss later.

Consider the disjoint union

TM :=
⋃̇

p∈M
TpM.

We can view the elements of TM as equivalence classes of triples (p, a, ϕ), where p ∈ M , a ∈ Rn

and (U,ϕ) is a local chart of M such that p ∈ U , and

(p, a, ϕ) ∼ (q, b, ψ) if and only if p = q and d(ψ ◦ ϕ−1)ϕ(p)(a) = b.

4



There is a natural projection π : TM →M given by π[p, a, ϕ] = p, and then π−1(p) = TpM . Next,
we use the above remark to introduce a topology and smooth structure on TM . Let {(Uα, ϕα)} be
a smooth atlas for M . For each α, ϕα : Uα → ϕα(Uα) is a diffeomorphism and, for each p ∈ Uα,
d(ϕα)p : TpUα = TpM → Rn is the isomorphism mapping [p, a, ϕ] to a. Set

ϕ̃α : π−1(Uα) → ϕα(Uα)×Rn, [p, a, ϕ] → (ϕα(p), a).

(Equivalently, ϕ̃α(v) = (π(v), d(ϕα)π(v)(v)) for v ∈ π−1(Uα).) Then ϕ̃α is a bijection and ϕα(Uα)

is an open subset of R2n. Moreover, the maps

ϕ̃β ◦ ϕ̃−1
α : ϕα(Uα ∩ Uβ)×Rn → ϕβ(Uα ∩ Uβ)×Rn

are given by
(x, a) 7→ (ϕβ ◦ ϕ−1

α (x) , d(ϕβ ◦ ϕ−1
α )x(a)).

Since ϕβ ◦ ϕ−1
α is a smooth diffeomorphism, we have that d(ϕβ ◦ ϕ−1

α )x is a linear isomorphism
and d(ϕβ ◦ ϕ−1

α )x(a) is also smooth on x. It follows that {(π−1(Uα), ϕ̃α)} defines a topology and
a smooth atlas for TM so that it becomes a smooth manifold of dimension 2n called the tangent
bundle of M .

Similarly, the inverses of the transpose maps of the (dϕα)p can be used to endow the disjoint

union T ∗M := ˙⋃
p∈M (TpM)∗ of dual spaces to the tangent spaces of M with the structure of a

smooth manifold of dimension 2n, called the cotangent bundle. Namely, the charts have the form

λ ∈ π−1(Uα) 7→ (π(λ),
(
d(ϕα)

t
p

)−1
(λ)) ∈ ϕ(Uα)× (Rn)∗

Here π : T ∗M →M is defined by π((TpM)∗) = {p} and (Rn)∗ is identified with Rn.
If f :M → N is a smooth map between smooth manifolds, we define the differential of f to be

the map
df : TM → TN

that restricts to dfp : TpM → Tf(p)N for each p ∈M . Using the above atlases for TM and TN , we
immediately see that df is smooth.

Inverse function theorem

The proof of the following theorem just consists of unraveling the definitions and applying the
inverse function theorem for smooth mappings between open subsets of Rn.

0.2.6 Theorem (Inverse function theorem) Let f :M → N be a smooth function between two
smooth manifolds M , N , and let p ∈ M and q = f(p). Then f is a local diffeomorphism at p if
and only if dfp : TpM → TqN is an isomorphism.

Immersions and submanifolds

The concept of embedded submanifold that was introduced above is too strong for some purposes.
There are other, weaker notions of submanifolds one of which we discuss now. We first give the
following definition. A smooth map f :M → N between smooth manifolds is called an immersion
at p ∈ M if dfp : TpM → Tf(p)N is an injective map, and f is called simply an immersion if it is
an immersion at every point of its domain.

Let M and N be smooth manifolds such that M is a subset of N . We say that M is an
immersed submanifold of N or simply a submanifold of N if the inclusion map of M into N is an

5



immersion. Note that embedded submanifolds are automatically immersed submanifolds, but the
main point behind this definition is that the topology of M can be finer than the induced topology
from N . Note also that it immediately follows from this definition that if P is a smooth manifold
and f : P → N is an injective immersion, then the image f(P ) is a submanifold of N . A smooth
map f : M → N between manifolds is called an embedding if it is an injective immersion which is
also a homeomorphism into f(M) with the relative topology.

Recall that a continuous map between locally compact, Hausdorff topological spaces is called
proper if the inverse image of a compact subset of the counter-domain is a compact subset of
the domain. It is known that proper maps are closed. Also, it is clear that if the domain is
compact, then every continuous map is automatically proper. An embedded submanifold M of a
smooth manifold N is called properly embedded if the inclusion map is proper. Now the following
proposition is a simple remark.

0.2.7 Proposition If f :M → N is an injective immersion which is also a proper map, then the
image f(M) is a properly embedded submanifold of N .

As an application of the inverse function theorem, it is not difficult to see that any immersion
f : M → N , where dimM = n, dimN = n + k, can be locally represented via appropriate charts
as the standard inclusion Rn → Rn+k In particular, it is locally an embedding. This result will be
particularly useful in geometry when dealing with local properties of an isometric immersion. It
also follows from the local form of an immersion that the image of an embedding is an embedded
submanifold.

0.2.8 Example Take the 2-torus T 2 = S1 × S1 viewed as a submanifold of R2 × R2 = R4 and
consider the map

f : R → T 2, f(t) = (cos at, sin at, cos bt, sin bt),

where a, b are non-zero real numbers. Since f ′(t) never vanishes, this map is an immersion. If
b/a is rational, f is periodic and f induces an embeddeding of S1 into T 2. If b/a is an irrational
number, then f(R) is not an embedded submanifold of T 2. In fact, the assumption on b/a implies
that f(R) is a dense subset of T 2, but an embedded submanifold of some other manifold is always
locally closed. ⋆

Submersions and inverse images

Submanifolds can also be defined by equations togetehr with some nondegeracy conditions. In order
to explain this point, we introduce the following definition. A smooth map f : M → N between
manifolds is called a submersion at p ∈ M if dfp : TpM → Tf(p)N is a surjective map, and f is
called simply a submersion if it is a submersion at every point of its domain.

As an application of the inverse function theorem, it is not difficult to see that any submersion
f : M → N , where dimM = n + k, dimN = n, can be locally represented via appropriate charts
as the standard projection Rn+k → Rn. It follows that each level set of f admits the structure of
an embedded submanifold of dimension k.

0.2.9 Examples (a) Let A be a non-degenerate real symmetric matrix of order n+ 1 and define
f : Rn+1 → R by f(p) = 〈Ap, p〉 where 〈, 〉 is the standard Euclidean inner product. Then
dfp : Rn+1 → R is given by dfp(v) = 2〈Ap, v〉, so it is surjective if p 6= 0. It follows that f is a
submersion on Rn+1 \ {0} and f−1(r) for r ∈ R is an embedded submanifold of Rn+1 of dimension
n if it is nonempty. In particular, by taking A to be the identity matrix we get a manifold structure
for Sn which coincides with the one previously constructed.

6



(b) Denote by V the vector space of real symmetric matrices of order n, and define f :
GL(n,R) → V by f(A) = AAt. We first claim that f is a submersion at the identity matrix
I. One easily computes that

dfI(B) = lim
h→0

f(I + hB)− f(I)

h
= B +Bt,

where B ∈ TIGL(n,R) = M(n,R). Now, given C ∈ V , dfI maps 1
2C to C, so this checks the

claim. We next check that f is a submersion at any D ∈ f−1(I). Note that DDt = I implies that
f(AD) = f(A). This means that f = f ◦ RD, where RD : GL(n,R) → GL(n,R) is the map that
multiplies on the right by D. We have that RD is a diffeomorphism of GL(n,R) whose inverse is
plainly given by RD−1 . Therefore d(RD)I is an isomorphism, so the chain rule dfI = dfD ◦ d(RD)I
yields that dfD is surjective, as desired. Now f−1(I) = { A ∈ GL(n,R) |AAt = I } is an embedded
submanifold of GL(n,R) of dimension

dimGL(n,R)− dimV = n2 − n(n+ 1)

2
=
n(n− 1)

2
.

Note that f−1(I) is a group with respect to the multiplication of matrices; it is called the orthogonal
group of order n and is usually denoted by O(n). ⋆

Smooth coverings

In this subsection, we summarize some properties of covering spaces in the context of smooth
manifolds. Recall that a (topological) covering of a space X is another space X̃ with a continuous
map π : X̃ → X such that X is a union of evenly covered open set, where a connected open subset
U of X is called evenly covered if

(0.2.10) π−1U = ∪i∈I Ũi

is a disjoint union of open sets Ũi of X̃, each of which is mapped homeomorphically onto U under
π. In particular, the fibers of π are discrete subsets of X̃. It also follows from the definition that
X̃ has the Hausdorff property if X does. Further it is usual, as we shall do, to require that X and
X̃ be connected, and then the index set I can be taken the same for all evenly covered open sets.

0.2.11 Examples (a) π : R → S1, π(t) = eit is a covering.

(b) π : S1 → S1, π(z) = zn is a covering for any nonzero integer n.

(c) π : (0, 3π) → S1, π(t) = eit is a local homemeomorphism which is not a covering, since
1 ∈ S1 does not admit evenly covered neighborhoods. ⋆

Covering spaces are closely tied with fundamental groups. The fundamental group π1(X,x0) of
a topological space X with basepoint x0 is defined as follows. As a set, it consists of the homotopy
classes of continuous loops based at x0. The concatenation of such loops is compatible with the
equivalence relation given by homotopy, so it induces a group operation on π1(X,x0) making it into
a group. If X is arcwise connected, the isomorphism class of the fundamental group is independent
of the choice of basepoint (indeed for x0, x1 ∈ X and c a continuous path from x0 to x1, conjugation
by c−1 induces an isomorphism from π1(X,x0) and π1(X,x1)) and thus is sometimes denoted by
π1(X). Finally, a continuous map f : X → Y between topological spaces with f(x0) = y0 induces a
homomorphism f# : π1(X,x0) → π1(Y, y0) so that the assignment (X,x0) → π1(X,x0) is functorial.
Of course the fundamental group is trivial if and only if the space is simply-connected.
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Being locally Euclidean, a smooth manifold is locally arcwise connected and locally simply-
connected. A connected space X with such local connectivity properties admits a simply-connected
covering space, which is unique up to isomorphism; an isomorphism between coverings π1 : X̃1 → X
and π2 : X̃2 → X is a homeomorphism f : X̃1 → X̃2 such that π2 ◦ f = π1. More generally, there
exists a bijective correspondance between isomorphism classes of coverings π : (X̃, x̃0) → (X,x0)
and subgroups of π1(X,x0) given by (X̃, x̃0) 7→ π#(π1(X̃, x̃0)); moreover, a change of basepoint in
X̃ corresponds to passing to a conjugate subgroup π1(X,x0).

Suppose π : M̃ → M is a covering where M is a smooth manifold. Then there is a natural
structure of smooth manifold on M̃ such that the projection π is smooth. In fact, for every chart
(U, π) of M where U is evenly covered as in (0.2.10), take a chart (Ũi, ϕ ◦ π|Ũi

) for M̃ . This gives

an atlas of M̃ , which is smooth because for another chart (V, ψ) of M , V evenly covered by ∪i∈I Ṽi
and Ũi ∩ Ṽj 6= ∅ for some i, j ∈ I, we have that the transition map

(ψ ◦ π|Ṽj )(ϕ ◦ π|Ũi
)−1 = ψ ◦ ϕ−1

is smooth. We already know that M̃ is a Hausdorff space. It is possible to choose a countable basis
of connected open sets forM which are evenly covered. The connected components of the preimages
under π of the elements of this basis form a basis of connected open sets for M̃ , which is countable
as long as the index set I is countable, but this follows from the countability of the fundamental
group π1(M)�1�. Now, around any point in M̃ , π admits a local representation as the identity, so
it is a local diffeomorphism. Note that we have indeed proved more: M can be covered by evenly
covered neighborhoods U such that the restriction of π to a connected component of π−1U is a
diffeomorphism onto U . This is the definition of a smooth covering . Note that a topologic covering
whose covering map is smooth need not be a smooth covering (e.g. π : R → R, π(x) = x3).

Next, we can formulate basic results in covering theory for a smooth covering π : M̃ → M of
a smooth manifold M . Fix basepoints p̃ ∈ M̃ , p ∈ M such that π(p̃) = p. We say that a map
f : N →M admits a lifting if there exists a map f̃ : N → M̃ such that π ◦ f̃ = f .

0.2.12 Theorem (Lifting criterion) Let q ∈ f−1(p). A smooth map f : N → M admits a
smooth lifting f̃ : N → M̃ with f̃(q) = p̃ if and only if f#(π1(N, q)) ⊂ π#(π1(M̃, p̃)). In that case,
if N is connected, the lifting is unique.

Taking f : N →M to be the universal covering ofM in Theorem 0.2.12 shows that the universal
covering of M covers any other covering of M and hence justifies its name.

For a topological covering π : X̃ → X, a deck transformation or covering transformation is
an isomorphism X̃ → X̃, namely, a homeomorphism f : X̃ → X̃ such that π ◦ f = π. The deck
transformations form a group under composition. It follows from uniqueness of liftings that a deck
transformation is uniquely determined by its action on one point. In particular, the only deck
transformation admitting fixed points is the identity. Since a smooth covering map π : M̃ →M is
a local diffeomorphism, in this case the equation π ◦ f = π implies that deck transformations are
diffeomorphisms of M̃ .

An action of a (discrete) group on a topological space (resp. smooth manifold) is a homo-
morphism from the group to the group of homeomorphisms (resp. diffeomorphisms) of the space
(resp. manifold). For a smooth manifold M , we now recall the canonical action of π1(M,p) on its
universal covering M̃ by deck transformations. First we remark that by the lifting criterion, given
q ∈ M and q̃1, q̃2 ∈ π−1(q), there is a unique deck transformation mapping q̃1 to q̃2. Now let γ
be a continuous loop in M based at p representing an element [γ] ∈ π1(M,p). By the remark, it

�1�Ref?
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suffices to describe the action of [γ] on a point p̃ ∈ π−1(p), which goes as follows: lift γ uniquely to
a path γ̃ starting at p̃; then [γ] · p̃ is by definition the endpoint of γ̃, which sits in the fiber π−1(p).
The definiton independs of the choice made, namely, if we change γ to a homotopic curve, we get
the same result. This follows from Theorem 0.2.12 applied to the homotopy, as it is defined on a
square and a square is simply-connected. Since π : M̃ → M is the universal covering, every deck
transformation is obtained in this way from an element of π1(M,p).

As action of a (discrete) group Γ on a topological space X is called free if no nontrivial element
of Γ has fixed points, and it is called proper if any two points x, y ∈ X admit open neighborhoods
U ∋ x, V ∋ y such that { γ ∈ Γ | γU ∩ V 6= ∅ } is finite. The action of π1(M,p) on the universal
covering M̃ by deck transformations has both properties. In fact, we have already remarked it
is free. To check properness, let p̃, q̃ ∈ M̃ . If these points lie in the same orbit of π1(M,p) or,
equivalently, the same fiber of π, the required neighborhoods are the connected components of
π−1(U) containing p̃ and q̃, resp., where U is an evenly covered neighborhood of π(p̃) = π(q̃). On
the other hand, if π(p̃) =: p 6= q := π(p̃), we use the Hausdorff property ofM to find disjoint evenly
covered neighborhoods U ∋ p, V ∋ q and then it is clear that the connected component of π−1(U)
containing p̃ and the connected component of π−1(V ) containing q̃ do the job.

Conversely, we have:

0.2.13 Theorem If the group Γ acts freely and properly on a smooth manifold M̃ , then the quotient
space M = Γ\M̃ endowed with the quotient topology admits a unique structure of smooth manifold
such that the projection π : M̃ →M is a smooth covering.

Proof. The action of Γ on M̃ determines a partition into equivalence classes or orbits, namely
p̃ ∼ q̃ if and only if q̃ = γp̃ for some γ ∈ Γ. The orbit through p̃ is denoted Γ(p̃). The quotient
space Γ\M̃ is also called orbit space.

The quotient topology is defined by the condition that U ⊂ M is open if and only if π−1(U)
is open in M̃ . In particular, for an open set Ũ ⊂ M̃ we have π−1(π(Ũ)) = ∪γ∈Γγ(Ũ), a union of
open sets, showing that π(Ũ) is open and proving that π is an open map. In particular, π maps a
countable basis of open sets in M̃ to a countable basis of open sets in M .

The covering property follows from the fact that Γ is proper. In fact, let p̃ ∈ M̃ . From the
definition of proeprness, we can choose a neighborhood Ũ ∋ p̃ such that { γ ∈ Γ | γŨ ∩ Ũ 6= ∅ } is
finite. Using the Hausdorff property of M̃ and the freeness of Γ, we can shrink Ũ so that this set
becomes empty. Now the map π identifies all disjoint homeomorphic open sets γU for γ ∈ Γ to a
single open set π(U) in M , which is then evenly covered.

The Hausdorff property of M also follows from properness of Γ. Indeed, let p, q ∈ M , p 6= q.
Choose p̃ ∈ π−1(p), q̃ ∈ π−1(q) and neighborhoods Ũ ∋ p̃, Ṽ ∋ q̃ such that { γ ∈ Γ | γŨ ∩ Ṽ 6= ∅ }
is finite. Note that q̃ 6∈ Γ(p̃), so by the Hausdorff property for M̃ , we can shrink Ũ so that this set
becomes empty. Since π is open, U := π(Ũ) and V := π(Ṽ ) are now disjoint neighborhoods of p
and q, respectively.

Finally, we construct a smooth atlas for M . Let p ∈ M and choose an evenly covered neigh-
borhood U ∋ p. Write π−1U = ∪i∈I Ũi as in (0.2.10). By shrinking U we can ensure that Ũi is the
domain of a local chart (Ũi, ϕ̃i) of M̃ . Now ϕi := ϕ̃i ◦ (π|Ũi

)−1 : U → Rn defines a homeomorphism

onto the open set ϕ̃i(Ũi) and thus a local chart (U,ϕi) of M . The domains of such charts cover M
and it remains only to check that the transition maps are smooth. So let V be another evenly cov-
ered neighborhood of p with π−1V = ∪j∈I Ṽj and associated local chart ψj := ψ̃j◦(π|Ṽj )

−1 : U → Rn

where (Ṽj , ψ̃j) is a local chart of M̃ . Then

(0.2.14) ψj ◦ ϕ−1
i = ψ̃j ◦ (π|Ṽj )

−1 ◦ π ◦ ϕ̃−1
i
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However, (π|Ṽj )
−1 ◦ π is realized by a unique element γ ∈ Γ in a neighborhood of p̃i = π|−1

Ũi
(p).

Since Γ acts by diffeomorphisms, this shows that the transtion map (0.2.14) is smooth and finishes
the proof. �

0.3 Vector fields

A vector field X on a smooth manifoldM is an assignment of a vectorX(p) in each TpM . Sometimes
we write Xp for X(p). Vector fields are the infinitesimal objects associated to diffeomorphisms in
the following sense. Let ϕt :M →M be a diffeomorphism such that the curve t 7→ ϕt(p) is smooth
for each p. Then Xp := d

dt

∣
∣
t=0

ϕt(p) defines a vector field on M . Conversely, one can integrate
smooth vector fields to obtain diffeomorphisms. Actually, this is the extension of ODE theory to
smooth manifolds that we shall recall below.

We need the notion of smoothness for vector fields. Recall that TM is a smooth manifold, so
a vector field X :M → TM is called smooth simply if this map is smooth.

For practical purposes, we reformulate this notion. Let X be an arbitrary vector field on M .
Given a smooth function f on an open subset U of M , the directional derivative X(f) : U → R is
defined to be the function p ∈ U 7→ Xp(f). Further, if (x1, . . . , xn) is a coordinate system on U ,
we have already seen that { ∂

∂x1
|p, . . . , ∂

∂xn
|p} is a basis of TpM for p ∈ U . It follows that there are

functions ai : U → R such that

(0.3.1) X|U =
n∑

i=1

ai
∂

∂xi
.

0.3.2 Proposition Let X be a vector field on M . Then the following assertions are equivalent:
a. X is smooth.
b. For every coordinate system (U, (x1, . . . , xn)) of M , the functions ai defined by (0.3.1) are

smooth.
c. For every open set V of M and smooth map f : V → R, the function X(f) : V → R is

smooth.

Since ai = X(xi) in (0.3.1), we have

0.3.3 Scholium If X is a smooth vector field on M and X(f) = 0 for every smooth function, then
X = 0.

We now come to the integration of smooth vector fields. Let X be a smooth vector field on M
An integral curve of X is a smooth curve γ : I →M , where I is an open interval, such that

γ̇(t) = X(γ(t))

for all t ∈ I. We write this equation in local coordinates. Suppose X has the form (0.3.1), γi = xi◦γ
and ãi = ai ◦ ϕ−1. Then γ is an integral curve of X in γ−1(U) if and only if

(0.3.4)
dγi
dr

∣
∣
∣
t
= ãi(γ1(t), . . . , γn(t))

for i = 1, . . . , n and t ∈ γ−1(U). Equation (0.3.4) is a system of first order ordinary differential
equations for which existence and uniqueness theorems are known. These, translated into manifold
terminology yield local existence and uniqueness of integral curves for smooth vector fields. More-
over, one can cover M by domains of local charts and piece together the locally defined integral
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curves of X to obtain, for any given point p ∈ M , a maximal integral curve γp of X through p
defined on a possibly infinite interval (a(p), b(p)).

Even more interesting is to reverse the rôles of p and t by setting

ϕt(p) := γp(t)

for all p such that t ∈ (a(p), b(p)).

The smooth dependence of solutions of ODE on the initial conditions implies that for every
p ∈M , there exists an open neighborhood V of p and ǫ > 0 such that the map

(−ǫ, ǫ)× V →M, (t, p) 7→ ϕt(p)

is well defined and smooth. Glueing integral curves one checks that

(0.3.5) ϕs+t = ϕs ◦ ϕt

whenever both hand sides are defined. Obviously ϕ0 is the identity, so ϕt is a diffeomorphism
defined on some open subset of M with inverse ϕ−t. The collection {ϕt} is called the flow of X.
Owing to property (0.3.5), the flow of X is also called the one-parameter local group of locally
defined diffeomorphisms generated by X, and X is called the infinitesimal generator of {ϕt}. If ϕt
is defined for all t ∈ R, the vector field X is called complete. This is equivalent to requiring that
the maximal integral curves of X be defined on the entire R, or yet, that the domain of each ϕt be
M . In this case we refer to {ϕt} as the one-parameter group of diffeomorphisms of M generated
by X.

0.3.6 Examples (a) TakeM = R2 and X = ∂
∂x1

. Then X is complete and ϕt(x1, x2) = (x1+t, x2)

for (x1, x2) ∈ R2. Note that if we replace R2 by the punctured plane R2 \ {(0, 0)}, the domains of
ϕt become proper subsets of M .

(b) Consider the smooth vector field on R2n defined by

X(x1, . . . , x2n) = −x2
∂

∂x1
+ x1

∂

∂x2
+ · · · − x2n

∂

∂x2n−1
+ x2n−1

∂

∂x2n
.

The flow of X is given the linear map

ϕt










x1
x2
...

x2n−1

x2n










=






Rt
. . .

Rt















x1
x2
...

x2n−1

x2n










where Rt is the 2× 2 block
(

cos t − sin t
sin t cos t

)

.

It is clear that X restricts to a smooth vector field X̄ on S2n−1. The flow of X̄ is of course the
restriction of ϕt to S

2n−1. X and X̄ are complete vector fields.

(c) Take M = R and X(x) = x2 ∂
∂x . Solving the ODE we find ϕt(x) =

x
1−tx . It follows that the

domain of ϕt is (−∞, 1t ) if t > 0 and (1t ,+∞) if t < 0. ⋆
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Lie bracket

If X is a smooth vector field on M and f :M → R is a smooth function, the directional derivative
X(f) :M → R is also smooth and so it makes sense to derivate it again as in Y (X(f)) where Y is
another smooth vector field on M . For instance, in a local chart (U,ϕ = (x1, . . . , xn)), we have the
first order partial derivative

∂

∂xi

∣
∣
∣
p
(f) =

∂f

∂xi

∣
∣
∣
p

and the second order partial derivative

(
∂

∂xj

)

p

(
∂

∂xi
(f)

)

=
∂2f

∂xj∂xi

∣
∣
∣
p

and it follows from Schwarz theorem on the commutativity of mixed partial derivatives of smooth
functions on Rn that

(0.3.7)
∂2f

∂xj∂xi

∣
∣
∣
p
=
∂2(f ◦ ϕ−1)

∂rj∂ri

∣
∣
∣
p
=
∂2(f ◦ ϕ−1)

∂ri∂rj

∣
∣
∣
p
=

∂2f

∂xi∂xj

∣
∣
∣
p
,

where id = (r1, . . . , rn) denote the canonical coordinates on Rn.
On the other hand, for general smooth vector fields X, Y on M the second derivative depends

on the order of the vector fields and the failure of the commutativity is measured by the commutator
or Lie bracket

(0.3.8) [X,Y ](f) = X(Y (f))− Y (X(f))

for every smooth function f : M → R. We say that X, Y commute if [X,Y ] = 0. It turns out
that formula (0.3.8) defines a smooth vector field on M ! Indeed, Scholium 0.3.3 says that such
a vector field is unique, if it exists. In order to prove existence, consider a coordinate system
(U, (x1, . . . , xn)). Then we can write

X|U =
n∑

i=1

ai
∂

∂xi
and Y |U =

n∑

j=1

bj
∂

∂xj

for ai, bj ∈ C∞(U). If [X,Y ] exists, we must have

(0.3.9) [X,Y ]|U =
n∑

i=1

(

ai
∂bj
∂xi

− bi
∂aj
∂xi

)
∂

∂xj
,

because the coefficients of [X,Y ]|U in the local frame { ∂
∂xj

}nj=1 must be given by [X,Y ](xj) =

X(Y (xj)) − Y (X(xj)). We can use formula (0.3.9) as the definition of a vector field on U ; note
that such a vector field is smooth and satisfies property (0.3.8) for functions in C∞(U). We finally
define [X,Y ] globally by covering M with domains of local charts: on the overlap of two charts,
the different definitions coming from the two charts must agree by the above uniqueness result; it
follows that [X,Y ] is well defined.

0.3.10 Examples (a) Schwarz theorem (0.3.7) now means [ ∂∂xi ,
∂
∂xj

] = 0 for coordinate vector

fields associated to a local chart.
(b) Let X = ∂

∂x −
y
2
∂
∂z , Y = ∂

∂y +
x
2
∂
∂z , Z = ∂

∂z be smooth vector fields on R3. Then [X,Y ] = Z,
[Z,X] = [Z, Y ] = 0. ⋆
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The proof of the following proposition only uses (0.3.8).

0.3.11 Proposition Let X, Y and Z be smooth vector fields on M . Then
a. [Y,X] = −[X,Y ].
b. If f , g ∈ C∞(M), then

[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X.

c. [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0. (Jacobi identity)

Let f : M → N be a diffeomorphism. For every smooth vector field X on M , the formula
df ◦X ◦ f−1 defines a smooth vector field on N which we denote by f∗X. If the flow is {ϕt}, then
the flow of f∗X is f ◦ ϕt ◦ f−1. More generally, if f :M → N is a smooth map which needs not be
a diffeomorphism, smooth vector fields X on M and Y on N are called f -related if df ◦X = Y ◦ f .
The proof of the next propostion is an easy application of (0.3.8).

0.3.12 Proposition Let f :M →M ′ be smooth. Let X, Y be smooth vector fields on M , and let
X ′, Y ′ be smooth vector fields on M ′. If X and X ′ are f -related and Y and Y ′ are f -related, then
also [X,Y ] and [X ′, Y ′] are f -related.

What is the relation between flows and Lie brackets? In order to discuss that, let X, Y be
smooth vector fields on M with corresponding flows {ϕt}, {ψs}. Fix p ∈M and a smooth function
f defined on a neighborhood of p. We have

[X,Y ]p(f) = Xp(Y f)− Yp(Xf)

=
d

dt

∣
∣
∣
t=0

(Y f)(ϕt(p))−
d

ds

∣
∣
∣
s=0

(Xf)(ψs(p))

=
∂2

∂s∂t

∣
∣
∣
(0,0)

f(ψs(ϕt(p)))−
∂2

∂t∂s

∣
∣
∣
(0,0)

f(ϕt(ψs(p)))

=
∂2

∂t∂s

∣
∣
∣
(0,0)

f(ϕ−t(ψs(ϕt(p))))

=
d

dt

∣
∣
∣
t=0

(
d

ds

∣
∣
∣
s=0

f(ϕ−t ◦ ψs ◦ ϕt(p))
)

=
d

dt

∣
∣
∣
t=0

((ϕ−t)∗Y )p (f)

Note that t 7→ ((ϕ−t)∗Y )p is a smooth curve in TpM . Its tangent vector at t = 0 is called the Lie
derivative of Y with respect to X at p, denoted by (LXY )p, and this defines the Lie derivative
LXY as a smooth vector field on M . The above calculation shows that LXY = [X,Y ].

0.3.13 Proposition X and Y commute if and only if their corresponding flows {ϕt}, {ψs} com-
mute.

Proof. [X,Y ] = 0 if and only if 0 = d
dt

∣
∣
∣
t=0

(ϕ−t)∗Y . Since {ϕt} is a one-parameter group, this

is equivalent to (ϕ−t)∗Y = Y for all t. However the flow of (ϕ−t)∗Y is {ϕ−tψsϕt}, so this means
ϕ−tψsϕt = ψs. �

We know that, for a local chart (U,ϕ), the set of coordinate vector fields { ∂
∂x1

, . . . , ∂
∂xn

} is

linearly independent at every point of U and the ∂
∂xi

pairwise commute. It turns out these two
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conditions locally characterize coordinate vector fields. Namely, we call a set {X1, . . . , Xn} of
smooth vector fields defined on an open set V of M a local frame if it is linearly independent at
every point of V .

0.3.14 Proposition Let {X1, . . . , Xn} be a local frame on V such that [Xi, Xj ] = 0 for all i,
j = 1, . . . , n. Then for every p ∈ V there exists an open neighborhood U of p in V and a local chart
(U,ϕ) whose coordinate vector fields are exactly the Xi.

Proof. Let {ϕit} be the flow of Xi and put F (t1, . . . , tn) := ϕ1
t1 ◦ · · · ◦ ϕntn(p), defined on a

neighborhood of 0 in Rn. Then dF0(ei) = Xi(p) for all i, so F is a local diffeomorphism at 0 by the
inverse function theorem. The local inverse F−1 defines a local chart around p. Finally, ∂

∂xi
= Xi

by Proposition 0.3.13. �

0.4 Lie groups

Lie groups comprise a very important class of examples of smooth manifolds. At the same time,
they are used to model transformation groups of smooth manifolds.

A Lie group G is a smooth manifold endowed with a group structure such that the group
operations are smooth. More concretely, the multiplication map µ : G×G→ G and the inversion
map ι : G→ G are required to be smooth.

0.4.1 Examples (a) The Euclidean space Rn with its additive vector space structure is a Lie
group. Since the multiplication is commutative, this is an example of a Abelian (or commutative)
Lie group.

(b) The multiplicative group of nonzero complex numbers C×. The subgroup of unit complex
numbers is also a Lie group, and as a smooth manifold it is diffeomorphic to the circle S1.

(c) If G and H are Lie groups, the direct product group structure turns the product manifold
G×H into a Lie group.

(d) It follows from (b) and (c) that the n-torus Tn = S1 × · · · ×S1 (n times) is a Lie group. Of
course, Tn is a compact connected Abelian Lie group. Conversely, we will see in Theorem 0.4.13
that every compact connected Abelian Lie group is an n-torus.

(e) If G is a Lie group, the connected component of the identity of G, denoted by G◦, is also
a Lie group. Indeed, G◦ is open in G, so it inherits a smooth structure from G just by restricting
the local charts. Since µ(G◦ ×G◦) is connected and µ(1, 1) = 1, we must have µ(G◦ × G◦) ⊂ G◦.
Similarly, ι(G◦) ⊂ G◦. Since G◦ ⊂ G is an open submanifold, it follows that the group operations
restricted to G◦ are smooth.

(f) Any finite or countable group endowed with the discrete topology becomes a 0-dimensional
Lie group. Such examples are called discrete Lie groups.

(g) We now turn to some of the classical matrix groups. The real general linear group of order
n, which is denoted by GL(n,R), is the group consisting of all nonsingular n × n real matrices.
Denote by M(n,R) the vector space of all n × n real matrices and consider the determinant
function det : M(n,R) → R. Since GL(n,R) consists precisely of the matrices in M(n,R) with
nonzero determinant, we see that GL(n,R) is open in M(n,R) and thus inherits the structure of

a smooth manifold. In the coordinates provided by the canonical identification M(n,R) ∼= Rn2
,

the group operations of GL(n,R) are expressed by rational functions and are thus smooth. Note
that dimGL(n,R) = n2. Similarly, one defines the complex general linear group of order n, which
is denoted by GL(n,C), as the group consisting of all nonsingular n × n complex matrices. Note
that dimGL(n,C) = 2n2.
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We have already encoubtered the orthogonal group O(n) as a closed embedded submanifold of
GL(n,R) in 0.2.9. Since O(n) is an embedded submanifold, it follows from Theorem ?? that the
group operations of O(n) are smooth, and hence O(n) is a Lie group. ⋆

At this juncture, it is convenient to introduce another object. A (real, complex) Lie algebra is
a (real, complex) vector space g endowed with a bilinear operation

[·, ·] : g× g → g

satisfying:

(a) [Y,X] = −[X,Y ] (skew-symmetry); and
(b) [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 (Jacobi identity); where X, Y , Z ∈ g.

Of course, a Lie algebra is a nonassociative, in general noncommutative algebra in which the
commutative and associative properties have been replaced by (a) and (b) above. It is clear that
(a) is equivalent to having [X,X] = 0 for all X ∈ g, and that identity (b) only imposes additional
restrictions if X, Y , Z are linearly independent.

0.4.2 Examples (a) LetM be a smooth manifold and consider the infinite-dimensional real vector
space X(M) of all smooth vector fields onM . It follows from Proposition 0.3.11 that X(M) equipped
with the Lie bracket is an infinite-dimensional Lie algebra.

(b) Let V be any vector space and take [·, ·] to be the zero bilinear form. Then V becomes a so
called Abelian Lie algebra.

(c) Let A be any real associative algebra and set [a, b] = ab − ba for a, b ∈ A. It is easy to
see that A becomes a Lie algebra. An important instance of this situation is A = M(n,R); the
associated Lie algebra is sometimes denoted by gl(n,R).

(d) The subset of gl(n,R) consisting of skew-symmetric matrices is closed under the Lie bracket
and hence is a Lie algebra itself, denoted by so(n).

(e) The cross-product × on R3 is easily seen to define a Lie algebra structure.

(f) If V is a two-dimensional vector space and X, Y ∈ V are linearly independent, the conditions
[X,X] = [Y, Y ] = 0, [X,Y ] = X define a Lie algebra structure on V .

(g) If V is a three-dimensional vector space spanned by X, Y , Z ∈ V , the conditions [X,Y ] = Z,
[Z,X] = [Z, Y ] = 0 define a Lie algebra structure on V , called the (3-dimensional) Heisenberg
algebra. It can be realized as a Lie algebra of smooth vector fields on R3 as in example 0.3.10(b).

⋆

One of the most essential features of Lie groups is the existence of translations. Let G be a
Lie group. The left translation defined by g ∈ G is the map Lg : G → G, Lg(x) = gx. It is a
diffeomorphism of G, its inverse being given by Lg−1 . Similarly, the right translation defined by
g ∈ G is the map Rg : G → G, Rg(x) = xg. It is also a diffeomorphism of G, and its inverse is
given by Rg−1 .

The translations in G allow us to consider invariant tensors, the most important case being
that of vector fields. A vector field X on G is called left-invariant if d(Lg)x(Xx) = Xgx for every
g, x ∈ X. This condition is simply dLg ◦ X = X ◦ Lg for every g ∈ G. We can similarly define
right-invariant vector fields, but most often we will be considering the left-invariant type. Since
Lg is a diffeomorphism, the push-out of an arbitrary smooth vector field X on G can be defined as
the vector field Lg∗X = dLg ◦X ◦Lg−1 . In this way, the condition of X to be left-invariant can be
neatly expressed as Lg∗X = X for every g ∈ G.

Let g denote the set of left invariant vector fields on G. It is clear that g is a real vector space.
Moreover, the map X ∈ g 7→ X1 defines a linear isomorphism between g and the tangent space to
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G at the identity T1G, since any left invariant vector field is completely defined by its value at the
identity. This implies that dim g = dimG. Every left invariant vector field X in G is smooth. This
can be seen as follows. Let f be a smooth function defined on a neighborhood of 1 in G, and let
γ : (−ǫ, ǫ) → G be a smooth curve with γ(0) = 1 and γ′(0) = X1. Then the value of X on f is
given by

Xg(f) = dLg(X1)(f) = X1(f ◦ Lg) =
d

dt

∣
∣
∣
t=0

f(gγ(t)) =
d

dt

∣
∣
∣
t=0

f ◦ µ(g, γ(t)),

and hence, it is a smooth function of g. Since the elements of g are smooth vector fields, the bracket
bewteen any two of them is defined. We end this discussion by observing that the bracket of X,
Y ∈ g is an element of g, for

Lg∗[X,Y ] = [Lg∗X,Lg∗Y ] = [X,Y ],

for every g ∈ G, due to Proposition 0.3.12.
The discussion in the previous paragraph shows that to any Lie group G is naturally associated

a (real) Lie algebra g consisting of the left invariant vector fields on G. This Lie algebra is the
infinitesimal object associated to G and, as we shall see, completely determines its local structure.

0.4.3 Examples (a) Rn and Tn have the same Lie algebra, namely, the n-dimensinal Abelian Lie
algebra.

(b) The Lie algebra of the direct product G×H is the direct sum of Lie algebras g⊕ h.
(c) G and G◦ have the same Lie algebra.
(d) The Lie algebra of a discrete group is {0}.
(e) The Lie algebra of GL(n,R) is gl(n,R) and that of O(n) is so(n). ⋆

The exponential map, subgroups and homomorphisms

Let G be a Lie group, and let g denote its Lie algebra. Given X ∈ g, there exists an integral curve
ϕX : (−ǫ, ǫ) → G of X with ϕ(0) = 1; namely, ϕ′

X(t) = XϕX(t). Since

d

dt

∣
∣
∣
t=0

Lg(ϕX(t)) = d(Lg)1(X1) = Xg,

we have that Lg ◦ ϕX is the unique integral curve of X starting at g. In particular, by taking
g = ϕ(s) with s very close to ǫ, this shows that ϕX can be extended beyond ǫ. It follows that X is
a complete vector field; namely, ϕX is defined on R. Now t 7→ ϕX(s + t) for s ∈ R is an integral
curve of X with initial point ϕX(s), and hence, by the uniqueness of integral curves,

ϕX(s+ t) = ϕX(s)ϕX(t),

for every s, t ∈ R. Because of this, we say that ϕX : R → G is a one-parameter subgroup of G.
The exponential map of G is the map exp : g → G defined by expX = ϕX(1). We have ϕsX(t) =

ϕX(st), because
d
dt |t=0ϕX(st) = sϕ′

X(0) = sX. This implies that ϕX(t) = ϕtX(1) = exp(tX), that
is, every one-parameter subgroup factors through the exponential map.

The exponential map is smooth, as this follows from the smooth dependence of solutions of
ordinary differential equations on initial conditions. Moreover, d exp0 : T0g ∼= g → T1G ∼= g is the
identity, since

d exp0(X) =
d

dt

∣
∣
∣
t=0

exp(tX) = ϕ′
X(0) = X.

Thus, exp is a diffeomorphism from a neighborhood of 0 in g onto a neighborhood of 1 in G.
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0.4.4 Example The exponential map exp : gl(n,R) → GL(n,R) is the exponentiation of matrices:

expA = eA = I +A+
1

2
A2 +

1

3!
A3 + · · ·

for all A ∈ gl(n,R). In fact, for ϕA(t) = etA we have that ϕ′
A(t) = etAA = (dLϕA(t))A is the

left-invariant vector field determined by A, so ϕA is its flow. Similarly for exp : gl(V ) → GL(V )
where V is any real or complex vector space. ⋆

0.4.5 Remark In general, the exponential map is not a global diffeomorphism (take G compact),
not a homomorphism (take G non-Abelian), not surjective (take G = SL(2,R)). We shall see on
page 59 that exp is surjective if G is compact and connected.

The connected component of 1 in G, G◦, is an open subgroup of G. G◦ is generated as a group
by any neighborhood U of 1 (in fact, replace U by U ∩ U−1 in order to have U = U−1; define
V = ∪n≥0U

n and consider the equivalence relation g ∼ g′ if and only if g−1g′ ∈ V ; then the
equivalence classes are open, whence, V = G◦). In particular, G◦ is generated by exp[g]. This fact
has major implications in the relation between g and G.

Let G be a Lie group. A subgroup H of G is called a Lie subgroup of G if H is an (immersed)
submanifold of G, and a Lie group with respect to the operations induced from G. If g is a Lie
algebra, a subspace h of g is called a Lie subalgebra if h is closed under the bracket of g.

It is easy to see that if H is a Lie subgroup of G, then the Lie algebra of h is a Lie subalgebra
of g. Conversely, we have

0.4.6 Theorem (Lie) Let G be a Lie group, and let g denote its Lie algebra. If h is a Lie
subalgebra of g, then there exists a unique connected Lie subgroup H of G such that the Lie algebra
of H is h.

Proof. This follows from the global version of Frobenius theorem. We have that h is a subspace of
T1G. Let D be the left-invariant distribution on G defined by h. Then D is a smooth distribution,
and the fact that h is a subalgebra is equivalent to D being involutive. By Frobenius theorem,
there is a unique maximal integral manifold of D passing through 1, which we call H. Then, for
every h ∈ H, h−1H is also a maximal integral manifold of D passing through 1, which implies
that h−1H = H. It follows that H is a subgroup of G. Finally, the operations induced by G on
H are smooth because H is an integral manifold of an involutive distribution (see Theorem 1.62
in [War83]). �

0.4.7 Remark A closed subgroup H of a Lie group G has a unique structure of Lie subgroup of
G, and the underlying topology must be the induced topology, see [War83, p. 110].

A (Lie group) homomorphism between Lie groups G and H is map ϕ : G → H which is both
a group homomorphism and a smooth map. ϕ is called a isomorphism if, in addition, it is a
diffeomorphism. An automorphism of a Lie group is an isomorphism of the Lie group with itself.
A (Lie algebra) homomorphism between Lie algebras g and h is a linear map Φ : g → h which
preserves brackets. Φ is called a isomorphism if, in addition, it is bijective. An automorphism of a
Lie algebra is an isomorphism of the Lie algebra with itself.
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A homomorphism ϕ : G→ H between Lie groups induces a homomorphism dϕ : g → h between
the corresponding Lie algebras. Indeed, if X is a left invariant vector field on G, let Y be the
unique left invariant vector field on H such that Y1 = dϕ1(X1). Then

Yϕ(g) = d(Lϕ(g))1(Y1) = d(Lϕ(g) ◦ ϕ)1(X1) = d(ϕ ◦ Lg)1(X1) = dϕg(Xg),

so that X and Y |ϕ(G) are ϕ-related. Define Y = dϕ(X). Now, if X ′ ∈ g, then X ′ and ϕ(X ′) are
ϕ-related. Therefore [X,X ′] and [dϕ(X), dϕ(X ′)]|ϕ(G) are ϕ-related and thus

dϕ([X,X ′]) = [dϕ(X), dϕ(X ′)].

This shows that dϕ is a Lie algebra homomorphism.
Let ϕ : G→ H be a homomorphism between Lie groups. Then, for a left invariant vector field

X on G, t 7→ ϕ(expG(tX)) is a one-parameter subgroup of H with d
dt |t=0ϕ(exp

G tX) = dϕ(X). It
follows that

(0.4.8) ϕ ◦ expGX = expH ◦dϕ(X),

for every X. In particular, if K is a Lie subgroup of G, then the inclusion map i : K → G is a Lie
group homomorphism, so that the exponential map of G restricts to the exponential map of K,
and the connected component of K is generated by expG[k], where k is the Lie algebra of K. Since
K is an integral manifold of an involutive distribution (compare Theorem0.4.6), it follows also that

k = {X ∈ g : expG(tX) ∈ K, for all t ∈ R}.

0.4.9 Lemma Let ϕ : G → H be a homomorphism between Lie groups. Consider the induced
homomorphism between the corresponding Lie algebras dϕ : g → h. Then:
a. dϕ is injective if and only if the kernel of ϕ is discrete.
b. dϕ is surjective if and only if ϕ(G◦) = H◦.
c. dϕ is bijective if and only if ϕ is a covering (here we assume G and H connected).

Proof. (a) kerϕ is a closed normal subgroup of G, and its Lie algebra is ker dϕ.
(b) Since ϕ ◦ exp = exp ◦dϕ, and G◦ is generated by exp[g], ϕ(G◦) is the subgroup of H◦

generated by exp[dϕ(g)].
(c) Suppose G, H connected, dϕ : g → h an isomorphism. Then ϕ is surjective by (b). Let U

be a neighborhood of 1 in G such that ϕ : U → ϕ(U) := V is a diffeomorphism. We can choose U
so that U ∩ker dϕ = {1} by (a). Then ϕ−1(V ) = ∪n∈kerϕnU (disjoint union), and, since ϕ◦Ln = ϕ
for n ∈ kerϕ, we also have that ϕ|nU is a diffeomorphism onto V . This shows that ϕ is a covering.
The other half of the statement is clear. �

0.4.10 Theorem Let G1, G2 be Lie groups, and assume that G1 is connected and simply-connected.
Then, given a homomorphism Φ : g1 → g2 between the Lie algebras, there exists a unique homo-
morphism ϕ : G1 → G2 such that dϕ = Φ.

Proof. The graph of Φ, h = {(X,Φ(X)) : X ∈ g1 is a subalgebra of g1 ⊕ g2. Let H be the
subgroup of G1 ×G2 defined by h (Theorem 0.4.6). Consider the projections

Φi : g1 ⊕ g2 → gi, ϕi : G1 ×G2 → Gi,

for i = 1, 2. Since Φ1|h : h → gq is an isomorphism, we have that Φ = Φ2 ◦ (Φ1|h)−1 and
ϕ1 : H → G1 is a covering. Since G1 is simply-connected, ϕ1|H : H → G1 is an isomorphism of Lie
groups, and we can thus define ϕ = ϕ2 ◦ (ϕ1)

−1. This proves the existence part. The uniqueness
part comes from the fact that dϕ = Φ specifies ϕ in a neighborhood of 1 (by using the exponential
map), and G1 is generated by this neighborhood. �
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The adjoint representation

Let G be a Lie group, and denote its Lie algebra by g. The noncommutativity of G is organized
by the adjoint representation. In order to introduce it, let g ∈ G, and define a map Inng : G → G
by Inng(x) = gxg−1. Then Inng is an automorphism of G, which is called the inner automorphism
defined by g. The differential d(Inng) : g → g defines an automorphism of g, which we denote by
Adg. Then

AdgX =
d

dt

∣
∣
∣
t=0

Inn(g)(exp tX) =
d

dt

∣
∣
∣
t=0

g exp tXg−1.

0.4.11 Example In case G = GL(n,R) we have (cf. example 0.4.4)

AdgX =
d

dt

∣
∣
∣
t=0

getXg−1

=
d

dt

∣
∣
∣
t=0

et(gXg
−1)

= gXg−1.

⋆

Now we have a homomorphism

Ad : g ∈ G→ Adg ∈ GL(g),

which is called the adjoint representation of G on g. We have

AdgX = (dLg)1(dRg−1)1X1

= (dRg−1)1(dLg)1X1

= (dRg−1)1(Xg)

= (dR−1
g ◦X ◦Rg)1

=
(
(Rg−1)∗X

)

1

Finally, the differential d(Ad) defines the adjoint representation of g on g:

ad : X ∈ g → adX =
d

dt

∣
∣
∣
t=0

Adexp tX ∈ gl(g).

Since ϕt = Rexp tX is the flow of X, we get

adXY =
d

dt

∣
∣
∣
t=0

Adexp tXY =
d

dt

∣
∣
∣
t=0

(
(Rexp(−tX))∗Y

)

1
= (LXY )1 = [X,Y ].

As an important special case of (0.4.8) we have (recall example 0.4.4)

AdexpX = eadX

for all X ∈ g.

0.4.12 Lemma [X,Y ] = 0 if and only if expX expY = expY expX for all X, Y ∈ g. In that
case, exp(t(X +Y )) = exp tX exp tY for all t ∈ R. It follows that a connected Lie group is Abelian
if and only if its Lie algebra is Abelian.
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Proof. The first assertion is a special case of Proposition 0.3.13 using that ϕt = Rexp tX is
the flow of X and ψs = Rexp sY is the flow of Y . The second one follows from noting that both
t 7→ exp(t(X + Y )) and t 7→ exp tX exp tY are one-parameter groups with initial speed X + Y .
Finally, we have seen that g is Abelian if and only if exp[g] is Abelian, but the latter generates G◦.

�

0.4.13 Theorem Every connected Abelian Lie group G is isomorphic to Rn−k×T k. In particular,
a simply-connected connected Abelian Lie group is isomorphic to Rn and a compact connected
Abelian Lie group is isomorphic to Tn.

Proof. It follows from Lemma 0.4.12 that g is Abelian and exp : g → G is a homomorphism,
where g ∼= Rn as a Lie group, thus exp is a smooth covering by Lemma 0.4.9(c). Hence G is
isomorphic to Rn quotiented by the discrete group ker exp. �

Lie transformation groups

As mentioned above, Lie groups serve to model transformations of manifolds. Let G be a Lie group
and let M be a smooth manifold. A smooth action of G on M , also called a Lie transformation
group, is a homomorphism Φ of G into the group of diffeomorphisms of M such that the map

G×M →M, (g, p) 7→ Φ(g)p

is smooth. We usually write gp for Φ(g)p. In this case one says that G acts on M by diffeomor-
phisms. The isotropy group at p ∈M is the subgroup Gp of G consisting of all elements that fix p,
namely, Gp = { g ∈ G | gp = p }. The orbit through p ∈ M is the subset Gp of points of M that
can be attained from p under the action of G, namely, Gp = { gp | g ∈ G }. Note that the orbits of
an action partition the space into equivalence classes. The quotient space is also called orbit space.

0.4.14 Lemma Let ∼ be an equivalence relation on a topological space X such that the natural
projection π : X → X/ ∼ mapping each x ∈ X to its equivalence class [x] is an open map. Then
the quotient space X/ ∼ is Hausdorff if and only if ∼ is closed in X ×X.

Proof. Note that [x] 6= [y] if and only if (x, y) 6∈ ∼. Also, ∼ is closed if and only if for such
(x, y) there is an open neighborhood in X ×X, which can be assumed of the form V ×W for V ,
W open neighborhoods of x, y in X, resp., which does not meet ∼. However, the existence of such
neighborhoods V , W is the same as separating [x], [y] by open sets since π is continuous and open.

�

An action of G on M is called proper if the induced map

(0.4.15) G×M →M ×M, (g, p) 7→ (gp, p)

is a proper map (compare page 6). It is equivalent to require that for all compact subsets K,
L ⊂M , the set { g ∈ G | gK∩L 6= ∅ } be compact. In this form, one easily sees that this definition
extends the one given previously for discrete groups (see page 9). Note that properness of the
action is automatic if G is a compact Lie group.

0.4.16 Theorem If M is a smooth manifold and G is a Lie group acting freely and properly on M ,
then the quotient space M̄ = G\M endowed with the quotient topology admits a natutal structure
of smooth manifold such that the projection π : M → M̄ is a (surjective) submersion. Moreover
dim M̄ = dimM − dimG.
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Proof. We start by noting that π is an open map, as for an open set V ofM we have π−1(π(V )) =
∪g∈GgV is a union of open sets and thus open. It follows that a projection of a contable basis of
open sets of M yields a countable basis of open sets of M̄ . Moreover, M̄ is Hausdorff since the
range of the proper map (0.4.15) is closed and thus we can apply Lemma 0.4.14.

Fix p ∈M . The map ωp : G→M , ωp(g) = gp is smooth by definition of an action, injective by
freeness of the action and proper by properness of the action. It is also an immersion, as we show
now. Since

ωp ◦ Lg = Φ(g) ◦ ωp

and Lg : G → G, Φ(g) : M → M are diffeomorphisms, it suffices to check that ωp is an immersion
at 1 ∈ G. Let X ∈ g ∼= T1G. Then

X∗
p := dωp(X) =

d

dt

∣
∣
∣
t=0

(exp tX)p

defines a smooth vector field on M whose flow is ϕ̃t = Φ(exp tX), so X∗
p = 0 if and only if the

integral curve through p is constant, namely, Φ(exp tX)p = p for all t ∈ R which, due to freeness,
says that X = 0. Now ωp is a proper injective immersion and hence its image, the orbit Gp, is a
properly embedded submanifold of M .

Let us construct a local chart of M̄ around p̄ = π(p) = Gp ∈ M̄ . There is a local chart (U,ϕ) of
M adapted to Gp around p. Suppose dimM = n+ k, dimGp = n. We may assume that ϕ(p) = 0,
ϕ(U) ⊂ Rn+k = Rn×Rk is a product neighborhood V ×W of 0, where where V = ϕ(U)∩Rn and
W is a neighborhood of 0 in Rk. Define a smooth map F : G ×W → M by F (g, y) = gϕ−1(y).
Then dF(1,0) maps T1G onto Tp(Gp), which equals d(ϕ−1)0(R

n), and it maps T0W = Rk onto

d(ϕ−1)0(R
k). Since d(ϕ−1)0(R

n) + d(ϕ−1)(Rk)0 = TpM , F is a local diffeomorphism at (1, 0). By
shrinkingW and using that F (g, y) = Φ(g)F (1, y), we can ensure that F is a local diffeomorphism at
every point of G×W . Next we claim it is possible to further shrinkW to arrange that F is injective
and thus a diffeomorphism onto its image. Otherwise, there would be sequences (gi), (hi) in G,
(yi), (zi) in W such that yi → 0, zi → 0, giϕ

−1(yi) = hiϕ
−1(zi) but (gi, yi) 6= (hi, zi) for all i. Put

ki := h−1
i gi ∈ G. Since (kiϕ

−1(yi), ϕ
−1(yi)) = (ϕ−1(zi), ϕ

−1(yi)) → (p, p), the (kiϕ
−1(yi), ϕ

−1(yi))
are eventually contained in a compact subset of M ×M and thus, by properness of the action,
the ki are eventually contained in a compact subset of G; by passing to a subsequence, we may
assume that ki → k ∈ G. Now p = lim kiϕ

−1(yi) = kp which implies k = 1 by freeness of the
action. However, this contradicts the local injectivity of F at (1, 0), proving the claim. Now for
U = F (W ) we have a diffeomorphism ψ = F−1 : U → G ×W . Let ψ1 : U → G, ψ2 : U → W
denote the components of ψ. Note that U is a “fibered” neighborhood of Gp in the sense that
the nearby orbits Gq map to fibers of the form G × {y} where y = ψ2(q) ∈ W . Note also that
S := ψ−1({1} ×W ) is a “slice” near Gp in the sense that S meets each orbit in W in exactly one
point. The map ψ is G-equivariant in the sense that ψ(gq) = (gψ1(q), ψ2(q)) for g ∈ G, q ∈ U .
Now ψ2 induces a homeomorphism ψ̄2 : π(U) → W from the open neighborhood π(U) of p̄ in M̄
onto the open neighborhood W of 0 in Rk, which we take as a local chart of M̄ .

We can cover M̄ with local charts of this form. Suppose ψ̄′
2 : π(U ′) → W ′ is another chart

coming from ψ′ = (ψ′
1, ψ

′
2) : U

′ → G×W ′ such that π(U) ∩ π(U ′) 6= ∅. Let y ∈ ψ̄2(π(U) ∩ π(U ′)).
Then ψ̄−1

2 (y) = π(ψ−1(1, y)), so the transition map

ψ̄′
2ψ̄

−1
2 (y) = (ψ̄′

2π)ψ
−1ι(y) = ψ′

2ψ
−1ι(y)

is smooth, where ι(y) = (1, y). This proves that we have a smooth atlas.
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The commutative diagram

M ⊃ U
ψ−−−−→ G×W

π



y



y

M̄ ⊃ π(U) −−−−→
ψ̄2

W

shows that π is a submersion. �

0.4.17 Remarks (a) In the notation of the preceding theorem, the smooth map s : π(U) → M
defined by s(q̄) = ψ−1(1, ψ̄2(q̄)) has image S and satisfies π◦s = idπ(U). A smooth map s : O →M ,
where O is an open set of M̄ , satisfying π◦s = idO is called a (smooth) local section of π :M → M̄ .

(b) The proof of the preceding theorem has indeed revealed more, namely, π : M → M̄ is a
principal G-bundle. A smooth map π : M → B between smooth manifolds is called a principal
G-bundle, where G is a Lie group, if M is equipped with a free, right action of G and B can be
covered by neighborhoods O such that π−1(O) is diffeomorphic to O × G, where fibers of π are
mapped to fibers of O × G → O, and the action of G on M corresponds to its action by right
multiplication on the second factor of O × G. The smooth structure constructed on M̄ in the
theorem is the unique one that makes π :M → M̄ into a smooth principal G-bundle.

(c) A map f̄ : M̄ → N is smooth if and only if f := π ◦ f̄ :M → N is smooth. This essentially
follows from the commutative diagram in the proof.

As the most important application of Theorem 0.4.16, let G be a Lie group and let H be a
closed subgroup. Then H acts on G by right multiplication as follows:

Φ : H ×G→ G, Φ(h)g := Rh−1g

(note that the inverse in h−1 is necessary to have an action “on the left”, as we have defined).
This action is clearly free. It is also proper, because given compact subsets K, L ⊂ G, the set
{h ∈ H | hK ∩ L 6= ∅ } coincides with L−1K ∩ H, which is compact. The orbits of this action
coincide with the co-classes of G module H, namely, gH for g ∈ G. Hence

0.4.18 Theorem If G is a Lie group and H is a closed subgroup of G, then there exists a nat-
ural structure of smooth manifold on the quotient G/H such that the projection G → G/H is a
submersion. Moreover, dimG/H = dimG− dimH.

Let G be a Lie group acting by diffeomorphisms on a smooth manifold M . We say that the
action is transitive if for any p, q ∈ M there exists g ∈ G such that gp = q; equivalently, there is
only one orbit of G in M . In this case, we say that M is homogeneous under G or that M is a
homogeneous space. It is clear that G/H as in Theorem 0.4.18 is always homogeneous under G,
where G acts by left multiplication: given g1H, g2H ∈ G/H, the element g2g

−1
1 maps one point to

the other. Conversely:

0.4.19 Theorem Let G act transitively on M . Then, for any p ∈M , the orbit map ωp : G→M ,
ωp(g) = gp induces a diffeomorphism G/Gp →M .

Proof. Since Gp is a closed subgroup of G, it is a Lie subgroup of G (Remark 0.4.7) and thus
G/Gp is a smooth manifold. As is easy to see, the map ω̄p : gGp ∈ G/Gp 7→ gp ∈M is well defined,
bijective and smooth. As in the proof of Theorem 0.4.16, one shows that ω̄p is an immersion at
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1Gp and thus an immersion everywhere by equivariance. This already implies dimG/Gp ≤ dimM ,
and the image of ω̄p is a submanifold ofM , but the strictly inequality cannot hold as ω̄p is bijective
and the image of a smooth map from a smooth manifold into a strictly higher dimensional smooth
manifold has null measure (this result follows from the statement that the image of a smooth map
Rn → Rn+k with k > 0 has null measure and the second-countability of smooth manifolds). It
follows that ω̄p is a local diffeomorphism and hence a diffeomorphism. �

0.4.20 Corollary The smooth structure in G/H constructed in Theorem 0.4.18 is the unique one
that makes the action of G on G/H by left multiplication smooth.

0.5 Vector bundles ⋆
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C H A P T E R 1

Riemannian manifolds

1.1 Introduction

A Riemannian metric is a family of smoothly varying inner products on the tangent spaces of
a smooth manifold. Riemannian metrics are thus infinitesimal objects, but they can be used to
measure distances on the manifold. They were introduced by Riemmann in his seminal work [Rie53]
in 1854. At that time, the concept of a manifold was extremely vague and, except for some known
global examples, most of the work of the geometers focused on local considerations, so the modern
concept of a Riemannian manifold took quite some time to evolve to its present form. We point
out the seemingly obvious fact that a given smooth manifold can be equipped with many different
Riemannian metrics. This is really one of the great insights of Riemann, namely, the separation
between the concepts of space and metric.

This chapter is mainly concerned with examples.

1.2 Riemannian metrics

Let M be a smooth manifold. A Riemannian metric g on M is a smoothly varying family of inner
products on the tangent spaces of M . Namely, g associates to each p ∈ M a positive definite
symmetric bilinear form on TpM ,

gp : TpM × TpM → R,

and the smoothness condition on g refers to the fact that the function

p ∈M → gp(Xp, Yp) ∈ R

must be smooth for every locally defined smooth vector fields X, Y in M . A Riemannian manifold
is a pair (M, g) where M is a differentiable manifold and g is a Riemannian metric on M . Later
on (but not in this chapter), we will often simplify the notation and refer to M as a Riemannian
manifold where the Riemannian metric is implicit.

Let (M, g) be a Riemannian manifold. If (U,ϕ = (x1, . . . , xn)) is a chart of M , a local ex-
pression for g can be given as follows. Let { ∂

∂x1
, . . . , ∂

∂xn } be the coordinate vector fields, and let
{dx1, . . . , dxn} be the dual 1-forms. For p ∈ U and u, v ∈ TpM , we write

u =
∑

i

ui
∂

∂xi

∣
∣
∣
p

and v =
∑

j

vj
∂

∂xi

∣
∣
∣
p
.
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Then, by bilinearity,

gp(u, v) =
∑

i,j

uivjgp

(
∂

∂xi
,
∂

∂xj

)

=
∑

i,j

gij(p)u
ivj ,

where we have set

gij(p) = gp

(
∂

∂xi
,
∂

∂xj

)

.

Note that gij = gji. Hence we can write

(1.2.1) g =
∑

i,j

gij dx
i ⊗ dxj =

∑

i≤j
g̃ij dx

idxj ,

where g̃ii = gii, and g̃ij = 2gij if i < j.
Next, let (U ′, ϕ′ = (x1

′

, . . . , xn
′

)) be another chart of M such that U ∩ U ′ 6= ∅. Then

∂

∂xi′
=
∑

k

∂xk

∂xi′
∂

∂xk
,

so the relation between the local expressions of g with respect to (U,ϕ) and (U ′, ϕ′) is given by

gi′j′ = g

(
∂

∂xi′
,
∂

∂xj′

)

=
∑

k,l

∂xk

∂xi′
∂xl

∂xj′
gkl.

1.2.2 Examples (a) The canonical Euclidean metric is expressed in Cartesian coordinates by
g = dx2 + dy2. Changing to polar coordinates x = r cos θ, y = r sin θ yields that

dx = cos θdr − r sin θdθ and dy = sin θdr + r cos θdθ,

so

g = dx2 + dy2

= (cos2 θdr2 + r2 sin2 θdθ2 − 2r sin θ cos θdrdθ)

+(sin2 θdr2 + r2 cos2 θdθ2 + 2r sin θ cos θdrdθ)

= dr2 + r2dθ2.

(b) A classical example is the surface of revolution parametrized by

x(r, θ) = (a(r) cos θ, a(r) sin θ, b(r)),

where a > 0, b are smooth functions defined on some interval and the generatrix γ(r) = (a(r), 0, b(r))
has ||γ′||2 = (a′)2 + (b′)2 = 1, equipped with the metric g induced from R3. Namely, the tangent
spaces to the surface are subspaces of R3, so we can endow them with inner products just by taking
the restrictions of the Euclidean dot product in R3. The tangent spaces are spanned by the partial
derivatives xr = (∂x∂r ,

∂y
∂r ,

∂z
∂r ), xθ = (∂x∂θ ,

∂y
∂θ ,

∂z
∂θ ), and then g = (xr · xr) dr + 2(xr · xθ) drdθ + (xθ ·

xθ) dθ
2. Equivalently, from

dx = a′(r) cos θ dr − a(r) sin θ dθ

dy = a′(r) sin θ dr + a(r) cos θ dθ

dz = b′(r) dr
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we obtain

g = dx2 + dy2 + dz2

= dr2 + a(r)2 dθ2.

⋆

The functions gij are smooth on U and, for each p ∈ U , the matrix (gij(p)) is symmetric and
positive-definite. Conversely, a Riemannian metric in U can be obviously specified by these data.

1.2.3 Proposition Every smooth manifold can be endowed with a Riemannian metric.

Proof. LetM = ∪αUα be a covering ofM by domains of charts {(Uα, ϕα)}. For each α, consider
the Riemannian metric gα in Uα whose local expression ((gα)ij) is the identity matrix. Let {ρα}
be a smooth partition of unity of M subordinate to the covering {Uα}, and define

g =
∑

α

ραgα.

Since the family of supports of the ρα is locally finite, the above sum is locally finite, and hence g
is well defined and smooth, and it is bilinear and symmetric at each point. Since ρα ≥ 0 for all α
and

∑

α ρα = 1, it also follows that g is positive definite, and thus is a Riemannian metric in M . �

The proof of the preceding proposition suggests the fact that there exists a vast array of Rie-
mannian metrics on a given smooth manifold. Even taking into account equivalence classes of
Riemannian manifolds, the fact is that there many uninteresting examples of Riemannian mani-
folds, so an important part of the work of the differential geometer is to sort out relevant families
of examples.

Let (M, g) and (M ′, g′) be Riemannian manifolds. A isometry between (M, g) and (M ′, g′) is
diffeomorphism f : M → M ′ whose differential is a linear isometry between the corresponding
tangent spaces, namely,

gp(u, v) = g′f(p)(dfp(u), dfp(v)),

for every p ∈ M and u, v ∈ TpM We say that (M, g) and (M ′, g′) are isometric Riemannian
manifolds if there exists an isometry between them. This completes the definition of the category
of Riemannian manifolds and isometric maps. Note that the set of all isometries of a Riemannian
manifold (M, g) forms a group, called the isometry group of (M, g), with respect to the operation
of composition of mappings, which we will denote by Isom(M, g). Here we quote without proof the
following important theorem [MS39].

1.2.4 Theorem (Myers-Steenrod) The isometry group Isom(M, g) of a Riemannian manifold
(M, g) has the structure of a Lie group with respect to the compact-open topology. Its isotropy
subgroup at an arbitrary fixed point is compact. Moreover, Isom(M, g) is compact if M is compact.

The isometry group is a Riemannian-geometric invariant in the sense that if f : (M, g) → (M ′, g)
is an isometry between Riemannian manifolds, then α 7→ f ◦ α ◦ f−1 defines an isomorphism
Isom(M, g) → Isom(M ′, g′).

A local isometry from (M, g) into (M ′, g′) is a smooth map f :M →M ′ satisfying the condition
that every point p ∈M admits a neighborhood U such that the restriction of f to U is an isometry
onto its image. In particular, f is a local diffeomorphism. Note that a local isometry which is
bijective is an isometry.
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1.3 Examples

The Euclidean space

The Euclidean space is Rn equipped with its standard scalar product. The essential feature of Rn

as a smooth manifold is that, since it is the model space for finite dimensional smooth manifolds, it
admits a global chart given by the identity map. Of course, the identity map establishes canonical
isomorphisms of the tangent spaces of Rn at each of its points with Rn itself. Therefore an
arbitrary Riemannian metric in Rn can be viewed as a smooth family of inner products in Rn. In
particular, by taking the constant family given by the standard scalar product, we get the canonical
Riemannian structure in Rn. In this book, unless explicitly stated, we will always use its canonical
metric when referring to Rn as a Riemannian manifold.

If (x1, . . . , xn) denote the standard coordinates on Rn, then it is readily seen the local expression
of the canonical metric is

(1.3.1) dx21 + · · ·+ dx2n.

More generally, if a Riemannian manifold (M, g) admits local coordinates such that the local
expression of g is as in (1.3.1), then (M, g) is called flat and g is called a flat metric on M . Note
that, if g is a flat metric on M , then the coordinates used to express g as in (1.3.1) immediately
define a local isometry between (M, g) and Euclidean space Rn.

Riemannian submanifolds and isometric immersions

Let (M, g) be a Riemannian manifold and consider a immersed submanifold ι : N → M . This
means that N is a smooth manifold and ι is an injective immersion. Then the Riemannian metric
g induces a Riemannian metric gN in N as follows. Let p ∈ N . The tangent space TpN can be
viewed as a subspace of TpM via the injective map dιp : TpN → Tι(p)M . We define (gN )p to be
simply the restriction of g to this subspace, namely,

(gN )p(u, v) = gι(p)(dιp(u), dιp(v)),

where u, v ∈ TpN . It is clear that gN is a Riemannian metric. We call gN the induced Riemannian
metric in N , and we call (N, gN ) a Riemannian submanifold of (M, g).

Note that the definition of gN makes sense even if ι is a immersion that is not necessarily
injective. In this case, we call gN the pulled-back metric, write gN = ι∗g, and say that ι : (N, gN ) →
(M, g) is an isometric immersion (of course, any immersion must be locally injective). On another
note, an isometry f : (M, g) → (M ′, g′) is a diffeomorphism satisfying f∗(g′) = g.

A very important particular case is that of Riemannian submanifolds of Euclidean space (com-
pare example 1.2.2(b)) Historically speaking, the study of Riemannian manifolds was preceded by
the theory of curves and surfaces in R3. In the classical theory, one uses parametrizations instead
of local charts, and these objects are called parametrized curves and parametrized surfaces since
they usually already come with the parametrization. In the most general case, the parametrization
is only assumed to be smooth. One talks about a regular curve or a regular surface if one wants
the parametrization to be an immersion. Of course, in this case it follows that the parametrization
is locally an embedding. This is good enough for the classical theory, since it is really concerned
with local computations.
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The sphere Sn

The canonical Riemannian metric in the sphere Sn is the Riemannian metric induced by its embed-
ding in Rn+1 as the sphere of unit radius. When one refers to Sn as a Riemannian manifold with its
canonical Riemannian metric, sometimes one speaks of “the unit sphere”, or “the metric sphere”,
or the “Euclidean sphere”, or “the round sphere”. One also uses the notation Sn(R) to specify
a sphere of radius R embedded in Rn+1 with the induced metric. In this book, unless explicitly
stated, we will always use the canonical metric when referring to Sn as a Riemannian manifold.

Product Riemannian manifolds

Let (Mi, gi), where i = 1, 2, denote two Riemannian manifolds. Then the product smooth manifold
M = M1 ×M2 admits a canonical Riemannian metric g, called the product Riemannian metric,
given as follows. The tangent space of M at a point p = (p1, p2) ∈ M1 ×M2 splits as TpM =
Tp1M1 ⊕ Tp2M2. Given u, v ∈ TpM , write accordingly u = u1 + u2 and v = v1 + v2, and define

gp(u, v) = gp1(u1, v1) + gp2(u2, v2).

It is clear that g is a Riemannian metric. Note that it follows from this definition that Tp1M1⊕{0}
is orthogonal to {0} ⊕ Tp2M2. We will sometimes write that (M, g) = (M1, g1)× (M2, g2), or that
g = g1 + g2.

It is immediate to see that Euclidean space Rn is the Riemannian product of n copies of R.

Conformal Riemannian metrics

Let (M, g) be a Riemannian manifold. If f is a nowhere zero smooth function on M , then f2g
defined by

(f2g)p(u, v) = f2(p)gp(u, v),

where p ∈ M , u, v ∈ TpM , is a new Riemannian metric on M which is said to be conformal to g.
We say that (M, g) is conformally flat if M can be covered by open sets on each of which g is
conformal to a flat metric.

A particular case happens if f is a nonzero constant in which f2g is said to be homothetic to g.

The real hyperbolic space RHn

To begin with, consider the Lorentzian inner product in Rn+1 given by

〈x, y〉 = −x0y0 + x1y1 + · · ·+ xnyn,

where x = (x0, . . . , xn), y = (y0, . . . , yn) ∈ Rn+1. We will write R1,n to denote Rn+1 with such a
Lorentzian inner product. Note that if p ∈ R1,n is such that 〈p, p〉 < 0, then the restriction of 〈, 〉
to the orthogonal complement 〈p〉⊥ is positive-definite (compare Exercise 15). Note also that the
equation 〈x, x〉 = −1 defines a two-sheeted hyperboloid in R1,n.

Now we can define the real hyperbolic space as the following submanifold of R1,n,

RHn = {x ∈ R1,n | 〈x, x〉 = −1 and x0 > 0 },

equipped with a Riemannian metric g given by the restriction of 〈, 〉 to the tangent spaces at its
points. Since the tangent space of the hyperboloid at a point p is given by 〈p〉⊥, the Riemannian
metric g turns out to be well defined. Actually, this submanifold is sometimes called the hyperboloid
model of RHn (compare Exercises 3 and 4). Of course, as a smooth manifold, RHn is diffeomorphic
to Rn.
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Flat tori

A lattice Γ in Rn (or, more generally, in a real vector space) is the additive subgroup of Rn

consisting of integral linear combinations of the vectors in a fixed basis. Namely, if {v1, . . . , vn} is
a basis of Rn, then it defines the lattice Γ = {∑n

j=1mjvj | m1, . . . ,mn ∈ Z }. For a given lattice Γ
we consider the quotient group Γ\Rn in which two elements p, q ∈ Rn are identified if q − p ∈ Γ.
We will show that M = Γ\Rn has the structure of a compact smooth manifold of dimension n
diffeomorphic to a product of n copies of S1, which we denote by Tn. Moreover there is a naturally
defined flat metric gΓ on M ; the resulting Riemannian manifold is called a flat torus. We also
denote it by (Tn, gΓ).

Equip M with the quotient topology induced by the canonical projection π : Rn → M that
maps each p ∈ Rn to its equivalence class [p] = p+ Γ. Then π is continuous. It follows that M is
compact since it coincides with the image of the projection of {∑n

j=1 xjvj | 0 ≤ xj ≤ 1 }. Moreover,

π is an open map, as for an open subset V of Rn we have that π−1(π(V )) = ∪γ∈Γ (V + γ) is a union
of open sets and thus open. It follows that the projection of a countable basis of open sets of Rn is
a countable basis of open sets of M . We also see that the quotient topology is Hausdorff. In fact,
given [p], [q] ∈ Γ\Rn, [p] 6= [q], let r be the minimal distance of p to a point in q + Γ. Then r > 0.
Let V , W be the balls of radius r centered at p, q, respectively. A point x ∈ V ∩ (W + Γ) satisfies
d(x, p) < r

2 and d(x, q+ γ) < r
2 for some γ ∈ Γ, and therefore d(p, q+ γ) ≤ d(p, x) + d(x, q+ γ) < r

leading to a contradiction. It follows that V ∩ (W + Γ) = ∅ and hence π(V ), π(W ) are disjoint
open neighborhoods of [p], [q], respectively.

We next check that π : Rn →M is a covering. In fact, let r = min{ ||vi|| | i = 1, . . . , n }. Then
r is the minimal distance from any given point p ∈ Rn to another point in p+Γ. Let V be the ball
of radius r

2 centered at p. Then V ∩ (V + γ) = ∅ for all γ ∈ Γ \ {0}. Note also that π : V → π(V )
is continuous, open and injective, thus a homeorphorphism. Now π−1(π(V )) = ∪γ∈Γ(V + γ) is a
disjoint union of open sets on each of which π is a homeomorphism onto π(V ), proving that π(V )
is an evenly covered neighborhood and hence π is a covering map. Since Rn is simply-connected,
this is the universal covering and the fundamental group of M is isomorphic to Γ.

Now we have natural local charts for M defined on any evenly covered neighborhood U = π(V )
as above. Indeed, write π−1U = ∪γ∈Γ(V + γ) and take as chart ϕV = (π|V )−1 : U → V . If
U ′ = π(V ′) is another evenly covered neighborhood as above with U ∩U ′ 6= ∅, then V ′ meets V +γ
for a unique γ ∈ Γ and the transition map is given by

(1.3.2) ϕV ′ ◦ ϕ−1
V : (V + λ) ∩ V ′ → V ∩ (V ′ − γ), p 7→ p− λ,

which is smooth. In this way we have defined a smooth atlas forM . The covering map π : Rn →M
is smooth and in fact a local diffeomorphism because π|V composed with ϕV on the left yields as
local representation the identity, so we indeed have a smooth covering. The smooth structure on
M is the unique one that makes π : Rn →M into a smooth covering (this is more than a covering
whose covering map is smooth, compare page 8!).

The transition maps (1.3.2) are translations of Rn and thus isometries. In account of this, M
acquires a natural quotient Riemannian metric gΓ, which is the unique one making the covering
map π into a local isometry. In fact this requirement implies uniqueness of gΓ, as it imposes that on
an evenly covered neighborhood U = π(V ) as above, the local chart ϕV = (π|V )−1 must be a local
isometry and so gΓ = ϕ∗

V g on U , where g denotes the canonical metric in Rn. To have existence
of gΓ, we need to check that it is well defined, namely, for another evenly covered neighborhood
U ′ = π(V ′) as above with U ∩ U ′ 6= ∅ it holds that ϕ∗

V g = ϕ∗
V ′g on U ∩ U ′. However, this follows

from ϕ∗
V ′g =

(
(ϕV ′ϕ−1

V )ϕV
)∗
g = ϕ∗

V (ϕV ′ϕ−1
V )∗g = ϕ∗

V g as (ϕV ′ϕ−1
V )∗g = g. Note that gΓ is a flat

metric.
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As a smooth manifold,M is diffeomorphic to the n-torus Tn. In fact, define a map f : Rn → Tn

by setting

f
( n∑

j=1

xjvj

)

= (e2πix1 , . . . , e2πixn),

where we view S1 as the set of unit complex numbers. Then f is constant on Γ, so it induces a
bijection f̄ :M → Tn. Suitable restrictions of

(e2πix1 , . . . , e2πixn) 7→ (x1, . . . , xn)

define local charts of Tn whose domain cover it. Now f = f̄ ◦ π composed on the left with such
charts of Tn give

∑n
j=1 xjvj 7→ (x1, . . . , xn), the restriction of an invertible linear map. It follows

that f̄ is a local diffeomorphism and hence a diffeomorphism.

We remark that different lattices may give rise to nonisometric flat tori, although they will
always be locally isometric one to the other since they are all isometrically covered by Euclidean
space; in other words, for two given lattices Γ, Γ′, the identity map id : Rn → Rn induces local
isometries Rn/Γ → Rn/Γ′.

One way to globally distinguish the isometry classes of tori obtained from different lattices is
to show that they have different isometry groups. To fix ideas, let n = 2, and consider in R2 the

lattices Γ, Γ′ respectively generated by the bases {(1, 0), (0, 1)} and {(1, 0), (12 ,
√
3
2 )}. Then R2/Γ is

called a square flat torus and R2/Γ′ is called an hexagonal flat torus. The isotropy subgroup of the
square torus at an arbitrary point is isomorphic to the dihedral group D4 (or order 8) whereas the
isotropy subgroup of the hexagonal torus at an arbitrary point is isomorphic to the dihedral group
D3. Hence R2/Γ and R2/Γ′ are not isometric. See exercise 9 for a characterization of isometric
flat tori.

We finish the discussion of this example by noting that we could have introduced the smooth
structure on M and the smooth covering π : Rn → M by invoking Theorem 0.2.13, which we
have avoided only for pedagogical reasons. In fact, the elements of Γ can be identified with the
translations of Rn that they define and, in this way, Γ becomes a discrete group acting on Rn.
Plainly, the action is free. It is also proper, as this follows from the existence of r > 0 such that
d(p, q+Γ) ≥ r if p 6= q and d(p, p+Γ\{0}) ≥ r, which was shown above. In the next subsection, we
follow and extend this alternative approach to incorporate the construction of the quotient metric.

Riemannian coverings

A Riemannian covering between two Riemannian manifolds is a smooth covering that is also a
local isometry. For instance, for a lattice Γ in Rn the projection π : Rn → Γ\Rn is a Riemannian
covering.

If M̃ is a smooth manifold and Γ is a discrete group acting freely and properly by diffeomor-
phisms on M̃ , then the quotient space M = Γ\M̃ endowed with the quotient topology admits a
unique structure of smooth manifold such that the projection π : M̃ → M is a smooth covering,
owing to Theorem 0.2.13. If we assume, in addition, that M̃ is equipped with a Riemannian metric
g̃ and Γ acts on M̃ by isometries, then we can show that there is a unique Riemannian metric
g on M , called the quotient metric, so that π : (M̃, g̃) → (M, g) becomes a Riemannian cover-
ing, as follows. Around any point p ∈ M , there is an evenly covered neighborhood U such that
π−1U = ∪i∈I Ũi. If π is to be a local isometry, we must have

g =
(

(π|Ũi
)−1
)∗
g̃
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on U , for any i ∈ I. In more pedestrian terms, we are forced to have

(1.3.3) gq(u, v) = g̃q̃i((dπq̃i)
−1(u), (dπq̃i)

−1(v)),

for all q ∈ U , u, v ∈ TqM , i ∈ I, where q̃i = (π|Ũi
)−1(q) is the unique point in the fiber π−1(q) that

lies in Ũi. We claim that this definition of gq does not depend on the choice of point in π−1(q). In
fact, if q̃j is another point in π

−1(q), there is a unique γ ∈ Γ such that γ(q̃i) = q̃j . Since π ◦ γ = π,
the chain rule gives that dπq̃j ◦ dγq̃i = dπq̃i , so

g̃q̃i((dπq̃i)
−1(u), (dπq̃i)

−1(v)) = g̃q̃i((dγq̃i)
−1(dπq̃j )

−1(u), (dγq̃i)
−1(dπq̃j )

−1(v))

= g̃q̃j ((dπq̃j )
−1(u), (dπq̃j )

−1(v)),

since dγq̃i : Tq̃iM̃ → Tq̃jM̃ is a linear isometry, checking the claim. Note that g is smooth since it
is locally given as a pull-back metric.

On the other hand, if we start with a Riemannian manifold (M, g) and a smooth covering
π : M̃ → M , then π is in particular an immersion, so we can endow M̃ with the pulled-back
metric g̃ and π : (M̃, g̃) → (M, g) becomes a Riemannian covering. Let Γ denote the group of deck
transformations of π : M̃ →M . An element γ ∈ Γ satisfies π◦γ = π. Since π is a local isometry, we
have that γ is a local isometry, and being a bijection, it must be a global isometry. Hence the group
Γ consists of isometries of M̃ . If we assume, in addition, that π : M̃ → M is a regular covering
(for instance, this is true if π : M̃ → M is the universal covering), then M is diffeomorphic to the
orbit space Γ\M̃ , and since we already know that π : (M̃, g̃) → (M, g) is a Riemannian covering,
it follows from the uniqueness result of the previous paragraph that g must be the quotient metric
of g̃.

The real projective space RPn

As a set, RPn is the set of all lines through the origin in Rn+1. It can also be naturally viewed as
a quotient space in two ways. In the first one, we define an equivalence relation among points in
Rn+1 \ {0} by declaring x and y to be equivalent if they lie in the same line, namely, if there exists
λ ∈ R \ {0} such that y = λx. In the second one, we simply note that every line meets the unit
sphere in Rn+1 in two antipodal points, so we can also view RPn as a quotient space of Sn and,
in this case, x, y ∈ Sn are equivalent if and only if y = ±x. Of course, in both cases RPn acquires
the same quotient topology.

Next, we reformulate our point of view slightly by introducing the group Γ consisting of two
isometries of Sn, namely the identity map and the antipodal map. Then Γ obviously acts freely and
properly (it is a finite group!) on Sn, and the resulting quotient smooth manifold makes RPn into
a smooth manifold. Furthermore, as the action of Γ is also isometric, RPn immediately acquires a
Riemannian metric such that π : Sn → RPn is a Riemannian covering.

The Klein bottle

Let M̃ = R2, let {v1, v2} be a basis of R2, and let Γ be the discrete group of transformations of
R2 generated by

γ1(x1v1 + x2v2) =

(

x1 +
1

2

)

v1 − x2v2 and γ2(x1v1 + x2v2) = x1v1 + (x2 + 1)v2.

It is easy to see that Γ acts freely and properly on R2, so we get a quotient manifold R2/Γ which is
called the Klein bottle K2. It is a compact non-orientable manifold, since γ2 reverses the orientation
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of R2. It follows that K2 cannot be embedded in R3 by the Jordan-Brouwer separation theorem;
however, it is easy to see that it can immersed there.

Consider R2 equipped with its canonical metric. Note that γ1 is always an isometry of R2, but
so is γ2 if and only if the basis {v1, v2} is orthogonal. In this case, Γ acts by isometries on R2 and
K2 inherits a flat metric so that the projection R2 → K2 is a Riemannian covering.

Riemannian submersions

Let π : M → N be a smooth submersion between two smooth manifolds. Then Vp = ker dπp
for p ∈ M defines a smooth distribution on M which is called the vertical distribution. Clearly,
V can also be given by the tangent spaces of the fibers of π. In general, there is no canonical
choice of a complementary distribution of V in TM , but in the case in which M comes equipped
with a Riemannian metric, one can naturally construct such a complement H by setting Hp to be
the orthogonal complement of Vp in TpM . Then H is a smooth distribution which is called the
horizontal distribution. Note that dπp induces an isomorphism between Hp and Tπ(p)N for every
p ∈M .

Having this preliminary remarks at hand, we can now define a smooth submersion π : (M, g) →
(N, h) between two Riemannian manifolds to be a Riemannian submersion if dπp induces an isom-
etry between Hp and Tπ(p)N for every p ∈M . Note that Riemannian coverings are particular cases
of Riemannian submersions.

Let (M, g) and (N, h) be Riemannian manifolds. A quite trivial example of a Riemannian
submersion is the projection (M × N, g + h) → (M, g) (or (M × N, g + h) → (N, h)). More
generally, if f is a nowhere zero smooth function on N , the projection from (M ×N, f2g+ h) onto
(N, h) is a Riemannian submersion. In this case, the fibers of the submersion are not isometric one
to the other. A Riemannian manifold of the form (M ×N, f2g + h) is called a warped product .

Recall that if M̃ is a smooth manifold and G is a Lie group acting freely and properly on
M̃ , then the quotient space M = G\M̃ endowed with the quotient topology admits a unique
structure of smooth manifold such that the projection π : M̃ → M is a (surjective) submersion
(Theorem 0.4.16). If in addition we assume that M̃ is equipped with a Riemannian metric g̃ and
G acts on M̃ by isometries, then we can show that there is a unique Riemannian metric g on M ,
called the quotient metric, so that π : (M̃, g̃) → (M, g) becomes a Riemannian submersion. Indeed,
given a point p ∈M and tangent vectors u, v ∈ TpM , we set

(1.3.4) ḡp(u, v) = g̃p̃(ũ, ṽ),

where p̃ is any point in the fiber π−1(p) and ũ, ṽ are the unique vectors in Hp̃ satisfying dπp̃(ũ) = u
and dπp̃(ṽ) = v. The proof that g̃ is well defined is similar to the proof that the quotient metric is
well defined in the case of a Riemannian covering, namely, choosing a different point p̃′ ∈ π−1(p),
one has unique vectors ũ′, ṽ′ ∈ Hp̃′ that project to u, v, but g̃p̃′(ũ

′, ṽ′) gives the same result as
above because p̃′ = Φ(g)p for some g ∈ G, d(Φ(g))p̃ : Hp̃ → Hp̃′ is an isometry and maps ũ, ṽ
to ũ′, ṽ′ respectively. The proof that g̃ is smooth is also similar, but needs an extra ingredient.
Let Pp̃ : Tp̃M̃ → Hp̃ denote the orthogonal projection. It is known that π : M̃ → M admits
local sections, so let s : U → M̃ be a local section defined on an open set U of M . Now we can
rewrite (1.3.4) as

gq(u, v) = g̃s(q)(Ps(q)dsq(u), Ps(q)dsq(v)),

where q ∈ U . Since V as a distribution is locally defined by smooth vector fields, it is easy to check
that P takes locally defined smooth vector fields on TM to locally defined smooth vector fields on
TM . It follows that g is smooth. Finally, the requirement that π be a Riemannian submersion
forces g to be given by formula (1.3.4), and this shows the uniqueness of g.
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The complex projective space CPn

The definition of CPn is similar to that of RPn in that we replace real numbers by complex
numbers. Namely, as a set, CPn is the set of all complex lines through the origin in Cn+1, so it can
be viewed as the quotient of Cn+1 \ {0} by the multiplicative group C \ {0} as well as the quotient
of the unit sphere S2n+1 of Cn+1 (via its canonical identification with R2n+2) by the multiplicative
group of unit complex numbers S1. Here the action of S1 on S2n+1 is given by multiplication of
the coordinates (since C is commutative, it is unimportant whether S1 multiplies on the left or
on the right). This action is clearly free and it is also proper since S1 is compact. Further, the
multiplication Lz : S

2n+1 → S2n+1 by a unit complex number z ∈ S1 is an isometry. In fact, S2n+1

has the induced metric from R2n+2, the Euclidean scalar product is the real part of the Hermitian
inner product (·, ·) of Cn+1 and (Lzx, Lzy) = (zx, z̄y) = ||z||2(x, y) = (x, y) for all x, y ∈ Cn+1. It
follows that CPn = S2n+1/S1 has the structure of a compact smooth manifold of dimension 2n.
Moreover there is a natural Riemannian metric which makes the projection π : S2n+1 → CPn

into a Riemannian submersion. This quotient metric is classically called the Fubini-Study metric
on CPn.

We want to explicitly construct the smooth structure on CPn and prove that π : S2n+1 → CPn

is a submersion in order to better familiarize ourselves with such an important example. For each
p ∈ CPn, we construct a local chart around p. View p as a one-dimensional subspace of Cn+1 and
denote its Hermitian orthogonal complement by p⊥. The subset of all lines which are not parallel
to p⊥ is an open subset of CPn, which we denote by CPn \ p⊥. Fix a unit vector p̃ lying in the
line p. The local chart is

ϕp : CPn \ p⊥ → p⊥, q 7→ 1

(q̃, p̃)
q̃ − p̃,

where q̃ is any nonzero vector lying in q. In other words, q meets the affine hyperplane p̃ + p⊥

at a unique point 1
(q̃,p̃) q̃ which we orthogonally project to p⊥ to get ϕp(q). (Note that p⊥ can

be identified with R2n simply by choosing a basis.) The inverse of ϕp is the map that takes
v ∈ p⊥ to the line through p̃ + v. Therefore, for p′ ∈ CPn, we see that the transition map
ϕp

′ ◦ (ϕp)−1 : { v ∈ p⊥ | v + p̃ 6∈ p′⊥ } → { v′ ∈ p′⊥ | v′ + p̃′ 6∈ p⊥ } is given by

(1.3.5) v 7→ 1

(v + p̃, p̃′)
(v + p̃)− p̃′,

and hence smooth.
Next we prove that the projection π : S2n+1 → CPn is a smooth submersion. Let p̃ ∈ S2n+1.

Since the fibers of π are just the S1-orbits, the vertical space Vp̃ = R(ip̃). It follows that the
horizontal space Hp̃ ⊂ Tp̃S

2n+1 is the Euclidean orthogonal complement of R{p̃, ip̃} = Cp̃ in
C2n+1, namely, p⊥ where p = π(p̃). It suffices to check that dπp̃ is an isomorphism from Hp̃

onto TpCP
n, or, d(ϕp ◦ π)p̃ is an isomorphism from p⊥ to itself. Let v be a unit vector in p⊥.

Then t 7→ cos t p̃+ sin t v is a curve in S2n+1 with initial point p̃ and initial speed v, so using that
(cos t p̃+ sin t v, p̃) = cos t we have

d(ϕp ◦ π)p̃(v) =
d

dt

∣
∣
∣
t=0

(ϕp ◦ π)(cos t p̃+ sin t v)

=
d

dt

∣
∣
∣
t=0

1

cos t
(cos t p̃+ sin t v)− p̃

= v,

completing the check.
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One-dimensional Riemannian manifolds

Let (M, g) be a Riemannian manifold and let γ : [a, b] → M be a piecewise C1 curve. Then the
length of γ is defined to be

(1.3.6) L(γ) =

∫ b

a
gγ(t)(γ

′(t), γ′(t))1/2 dt.

It is easily seen that the length of a curve does not change under re parametrization. Moreover,
every regular curve (i.e. satisfying γ′(t) 6= 0 for all t) admits a natural parametrization given by
arc-length. Namely, let

s(t) =

∫ t

a
gγ(τ)(γ

′(τ), γ′(τ))1/2 dτ.

Then
ds

dt
= gγ(t)(γ

′(t), γ′(t))1/2(t) > 0, so s can be taken as a new parameter, and then

L(γ|[a,s]) = s− a

and

(1.3.7) (γ∗g)t = gγ(t)(γ
′(t), γ′(t))dt2 = ds2.

Suppose now that (M, g) is a one-dimensional Riemannian manifold. Then any connected
component of M is diffeomorphic either to R or to S1. In any case, a neighborhood of any point
p ∈ M can be viewed as a regular smooth curve in M and, in a parametrization by arc-length,
the local expression of the metric g is the same, namely, given by (1.3.7). It follows that all the
one-dimensional Riemannian manifolds are locally isometric among themselves.

Lie groups ⋆

The natural class of Riemannian metrics to be considered in Lie groups is the class of Riemannian
metrics that possesses some kind of invariance, be it left, right or both. Let G be a Lie group.
A left-invariant Riemannian metric on G is a Riemannian metric with respect to which the left
translations of G are isometries. Similarly, a right-invariant Riemannian metric is defined. A
Riemannian metric on G that is both left- and right-invariant is called a bi-invariant Riemannian
metric.

Left-invariant Riemannian metrics (henceforth, left-invariant metrics) are easy to construct on
any given Lie group G. In fact, given any inner product 〈, 〉 in its Lie algebra g, which we identify
with the tangent space at the identity T1G, one sets g1 = 〈, 〉 and uses the left translations to pull
back g1 to the other tangent spaces, namely one sets

gx(u, v) = g1
(
d(Lx−1)x(u) , d(Lx−1)x(v)

)
,

where x ∈ G and u, v ∈ TxG. This defines a smooth Riemannian metric, since g(X,Y ) is constant
(and hence smooth) for any pair (X,Y ) of left-invariant vector fields, and any smooth vector field
on G is a linear combination of left-invariant vector fields with smooth functions as cefficients. By
the very construction of g, the d(Lx)1 for x ∈ G are linear isometries, so the composition of linear
isometries d(Lx)y = d(Lxy)1 ◦ d(Ly)−1

1 is also a linear isometry for x, y ∈ G. This checks that all
the left-translations are isometries and hence that g is left-invariant. (Equivalently, one can define
g by choosing a global frame of left-invariant vector fields on G and declaring it to be orthonormal
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at every point of G.) It follows that the set of left-invariant metrics in G is in bijection with the
set of inner products on g. Of course, similar remarks apply to right-invariant metrics.

Bi-invariant metrics are more difficult to come up with. Starting with a fixed left-invariant
metric g on G, we want to find conditions for g to be also right-invariant. Reasoning similarly as
in the previous paragraph, we see that it is necessary and sufficient that the d(Rx)1 for x ∈ G be
linear isometries. Further, by differentiating the obvious identity Rx = Lx ◦ Inn(x−1) at 1, we get
that

d(Rx)1 = d(Lx)1 ◦Ad(x−1)

for x ∈ G. From this identity, we get that g is right-invariant if and only if the Ad(x) : g → g for
x ∈ G are linear isometries with respect to 〈, 〉 = g1. In this case, 〈, 〉 is called an Ad-invariant
inner product on g.

In view of the previous discussion, applying the following proposition to the adjoint repre-
sentation of a compact Lie group on its Lie algebra yields that any compact Lie group admits a
bi-invariant Riemannian metric.

1.3.8 Proposition Let ρ : G → GL(V ) be a representation of a Lie group on a real vector space
V such that the closure ρ(G) is reelatively compact in GL(V ). Then there exists an inner product
〈, 〉 on V with respect to which the ρ(x) for x ∈ G are orthogonal transformations.

Proof. Let G̃ denote the closure of ρ(G) in GL(V ). Then ρ factors through the inclusion
ρ̃ : G̃→ GL(V ) and it suffices to prove the result for ρ̃ instead of ρ. By assumption, G̃ is compact,
so without loss of generality we may assume in the following that G is compact.

Let 〈, 〉0 be any inner product on V and fix a right-invariant Haar measure dx on G. Set

〈u, v〉 =
∫

G
〈ρ(x)u, ρ(x)v〉0 dx,

where u, v ∈ V . It is easy to see that this defines a positive-definite bilinear symmetric form 〈, 〉
on V . Moreover, if y ∈ G, then

〈ρ(y)u, ρ(y)v〉 =

∫

G
〈ρ(x)ρ(y)u, ρ(x)ρ(y)v〉0 dx

=

∫

G
〈ρ(xy)u, ρ(xy)v〉0 dx

= 〈u, v〉,

where in the last equality we have used that dx is right-invariant. Note that we have used the
compactness of G only to guarantee that the above integrands have compact support. �

In later chapters, we will explain the special properties that bi-invariant metrics on Lie groups
have.

Homogeneous spaces ⋆

It is apparent that for a generic Riemannian manifold (M, g), the isometry group Isom(M, g) is
trivial. Indeed, Riemannian manifolds with large isometry groups have a good deal of symmetries.
In particular, in the case in which Isom(M, g) is transitive on M , (M, g) is called a Riemannian
homogeneous space or a homogeneous Riemannian manifold . Explicitly, this means that given any
two points of M there exists an isometry of M that maps one point to the other. In this case, of
course it may happen that a subgroup of Isom(M, g) is already transitive on M .
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Let (M, g) be a homogeneous Riemannian manifold, and let G be a subgroup of Isom(M, g)
acting transitively on M . Then the isotropy subgroup H at an arbitrary fixed point p ∈ M is
compact and M is diffeomorphic to the quotient space G/H. In this case, we also say that the
Riemannian metric g on M is G-invariant.

Recall that if G is a Lie group and H is a closed subgroup of G, then there exists a unique
structure of smooth manifold on the quotient G/H such that the projection G → G/H is a sub-
mersion and the action of G on G/H by left translations is smooth. (Theorem 0.4.18). A manifold
of the form G/H is called a homogeneous space. In some cases, one can also start with a homoge-
neous space G/H and construct G-invariant metrics on G/H. For instance, if G is equipped with a
left-invariant metric that is also right-invariant with respect to H, then it follows that the quotient
G/H inherits a quotient Riemannian metric such that the projection G → G/H is a Riemannian
submersion and the action of G on G/H by left translations is isometric. In this way, G/H becomes
a Riemannian homogeneous space. A particular, important case of this construction is when the
Riemannian metric on G that we start with is bi-invariant; in this case, G/H is called a normal
homogeneous space. In general, a homogeneous space G/H for arbitrary G, H may admit several
distinct G-invariant Riemannian metrics, or may admit no such metrics at all.

Let M = G/H be a homogeneous space, where H is the isotropy subgroup at p ∈M . Then the
isotropy representation at p is the homomorphism

H → O(TpM), h 7→ dhp.

1.3.9 Lemma The isotropy representation of G/H at p is equivalent to the adjoint representation
of H on g/h.

1.3.10 Proposition a. There exists a G-invariant Riemannian metric on G/H if and only if
the image of the adjoint representation of H on g/h is relatively compact in GL(g/k).

b. In case the condition in (a) is true, the G-invariant metrics on G/H are in bijective corre-
spondence with the AdG(H)-invariant inner products on g/h.

1.4 Exercises

1 Show that the Riemannian product of (0,+∞) and Sn−1 is isometric to the cylinder

C = { (x0, . . . , xn) ∈ Rn+1 | x21 + · · ·+ x2n = 1 and x0 > 0 }.

2 The catenoid is the surface of revolution in R3 with the z-axis as axis of revolution and the
catenary x = cosh z in the xz-plane as generating curve. The helicoid is the ruled surface in
R3 consisting of all the lines parallel to the xy plane that intersect the z-axis and the helicoid
t 7→ (cos t, sin t, t).
a. Write natural parametrizations for the catenoid and the helicoid.
b. Consider the catenoid and the helicoid with the metrics induced from R3, and find the local

expressions of these metrics with respect to the parametrizations in item (a).
c. Show that the local expressions in item (b) coincide, possibly up to a change of coordinates,

and deduce that the catenoid and the helicoid are locally isometric.
d. Show that the catenoid and the helicoid cannot be isometric because of their topology.

3 Consider the real hyperbolic space (RHn, g) as defined in section 1.3. Let Dn be the open unit
disk of Rn embedded in Rn+1 as

Dn = { (x0, . . . , xn) ∈ Rn+1 | x0 = 0 and x21 + · · ·+ x2n < 1 }.
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Define a map f : RHn → Dn by setting f(x) to be the unique point of Dn lying in the line joining
x ∈ RHn and the point (−1, 0, . . . , 0) ∈ Rn+1. Prove that f is a diffeomorphism and, setting
g1 = (f−1)∗g, we have that

g1|x =
4

(1− 〈x, x〉)2
(
dx21 + · · ·+ dx2n

)
,

where x = (0, x1, . . . , xn) ∈ Dn. Deduce that RHn is conformally flat.
(Dn, g1) is called the Poincaré disk model of RHn.

4 Consider the open unit disk Dn = { (x1, . . . , xn) ∈ Rn | x21 + · · ·x2n < 1 } equipped with the
metric g1 as in Exercise 3. Prove that the inversion of Rn on the sphere of center (−1, 0, . . . , 0)
and radius

√
2 defines a diffeomorphism f1 from Dn onto the upper half-space

Rn
+ = { (x1, . . . , xn) ∈ Rn | x1 > 0 },

and that the metric g2 = (f−1
1 )∗g1 is given by

g2|x =
1

x21

(
dx21 + · · ·+ dx2n

)
,

where x = (x1, . . . , xn) ∈ Rn
+.

(Rn
+, g2) is called the Poincaré upper half-space model of RHn.

5 Consider the Poincaré upper half-plane model R2
+ = { (x, y) ∈ R2 | y > 0 } with the metric

g2 = 1
y2

(
dx2 + dy2

)
(case n = 2 in Exercise 4). Check that the following transformations of R2

+

into itself are isometries:
a. τa(x, y) = (x+ a, y) for a ∈ R;
b. hr(x, y) = (rx, ry) for r > 0;

c. R(x, y) =

(
x

x2 + y2
,

y

x2 + y2

)

.

Deduce from (a) and (b) that R+
2 is homogeneous.

6 Use stereographic projection to prove that Sn is conformally flat.

7 Consider the parametrized curve
{
x = t− tanh t
y = 1

cosh t

The surface of revolution in R3 constructed by revolving it around the x-axis is called the pseudo-
sphere. Note that the pseudo-sphere is singular along the circle obtained by revolving the point
(0, 1).
a. Prove that the pseudo-sphere with the singular circle taken away is locally isometric to the

upper half plane model of RH2.
b. Show that the Gaussian curvature of the pseudo-sphere is −1.

8 Let Γ be the lattice in Rn defined by the basis {v1, . . . , vn}, and denote by gΓ the Riemannian
metric that it defines on Tn. Show that in some product chart of Tn = S1 × · · · × S1 the local
expression

gΓ =
∑

i,j

〈vi, vj〉 dxi ⊗ dxj

holds, where 〈, 〉 denotes the standard scalar product in Rn.
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9 Let Γ and Γ′ be two lattices in Rn, and denote by gΓ, gΓ′ the Riemannian metrics that they
define on Tn, respectively.
a. Prove that (Tn, gΓ) is isometric to (Tn, gΓ′) if and only if there exists an isometry f : Rn → Rn

such that f(Γ) = Γ′. (Hint: You may use the result of exercise 2 of chapter 3.)
b. Use part (a) to see that (Tn, gΓ) is isometric to the Riemannian product of n copies of S1 if

and only if Γ is the lattice associated to an orthonormal basis of Rn.

10 Let Γ be the lattice of R2 spanned by an orthogonal basis {v1, v2} and consider the associated
rectangular flat torus T 2.
a. Prove that the map γ of R2 defined by γ(x1v1+x2v2) = (x1+

1
2)v1−x2v2 induces an isometry

of T 2 of order two.
b. Prove that T 2 double covers a Klein bottle K2.

11 Prove that Rn \ {0} is isometric to the warped product ((0,+∞)× Sn−1, dr2 + r2g), where r
denotes the coordinate on (0,+∞) and g denotes the standard Riemannian metric on Sn−1.

12 Let G be a Lie group equal to one of O(n), U(n) of SU(n), and denote its Lie algebra by g.
Prove that for any c > 0

〈X,Y 〉 = −c trace (XY ),

where X, Y ∈ g, defines an Ad-invariant inner product on g.

13 Consider the special unitary group SU(2) equipped with a bi-invariant metric induced from
an Ad-invariant inner product on su(2) as in the previous exercise with c = 1

2 . Show that the map
(
α −β̄
β ᾱ

)

7→
(
α
β

)

where α, β ∈ C and |α|2 + |β|2 = 1, defines an isometry from SU(2) to S3. Here C2 is identified
with R4 and S3 is viewed as the unit sphere in R4.

14 Show that RP 1 equipped with the quotient metric from S1(1) is isometric to S1(12). Show
that CP 1 equipped with the Fubini-Study metric is isometric to S2(12).

15 (Sylvester’s law of inertia) Let B : V × V → R be a symmetric bilinear form on a finite-
dimensional real vector space V . For each basis E = (e1, . . . , en) of V , we associate a symmetric
matrix BE = (B(ei, ej)).
a. Check that B(u, v) = vtEBEuE for all u, v ∈ V , where uE (resp. vE) denotes the column

vector representing the vector u (resp. v) in the basis E.
b. Suppose F = (f1, . . . , fn) is another basis of V such that






e1
...
en




 = A






f1
...
fn




 .

for a real matrix A of order n. Show that BE = ABFA
t.

c. Prove that there exists a basis E of V such that BE has the form




In−i−k 0 0
0 −Ii 0
0 0 0k



 ,

where Im denotes an identity block of order m, and 0m denotes a null block of order m.
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d. Prove that there is a B-orthogonal decomposition

V = V+ ⊕ V− ⊕ V0

where B is positive definite on V+ and negative definite on V−, V0 is the kernel of B (the
set of vectors B-orthogonal to V ), i = dimV− and k = dimV0. Prove also that k is the
maximal dimension of a subspace of V on which B is negative definite. Deduce that i and k
are invariants of B. They are respectively called the index and nullity of B. Of course, B is
nondegenerate if and only if k = 0, and it is positive definite if and only if k = i = 0.

e. Check that the Loretzian metric of R1,n restricts to a positive definite symmetric bilinear
form on the tangent spaces to the hyperboloid modeling RHn.

1.5 Additional notes

§1 Riemannian manifolds were defined as abstract smooth manifolds equipped with Riemannian
metrics. One class of examples of Riemannian manifolds is of course furnished by the Riemannian
submanifolds of Euclidean space. On the other hand, a very deep theorem of Nash [Nas56] states
that every abstract Riemannian manifold admits an isometric embedding into Euclidean space,
so that it can be viewed as an embedded Riemannian submanifold of Euclidean space. In view
of this, one might be tempted to ask why bother to consider abstract Riemannian manifolds in
the first place. The reason is that Nash’s theorem is an existence result: for a given Riemannian
manifold, it does not supply an explicit embedding of it into Euclidean space. Even if an isometric
embedding is known, there may be more than one or there may be no canonical embedding. Also,
an explicit embedding may be too complicated to describe. Finally, a particular embedding is
sometimes distracting because it highlights some specific features of the manifold at the expense of
some other features, which may be undesirable.

§2 From the point of view of foundations of the theory of smooth manifolds, the following
assertions are equivalent for a smooth manifold M whose underlying topological space is assumed
to be Hausdorff but not necessarily second-countable:
a. The topology of M is paracompact.
b. M admits smooth partitions of unity.
c. M admits Riemannian metrics.

In fact, as is standard in the theory of smooth manifolds, second-countability of the topology of
M (together with the Hausdorff property) implies its paracompactness and this is used to prove
the existence of smooth partitions of unity [War83, chapter 1]. Next, Riemannian metrics are
constructed onM by using partitions of unity as we did in Proposition 1.2.3. Finally, the underlying
topology of a Riemannian manifold is metrizable according to Proposition 3.2.3, and every metric
space is paracompact.

§3 The pseudo-sphere constructed in Exercise 7 was introduced by Beltrami [Bel68] in 1868 as a
local model for the Lobachevskyan geometry. This means that the geodesic lines and their segments
on the pseudo-sphere play the role of straight lines and their segments on the Lobachevsky plane.
In 1900, Hilbert posed the question of whether there exists a surface in three-dimensional Euclidean
space whose intrinsic geometry coincides completely with the geometry of the Lobachevsky plane.
Using a simple reasoning, it follows that if such a surface does exist, it must have constant negative
curvature and be complete (see chapter 3 for the notion of completeness).

As early as 1901, Hilbert solved this problem [Hil01] (see also [Hop89, chapter IX]), and in
the negative sense, so that no complete surface of constant negative curvature exists in three-
dimensional Euclidean space. This theorem has attracted the attention of geometers over a number
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of decades, and continues to do so today. The reason for this is that a number of interesting
questions are related to it and to its proof. For instance, the occurrence of a singular circle on the
pseudo-sphere is not coincidental, but is in line with Hilbert’s theorem.
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C H A P T E R 2

Connections

2.1 Introduction

Contemplate Rn. Of course, the presence of the identity map as a global chart allows one to
canonically identify the tangent spaces of Rn at its various points with Rn itself. Therefore, a
smooth vector field X in Rn can be viewed simply as a smooth map X : Rn → Rn. Thus, one has
a canonical way of differentiating vector fields in Rn, namely, if X, Y : Rn → Rn are two vector
fields, then the derivative of Y along X is the directional derivative dY (X) = X(Y ).

Whereas a smooth manifold M comes already equipped with a notion of derivative of smooth
maps, there is no canonical way to differentiate vector fields on M . We solve this problem by
considering all possible ways of defining derivatives of vector fields. Any such choice is called a
connection. The name originates from the fact that, at least along a given curve, a connection
provides a way to identify (“connect”) tangent spaces of M at different points; this is the idea of
parallel transport along the curve. A geodesic is then a curve whose velocity vector is constant in
this sense.

The main consequence of the theory of connections for Riemannian geometry is that a Rieman-
nian metric on M uniquely specifies a connection on M , called the Levi-Cività connection. In the
case in which M is a surface in R3, for the Levi-Cività connection on M we recover the derivative
in R3 projected back to M .

Connections can be defined in a variety of ways. We will use the Koszul formalism.

2.2 Connections

LetM be a smooth manifold. A (Koszul) connection inM is a bilinear map∇ : Γ(TM)×Γ(TM) →
Γ(TM), where we write ∇XY instead of ∇(X,Y ), such that

a. ∇fXY = f∇XY , and

b. ∇X(fY ) = X(f)Y + f∇XY (Leibniz rule)

for every X, Y ∈ Γ(TM) and f ∈ C∞(M).

Let ∇ be a connection in a smooth manifold M . We want to analyse of the dependence of ∇
on its arguments. To begin with, we claim that, for a given open set U in M , (∇XY )|U depends
only on X|U and Y |U . Indeed, let X ′, Y ′ ∈ Γ(TM) be vector fields satisfying X ′|U = X|U and
Y ′|U = Y |U . Fix p ∈ U . Construct a smooth function f on M with support contained in U and
such that f ≡ 1 on some neighborhood V of p with V ⊂ V̄ ⊂ U . Then, using part (a) in the
definition of connection and the fact that fX = fX ′ on M ,

(∇XY )p = f(p)(∇XY )p = (f∇XY )p = (∇fXY )p = (∇fX′Y )p = f(p)(∇X′Y )p = (∇X′Y )p
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This shows that ∇XY = ∇X′Y on U . Next, note that fY = fY ′ on M implies that ∇X(fY ) =
∇X(fY

′), so the Leibniz rule and the facts that f(p) = 1, Xp(f) = 0 imply that (∇XY )p =
(∇XY

′)p. Since p was taken to be an arbitrary point in U , ∇XY = ∇XY
′ on U , and this completes

the check of the claim.

2.2.1 Remark In a moment, we will refine the above discussion and show that, for a given point
p ∈ M , the value of (∇XY )p depends only on Xp and the restriction of Y along a smooth curve
γ : (−ǫ, ǫ) → M with γ(0) = p and γ′(0) = Xp. Indeed, this is a consequence of the expression of
the connection (2.2.4).

Choose a chart (U,ϕ = (x1, . . . , xn)) of M around p. We know from the above that ∇XY |U =
∇X|U (Y |U ). Write

X|U =
∑

j

aj
∂

∂xj
and Y |U =

∑

k

bk
∂

∂xk

for ai, bj ∈ C∞(U). Then, using the defining properties of a connection, in the open set U ,

∇XY = ∇X

(
∑

k

bk
∂

∂xk

)

=
∑

k

X(bk)
∂

∂xk
+ bk∇X

∂

∂xk

=
∑

j,k

aj
∂bk

∂xj
∂

∂xk
+
∑

j,k

ajbk∇ ∂

∂xj

∂

∂xk

=
∑

i,j

aj
∂bi

∂xj
∂

∂xi
+
∑

i,j,k

ajbkΓijk
∂

∂xi
,

where we have set

∇ ∂

∂xj

∂

∂xk
=
∑

i

Γijk
∂

∂xi
.

It follows that the local representation of ∇XY in the chart (U,ϕ) is

(2.2.2) ∇XY =
∑

i




∑

j

aj
∂bi

∂xj
+
∑

j,k

Γijka
jbk




∂

∂xi
.

In particular,

(2.2.3) (∇XY )p =
∑

i




∑

j

aj(p)
∂bi

∂xj
(p) +

∑

j,k

Γijk(p)a
j(p)bk(p)




∂

∂xi

∣
∣
∣
p
.

It is also convenient to rewrite the preceding formula in the following form

(2.2.4) (∇XY )p =
∑

i



Xp(b
i) +

∑

j,k

Γijk(p)a
j(p)bk(p)




∂

∂xi

∣
∣
∣
p
.

Note that this formula involves only the values of the aj , bk at p, and the directional derivatives of
the bi in the direction of Xp, so the claim in Remark 2.2.1 is checked.

44



The smooth functions Γijk are called the Christoffel symbols of ∇ with respect to the chosen
chart. The Christoffel symbols of a connection satisfy a complicated rule of change upon change of
coordinates, which will be used in the proof of Proposition 2.3.1. For the moment, we just want to
remark that the Christoffel symbols can be used to specify a connection locally. For instance, one
could set Γijk identically zero in a given chart (U,ϕ) and then define a connection for vector fields
on U . Doing this for a family of charts whose domains cover the manifold, and noting that a convex
linear combination of connections is still a connection, a smooth partition of unity can be thus used
to define a global connection in M in analogy with the argument in tbe proof of Proposition 1.2.3.
This proves that connections exist in any given manifold.

Rather than insisting in the argument of the preceding paragraph, it is better to use Proposi-
tion 2.2.5 below in order to construct a connection in a given manifold. Indeed, in an n-dimensional
smooth manifold, we need n3 smooth functions Γijk to specify a connection locally, and we need

n2 smooth functions gij to specify a Riemannian metric locally, recall (1.2.1). Even taking into
account equivalence classes of such objects, it is apparent that there exist “more” connections in a
given smooth manifold than the already large amount of available Riemannian metrics. The point
is that, as shown by the next proposition, a Riemannian manifold admits a preferred connection.

2.2.5 Proposition Let (M, g) be a Riemannian manifold. Then there exists a unique connection
∇ in M , called the Levi-Cività connection, such that:

a. Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ), and

b. ∇XY −∇YX − [X,Y ] = 0

for every vector fields X, Y , Z ∈ Γ(TM).

Proof. The strategy of the proof is to first use the two conditions in the statement to deduce
a formula for ∇. This formula is called the Koszul formula, and this proves uniqueness. The next
steps, which are easy but tedious and will be skipped, are to use the Koszul formula to define the
connection, and to check the defined object indeed satisfies the defining conditions of a connection
and the conditions in the statement of this theorem.

Let X, Y and Z be vector fields in M . The so-called permutation trick is to use condition (a)
to write

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ)

Y g(Z,X) = g(∇Y Z,X) + g(Z,∇YX)

−Zg(X,Y ) = −g(∇ZX,Y )− g(X,∇ZY ),

add up these equations, and use condition (b) to arrive at the Koszul formula:

g(∇XY, Z) =

1

2

(
Xg(Y, Z) + Y g(Z,X)− Zg(X,Y ) + g([X,Y ], Z) + g([Z,X], Y ) + g([Z, Y ], X)

)
(2.2.6)

Note that this formula uniquely defines ∇XY , since Z is arbitrary and g is nondegenerate. �

The condition (a) in Proposition 2.2.5 is usually refered to as saying that the connection ∇ is
compatible with the metric g, or that ∇ is a metric connection. The condition (b) expresses the
fact that the torsion of ∇, which is defined as the left-hand-side therein, is nul.

Henceforth, in this book, for a given Riemannian manifold, we will always use the Levi-Cività
connection in order to differentiate tangent vectors.
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2.2.7 Example Consider the upper half-plane R2
+ = { (x, y) ∈ R2 | y > 0 } endowed with the

Riemannian metric g = 1
y2
(dx2 + dy2). In this example, we show a practical method to compute

the Levi-Cività connection of (R2
+, g). Start with g(

∂
∂x ,

∂
∂x) =

1
y2
: differentiate it with respect to y

and use Proposition 2.2.5(a) to write

2g

(

∇ ∂
∂y

∂

∂x
,
∂

∂x

)

=
∂

∂y

(
1

y2

)

= −2
1

y3
,

so

(2.2.8) g

(

∇ ∂
∂y

∂

∂x
,
∂

∂x

)

= − 1

y3
;

similarly, differentiate it with respect to x to get

g

(

∇ ∂
∂x

∂

∂x
,
∂

∂x

)

= 0.

Next, consider g( ∂∂y ,
∂
∂y ) =

1
y2
; differentiation with respect to x and y yields respectively

(2.2.9) g

(

∇ ∂
∂x

∂

∂y
,
∂

∂y

)

= 0, g

(

∇ ∂
∂y

∂

∂y
,
∂

∂y

)

= − 1

y3
.

We use Proposition 2.2.5(b) in the form of

∇ ∂
∂x

∂

∂y
−∇ ∂

∂y

∂

∂x
=

[
∂

∂x
,
∂

∂y

]

= 0,

where the last equality holds because ∂
∂x and ∂

∂y are coordinate vector fields. Now differentiation

of g( ∂∂x ,
∂
∂y ) = 0 gives that

g

(

∇ ∂
∂x

∂

∂x
,
∂

∂y

)

= −g
(
∂

∂x
,∇ ∂

∂x

∂

∂y

)

= −g
(
∂

∂x
,∇ ∂

∂y

∂

∂x

)

=
1

y3
,

where we have used (2.2.8) in the last equality, and it also gives

g

(

∇ ∂
∂y

∂

∂y
,
∂

∂x

)

= −g
(
∂

∂y
,∇ ∂

∂y

∂

∂x

)

= 0,

where we have used the first formula of (2.2.9) in the last equality. Since ∂
∂x and ∂

∂y are orthogonal
everywhere, it easily follows from the above formulas that







∇ ∂
∂x

∂
∂x = 1

y
∂
∂y

∇ ∂
∂x

∂
∂y = − 1

y
∂
∂x

∇ ∂
∂y

∂
∂y = − 1

y
∂
∂y

⋆
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2.3 Parallel transport along a curve

Let (M, g) be a Riemannian manifold, and denote by ∇ its Levi-Cività connection.
A vector field along a curve γ : I → M , I ⊂ R an interval, is a map X : I → TM such that

X(t) ∈ Tγ(t)M for all t. If γ is a smooth curve, the most obvious example of a vector field along γ
is its tangent vector field γ′(t). In general, if γ is an embedding, then any vector field along γ can
be extended to a smooth vector field in M defined on a neighborhood of the image of γ. On the
other hand, if γ is not an embedding, then there are vector fields along γ that do not come from
vector fields defined on open subsets of M . An example is given by taking γ to be a curve with
self-intersections, or even a constant curve.

The set of smooth vector fields along a curve γ : I → M will be denoted Γ(γ∗TM). The
connection ∇ in M induces a derivative of vector fields along γ as follows.

2.3.1 Proposition Let γ : I → M be a smooth curve. Then there exists a unique linear map ∇
dt :

Γ(γ∗TM) → Γ(γ∗TM), called the covariant derivative along γ, satisfying the following conditions:
a. ∇

dt(fX) = df
dtX + f ∇

dtX for every smooth function f : I → R.
b. If X admits an extension to a vector field X̄ defined on a open subset U of M , then

(∇
dt
X

)

(t) = (∇γ′(t)X̄)γ(t)

for every t satisfying γ(t) ∈ U .

Proof. We first prove the uniqueness result. Suppose first that the image of γ lies in the domain
of one chart (U,ϕ = (x1, . . . , xn)). Then we can write γ(t) = (x1(t), . . . , xn(t)), so

γ′(t) =
∑

j

(xj)′(t)
∂

∂xj

∣
∣
∣
γ(t)

.

If X is a vector field along γ, we can also write

X(t) =
∑

k

ak(t)
∂

∂xk

∣
∣
∣
γ(t)

.

Note that, although in general X cannot be extended to a vector field defined on an open set of
M , X is written as a linear combination of vector fields that admit such extensions. So, if we have
a linear map as in the statement, then

∇
dt
X =

∑

k

(ak)′
∂

∂xk
+ ak∇γ′(t)

∂

∂xk

=
∑

i

(ai)′
∂

∂xi
+
∑

j,k

ak(xj)′∇ ∂

∂xj

∂

∂xk

=
∑

i

(ai)′
∂

∂xi
+
∑

i,j,k

ak(xj)′Γijk
∂

∂xi

=
∑

i



(ai)′ +
∑

j,k

Γijk(x
j)′ak




∂

∂xi
(2.3.2)

In general, one sees by a argument analogous to that used in section 2.2 that (∇dtX)|J depends
only on X|J for any open subinterval J of I, and the image of γ can be covered by finitely many
domains of charts, so the local expressions show that ∇

dt is uniquely defined, if it exists.
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In order to prove existence, one uses the local expression to define ∇
dt in the domain of a chart.

Then, one needs to show that the definition is independent of the choice of chart. Here it is
necessary to use the rule of change for the Christoffel symbols (cf. Exercise 3). Finally, one easily
checks that the defined map satisfies the two conditions in the statement. �

A vector field X along a smooth curve γ : I → M is called parallel if ∇
dtX = 0 on I. This

definition can be obviously extended to include curves that are only piecewise smooth.

2.3.3 Proposition Let γ : I →M be a piecewise smooth curve, and let t0 ∈ I. Given a vector v ∈
Tγ(t0)M , there exists a unique parallel vector field X along γ such that X(t0) = v.

Proof. Suppose first that I is bounded. The image of γ can be covered by finitely many domains
of charts of M . Thus, without loss of generality, we may assume that the image of γ lies in the
domain of one chart (U,ϕ = (x1, . . . , xn)). Write γ(t) = (x1(t), . . . , xn(t)) and

X(t) =
∑

k

ak(t)
∂

∂xk

∣
∣
∣
γ(t)

.

Then, equation (2.3.2) implies that ∇
dtX = 0 is equivalent to

(2.3.4) (ai)′ +
∑

j,k

Γijk(x
j)′ak = 0

for all i. This is a system of ordinary linear differential equations of first order in the unknowns
a1, . . . , an, which is known to have unique solutions defined on all of I for given initial conditions.
In our case, the initial conditions are given by ak(t0) = dxk(v).

In the general case, we can cover I by the union of a chain of increasing bounded intervals,
construct X along each bounded interval, and use the uniqueness result to see that so constructed
vector fields piece together to yield a global solution. �

It follows from the proof of the preceding proposition that the map that assigns to a vector
v ∈ Tγ(t0)M a parallel vector field X ∈ Γ(γ∗TM) with X(t0) = v is linear. Evaluating X at
another time t1 gives thus a linear map P γt1,t0 : Tγ(t0)M → Tγ(t1)M which will be called the parallel
translation map along γ from t0 to t1.

2.3.5 Proposition Let γ : I → M be a piecewise smooth curve. Then the parallel translation
maps along γ enjoys the following properties:
a. P γt0,t0 is the identity map of Tγ(t0)M ;
b. P γt2,t1 ◦ P

γ
t1,t0

= P γt2,t0 (chain rule);
c. P γt0,t1 = (P γt1,t0)

−1;
d. P γt1,t0 : Tγ(t0)M → Tγ(t1)M is an isometry;

for every t0, t1, t2 ∈ I.

Proof. Assertions (a), (b) and (c) are immediate. We show that assertion (d) is a consequence
of condition (a) in the definition of a connection (in fact, it is equivalent to that condition) as
follows. If X is a parallel vector field along γ, then ∇X

dt = 0 along γ, so

d

dt
g(X(t), X(t)) = 2g(

(∇
dt
X

)

(t), X(t)) = 0,

and the norm of X is constant along γ. �
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2.3.6 Example We now use the result of Example 2.2.7 to describe the parallel transport map
along the curve γ(t) = (t, y0) in (R2

+, g), where y0 > 0. Denote by X(t) = a(t) ∂∂x + b(t)
∂
∂y a smooth

vector field along γ, where a, b : R → R are smooth functions. Then

∇
dt
X = a′

∂

∂x
+ a∇ ∂

∂x

∂

∂x
+ b′

∂

∂y
+ b∇ ∂

∂x

∂

∂y

=

(

a′ − b

y0

)
∂

∂x
+

(

b′ +
a

y0

)
∂

∂y
,

so the condition that X be parallel is that
{
a′ = ωb
b′ = −ωa

where ω = y−1
0 . The general solution of this system of first-order ordinary differential equations is

a(t) = a0 cosωt+ b0 sinωt

b(t) = −a0 sinωt+ b0 cosωt

where (a(0), b(0)) = (a0, b0). It follows that

P γt,0

(

a0
∂

∂x
+ b0

∂

∂y

)

= (a0 cosωt+ b0 sinωt)
∂

∂x
+ (−a0 sinωt+ b0 cosωt)

∂

∂y

which is merely rotation in the Euclidean sense at a constant rate; note that the rate ω → ∞
as y0 → 0. ⋆

2.4 Geodesics

Let (M, g) be a Riemannian manifold, and denote by ∇ its Levi-Cività connection.
A smooth curve γ : I → M , I ⊂ M an interval, is called a geodesic if and only if ∇

dtγ
′ = 0 on

I. Thus we require that the tangent vector field γ′ be parallel along γ. According to 2.3.5(d), this
implies that the length of γ′ must be constant. We also refer to the latter property as saying that γ
is a curve parametrized with constant speed or γ is a curve parametrized proportional to arc-length.
Observe that constant curves are geodesics.

We can get the local expression of the geodesic equation immediately from (2.3.4). Let γ : I →
M be a smooth curve whose image lies in the domain of a chart (U,ϕ = (x1, . . . , xn)) ofM . Writing
γ(t) = (x1(t), . . . , xn(t)), we have that ∇

dtγ
′ = 0 if and only if

(2.4.1) (xi)′′ +
∑

j,k

Γijk(x
j)′(xk)′ = 0

for all i. Note that this is a second order system of non-linear ordinary differential equations in the
unknowns x1, . . . , xn, for which we have a local existence and uniqueness result. Indeed, we quote
the following theorem from [Spi70].

2.4.2 Theorem Consider the second order system of ordinary differential equations

σ′′ = F
(
σ, σ′

)
,

where F : Rn × Rn → Rn is a smooth map, in the unknown σ : I → Rn, I ⊂ R an open
interval. Then, given (x0, a0) ∈ Rn ×Rn, there exists a neighborhood U × V of (x0, a0) and δ > 0
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such that, for any (x, a) ∈ U × V , there is a unique solution σx,a : (−δ, δ) → Rn with initial
conditions σx,a(0) = x and σ′x,a(0) = a. Moreover, the map Σ : U × V × (−δ, δ) → M , defined by
Σ(x, a, t) = σx,a(t), is smooth.

It also follows from the theory of ordinary differential equations that any solution of the geodesic
equation (2.4.1) is automatically smooth. Equation (2.4.1) has a particular homogeneity feature
that we explore now. Namely, if γ : (a, b) → M is a solution of (2.4.1), then it is immediate to
check that for every k ∈ R \ {0} the curve η : (ak ,

b
k ) → R defined by η(t) = γ(kt) is also a solution.

2.4.3 Proposition Given p ∈ M , there exists a neighborhood U of p and ǫ > 0 such that, for
any q ∈ U and v ∈ TqM with gq(v, v)

1/2 ≤ ǫ, there is a unique geodesic γv : (−2, 2) → M such
that γv(0) = q and γ′v(0) = v. Moreover, the map Γ : ∪q∈UB(0q, ǫ) × (−2, 2) → M defined by
Γ(v, t) = γv(t) is smooth.

Proof. Let (V, ϕ) be a local chart ofM around p, and consider the map dϕ : TM |V → ϕ(V )×Rn.
The geodesic equation inM corresponds via dϕ to a second order differential equation for curves on
ϕ(V )×Rn, to which we apply Theorem 2.4.2. We deduce that there exists an open neighborhood
of 0p in TM such that for every v ∈ W there exists a unique geodesic γv : (−δ, δ) → M such
that γv(0) = π(v) and γ′v(0) = v, where π : TM → M is the projection, and γv(t) is smooth on
(v, t) ∈W × (−δ, δ). By continuity of g, we may shrink W and assume that it is of the form

W = { v ∈ TM |U : gπ(v)(v, v)
1/2 < ǫ′ }

for some open neighborhood U of p in M and some ǫ′ > 0 (cf. Exercise 1). The homogeneity of
the geodesic equation refered to above yields that multipliying the length of v by δ/2 makes the
interval of definition of γv to be multiplied by 2/δ. Therefore we can take ǫ = ǫ′δ/2 and we are
done. �

Henceforth, in this book, for p ∈M and v ∈ TpM , we will denote by γv the unique geodesic with
initial conditions γv(0) = p and γ′v(0) = v. Note that the homogeneity of the geodesic equation
yields that γkv(t) = γv(kt). It follows from Proposition 2.4.3 that there exists open neighborhood
Ω of the zero section in TM consisting of vectors v such that γv(1) is defined. The exponential map

exp : Ω →M

is defined by setting exp(v) = γv(1). It follows from the last assertion in Proposition 2.4.3 that
the exponential map is smooth. Sometimes we will also write expp = exp |TpM for p ∈ M . Now
γv(t) = γtv(1) = expp(tv) for v ∈ TpM and sufficiently small t.

2.4.4 Proposition Let p ∈M . Then:
a. The exponential map expp maps an open neighborhood of 0p ∈ TpM diffeomorphically onto

an open neighborhood of p in M .
b. There exists an open neighborhood U of p and ǫ > 0 such that, for any q ∈ U , there exists a

unique v ∈ TpM with gp(v, v)
1/2 < ǫ such that expp v = q.

Proof. We compute the differential d(expp)0p : T0p(TpM) → TpM . Recall that expp(tv) =
γtv(1) = γv(t) for v ∈ TpM . Differentiating this equation with respect to t at t = 0 yields that

(2.4.5) d(expp)0p(v) = γ′v(0) = v.

Hence d(expp)0p is the identity, where as usual we have identified T0p(TpM) with TpM . It follows
from the inverse function theorem that expp maps an open neighborhood of 0p in TpM , which can
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be taken of the form B(0p, ǫ) for some ǫ > 0, diffeomorphically onto an open neighborhood of p in
M . Parts (a) and (b) follow. �

The neighborhood of p given in the previous proposition is usually called a normal neighborhood
of p. Hence we have that any point in a normal neighborhood of p can be joined to p by a unique
geodesic in that neighborhood. Next, we want to improve this result in the sense of connecting two
movable points in a neighborhood of p by a geodesic. We need a lemma.

2.4.6 Lemma Let π : TM →M be the projection. Then, given p ∈M , the map

Φ : Ω →M ×M, Φ(v) = (π(v), exp(v))

is a local diffeomorphism from an open neighborhood W of 0p in TM onto an open neighborhood of
(p, p) in M ×M .

Proof. The result follows from the inverse function theorem if we can show that dΦ0p :
T0p(TM) → TpM ⊕TpM is an isomorphism. Each vector in the tangent space T0p(TM) is the tan-
gent vector at t = 0 to a curve c in TM passing through 0p at t = 0. First, let c(t) = tv ∈ TM where
v ∈ TpM . Then dΦ0p(c

′(0)) = d
dt

∣
∣
t=0

Φ(c(t)) = d
dt

∣
∣
t=0

(p, expp(tv)) = (0, v) by equation (2.4.5).
Next, let c(t) = 0γ(t) ∈ Tγ(t)M ⊂ TM , where γ is a curve inM with γ(0) = p and γ′(0) = v ∈ TpM .

Then dΦ0p(c
′(0)) = d

dt

∣
∣
t=0

Φ(0γ(t)) =
d
dt

∣
∣
t=0

(γ(t), γ(t)) = (v, v). The two calculations together imply
that dΦ0p is surjective and hence, by dimensional reasons, an isomorphism. �

2.4.7 Proposition Given p ∈M , there exists an open neighborhood U of p and ǫ > 0 such that:
a. For any x, y ∈ U , there exists a unique v ∈ TxM with gx(v, v)

1/2 < ǫ such that expx v = y.
Set γv(t) = expx(tv).

b. The map Ψ : U × U × [0, 1] defined by Ψ(x, y, t) = γv(t) is smooth.
c. For all x ∈ U , the map expx is a diffeomorphism from B(0x, ǫ) onto a normal neighborhood

of x containing U .

Proof. (a) Let W be a neighborhood of 0p in TM such that Φ(v) = (π(v), exp(v)) is a diffeo-
morphism of W onto a neighborhood of (p, p) in M ×M as in Lemma 2.4.6. By shrinking W , if
necessary, we may assume that W = ∪x∈VB(0x, ǫ) for some open neighborhood V of p and some
ǫ > 0. Let U be a neighborhood of p in M such that U ×U ⊂ Φ(W ). Then, for any (x, y) ∈ U ×U ,
there is a unique v ∈ W such that Φ(v) = (x, y), meaning that there is a unique v ∈ B(0x, ǫ) such
that expx v = y.

(b) This follows immediately from the fact that Ψ(x, y, t) = exp(tΦ−1(x, y)).
(c) Since B(0x, ǫ) ⊂ W , the map Φ is a diffeomorphism from B(0x, ǫ) onto its image. But, for

fixed x ∈ U , Φ(v) = (x, expx(v)) for v ∈ B(0x, ǫ). �

The set U in the preceding proposition is a normal neighborhood of each of its points; we will
call such a set U an ǫ-totally normal neighborhood of p. Note that it is not claimed that the
geodesic γv is that proposition is entirely contained in U . However, it is possible to work a bit
harder and find a possibly smaller totally normal neighborhood of p with that property. �1�

2.4.8 Example In order to complete our analysis of the Riemannian manifold (R2
+, g) of Exam-

ples 2.2.7 and 2.3.6, we now determine its geodesics. So let γ(t) = (x(t), y(t)) be a smooth curve
in R2

+. Then γ
′ = x′ ∂∂x + y′ ∂∂y and

∇
dt
γ′ = x′′

∂

∂x
+ x′

∇
dt

∂

∂x
+ y′′

∂

∂y
+ x′

∇
dt

∂

∂y
.

�1�Ref?
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We also have
∇
dt

∂

∂x
= x′∇ ∂

∂x

∂

∂x
+ y′∇ ∂

∂y

∂

∂x
= −y

′

y

∂

∂x
+
x′

y

∂

∂y
,

and
∇
dt

∂

∂y
= x′∇ ∂

∂x

∂

∂y
+ y′∇ ∂

∂y

∂

∂y
= −x

′

y

∂

∂x
− y′

y

∂

∂y
,

so
∇
dt
γ′ =

(

x′′ − 2
x′y′

y

) ∂

∂x
+
(

y′′ +
x′2 − y′2

y

) ∂

∂y
.

Therefore the geodesic equations are

(2.4.9)

{

x′′ − 2x
′y′

y = 0

y′′ + x′2−y′2
y = 0

Note that x(t) = x0 is a solution of (2.4.9); indeed, the second equation gives that
(
y′

y

)′
=
y′′y − y′2

y2
= 0,

so y(t) = y0e
kt where y0 > 0 and k ∈ R. This shows that the vertical lines are geodesics. Note

that in the parametrization that we obtained, they are defined on all of R.
Next, suppose that γ is a geodesic which is not a vertical line. By the uniqueness result for

geodesics, it follows that x′(t) 6= 0 for all t in the domain of γ. The first equation of (2.4.9) then
gives

x′′

x′
= 2

y′

y

from where we get that
(log(x′))′ = (2 log y)′

and hence that

(2.4.10) x′ = cy2

for some real constant c which may be assumed to be positive by reversing the orientation of γ, if
necessary. Of course γ is parametrized with constant speed, which for simplicity we assume it is 1;
then 1

y2
(x′2 + y′2) = 1; substituing (2.4.10) gives that

dy

y
√

1− c2y2
= ±dt

Direct integration then yields
arcsech (cy) = ±t− t0,

and changing the initial point we may assume that t0 = 0. Then

(2.4.11) y(t) = Rsech t

where R = c−1 > 0. Finally, equation (2.4.10) implies that

(2.4.12) x(t) = x0 +R tanh t

for some x0 ∈ R. Note that equations (2.4.12) and (2.4.11) are defined on all of R, and they
parametrize the semi-circle of center (x0, 0) and radius R in R2

+.
Any geodesic of (R+

2 , g) is of one of the above types. Indeed, given initial conditions for a
geodesic, it is readily seen that there exists a (unique) vertical line or semi-circle as above satisfying
the given initial conditions. ⋆
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2.5 Isometries and Killing fields

It is more or less clear that isometries should preserve any object canonically associated to a
Riemannian manifold. Let (M, g) and (M ′, g′) be Riemannian manifolds, denote by ∇ and ∇′ the
corresponding Levi-Cività connections, and let f : M → M ′ be an isometry. It follows from the
Koszul formula (2.2.6) that f maps ∇ to ∇′ is the sense that

∇′
f∗Xf∗Y = f∗(∇XY )

where X, Y ∈ Γ(TM). In particular, if γ : I →M is a geodesic of (M, g) then f ◦ γ : I →M ′ is a
geodesic of (M ′, g′).

It is interesting to rephrase the last assertion in terms the exponential map. Namely, if f is an
isometry of (M, g), p ∈M and v ∈ TpM lies in the domain of expp, then dfp(v) lies in the domain
of expf(p) and

f(expp(v)) = expf(p)(dfp(v)).

In particular, if p is a fixed point of f then, on a normal neighborhood of p, we can write

f = expp ◦ dfp ◦ exp−1
p ;

namely, exp−1
p defines a local chart on a normal neighborhood of p that linearizes f .

A Killing vector field (sometimes, simply a Killing field) on a Riemannian manifold (M, g) is a
smooth vector field X onM whose local flow {ϕt} consists of local isometries ofM , namely, ϕ∗

t g = g
wherever defined. By differentiation with respect to t, we immediately see that this condition is
equivalent to the vanishing of Lie derivative of g with respect to X,

LXg = 0,

or equivalently,

(2.5.1) Xg(Y, Z) = g([X,Y ], Z) + g(Y, [X,Z])

for every Y , Z ∈ Γ(TM).

2.5.2 Proposition Let (M, g) be a Riemannian manifold.
a. The set of Killing fields on M form a Lie subalgebra of the Lie algebra of smooth vector fields

on M .
b. A smoothy vector field X ∈ Γ(TM) is a Killing field if and only if

g(∇YX,Z) + g(∇ZX,Y ) = 0

for every Y , Z ∈ Γ(TM), i. e. (∇X)p is skew-symmetric as a linear operator on TpM for all
p ∈M .

Proof. (a) The set of Killing fields on M is a subspace of Γ(TM) because LXg = 0 is linear in
X, and closed under the Lie bracket because L[X,Y ] = [LX , LY ] for all X, Y ∈ Γ(TM).

(b) Using that the Levi-Cività connection is compatible with the metric and has no torsion
(Proposition 2.2.5(a) and (b)), equation (2.5.1) is seen to be equivalent to

g(∇XY, Z) + g(Y,∇XZ) = g(∇XY −∇YX,Z) + g(Y,∇XZ −∇ZX),

which implies the result. �
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Recall that the set Isom(M, g) of all isometries of a Riemannian manifold (M, g) forms a sub-
group of the group of all diffeomorphisms ofM , which has the structure of a Lie group with respect
to the compact-open topology; moreover, the map Isom(M, g) ×M → M is smooth [KN96]. In
particular, if all Killing fields are complete, then the Lie algebra of Isom(M, g) is naturally identified
with the Lie algebra of Killing fields of M .

2.5.3 Remark In chapter 3 we will see that Killing fields are complete if M is e. g. compact. It
follows from exercise 5 of chapter 5 that the dimension of the Lie algebra of Killing fields on M is
bounded by 1

2n(n+ 1), where n = dimM .

2.6 Connections on vector bundles ⋆

2.7 Induced connections

At this juncture, it is convenient to introduce the following extension of Proposition 2.3.1. We will
be using it especially in the case dimN = 2.

2.7.1 Proposition Let N be a smooth manifold, and let ϕ : N →M be a smooth map. Then there
exists a unique bilinear map ∇ϕ : Γ(TN)× Γ(ϕ∗TM) → Γ(ϕ∗TM), called the induced connection
along ϕ, satisfying the following conditions:
a. ∇ϕ

fXY = f∇ϕ
XY ;

b. ∇ϕ(fY ) = X(f)Y + f∇ϕ
XY ;

c. If Y admits an extension to a vector field Ŷ defined on a open subset U of M , then

(
∇ϕ
XY
)

p
=
(

∇dϕ(Xp)Ŷ
)

ϕ(p)

for every p ∈ ϕ−1(U);
where X ∈ Γ(TN), Y ∈ Γ(ϕ∗TM) and f : N → R is a smooth function.

2.7.2 Proposition Let ϕ : N →M be a smooth map, let X, Y ∈ Γ(TN) be vector fields in N and
let U , V ∈ Γ(ϕ∗TM) be vector fiels along ϕ. Then the following identities hold:

∇ϕ
X(ϕ∗Y )−∇ϕ

Y (ϕ∗X)− ϕ∗[X,Y ] = 0, and

X g(U, V ) = g(∇ϕ
XU, V ) + g(∇ϕ

XV, U).

2.8 Examples

The Euclidean space

We claim that the Levi-Cività connection ∇ in Rn coincides with the usual derivative. In fact, let
(x1, . . . , xn) denote the standard global coordinates in Rn. We have that

g

(
∂

∂xi
,
∂

∂xj

)

= δij and

[
∂

∂xi
,
∂

∂xj

]

= 0

for all i, j. Plugging these relations into the Koszul formula (2.2.6) gives that ∇ ∂

∂xi

∂
∂xj

= 0 for all

i, j, namely, all the Christoffel symbols Γijk = 0. If

X =
∑

j

aj
∂

∂xj
and Y =

∑

k

bk
∂

∂xk
,
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for ai, bj ∈ C∞(Rn), then, using formula (2.2.2),

∇XY =
∑

i




∑

j

aj
∂bi

∂xj




∂

∂xi
= X(Y ) = dY (X),

proving the claim. We also get, from equation (2.3.4), that a vector field X along a curve γ :
[a, b] →M , given as

X(t) =
∑

k

ak(t)
∂

∂xk

∣
∣
∣
γ(t)

,

is parallel if and only the ak are constant functions, namely, the parallel vector fields in Rn are the
constant vector fields. It follows that the parallel transport map along γ from a to b is given by
the differential of the translation map, that is,

P γb,a = d(τv)γ(a),

where τv is the translation in Rn by the vector v = γ(b)− γ(a), and, in particular, is independent
of the curve γ joining γ(a) and γ(b). Finally, the geodesic equation (2.4.1) in Rn is

(xi)′′ = 0

for all i, so the geodesics are the lines. Hence

expp(v) = p+ v

for p ∈ Rn and v ∈ TpR
n = Rn.

Product Riemannian manifolds

Let (Mi, gi), where i = 1, 2, denote two Riemannian manifols and consider the product Riemannian
manifold (M, g) = (M1, g1)× (M2, g2). Let Ui ∈ Γ(TMi), where i = 1, 2, be arbitrary vector fields.
Of course, U1 and U2 can be identified with vector fields onM , and it follows from the construction
of (M, g) that [U1, U2] = 0 and g(U1, U2) = 0 in M .

Now, suppose that X, Y , Z ∈ Γ(TM) can be decomposed as X = X1 +X2 and Y = Y1 + Y2,
Z = Z1 + Z2, where Xi, Yi, Zi ∈ Γ(TMi) for i = 1, 2 (not every vector field on M admits such a
decomposition!). Note that

Xg(Y, Z) = X1g1(Y1, Z1) +X2g2(Y2, Z2)

and

g([X,Y ], Z) = g1([X1, Y1], Z1) + g2([X2, Y2], Z2).

It then follows from the Koszul formula (2.2.6) applied three times that

g(∇XY, Z) = g1(∇1
X1
Y1, Z1) + g2(∇2

X2
Y2, Z2)

= g(∇1
X1
Y1 +∇2

X2
Y2, Z),

where ∇ denotes the Levi-Cività connection ofM and ∇i denotes the Levi-Cività connection ofMi

for i = 1, 2. Since g is nondegenerate and any tangent vector toM can be extended to a vector field
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Z which decomposes as Z1 + Z2, this calculation yields the following formula for the Levi-Cività
connection of a Riemannian product:

(2.8.1) ∇XY = ∇1
X1
Y1 +∇2

X2
Y2.

It follows from this formula that the Christoffel symbol Γijk of ∇ is zero unless all the three

indices i, j, k correspond to coordinates of the same factor Mℓ, where ℓ = 1 or 2, in which case Γijk
is a function onMℓ and a Christofell symbol of ∇ℓ. Therefore if γ is a curve inM with components
γ1 in M1 and γ2 in M2, and X is a vector field along γ, then we can decompose X = X1 + X2

where Xi is a vector field along γi, and equation (2.3.2) gives ∇X
dt = ∇X1

dt + ∇X2
dt . In particular, X

is parallel along γ if and only if Xi is parallel along Mi for i = 1, 2. As γ′(t) = γ′1(t) + γ′2(t), in
particular yet, γ is a geodesic if and only if γi is a geodesic of Mi for i = 1, 2.

Riemannian submanifolds and isometric immersions

Let (M, g), (M, g) be Riemannian manifolds, and suppose that ι :M →M is an isometric immer-
sion. We would like to relate the Levi-Cività connections ∇ of M and ∇ of M . Since this is a local
problem, we can work in a neighborhood a point p ∈ M and assume that ι is the inclusion map.
Now the tangent bundle TM is a subbundle of TM , the metric g is the restriction of g, and every
vector field on M admits an extension to a vector field on M .

Let X, Y and Z be vector fields on M , and let X, Y and Z be extensions of those vector fields
to vector fields on M . Note that [X,Y ] is an extension of [X,Y ] to a vector field on M . It follows
from two applications of the Koszul formula (2.2.6) that

2g((∇XY )p, Zp) = 2g((∇XY )p, Zp)

= S ±Xp g(Y, Z)± g([X,Y ]p, Zp)

= S ±Xp g(Y , Z)± g([X,Y ]p, Zp)

= 2g((∇XY )p, Zp)

= 2g((∇XY )p, Zp),

where S denotes cyclic summation in X, Y , Z. Since (∇XY )p ∈ TpM and Zp can be any element
of TpM , it follows that

(2.8.2) (∇XY )p = Πp
(
(∇XY )p

)
,

where Πp : TpM → TpM is the orthogonal projection.
The most important case is that of Riemannian submanifolds of Euclidean space. If M is a

Riemannian submanifold of Rn, then formula (2.8.2) implies that a smooth curve γ in M is a
geodesic of M if and only if its second derivative γ′′ in Rn is everywhere normal to M ; in other
words, the geodesics of M are the “curves with normal acceleration”.

The sphere Sn

Let p ∈ Sn and v ∈ TpS
n. We now determine the unique geodesic γ of Sn with initial conditions

γ(0) = p and γ′(0) = v. If v = 0, then γ is a constant curve, so we may assume that v 6= 0. Since
p and v are orthogonal vectors in Rn+1, they span a 2-dimensional subspace which we denote by
E. Let f : Rn+1 → Rn+1 be the linear reflection on E. Then f is an orthogonal transformation
of Rn+1 and leaves Sn+1 invariant. Now every orthogonal transformation of Rn+1 is an isometry.
Since Sn+1 has the induced metric from Rn+1, f restricts to an isometry of Sn which we denote
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by the same letter. Owing to the fact that an isometry maps geodesics to geodesics, the curve
γ̃ = f ◦ γ is a geodesic of Sn. Since f leaves E pointwise fixed, the initial conditions of γ̃ are
γ̃(0) = f(γ(0)) = f(p) = p and γ̃′(0) = f(γ′(0)) = f(v) = v, namely, the same as those of γ.
By the uniqueness of geodesics with given initial conditions, we have that γ̃ = γ, or, what is the
same, f(γ(t)) = γ(t) for all t in the domain of γ. It follows that γ is contained in E and thus must
coincide with the great circle Sn ∩E parametrized with constant speed on its domain of definition.
This argument shows that the great circles are locally geodesics; but then, the great circles are
geodesics.

In particular, the geodesics of Sn parametrized by arc-length are periodic of period 2π. Finally,
we have the formula

expp(v) = cos(||v||)p+ sin(||v||) v

||v||
for v 6= 0.

Riemannian coverings

Let π : (M̃, g̃) → (M, g) be a Riemannian covering.

2.8.3 Proposition The geodesics of (M, g) are the projections of the geodesics of (M̃, g̃), and the
geodesics of (M̃, g̃) are the liftings of the geodesics of (M, g).

Proof. Suppose γ̃ and γ are continuous curves in M̃ , M such that π ◦ γ̃ = γ. Since π is a
local isometry, it maps a sufficiently small arc of γ̃ isometrically onto a small arc of γ. It follows
that γ̃ is a geodesic if and only if γ is a geodesic. This shows that the classes of curves described
in the statement of the proposition are indeed geodesics. Now we need only to remark that every
continuous curve inM is the projection of any of its continuous liftings in M̃ , and every continuous
curve in M̃ is the continuous lifting of its projection to M . �

The real projective space

We apply Proposition 2.8.3 to the Riemannian covering map π : Sn → RPn. The geodesics of Sn

have already been determined as being the great circles parametrized with constant speed, so the
geodesics of RPn are the projections of those. In particular, since π identifies antipodal points of
Sn, the geodesics of RPn paramerized by arc-length are periodic of period π.

Flat tori

Let Γ be a lattice in Rn and consider the induced Riemannian metric gΓ on Tn. We apply Propo-
sition 2.8.3 to the Riemannian covering map π : Rn → (Tn, gΓ) to deduce that the geodesics of
(Tn, gΓ) are simply the projections of the straight lines in Rn. In this way, we see that some
geodesics of (Tn, gΓ) are periodic and some are dense in Tn.

Next, let Γ′ be another lattice in Rn. We have already remarked that (Tn, gΓ) and (Tn, gΓ′)
are generally non-isometric. Nevertheless, there exists a unique affine transformation f of Rn that
maps Γ to Γ′, and hence induces a diffeomorphism f̄ : Rn/Γ → Rn/Γ′ such that the diagram

Rn f−−−−→ Rn



y



y

Rn/Γ
f̄−−−−→ Rn/Γ′
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is commutative. In general, f̄ is not an isometry, but since f maps straight lines to straight lines,
f̄ maps the geodesics of (Tn, gΓ) to the geodesics of (Tn, gΓ′). Hence we get an example of two
non-isometric metrics on the same smooth manifold with the same geodesics.

Lie groups ⋆

Let G be a Lie group and denote its Lie algebra by g. In this example, we will describe the
Levi-Cività connection associated to a bi-invariant metric on G. We start with a definition and a
proposition.

We say that an inner product 〈, 〉 on g is ad-invariant if the identity

(2.8.4) 〈adZX,Y 〉+ 〈X, adZY 〉 = 0

holds for every X, Y , Z ∈ g.

2.8.5 Proposition Every Ad-invariant inner product on g is ad-invariant, and the converse holds
if G is connected.

Proof. Let 〈, 〉 be an inner product on g. It being Ad-invariant means that

(2.8.6) 〈AdgX,AdgY 〉 = 〈X,Y 〉

for every g ∈ G and X, Y ∈ g. In particular, taking g = exp tZ for Z ∈ g and differentiating at
t = 0 yields identity (2.8.4).

Assume now that G is connected and 〈, 〉 is ad-invariant. Then (2.8.4) holds; note that what it
is really saying is that f ′X,Y (0) = 0 for all X, Y ∈ g, where

fX,Y (t) = 〈Adexp tZX,Adexp tZY 〉,

and from this information we will show that fX,Y (t) = fX,Y (0). Indeed, since t 7→ Adexp tZ is a
homomorphism,

fX,Y (t+ s) = fX′,Y ′(t)

where X ′ = Adexp sZX and Y ′ = Adexp sZY . Differentiating this identity at t = 0 gives that
f ′X,Y (s) = f ′X′,Y ′(0) = 0. Since s ∈ R is arbitrary, this implies that fX,Y is constant, as desired.

So far we have shown that (2.8.6) holds if g lies in the image of exp. But there exists an open
neighborhood U of the identity of G contained in the image of exp, and it is known that U generates
G as a group due to the connectedness of G. Since g 7→ Adg is a homomorphism, this finally implies
that (2.8.6) holds for every g ∈ G. �

Let g be a bi-invariant metric on G. Now we are ready to use the Koszul formula (2.2.6) to
compute the Levi-Cività connection on left-invariant vector fields. Let X, Y , Z ∈ g. Since X and
Y are left-invariant vector fields and g is a left-invariant metric, g(X,Y ) is a constant function on
G. Therefore Zg(X,Y ) = 0. Similarly, Y g(Z,X) = Zg(X,Y ) = 0. Regarding the other terms
of (2.2.6), the preceding proposition shows that g1 is an ad-invariant inner product on g, so

(2.8.7) g([Z,X], Y ) + g(X, [Z, Y ]) = g1(adZX,Y ) + g1(X, adZ , Y ) = 0.

We deduce that

(2.8.8) ∇XY =
1

2
[X,Y ]
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for all X, Y ∈ g (this formula shows in particular that ∇XY is also a left-invariant vector field,
but this fact of course also follows from general properties of isometries, cf. section 2.5). An
important application of this formula is that ∇XX = 0 for all ∈ g, and this means that every
one-parameter subgroup of G thorough the identity is a geodesic. This is also equivalent to saying
that the exponential map of G qua Lie group and the exponential map of G qua Riemannian
manifold (G, g) coincide. It follows from the Hopf-Rinow theorem to be proved in the next chapter
that the exponential map of a compact connected Lie group is surjective, see Theorem 3.3.2 and
Corollary 3.3.6. Of course, the geodesics of G through an arbitrary point are left-translates of
one-parameter subgroups, namely, of the form t 7→ g exp tX for g ∈ G and X ∈ g.

2.9 Exercises

1 Let (M, g) be a Riemannian manifold, consider its tangent bundle TM , and fix a point p ∈M .
Prove that any open neighborhood W of 0p in TM contains a neighborhood of the form

⋃

x∈U
B(0x, ǫ) = { v ∈ TM |U : gπ(v)(v, v)

1/2 < ǫ }

for some open neighborhood U of p in M and some ǫ > 0.

2 Let A, B be nowhere zero smooth functions on R2 and consider the Riemannian metric g =
A2 dx2 +B2 dy2, where x, y are the standard coordinates on R2.

a. Compute the Christoffel symbols of g.
b. Write down the geodesic equations of g.

3 Let (xi) be a system of local coordinates on a smooth manifold M which is equipped with a
connection ∇, and consider the Christoffel symbols Γkij which are defined by ∇ ∂

∂xi

∂
∂xj

=
∑

k Γ
k
ij

∂
∂xk

.

If (xi
′

) is another system of local coordinates on M , prove that the following transformation law
holds:

Γk
′

i′j′ =
∑

i,j,k

Γkij
∂xi

∂xi′
∂xj

∂xj′
∂xk

′

∂xk
+
∑

k

∂2xk

∂xi′∂xj′
∂xk

′

∂xk
.

Use this law to check that formula (2.3.2) defines ∇X
dt independently of choice of local chart.

4 LetM be a Riemannian manifold of dimension n. Given p ∈M , prove that there exists an open
neighborhood U of p, and n smooth vector fields E1, . . . , En defined on U which are orthonormal
at each point of U and such that (∇Ei

Ej)p = 0 for all i, j.

5 Let M be a Riemannian manifold. Suppose X is a smooth vector field along a smooth curve
γ : I →M . If φ : J → I is a diffeomorphism, define the reparametrizations η = γ◦φ and Y = X ◦φ.
a. Show that Y is a smooth vector field along η.
b. Denote by t, s the parameters along γ, η, resp., where t = φ(s), and prove that

(∇
ds
Y

)

(s) =

(∇
dt
X

)

(φ(s))φ′(s)

for s ∈ J .
c. Deduce that the parallelism of a vector field along a curve does not depend on the parametriza-

tion.
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6 Let M be a Riemannian manifold. The goal of this exercise is to characterize the curves on M
that are geodesics up to a reparametrization.
a. Assume γ : R →M is a geodesic, φ : R → R is a diffeomorphism and η : R →M is given by

η = γ ◦ φ. Show that there exists a smooth function f : R → R such that ∇η′η
′ = fη′.

b. Conversely, suppose that η : R → M satisfies ∇η′η
′ = fη′ for some smooth function f :

R → R, and show that there exists a diffeomorphism φ : R → R such that γ = η ◦ φ−1 is a
geodesic.

7 In this exercise, we describe the geodesics of the real hyperbolic space.
a. Describe the geodesics of M = RHn in the hyperboloid model using a reflection argument

similar to that used in the case of Sn. Namely, show that the geodesic through p ∈ M
with initial unit speed v ∈ TpM is given by γv(t) = cosh t p + sinh t v. Show also that the
(unique, up to reparametrization) geodesic joining two points p, q ∈M is obtained from the
intersection of the 2-plane spanned by p, q in R1,n with the hyperboloid.

b. Use the result of (a) to describe the geodesics of M in Poincaré’s disk and upper half-space
models (cf. exercises 3 and 4 of chapter 1).

c. Check that in the case in which n = 2, the result of (b) coincides with he result of Exam-
ple 2.4.8.

8 Consider the Poincaré upper half-plane model R2
+ = { (x, y) ∈ R2 | y > 0 } with the metric

g = 1
y2

(
dx2 + dy2

)
.

a. Prove that any geodesic of R2
+ is the fixed point set of some isometry. (Hint: Use Exam-

ple 2.4.8 and Exercise 5 of chapter 1; conjugate R by appropriate isometries of the form τa,
hr.) Such isometries deserve to be called reflections. Show that the differential of a reflection
at a fixed point p is a reflection of TpR

2
+ on a straight line.

b. Show that the composition of reflections on two geodesics through the point p = (0, 1) yields
an isometry that fixes that point and induces a rotation on the tangent space. Show also
that any rotation of TpR

2
+ arises in this way. Deduce that the isometry group of R+

2 acts
transitively on the unit tangent bundle (namely, the set of unit tangent vectors).

A Riemannian manifold with the property that its isometry group acts transitively on its unit
tangent bundle is called isotropic.

9 Let M be a smooth manifold equipped with a connection ∇. If γ : (−ǫ, ǫ) → M is a smooth
curve and X is a smooth vector field along γ, prove the following formula:

(∇
dt
X
)

0
= lim

t→0

P γ0,tX(t)−X(0)

t
.

(Hint: Write X as a linear combination of the vectors in a parallel frame along γ.)

10 Let M be a Riemannian manifold and consider its Levi-Cività connection ∇. If X is a smooth
vector field on M and {ϕt} denotes its local flow, and v ∈ TpM , prove the following formula:

∇vX =
∇
dt

∣
∣
∣
t=0

d(ϕt)pv.

(Hint: Use the first identity in Proposition 2.7.1 in order to commute two different derivatives.)

11 Let X be a Killing field on a Riemannian manifold M . Prove that if p is a critical point of the
function f = ||X||2, then the integral curve of X through p is a geodesic.
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12 Let G be a Lie group equipped with a bi-invariant metric. Show that the left-invariant vector
fields and the right invariant vector fields are Killing fields.

2.10 Additional notes

§1 The development of the idea of connection presented here, usually called an affine connec-
tion�2�, took some time to evolve to that form. Starting around 1868, Elwin Christoffel became
interested in the theory of invariants and wrote six papers on that topic. In these, he introduced
the Christoffel symbols and solved the local equivalence problem for quadratic differential forms by
essentially introducing the Riemann-Christoffel curvature tensor. These results influenced Gregorio
Ricci-Curbastro in Padua to begin his investigations in 1884 on quadratic differential forms. In
four papers between 1888 and 1892, Ricci-Curbastro exposed the technique of absolute differential
calculus, a new invariant formalism originally constructed to deal with the transformation theory
of partial differential equations, which he used to study the transformation theory of quadratic
differential forms. A pupil of him, Tulio Levi-Civita, wrote a dissertation, published in 1893,
where he developed the calculus of tensors including covariant differentiation, bulding on ideas
from Ricci-Curbastro and Lie’s then recently appeared theory of transformation groups. In 1900,
Ricci (using this name for the first time instead of his full name) jointly with Levi-Civita published
a fundamental paper [RL00] in which preface they state:

”The algorithm of absolute differential calculus, the instrument matériel of the methods
. . . can be found complete in a remark due to Christoffel. But the methods themselves
and the advantages they offer have their raison d’être and their source in the intimate
relationships that join them to the notion of an n-dimensional variety, which we owe to
the brilliant minds of Gauss and Riemann. . . . Being thus associated in an essential way
with V n, it is the natural instrument of all those studies that have as their subject, such
a variety, or in which one encounters as a characteristic element a positive quadratic
form of the differentials of n variables or of their derivatives.”

When in 1915 Albert Einstein used tensor calculus to explain theory of relativity, Levi-Cività initi-
ated and kept mathematical correspondence with him until 1917. In that year, inspired by Einstein’s
general theory of relativity, Levi-Cività made what is probably his most important contribution to
mathematics: the introduction of the concept of parallel displacement. His book [Lev05] on abso-
lute diferential calculus, originally a collection of lecture notes in Italian, also contains applications
to general relativity.

Soon it was realized that connections existed independent of the Riemannian metric. Between
the years of 1918 and 1923, Hermann Weyl’s efforts towards the unification of electromagnetism
and gravitation brought in new ideas and placed the concept of parallel displacement of a tangent
vector at the base of the definition of an affine connection on a smooth manifold. Tensor calculus
was systematized by Jan Schouten (who discovered the idea of parallel displacement independently
in 1918) in his book Ricci-Kalkül in 1924 (entirely rewritten in 1954). At the same time, Élie
Cartan introduced in the 1920’s projective and conformal connections and, more generally, a new
concept of a connection on a manifold. However, at that time, Cartan faced difficulty trying to
express notions for which there was no truly suitable language. In [Ehr51], Charles Ehresmann
gave a rigorous global definition of a Cartan connection as a special case of a more general notion
of connection on a principal bundle, today called an Ehresmann connection or simply a connection,
which is mostly considered to be the definitive one. The axiomatic approach to affine connections

�2�?
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that we use in this book is due to Jean-Louis Koszul (cf. [Nom54]). For more details on the history
of connections, see the introduction of [Str34]. For the general theory of connections on principal
bundles, see [KN96].

§2 The idea of parallel displacement is a simple though deep notion in geometry. Consider a
2-sphere Σ touching a 2-plane π at a point p. Now let Σ roll over π so that the touching point traces
a curve γ in Σ, and let q be the endpoint of γ. Suppose v is a vector tangent to π at p. Of course,
there is a unique vector v′ which is tangent to π at q and parallel to v in the plane. The parallelism
of Levi-Cività says that v′, regarded as vector tangent to Σ at q, is the parallel displacement of v,
regarded as a vector tangent to Σ at p, along γ. More generally, one can replace Σ by a 2-surface
at let it roll over π to define the parallel displacement of vectors on Σ.
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C H A P T E R 3

Completeness

3.1 Introduction

Geodesics of Riemannian manifolds were defined in section 2.4 as solutions to a second order
ordinary diferential equation that, in a sense, means that they have acceleration zero, or, so to
say, that they are the “straightest” curves in the manifold. On the other hand, the geodesics of
Euclidean space are the lines, and it is known that line segments are the shortest curves between
its endpoints. One of the goals of this chapter is to propose an alternative characterization of
geodesics in Riemannian manifolds as the “shortest” curves in the manifold. As we will see shortly,
in a general Riemannian manifold we cannot expect this property to hold globally, but only locally.

To begin with, we prove the Gauss lemma and use it to introduce a metric space structure in
the Riemannian manifold in order to be able to talk about distances and curves that minimize
distance. The proposed characterization as the locally minimizing curves then follows easily from
some results of section 2.4. Next, a natural question is how far a geodesic can minimize distance.
The appropriate category of Riemannian manifolds in which to consider this question is that of
complete Riemannian manifolds, namely, Riemannian manifolds whose geodesics can be extended
indefinitely. In this context, we prove our first global result which is the fundamental Hopf-Rinow
theorem. Finally, the question of how far a geodesic can minimize distance brings us to the notion
of cut-locus.

Throughout this chapter, we let (M, g) denote a connected Riemannian manifold.

3.2 The metric space structure

As a preparation for the introduction of the metric space structure, we prove the Gauss lemma
and use it to show that the radial geodesics emanating from a point and contained in a normal
neighborhood are the shortest curves among the piecewise smooth curves with the same endpoints.

So fix a point p ∈ M . By Proposition 2.4.4, there exist ǫ > 0 and an open neighborhood U of
p in M such that expp : B(0p, ǫ) → U is a diffeomorphism. Then we have a diffeomorphism

f : (0, ǫ)× Sn−1 → U \ {p}, f(r, v) = expp(rv),

where Sn−1 denotes the unit sphere of (TpM, gp). Note that γv(t) = f(t, v) if |t| < ǫ.

3.2.1 Lemma (Gauss, local version) The radial geodesic γv is perpendicular to the hyperspheres
f({r} × Sn−1) for 0 < r < ǫ. It follows that

f∗g = dr2 + h(r,v)
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where h(r,v) is the metric induced on Sn−1 from f : {r} × Sn−1 →M .

Proof. For a smooth vector field X on Sn−1, we denote by X̃ = f∗X the induced vector field

on U . Also, we denote by ∂
∂r the coordinate vector field on (0, ǫ) and set ∂̃

∂r = f∗ ∂
∂r . Next, note

that γ′v(r) =
∂̃
∂r |f(r,v) and that every vector tangent to S(p, r) := f({r} × Sn−1) at f(r, v) is of the

form X̃|f(r,v) for some smooth vector field X on Sn−1. In view of that, the problem is reduced to

proving that g(X̃, ∂̃∂r ) = 0 at f(r, v). With this is mind, we start computing

d

dr
g

(

X̃,
∂̃

∂r

)

= g

(

∇ ∂̃
∂r

X̃,
∂̃

∂r

)

+ g

(

X̃,∇ ∂̃
∂r

∂̃

∂r

)

= g

(

∇X̃

∂̃

∂r
,
∂̃

∂r

)

=
1

2
X̃ g

(

∂̃

∂r
,
∂̃

∂r

)

= 0,

where we have used the following facts: the compatibility of ∇ with g, ∇ ∂̃
∂r

∂̃
∂r = 0 since γv is

a geodesic, ∇ ∂̃
∂r

X̃ − ∇X̃
∂̃
∂r = [∇ ∂̃

∂r

, X̃] = f∗[ ∂∂r , X] = 0 and g
(
∂̃
∂r ,

∂̃
∂r

)

= 1. Now we have that

g(X̃, ∂̃∂r ) = 0 is constant as a function of r ∈ (0, ǫ). Hence

g

(

X̃,
∂̃

∂r

)
∣
∣
∣
f(r,v)

= lim
r→0

g

(

X̃,
∂̃

∂r

)
∣
∣
∣
f(r,v)

= 0

due to the fact that X̃|f(r,v) = d(expp)rv(rXv) goes to 0 as r → 0.

Regarding the last assertion in the statement, the above result shows that in the expression of
f∗g there are no mixed terms, namely, no terms involving both dr and coordinates on Sn−1, and

g
(
∂̃
∂r ,

∂̃
∂r

)

= 1 shows that the coefficient of dr2 is 1. �

3.2.2 Proposition Let p ∈M , and let ǫ > 0 be such that U = expp(B(0p, ǫ)) is a normal neighbor-
hood of p. Then, for any x ∈ U , there exists a unique geodesic γ of length less than ǫ joining p and
x. Moreover, γ is the shortest piecewise smooth curve in M joining p to x, and any other piecewise
smooth curve joining p to x with the same length as γ must coincide with it, up to reparametrization.

Proof. We already know that there exists a unique v ∈ TpM with gp(v, v)
1/2 < ǫ and expp v = x.

Taking γ to be γv : [0, 1] →M , it is clear that the length of γ is less than ǫ.

Next, let η be another piecewise curve joining x to y. We need to prove that L(γ) ≤ L(η),
where the equality holds if and only if η and γ coincide, up to reparametrization. Without loss of
generality, we may assume that η is defined on [0, 1] and that η(t) 6= p for t > 0. There are two
cases:

(a) If η is entirely contained in U , then we can write η(t) = f(r(t), v(t)) for t > 0. In this case,
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due to the Gauss lemma 3.2.1:

L(η) =

∫ 1

0
gη(t)(η

′(t), η′(t))1/2 dt

=

∫ 1

0

(
r′(t)2 + h(r(t),v(t))(v

′(t), v′(t))
)1/2

dt

≥
∫ 1

0
|r′(t)| dt

≥ |r(1)− lim
t→0

r(t)|
= L(γ).

(b) If η is not contained in U , let

t0 = inf{ t | γ(t) ∈ ∂U }.

Then, using again the Gauss lemma:

L(η) ≥ L(η|[0,t0]) ≥
∫ t0

0
|r′(t)| dt = r(t0) = ǫ > L(γ).

In any case, we have L(η) ≥ L(γ). If L(η) = L(γ), then we are in the first case and r′(t) > 0,
v′(t) = 0 for all t, so η is a radial geodesic, up to reparametrization. �

For points x, y ∈M , define

d(x, y) = inf{L(γ) | γ is a piecewise smooth curve joining x and y }.

Note that the infimum in general need not be attained. This happens for instance in the case
in which M = R2 \ {(0, 0)} and we take x = (−1, 0), y = (1, 0); here d(x, y) = 2, but there is no
curve of length 2 joining these points.

3.2.3 Proposition We have that d is a distance on M , and it induces the manifold topology in M .

Proof. First notice that the distance of any two points is finite. In fact, since a manifold is
locally Euclidean, the set of points of M that can be joined to a given point by a piecewise smooth
curve is open. This gives a partition of M into open sets. By connectedness, there must be only
one such set.

Next, we remark that d(x, y) = d(y, x), since any curve can be reparametrized backwards. Also,
the triangular inequality d(x, y) ≤ d(x, z)+d(z, y) holds by juxtaposition of curves, and d(x, x) = 0
holds by using a constant curve.

In order to have that d is a distance, it only remains to prove that d(x, y) > 0 for x 6= y.
Choose ǫ > 0 such that y 6∈ U and U = expx(B(0x, ǫ)) is a normal neighborhood of x, and set
V = expx(B(0x,

ǫ
2)). If γ is any piecewise smooth curve joining x to y, and t0 = inf{ t | γ(t) 6∈ V },

then L(γ) ≥ L(γ|[0,t0]) ≥ ǫ
2 > 0, where the second inequality is a consequence of Proposition 3.2.2.

It follows that d(x, y) > 0.

Now that we have the d is a distance, we remark that the same Proposition 3.2.2 indeed implies
that, in the normal neighborhood U of x, namely for 0 < r < ǫ, the distance spheres

S(x, r) := { z ∈M | d(z, x) = r }
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coincide with the geodesic spheres

{expx(v) | gx(v, v)1/2 = r }.

In particular, the distance balls

B(x, r) := { z ∈M | d(z, x) < r }

coincide with the geodesic balls expx(B(0x, r)). Since the former make up a system of fundamental
neighborhoods of x for the topology of (M,d), and the latter make up a system of fundamental
neighborhoods of x for the manifold topology of M , and x ∈ M is arbitrary, it follows that the
topology induced by d coincides with the manifold topology of M . �

Combining results of Propositions 2.4.7 and 3.2.2, we now have the following proposition.

3.2.4 Proposition Let p ∈ M , and let ǫ > 0 be such that U is an ǫ-totally normal neighborhood
of p as in Proposition 2.4.7. Then, for any x, y ∈ U , there exists a unique geodesic γ of length less
than ǫ joining x and y; moreover, γ depends smoothly on x and y. Finally, the length of γ is equal
to the distance between x and y, and γ is the only piecewise smooth curve in M with this property,
up to reparametrization.

Proof. The first part of the statement is just a paraphrase of Proposition 2.4.7. The second one
follows from Proposition 3.2.2. �

We say that a piecewise smooth curve γ : [a, b] →M is minimizing if L(γ) = d(γ(a), γ(b)).

3.2.5 Lemma Let γ : [a, b] → M be a minimizing curve. Then the restriction γ|[c,d] to any
subinterval [c, d] ⊂ [a, b] is also minimizing.

Proof. Suppose, on the contrary, that γ is not minimizing on [c, d]. This means that there is
a piecewise smooth curve η from γ(c) to γ(d) that is shorter than γ|[c,d]. Consider the piecewise
smooth curve ζ : [a, b] →M constructed by replacing γ|[c,d] by η, namely,

ζ(t) =







γ(t) if t ∈ [a, c],
η(t) if t ∈ [c, d],
γ(t) if t ∈ [d, b].

Then ζ is a piecewise smooth curve from γ(a) to γ(b) and it is clear that ζ is shorter than γ, which
is a contradiction. Hence, γ is minimizing on [c, d]. �

We can now state the promised characterization of geodesics as the locally minimizing curves.

3.2.6 Theorem (Geodesics are the locally minimizing curves) A piecewiese smooth curve
γ : [a, b] → M is a geodesic up to reparametrization if and only if every sufficiently small arc of it
is a minimizing curve.

Proof. Just by continuity, every sufficiently small arc of γ is contained in an ǫ-totally normal
neighborhood U of some point of M . But the length of a curve in U of length less than ǫ realizes
the distance between the endpoints of the curve if and only if that curve is a geodesic, up to
reparametrization by Proposition 3.2.4. Since being a geodesic is a local property, the result is
proved. �

Since geodesics are smooth, it follows from Lemma 3.2.5 and Theorem 3.2.6 that a minimizing
curve must be smooth.
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3.3 Geodesic completeness and the Hopf-Rinow theorem

A Riemannian manifold M is called geodesically complete if every geodesic of M can be extended
to a geodesic defined on all of R. For instance, Rn satisfies this condition since its geodesics are
lines, but Rn minus one point does not. A more interesting example is the upper half-plane:

{(x, y) ∈ R2 | y > 0}.

This manifold is not geodesically complete with respect to the Euclidean metric dx2+dy2, but it is
so with respect to the hyperbolic metric 1

y2
(dx2 + dy2) (cf. example 2.4.8 of chapter 2). Of course,

an equivalent way of rephrasing this definition is to say that M is geodesically complete if and only
if expp is defined on all of TpM , for all p ∈M .

We will use the following lemma twice in the proof of the Hopf-Rinow theorem.

3.3.1 Lemma Let (M, g) be a connected Riemannian manifold. Let x, y ∈ M be distinct points
and let S be the geodesic sphere of radius δ and center x in (M,d). Then, for sufficiently small
δ > 0, there exists z ∈ S such that

d(x, z) + d(z, y) = d(x, y).

Proof. If δ > 0 is sufficiently small so that the ball B(0x, δ) is contained in an open set where
expx is a diffeomorphism onto its image, then S = expx(S(0x, δ)), where S(0x, δ) is the sphere of
center 0x and radius δ in (TxM, gx). It will also be convenient to assume that δ < d(x, y). Since S
is compact, there exists a point z ∈ S such that d(y, S) = d(y, z).

If γ is a piecewise smooth curve from x to y parametrized on [0, 1], since d(x, y) > δ, we have
that γ meets S at a point γ(t), and then

L(γ) = L(γ|[0,t]) + L(γ|[t,1])
≥ d(x, γ(t)) + d(γ(t), y)

≥ d(x, z) + d(z, y).

This implies that d(x, y) ≥ d(x, z)+ d(z, y). The thesis now follows from the triangle inequality. �

Historically speaking, it is interesting to notice that the celebrated Hopf-Rinow theorem was
only proved in 1931 [HR31]. For ease of presentation, we divide its statement into two parts.
The proof of (3.3.2) presented below is due to de Rham [dR73] and is different from the original
argument in [HR31].

3.3.2 Theorem (Hopf-Rinow) Let (M, g) be a connected Riemannian manifold.

a. Let p ∈ M . If expp is defined on all of TpM , then any point of M can be joined to p by a
minimizing geodesic.

b. If M is geodesically complete, then any two points of M can be joined a minimizing geodesic.

The converse of item (b) in the theorem is false, as can be seen simply by taking M to be an
open ball (or any convex subset) of Rn with the induced metric.

Proof of Theorem 3.3.2. Plainly, it is enough to prove assertion (a) as this assertion implies the
other one. So we assume that expp is defined on all of TpM , and we want to produce a minimizing
geodesic from p to a given point q ∈M . Roughly speaking, the idea of the proof is to start from p
with a geodesic in the “right direction”, and then to prove that this geodesic eventually reaches q.
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By Lemma 3.3.1, for sufficiently small δ > 0, there exists p0 such that

d(p, p0) = δ and d(p, p0) + d(p0, q) = d(p, q).

Let v ∈ TpM be the unit vector such that expp(δv) = p0, and consider γ(t) = expp(tv). We have
that γ is a geodesic defined on all of R. We will prove that γ(d(p, q)) = q.

Let I = { t ∈ R | d(p, q) = t + d(γ(t), q) }. We already know that 0, δ ∈ I, so I is nonempty.
Let T = sup I ∩ [0, d(p, q)]. Since the distance d : M ×M → R is a continuous function, I is a
closed set, and thus contains T . Note that the result will follow if we can prove that T = d(p, q).
So suppose that T < d(p, q). Then we can apply Lemma 3.3.1 to the points γ(T ) and q to find
ǫ > 0 and q0 ∈M such that

(3.3.3) d(γ(T ), q0) = ǫ and d(γ(T ), q0) + d(q0, q) = d(γ(T ), q).

Hence

d(p, q0) ≥ d(p, q)− d(q0, q)

= d(p, q)−
(
d(γ(T ), q)− d(γ(T ), q0)

)

=
(
d(p, q)− d(γ(T ), q)

)
+ d(γ(T ), q0)

= T + ǫ,(3.3.4)

since T ∈ I. Let η be the unique unit speed minimizing geodesic from γ(T ) to q0. Since the
concatenation of γ|[0,T ] and η is a piecewise smooth curve of length T + ǫ joining p to q0, it follows
from estimate (3.3.4) that d(p, q0) = T + ǫ. Now the concatenation is a minimizing curve, so by
Lemma 3.2.5 and Theorem 3.2.6 it must be a geodesic, thence, smooth. Due to the uniqueness of
geodesics with given initial conditions, η must extend γ|[0,T ] as a geodesic, and therefore γ(T + ǫ) =
η(ǫ) = q0. Using this and equations (3.3.3), we finally get that

d(q, γ(T + ǫ)) + T + ǫ = d(q, q0) + d(γ(T ), q0) + T = d(γ(T ), q) + T = d(p, q),

and this implies that T + ǫ ∈ I, which is a contradiction. Hence the supposition that T < d(p, q)
is wrong and the result follows. �

3.3.5 Theorem (Hopf-Rinow) Let (M, g) be a connected Riemannian manifold. Then the fol-
lowing assertions are equivalent:

a. (M, g) is geodesically complete.
b. For every p ∈M , expp is defined on all of TpM .
c. For some p ∈M , expp is defined on all of TpM .
d. Every closed and bounded subset of (M,d) is compact.
e. (M,d) is complete as a metric space.

Proof. The assertions that (a) implies (b) and (b) implies (c) are obvious. We start the proof
showing that (c) implies (d). LetK be a closed and bounded subset ofM . SinceK is bounded, there
exists R > 0 such that supx∈K{d(p, x)} < R. For every q ∈ K, there exists a minimizing geodesic γ
from p to q by assumption and the first part of Theorem 3.3.2. Note that L(γ) = d(p, q) < R. This
shows that K ⊂ expp(B(0p, R)). Clearly, the set K ′ = exp−1

p (K) ∩B(0p, R) is closed and bounded
in TpM , thus, it is compact. Since K = exppK

′, we get that K is also compact.

The proof that (d) implies (e) is a general argument in the theory of complete metric spaces.
In fact, any Cauchy sequence in (M,d) is bounded, hence contained in a closed ball, which must be
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compact by (d). Therefore the sequence admits a convergent subsequence, and thus it is convergent
itself proving (e).

Finally, let us show that (e) implies (a). This is maybe the most relevant part of the proof of
this corollary. So assume that γ is a geodesic of (M, g) parametrized with unit speed. The maximal
interval of definition of γ is open by the Theorem 2.4.2 on the local existence and uniqueness
of solutions of second order differential equations; let it be (a, b), where a ∈ R ∪ {−∞} and
b ∈ R ∪ {+∞}.

We claim that γ is defined on all of R. Suppose, on the contrary, that b < +∞. Choose a
sequence (tn) in (a, b) such that tn 1 b. Since

d(γ(tm), γ(tn)) ≤ L(γ|[tm,tn]) = tn − tm

for n > m, the sequence (γ(tn)) is a Cauchy sequence and thus converges to a point p ∈M by (e).
Let U be a totally normal neighborhood of p given by Proposition 2.4.7 such that every geodesic
starting at a point in U is defined at least on the interval (−ǫ, ǫ), for some ǫ > 0. Choose n so that
|tn − b| < ǫ

2 and γ(tn) ∈ U . Then tn + ǫ > b+ ǫ
2 and the geodesic γ can be extended to (a, tn + ǫ),

which is a contradiction. Hence b = +∞. Similarly, one shows that a = −∞, and this finishes the
proof of the corollary. �

We call the attention of the reader to the equivalence of statements (a) and (e) in Theorem 3.3.5.
Because of it, hereafter we can say unambiguously that a Riemannian manifold is complete if it
satisfies either one of assertions (a) or (e). The following are immediate corollaries of the Hopf-
Rinow theorem.

3.3.6 Corollary A compact Riemannian manifold is complete.

Recall that the diameter of a metric space (M,d) is defined to be

diam(M) = sup{ d(x, y) | x, y ∈M }

3.3.7 Corollary A complete Riemannian manifold of bounded diameter is compact.

As an application of the concept of completeness, we prove the following proposition which will
be used in Chapter 6.

3.3.8 Proposition Let π : (M̃, g̃) → (M, g) be a local isometry.
a. If π is a Riemannian covering map and (M, g) is complete, then (M̃, g̃) is also complete.
b. If (M̃, g̃) is complete, then π is a Riemannian covering map and (M, g) is also complete.

Proof. (a) Let γ̃ be a geodesic in M̃ . Then the curve γ in M defined by γ = π ◦ γ̃ is a geodesic
of M by Proposition 2.8.3. In view of the completeness of M , γ is defined on all of R. Again by
Proposition 2.8.3, γ̃ is a lifting of γ, so γ̃ can be extended to be defined on all of R, proving that
M̃ is geodesically complete.

(b) Let p ∈ M . We need to construct an evenly covered neighborhood p in M . Suppose
that π−1(p) = { p̃i ∈ M̃ | i ∈ I }, where I is some index set. We can choose r > 0 such that
expp : B(0p, r) → B(p, r) is a difeomorphism, where B(p, r) denotes the open ball in M of center p

and radius r. Set U = B(p, r2) and Ũi = B(p̃i,
r
2); these are open sets in M , M̃ , respectively. Since

π is a local isometry by assumption, we have that the diagram

(3.3.9)

B(0p̃i ,
r
2)

expp̃i−−−−→ Ũi

dπp̃i



y



yπ

B(0p,
r
2) −−−−→

expp
U
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is commutative for all i. Next, we use the assumption that (M̃, g̃) is geodesically complete for the
first time (it will be used again below). It implies via the Theorem of Hopf-Rinow that any point
in Ũi can be joined to p̃i by a minimizing geodesic, and hence

(3.3.10) expp̃i

(

B
(

0p̃i ,
r

2

))

= Ũi

for all i (note that the direct inclusion is always valid, so we actually used the assumption only to
get the reverse inclusion). This, put together with (3.3.9), gives that π(Ũi) = U for all i, hence

⋃

i∈I
Ũi ⊂ π−1(U).

Since expp ◦ dπp̃i : B(0p̃i ,
r
2) → U is a injective, (3.3.9) and (3.3.10) indeed imply that

π : Ũi → Ui

is injective; as it is already surjective and a local diffeomorphism, this implies that it is a diffeo-
morphism. We also claim that the Ũi for i ∈ I are pairwise disjoint. Indeed, if there is a point
q ∈ Ũi ∩ Ũj , then

d(p̃i, p̃j) ≤ d(p̃i, q) + d(q, p̃j) <
r

2
+
r

2
= r,

so p̃j ∈ B(p̃i, r). But one sees that π is injective on B(p̃i, r) in the same way as we saw that π is
injective on Ũi. It follows that p̃i = p̃j and hence i = j.

It remains to show that π−1(U) ⊂ ∪i∈I Ũi. Let q̃ ∈ π−1(U). Set π(q̃) = q ∈ U . By our choice of
r, there is a unique v ∈ TqM such that ||v|| < r

2 and p = expq v. Let ṽ = (dπq̃)
−1(v) ∈ Tq̃M̃ . The

geodesic γ̃(t) = expq̃(tṽ) is defined on R since (M̃, g̃) is complete. Now

π ◦ γ(1) = π ◦ expq̃(ṽ) = expπ(q̃)((dπ)q̃(ṽ)) = expq v = p,

so γ̃(1) = p̃i0 for some i0 ∈ I. Since ||ṽ|| < r
2 , we have that q̃ = γ̃(0) ∈ B(p̃i0 ,

r
2) = Ũi0 , as desired.

Now that we know that π is a Riemannian covering, the completeness of M follows from that
of M̃ and Proposition 2.8.3. �

We close this section by proving that Killing fields on complete Riemannian manifolds are
complete.

3.3.11 Proposition Let M be a complete Riemannian manifold. Then any Killing field on M is
complete as a vector field. It follows that the Lie algebra of Killing fields on M is isomorphic to
the Lie algebra of the isometry group of M .

Proof. Let X be a Killing field on M , and let γ : (a, b) → M be an integral curve of X.
In order to prove that X is complete, it suffices to show that γ can be extended to (a, b]. In fact
formula (2.5.1) implies that Xg(X,X) = 0, whence ||γ′|| is a constant c. Therefore for t1, t2 ∈ (a, b),
we have

d(γ(t1), γ(t2)) ≤ L(γ|[t1,t2]) = c(t2 − t1).

Then it follows from the completeness of M that limt→b− γ(t) exists, as desired.
We have proved that Killing fields are infinitesimal generators of (global) one-parameter sub-

groups of isometries of M . The second assertion follows. �
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3.4 Cut locus

Consider the following facts that we have already discussed: every geodesic is locally minimizing
(Theorem 3.2.6); a minimizing geodesic remains minimizing when restricted to a subinterval of its
domain (Lemma 3.2.5); in a complete Riemannian manifold, the domain of any geodesic can be
extended to all of R. In view of this, a natural question can be posed now: how far is a geodesic
in a complete Riemannian manifold minimizing? This is the motivation to introduce the concept
of cut locus. We start with a lemma.

3.4.1 Lemma Let M be a connected Riemannian manifold. Let γ : I → R be a geodesic, where I
is an open interval, and let [a, b] ⊂ I.
a. If there exists another geodesic η of the same length as γ from γ(a) to γ(b), then γ is not

minimizing on [a, b+ ǫ] for any ǫ > 0.
b. If (M, g) is complete and no geodesic from γ(a) to γ(b) is shorter than γ, then γ is minimizing

on [a, b].

Proof. (a) Consider the piecewise smooth curve ζ : [a, b+ ǫ] →M defined by

ζ(t) =

{
η(t) if t ∈ [a, b],
γ(t) if t ∈ [b, b+ ǫ].

Since η and γ are distinct geodesics, ζ is not smooth at t = b. It follows that ζ is not minimizing on
[a, b+ ǫ]. Since γ and ζ have the same length on [a, b+ ǫ], this implies that neither γ is minimizing
on this interval.

(b) If M is complete, there exists a minimizing geodesic ζ from γ(a) to γ(b) by the Hopf-Rinow
theorem. Since no geodesic from γ(a) to γ(b) is shorter than γ, ζ and γ have the same length, so
γ is also minimizing. �

Henceforth, in this section, we assume that M is a complete Riemannian manifold. Fix a point
p ∈M . For each unit tangent vector v ∈ TpM , we define

(3.4.2) ρ(v) = sup{ t > 0 | d(p, γv(t)) = t }.

Of course, ρ(v) can be infinite. Notice that the set in the right hand side is a closed interval.
It is immediate from the definition that γv is minimizing on [0, t] if 0 < t ≤ ρ(v), and γv is not
minimizing on [0, t] if t > ρ(v). It follows from Lemma 3.4.1 that γv is the unique minimizing
geodesic from p to γv(t) if 0 < t < ρ(v).

It is not difficult to prove that ρ is a continuous function from the unit sphere of TpM into
(0,+∞] (see exercise 10 in chapter 5); as usual, the topology we are considering in (0,+∞] is such
that a system of local neighborhoods of the point +∞ is given by the complements in (0,+∞] of
the compact subsets of (0,+∞). By compactness of the unit sphere UpM of TpM , it follows that
there exists v0 ∈ UpM such that ρ(v0) = supv∈UpM ρ(v), but it can happen that ρ(v0) = +∞.

The injectivity radius at p is defined to be

injp(M) = { inf ρ(v) | v ∈ TpM, ||v|| = 1 }.

It follows that injp(M) ∈ (0,+∞]. Also, the injectivity radius of M is defined to be

inj(M) = inf
p∈M

injp(M).

One shows that p ∈ M 7→ injp(M) ∈ (0,+∞] is a continuous function. We refer the reader
to [Sak96, ch. III, sec. 4] for proofs of these facts.
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In the case in which M is compact, its diameter is finite, so no geodesic can be minimizing past
t = diam(M). Hence ρ(v) is finite for every unit vector v ∈ TpM , and it follows that ρ is bounded
and inj(M) is finite and positive.

The tangential cut locus of M at p is defined as the subset of TpM given by

Cp = { ρ(v)v ∈ TpM | v ∈ TpM, ||v|| = 1 }.

The cut locus of M at p is defined as the subset of M given by

Cut(p) = exppCp = { γv(ρ(v)) | v ∈ TpM, ||v|| = 1 }.

We will also consider the star-shaped open subset of TpM given by

Dp = { tv ∈ TpM | 0 ≤ t < ρ(v), v ∈ TpM , ||v|| = 1 }.

Notice that ∂Dp = Cp and injp(M) = d(p,Cut(p)) (possibly infinite).

3.4.3 Proposition Let M be a complete Riemannian manifold. Then, for every p ∈ M , we have
a disjoint union

M = expp(Dp)∪̇Cut(p).

Proof. Given x ∈M , by the Hopf-Rinow theorem there exists a minimizing unit speed geodesic
γv joining p to x, where v ∈ TpM and ||v|| = 1. As γv is minimizing on [0, d(p, x)], we have that
ρ(v) ≥ d(p, x). This implies that d(p, x)v ∈ Dp∪Cp, thence x = expp(d(p, x)v) ∈ expp(Dp)∪Cut(p)
proving that M = expp(Dp) ∪ Cut(p).

On the other hand, suppose that x ∈ expp(Dp) ∩ Cut(p). Then x ∈ expp(Dp) means that there
exists a minimizing unit speed geodesic γ : [0, a] →M with γ(0) = p, γ(a) = x and γ is minimizing
on [0, a + ǫ] for some ǫ > 0. On the other hand, x ∈ Cut(p) means that there exists a minimizing
unit speed geodesic η : [0, b] →M with η(0) = p, η(b) = x and η is not minimizing past b. It follows
that γ and η are distinct. We reach a contradiction by noting that γ cannot be minimizing past a
by Lemma 3.4.1(a). Hence such an x cannot exist, namely, expp(Dp) ∩ Cut(p) = ∅. �

We already know that expp is injective on Dp. We will see in ??? that expp is a diffeomorphism of
Dp onto its image. It follows that, ifM is compact, expp(Dp) is homeomorphic to an open ball inRn,
andM is obtained from Cut(p) by attaching an n-dimensional cell via the map expp : Cp → Cut(p).
In particular, Cut(p) is a strong deformation retract of M \ {p}:�1�one simply pushes M \ {p} out
to Cut(p) along the geodesics emanating from p.

3.5 Examples

Empty cut-locus

In the case of Rn and RHn, we already know that the geodesics are defined on R, so these
Riemannian manifolds are complete (see exercise 7 of chapter 2 for the geodesics of RHn). We also
know that there is a unique geodesic segment joining two given distinct points; since by the Hopf-
Rinow theorem there must be a minimizing geodesic joing those two points, that geodesic segment
must be the minimizing one. It follows that any geodesic segment is minimizing and hence the
cut-locus of any point is empty. These situation will be generalized in chapter 6 (cf. Corollary ??).

�1�Mention implications for the topology of M .
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Sn and RPn

In the case of Sn, the geodesics are the great circles, so they are defined on R, even if they are all
periodic. Therefore Sn is complete. Let p ∈ Sn. A unit speed geodesic γ starting at γ(0) = p is
minimizing before it reaches the antipodal point γ(π) = −p because γ is the only geodesic joining
p to γ(t) for t ∈ (0, π). If t = π + ǫ for some small ǫ > 0, then there is a shorter geodesic η joining
p to γ(t) which has η′(0) = −γ′(0). It follows that Cut(p) = {−p}.

In the case of RPn, the geodesics are the projections of the the geodesics of Sn under the
double covering π : Sn → RPn. Let p̄ = π(p). Given two distinct unit speed geodesics γ1, γ2 in
Sn starting at p, the smallest t > 0 for which we can have γ1(t) = −γ2(t) is t = π/2, namely, the
parameter value at which γ1 and γ2 reach the equator Sn−1 of Sn (note that this happens only if
−γ′2(0) = γ′1(0)). It follows that any unit speed geodesic in RPn is minimizing until time π/2; it
also clear that such a geodesic is not minimizing past time π/2. It follows that Cut(p̄) is the image
of the equator Sn−1 ⊂ Sn under π, and is thus isometric to RPn−1.

Rectangular flat 2-tori

The next example we consider is a rectangular 2-torus R2/Γ, where Γ is spanned by an orthogonal
basis {v1, v2} of R2. We want to describe Cut(p̄), where p̄ = π(p) for some p ∈ R2 and π : R2 →
R2/Γ is the projection. For simplicity, assume p = 1

2(v1+v2). Then p is the center of the rectangle
R = { a1v1 + a2v2 ∈ R2 | 0 ≤ a1, a2 ≤ 1 }. If x̄ = π(x) for some x ∈ R2, then the geodesics
joining p̄ to x̄ are exactly the projections of the line segments in R2 joining p to a point in x+ Γ.
It follows that if γ is a line in R2 starting at p and γ̄ = π ◦ γ is the corresponding geodesic in R2/Γ
starting at p̄, then γ̄ is minimizing before γ goes out of R, and not afterwards. It follows that
expp(Dp̄) = π(intR) and Cut(p̄) = π(∂R) is homeomorphic to the bouquet of two circles S1 ∨ S1.

Riemannian submersions and CPn

We first describe the behavior of geodesics with regard to Riemannian submersions. Let π : M̃ →M
be a Riemannian submersion, and denote by H the associated horizontal distribution in M̃ . A
smooth curve in M is called horizontal if it is everywhere tangent to H.

3.5.1 Proposition Let π : M̃ →M be a Riemannian submersion.
a. We have that π is distance-nonincreasing, namely,

d(π(x̃), π(ỹ)) ≤ d(x̃, ỹ)

for every x̃, ỹ ∈ M̃ .
b. Let γ be a geodesic of M . Given p̃ ∈ π−1(γ(0)), there exists a unique locally defined horizontal

lift γ̃ of γ with γ̃(0) = p̃, and γ̃ is a geodesic of M̃ .
c. Let γ̃ be a geodesic of M̃ . If γ̃′(0) is a horizontal vector, then γ̃′(t) is horizontal for every t

in the domain of γ̃ and the curve π ◦ γ̃ is a geodesic of M of the same length as γ̃.
d. If M̃ is complete, then so is M .

Proof. (a) If γ̃ is a piecewise smooth curve on M̃ joining x̃ and ỹ, then the curve π ◦ γ̃ on M is
also piecewise smooth and joins π(x̃) and π(ỹ). Moreover, L(π ◦ γ̃) ≤ L(γ̃), because the projection
dπ : TM̃ → TM kills the vertical components of vectors and preserves the horizontal ones. It
follows that d(π(x̃), π(ỹ)) ≤ d(x̃, ỹ).

(b) If γ is constant, there is nothing to be proven, so we can assume that γ is an immersion.
Then there is ǫ > 0 such that N = γ(−ǫ, ǫ) is an embedded submanifold of M . Since π is a
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submersion, the pre-image Ñ = π−1(N) is an embedded submanifold of M̃ . Now there is a smooth
function φ : Ñ → (−ǫ, ǫ) such that π(x̃) = γ(φ(x̃)) for every x̃ ∈ N . Using this function, we can
define a smooth horizontal vector field on Ñ by setting

(3.5.2) Xx̃ = (dπx̃|Hx̃
)−1(γ′(φ(x̃))).

Given p̃ ∈ π−1(γ(0)) ∈ Ñ , let γ̃ be the integral curve of X̃ such that γ̃(0) = p̃. Then γ̃ is a
horizontal curve locally defined around 0, and π ◦ γ̃ = γ because of (3.5.2). It remains to see that
γ̃ is a geodesic. Indeed, using Theorem 3.2.6 and (a) we have that for every t0 in the domain of γ̃,
there exists δ > 0 such that

L(γ̃|[t0,t0+h]) = L(γ|[t0,t0+h]) = d(γ(t0), γ(t0 + h)) ≤ d(γ̃(t0), γ̃(t0 + h))

for 0 < h < δ, and there is a similar formula for −δ < h < 0. It follows that γ̃ is locally minimizing.
Since ||γ̃′|| = ||γ|| is a constant, γ̃ is already parametrized proportional to arc-length, hence it is a
geodesic.

(c) Let γ̃ be a geodesic of M̃ . Put p̃ = γ̃(0) and suppose γ is the geodesic of M with initial
conditions γ(0) = π(p̃) and γ′(0) = dπp̃(γ

′(0)). Using (b), we have a locally defined horizontal
lift η̃ of γ with η̃(0) = p̃ which is also a geodesic of M̃ . Since γ̃′(0) and η̃′(0) are both horizontal
vectors, it follows that γ̃ and η̃ coincide on their common open interval of definition. This interval
is also the set of points in the domain of γ̃ where it indeed is a horizontal lift of γ. Since being a
horizontal lift of γ defines a closed subset of the domain of γ̃, it follows that γ̃ is a horizontal lift of
γ wherever it is defined. The assertion about the lengths of γ̃ and γ plainly follows from the fact
that dπx̃ : Hx̃ → Tπ(x̃)M is a linear isometry for x̃ ∈ M̃ .

(d) Let γ be a geodesic of M . By (b), γ admits a horizontal lift γ̃ which turns out to be defined
on R due to the completeness of M̃ . It follows from (c) that π ◦ γ̃ is a geodesic of M defined on R,
which must clearly extend γ. Hence M is complete. �

In the preceding proposition, it can happen that M is complete but M̃ is not. This happens
for instance if π is the inclusion of a proper open subset of Rn into Rn.

Next we turn to the question of describing the cut-locus of CPn. Consider the Riemannian
submersion π : S2n+1 → CPn where as usual we view S2n+1 as the unit sphere in Cn+1. Note
that CPn is complete by Proposition 3.5.1(d). Let p̃ ∈ S2n+1. Since the fibers of π are just the
S1-orbits, the vertical space Vp̃ = R(ip̃). It follows that the horizontal space Hp̃ ⊂ Tp̃S

2n+1 is
the orthogonal complement of R{p̃, ip̃} = Cp̃ in C2n+1. In view of the proposition, the unit speed
geodesics of CPn starting at p = π(p̃) are of the form γ(t) = π(cos tp̃+sin tṽ), where ṽ is orthogonal
to p̃ and ip̃. It follows that geodesics are defined on R and periodic of period π.

We agree to retain the above notations and consider another unit geodesic starting at p̃, η(t) =
π(cos tp̃+sin tũ), where ũ ∈ Hp̃. Starting at t = 0, cos tp̃+sin tṽ and cos tp̃+sin tũ become linearly
dependent over C for the first time at t = π (if ṽ, ũ are linearly independent over C) or at t = π/2
(if ṽ, ũ are linearly dependent over C). This means that γ and η meet for the first time at t = π
in the first case and at t = π/2 in the second one. It follows that γ is minimizing on [0, t0] for
t0 ≤ π/2. By using Lemma 3.4.1, It also follows that γ is not minimizing on [0, t0] for t0 > π/2.

It follows from the discussion in the previous paragraph that Dp = B(0p,
π
2 ) and a typical point

in Cut(p) is of the form γ(π2 ) = π(ṽ), where ṽ is a unit vector in Hp̃. Since the unit sphere of Hp̃

is isometric to S2n−1, Cut(p) = π(S2n−1) turns out to be isometric to CPn−1.

3.6 Additional notes

§1 Let (X, d) be a connected metric space and define the length of a continuous curve γ : [a, b] → X
to be the supremum of the lengths of all polygonal paths inscribed in γ that join γ(a) to γ(b),
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namely,

L(γ) = sup
P

n∑

i=1

d(γ(ti−1), γ(ti)),

where P : a = t0 < t1 < · · · < tn = b runs over all subdivisions of the interval [a, b]. A curve is
called rectifiable if its length is finite. Now (X, d) is called a length space if the distance between
any two points can be realized by the length of a continuous curve joining the two points, namely,
for every x, y ∈ X,

d(x, y) = inf
γ
L(γ),

where γ runs over the set of all continuous curves joining x to y. Any picewise smooth curve in a
connected Riemannian manifold is rectifiable and its length in this sense coincides with its length in
the sense of (1.3.6). It follows that the underlying metric space of a connected Riemannian manifold
is a length space, but length spaces of course form a much larger class of metric spaces involving
no a priori differentiability properties. Many concepts and results of Riemannian geometry admit
generalizations to the class of length spaces. For instance, geodesics in length spaces are defined
to be the continuous, locally minimizing curves, and one proves that if (X, d) is a complete locally
compact length space, then any two points are joined by a minimizing geodesic. There is a distance
in the space of isometry classes of compact metric spaces called the Gromov-Hausdorff distance
which turns it into a complete metric space itself (for noncompact spaces, a slightly more general
notion of distance is used), and length spaces form a closed subset in this topology. In this sense,
length spaces appear as limits of Riemannian manifolds. For an introduction to general length
spaces, see [BBI01].

§2 Next, we give an interesting class of examples of length spaces. Namely, one starts with a
connected Riemannian manifold (M, g) of dimension n equipped with a smooth distribution D of
dimension k, where 1 < k < n, and, for x, y ∈ M , declares d(x, y) = infγ L(γ) where the infimum
is taken over the piecewise smooth curves γ joining x to y such that γ′ is tangent to D whenever
defined. If D is sufficiently generic, in the sense that iterated brackets of arbitrary length of locally
defined sections of D span TM at every point, then one shows that d is finite and (M,d) is a length
space. Note that in this definition we have only used the restriction of g to the sections of D. A triple
(M,D, g) where M is a smooth manifold, D is a bracket-generating smooth distribution as above
and g is an smoothly varying choice of inner products on the fibers of D is called a sub-Riemannian
manifold, and the associated length space (M,d) is called a Carnot-Carathéodory space; such spaces
appear for instace in mechanics with non-holonomic constraints and geometric control theory. A
very interesting feature of a Carnot-Carathéodory space is that its Hausdorff dimension is always
stricly bigger than its manifold dimension. For further reading about sub-Riemannian geometry,
we recommend [BR96, Mon02].

3.7 Exercises

1 Let (M, g) be a connected Riemannian manifold and consider the underlying metric space
structure (M,d). Prove that any isometry f of (M, g) is distance-preserving, that is, it satisfies the
condition that d(f(x), f(y)) = d(x, y) for every x, y ∈M .

2 Describe the isometry group G of Rn:
a. Show that G is generated by orthogonal transformations and translations.
b. Show that G is isomorphic to the semidirect product O(n)⋉Rn, where

(B,w) · (A, v) = (BA,Bv + w)
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for A, B ∈ O(n) and v, w ∈ Rn.

(Hint: Use the result of the previous exercise.)

3 Prove that every isometry of the unit sphere Sn of Euclidean space Rn+1 is the restriction of a
linear orthogonal transformation of Rn+1. Deduce that the isometry group of Sn is isomorphic to
O(n+ 1). What is the isometry group of RPn?

4 Prove that every isometry of the hyperboloid model of RHn is the restriction of a linear Loret-
zian orthochronous transformation of R1,n. Deduce that the isometry group of RHn is isomorphic
to O+(1, n).

5 A ray in a complete Riemannian manifold M is a unit speed geodesic γ : [0,+∞) → R such
that d(γ(0), γ(t)) = t for all t ≥ 0. We say that the ray γ emanates from γ(0).

Let M be a complete Riemannian manifold and assume that M is noncompact. Prove that, for
every p ∈M , there exists a ray γ emanating from p.

6 A line in a complete Riemannian manifold M is a unit speed geodesic γ : R → M such that
d(γ(t), γ(s)) = |t − s| for all t, s ≥ 0. Also, M is called connected at infinity if for every compact
set K ⊂ M there is a compact set C ⊃ K such that any two points in M \ C can be joined by a
curve in M \K. If M is not connected at infinity, we say that M is disconnected at infinity.

LetM be a complete Riemannian manifold and assume thatM is noncompact and disconnected
at infinity. Prove that M contains a line.

7 Prove that the following assertions for a Riemannian manifold M are equivalent:

a. M is complete.
b. There exists p ∈M such that the function x 7→ d(p, x) is a proper function on M .
c. For every p ∈M , the function x 7→ d(p, x) is a proper function on M .

8 A smooth curve γ : I → M in a Riemannian manifold M defined on an interval I ⊂ R is said
to be divergent if the image of γ does not lie in any compact subset of M .

Prove that a Riemannian manifold is complete if and only if every divergent curve in M has
infinite length.

9 Prove that on any smooth manifold a complete Riemannian metric can be defined.

10 Let M be a smooth manifold with the property that it is complete with respect to any Rie-
mannian metric in it. Prove that M must be compact. (Hint: Use the results of exercises 5
and 8.)

11 Describe the cut locus of a point in an hexagonal flat 2-torus. Note that its homeomorphism
type is different from that of the cut locus of a point in a rectangular flat 2-torus (compare Exam-
ples 3.5).

12 Let Mi be complete Riemannian manifolds, where i = 1, 2.

a. Show that the product Riemannian manifold M1 ×M2 is also complete.
b. Let p1 ∈ Mi, where i = 1, 2. Show that the cut locus of (p1, p2) in M1 ×M2 is given by
(
Cut(p1)×M2

)
∪
(
M1 × Cut(p2)

)
.
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13 A Riemannian manifold M is called homogeneous if given any two points of M there exists an
isometry of M that maps one point to the other.

Prove that a homogeneous Riemannian manifold is complete.

14 A Riemannian manifold M is called two point-homogeneous if given any two equidistant pairs
of points of M there exists an isometry of M that maps one pair to the other.

Prove that a Riemannian manifold is two point-homogeneous if and only if it is isotropic.

15 Let f , g : M → N be local isometries between Riemannian manifolds where M is connected.
Assume there exists p ∈ M such that f(p) = g(p) = q and dfp = dgp : TpM → TqN . Prove
that f = g. (Hint: Show that the set of points of M where f and g coincide up to first order is
closed and open.)

16 Let γ : (a, b) →M be a smooth curve in a Riemannian manifold M . Prove that

||γ′(t)|| = lim
h→0

d
(
γ(t+ h), γ(t)

)

h

for t ∈ (a, b). (Hint: Use a normal neighborhood of γ(t).)

17 Let (M, g) and (M ′, g′) be Riemannian manifolds, and let d and d′ be the associated distances,
respectively. Show that a distance-preserving map f : M → M ′ (cf. exercise 1) is smooth and a
local isometry. (Hint: use a normal neighborhood for the smoothness and exercise 16 to prove it is
a local isometry.) Conclude that if f is in addition surjective, then it is a global isometry.
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C H A P T E R 4

Curvature

4.1 Introduction

The curvature of a plane curve is the measure of change of the direction of the curve. Assuming the
curve parametrized by arc-length and expressing this direction as a unit tangent vector along the
curve shows that the (unsigned) curvature is the modulus of the second derivative of the curve. In
the case of a surface in R3, Gauss had already shown how to measure curvature: this is the rate of
change of the normal direction of the surface. Locally, one chooses a unit normal vector field and
differentiates it at a point as a map into the unit sphere. Since the surface is two-dimensional, the
result is now a map, namely a linear endomorphism of the tangent space at that point. This turns
out to be symmetric, hence diagonalizable overR. Its eigenvalues are called the principal curvatures
λ1 and λ2. They represent the extreme values of the curvatures of the plane curves given by the
normal sections to the surface. Equivalently, one can look at 2H = λ1 + λ2 and K = λ1λ2. The
second expression is called the Gaussian curvature and, according to Gauss’ celebrated theorema
egregium, has an intrinsic meaning in the sense that it can be expressed solely in terms of the
coefficients of the metric in a coordinate system.

Riemann generalized Gauss’ results and explained how to define the curvature of a Riemannian
manifold M . Here the dimension of M is at least two, so we start by selecting a 2-plane E
contained in TpM . Exponentiating a small neighborhood of 0p in E gives a piece of surface S
through p contained in M . The curvature of M at E is defined to be the Gaussian curvature of S
at p. This gives the sectional curvature function.

As it is, this definition cannot be very useful: it is difficult to compute and, especially, it does
not reflect relations between the sectional curvatures of neighboring planes. After Riemann, the
matter took a few decades more of study to be settled, until tensor calculus entered the scene.

Throughout this chapter, (M, g) denotes a Riemannian manifold and ∇ denotes its Levi-Cività
connection.

4.2 The Riemann-Christoffel curvature tensor

The curvature tensor is the tri-linear map R : Γ(TM)× Γ(TM)× Γ(TM) → Γ(TM) given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

It is an easy consequence of the Leibniz rule for ∇ that R is C∞(M)-linear on each argument. As
in the case of connections, this suffices to show that the value of R(X,Y )Z at p depends only on
Xp, Yp, and Zp. Hence we have a tri-linear map

Rp : TpM × TpM × TpM → TpM.
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The following are the fundamental symmetries of this map.

4.2.1 Proposition (algebraic properties of the curvature tensor) We have that
a. R(X,Y )Z = −R(Y,X)Z
b. 〈R(X,Y )Z,W 〉 = −〈R(X,Y )W,Z〉
c. 〈R(X,Y )Z,W 〉 = 〈R(Z,W )X,Y 〉
d. R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0 (first Bianchi identity)

for every X, Y , Z ∈ Γ(TM).

Proof. (a) This is clear from the definition.
(b) We compute

〈R(X,Y )Z,Z〉 = 〈∇X∇Y Z,Z〉 − 〈∇Y∇XZ,Z〉 − 〈∇[X,Y ]Z,Z〉
= X〈∇Y Z,Z〉 − 〈∇Y Z,∇XZ〉

−
(
Y 〈∇XZ,Z〉 − 〈∇XZ,∇Y Z〉

)
− 1

2
[X,Y ]〈Z,Z〉

=
1

2
XY 〈Z,Z〉 − 1

2
Y X〈Z,Z〉 − 1

2
[X,Y ]〈Z,Z〉

= 0,

where we have used several times the compatibility of the Levi-Cività connection with the metric.
The identity follows.

(d) We compute

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

+∇Y∇ZX −∇Z∇YX −∇[Y,Z]X

+∇Z∇XY −∇X∇ZY −∇[Z,X]Y

= ∇X(∇Y Z −∇ZY )−∇[X,Y ]Z

+∇Y (∇ZX −∇XZ)−∇[Y,Z]X

+∇Z(∇XY −∇YX)−∇[Z,X]Y

= ∇X [Y, Z]−∇[Y,Z]X

+∇Y [Z,X]−∇[Z,X]Y

+∇Z [X,Y ]−∇[X,Y ]Z

= [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]]

= 0,

where we have used the fact that the Levi-Cività connection is torsionless several times, and the
Jacobi identity in the last line.

(c) We use (a), (b) and (d) to compute

〈R(X,Y )Z,W 〉 = −〈R(Y, Z)X,W 〉 − 〈R(Z,X)Y,W 〉
= 〈R(Y, Z)W,X〉+ 〈R(Z,X)W,Y 〉
= −〈R(Z,W )Y,X〉 − 〈R(W,Y )Z,X〉 − 〈R(X,W )Z, Y 〉 − 〈R(W,Z)X,Y 〉
= 2〈R(Z,W )X,Y 〉+ 〈R(W,Y )X +R(X,W )Y, Z〉
= 2〈R(Z,W )X,Y 〉 − 〈R(Y,X)W,Z〉
= 2〈R(Z,W )X,Y 〉 − 〈R(X,Y )Z,W 〉,
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which gives the result. �

Let p ∈M and let E ⊂ TpM be a 2-plane. The sectional curvature of M at E is defined to be

K(E) = K(x, y) =
−〈Rp(x, y)x, y〉

||x||2||y||2 − 〈x, y〉2 ,

where {x, y} is a basis of E. One checks that this expression does not depend on the choice of basis
of E as follows. It is very easy to see that K(y, x), K(λx, y) (λ 6= 0), K(x + y, y) are all equal to
K(x, y). But one can get from {x, y} to any other basis of E by performing a number of times the
simple transformations

{
x 7→ y
y 7→ x

,

{
x 7→ λx
y 7→ y

,

{
x 7→ x+ y
y 7→ y

.

4.2.2 Proposition We have the following identity

〈Rp(x, y)z, w〉

=
1

6

∂2

∂α∂β
(〈Rp(x+ αz, y + βw)(x+ αz), y + βw〉 − 〈Rp(x+ αw, y + βz)(x+ αw), y + βz〉) ,

where x, y, z, w ∈ TpM .

Proof. By direct computation. �

It is important to remark that the identity in the preceding proposition is proved using only the
algebraic properties of the curvature tensor. Of course, the next corollary is of an algebraic nature
as well.

4.2.3 Corollary The sectional curvature function E 7→ K(E) and the metric at a point p deter-
mine the curvature tensor at p.

A Riemannian manifold (M, g) of dimension n ≥ 2 is said to have constant curvature κ if
for every point p ∈ M and every 2-plane E ⊂ TpM , the sectional curvature at E equals κ. A
Riemannian manifold (M, g) of dimension n ≥ 2 is called flat if it has constant curvature κ and
κ = 0. This terminology is consistent with the one introduced in section 1.3: since local isometries
must preserve the sectional curvature (see end of this section), a Riemannian manifold locally
isometric to Euclidean space must have vanishing seccional curvatures; conversely, we will see in
chapter 6 that a Riemannian manifold with vanishing sectional curvatures is locally isometric to
Euclidean space. A one-dimensional Riemannian manifold is also called flat, although its tangent
spaces do not contain 2-planes, since in this case we have R ≡ 0 by Proposition 4.2.1(a). A
Riemannian manifold is said to have positive curvature (resp. negative curvature) if the sectional
curvature function is positive (resp. negative) everywhere.

If dimM = 2, then a 2-plane E must coincide with TpM , and then we have a scalar-valued
function K(p) = K(TpM), which can be shown to coincide with the Gaussian curvature of M in
the case in which M is a surface in R3 equipped with the induced metric (cf. Add. notes §2).

Next, suppose that dimM ≥ 3. In this case, we say that M has isotropic curvature at a point
p if K(E) = κp for every 2-plane E ⊂ TpM , where κp is a real constant. From the definition of
sectional curvature, we have that

〈Rp(x, y)x, y〉 = −κp
(
||x||2||y||2 − 〈x, y〉2

)
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for all p ∈M and x, y ∈ TpM . Set

〈R0
p(x, y)z, w〉 = −〈x, z〉〈y, w〉+ 〈x,w〉〈y, z〉,

where p ∈ M and x, y, z, w ∈ TpM . Then R0 is a tensor that has the same symmetries as R.
Corollary 4.2.3 implies that

(4.2.4) Rp = κpR
0
p.

Obviously, a Riemannian manifold with constant curvature has isotropic curvature at all points.
It is a result due to Schur that the converse is true in dimensions at least 3.

4.2.5 Lemma (Schur) Let M be a connected Riemannian manifold. If M has isotropic curvature
at all points and dimM ≥ 3, then it has constant curvature.

We will prove the above lemma in section 4.4. Note that the curvature tensor of a Riemannian
manifold of constant curvature satisfies identity (4.2.4) where κp does not depend on p. We also
remark that local isometries must preserve the curvature tensor in the following sense, as is easily
seen by using arguments from section 2.5. If f :M → N is a local isometry between two Riemannian
manifolds, then

(4.2.6) Rf(p)(dfp(Xp), df(Yp))dfp(Zp) = Rp(Xp, Yp)Zp

for every p ∈ M and every X, Y , Z ∈ Γ(TM). Of course, it also follows that K(df(E)) = K(E)
for every 2-plane E contained in TpM and every p ∈M .

4.2.7 Remark Let ϕ : N →M be a smooth map, let X, Y ∈ Γ(TN) be vector fields in N and let
U ∈ Γ(ϕ∗TM) be a vector field along ϕ. Recall the induced connection along ϕ that was introduced
in Proposition 2.7.1. Then one can check that the following identity holds:

R(ϕ∗X,ϕ∗Y )U = ∇ϕ
X∇

ϕ
Y U −∇ϕ

Y∇
ϕ
XU −∇ϕ

[X,Y ]U.

4.3 The Ricci tensor and scalar curvature

One can say that the Riemann curvature tensor contains so much information about the Riemannian
manifold that it makes sense to consider also some simpler tensors derived from it, and these are
the Ricci tensor and the scalar curvature.

The Ricci tensor Ric at a point p ∈M is the bilinear map Ricp : TpM × TpM → R given by

Ricp(x, y) = trace (v 7→ −Rp(x, v)y),

where x, y ∈ TpM . Note that the Ricci tensor is defined directly in terms of the curvature tensor
without involving the metric. It follows immediately from the symmetries of the curvature tensor
given by Proposition 4.2.1 that Ric is symmetric, namely,

Ricp(x, y) = Ricp(y, x)

for x, y ∈ TpM and p ∈ M . So the Ricci tensor is of the same type as the metric tensor g, and
it makes sense to compare the two. An Einstein manifold is a Riemannian manifold whose Ricci
tensor is proportional to the metric. If dimM ≥ 3, it follows from Lemma 4.2.5 that the constant
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of proportionality is independent of the point, and hence the condition is that there exists λ ∈ R
such that

Ric = λ g.

Riemannians manifold satisfying Ric = 0 are called Ricci-flat. Of course, a Riemannian manifold
of constant sectional curvature is Einstein, and a flat Riemannian manifold is Ricci-flat.

We can also use the metric to view the Ricci tensor at p ∈M as a linear map TpM → TpM by
setting

〈Ric(x), y〉 = Ric(x, y).

for x, y ∈ TpM . Then it makes sense to take the trace of Ric: the scalar curvature is the smooth
function scal :M → R given by

scal(p) = traceRicp,

where p ∈M .

Fix a point p ∈M and an orthonormal basis {e1, . . . , en} of TpM . Then

Ricp(x, y) = −
n∑

j=1

〈R(x, ej)y, ej〉,

where x, y ∈ TpM . In particular, if x is a unit vector, we can assume that e1 = x and then

(4.3.1) Ricp(x, x) =
n∑

j=2

K(x, ej).

The quadratic form (4.3.1) is sometimes called the Ricci curvature; of course, its values on the unit
sphere of TpM completely determine the Ricci tensor at p, and (4.3.1) shows that Ricp(x, x) is the
(unnormalized) average of the sectional curvatures of the 2-planes containing x. We also have that

scal(p) =
n∑

i=1

Ricp(ei, ei) =
∑

i 6=j
K(ei, ej) = 2

∑

i<j

K(ei, ej),

and this equation shows that the scalar curvature at p is the (unnormalized) average of the sectional
curvatures of the 2-planes in TpM .

4.4 Covariant derivative of tensors ⋆

At this juncture, we feel like it is time to discuss how to differentiate tensors on a manifold. If
M is a Riemannian manifold, there is a canonical way of differentiating smooth vector fields on
M , namely, this is given by the Levi-Cività connection ∇. Viewing vector fields as tensor fields of
type (1, 0), we can prove that ∇ naturally extends to a connections on all tensor bundles T (r,s)M .
Denote by c : T (r,s)M → T (r−1,s−1)M an arbitrary contraction.

4.4.1 Proposition There is a unique family of connections on the tensor bundles T (r,s)M for r,
s ≥ 0, still denoted by ∇, such that the following conditions hold for X ∈ Γ(TM):

a. ∇Xf = Xf for f ∈ C∞(M) = Γ(T (0,0)M);
b. ∇XY for Y ∈ Γ(TM) is the covariant derivative associated to the Levi-Cività connection.
c. ∇X commutes with contractions, that is, ∇Xc(T ) = c(∇XT ) for T ∈ Γ(T (r,s)M) with r,
s > 0;
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d. ∇X is a derivation, that is, ∇X(T ⊗ T ′) = ∇XT ⊗ T ′ + T ⊗ ∇XT
′ for T ∈ Γ(T (r,s)M) and

T ′ ∈ Γ(T (r′,s′)M).

As a first application of Proposition 4.4.1, we view g as a tensor field of type (0, 2) and note that
the condition that the Levi-Cività connection be compatible with the metric (Proposition 2.2.5(b))
can be restated as simply saying that ∇g = 0, since

∇Xg(Y, Z) = Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ).

As another application of the proposition, we view R as a tensor field of type (1, 3) and we
prove the second Bianchi identity.

4.4.2 Proposition (Second Bianchi identity) We have that

(4.4.3) ∇XR(Y, Z)W +∇YR(Z,X)W +∇ZR(X,Y )W = 0

for every X, Y , Z, W ∈ Γ(TM).

Proof. From the definition of ∇X acting on Γ(T (1,3)M), we have

∇XR(Y, Z)W = ∇X(R(Y, Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)∇XW

Droping the W and using the identity R(X,Y )Z = [∇X ,∇Y ]−∇[X,Y ], we get

∇XR(Y, Z) = [∇X , R(Y, Z)]−R(∇XY, Z)−R(Y,∇XZ)

= [∇X , [∇Y ,∇Z ]]− [∇X ,∇[Y,Z]]−R(∇XY, Z)−R(Y,∇XZ)

= [∇X , [∇Y ,∇Z ]]−∇[X,[Y,Z]] −R(X, [Y, Z])−R(∇XY, Z)−R(Y,∇XZ).

Summing this formula with the other two obtained by cyclic permutation of (X,Y, Z), we see that
the first two terms on the right hand side cancel out because of the Jacobi identity, and invoking
the relation ∇XY −∇YX also makes remaining terms also disappear. The identity is proved. �

Finally, we use the second Bianchi identity to prove Lemma 4.2.5.

Proof of Lemma 4.2.5. We view κp = κ(p) as a function on M . Note that formula (4.2.4)
implies that this function is smooth. We use that formula to get

∇XR(Y, Z)W = (Xκ)R0(Y, Z)W + κ∇XR(Y, Z)W.

Summing over the cyclic permutations of (X,Y, Z), we have

(Xκ)R0(Y, Z)W + (Y κ)R0(Z,X)W + (Zκ)R0(X,Y )W = 0

by an application of the second Bianchi identity (4.4.3) to R0. Let X be arbitrary. As dimM ≥ 3,
we can select Y , Z so that {X,Y, Z} is orthonormal. Also, put W = Y . Then

Xκ = 0.

The connectedness of M implies that κ is constant, as desired. �
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4.5 Examples

Flat manifolds

Euclidean space is flat, since

R(X,Y )Z = X(Y (Z))− Y (X(Z))− [X,Y ](Z) = 0.

Since local isometries must preserve the curvature, it follows that the tori Rn/Γ are also flat.

Sn and RPn

Since Sn is a Riemannian submanifold of Rn+1, for its Levi-Cività connection we have that

(4.5.1) ∇XY = X(Y )− 〈X(Y ),p〉p,

where X, Y ∈ Γ(TSn) and we have denoted by p the position vector. It follows that

∇X∇Y Z = X(∇Y Z)− 〈X(∇Y Z),p〉p
= XY (Z)− 〈XY (Z),p〉p− 〈Y (Z), X〉p− 〈Y (Z),p〉X

−〈XY (Z),p〉p+ 〈XY (Z),p〉p+ 〈Y (Z), X〉p
= XY (Z)− 〈XY (Z),p〉p+ 〈Z, Y 〉X

where we have used that 〈Y (Z),p〉 = −〈Z, Y p〉 = −〈Z, Y 〉 since 〈Z,p〉 = 0. Therefore,

(4.5.2) R(X,Y )Z = 〈Y, Z〉X − 〈X,Z〉Y.

Comparing with (4.2.4) shows we have proved that Sn has constant curvature 1. Since RPn is
isometrically covered by Sn, it also has constant curvature 1.

RHn

Consider the hyperboloid model of RHn sitting inside the Lorentzian space R1,n. Although the
metric in the ambient space is now Lorentzian, the Levi-Cività connection of RHn is given by a
formula very similar to (4.5.1), namely,

∇XY = X(Y ) + 〈X(Y ),p〉p.

Indeed, one cheks easily that this formula specifies a connection on RHn that satisfies the defining
conditions for the Levi-Cività connection. A computation very similar to that in the case of Sn

thus gives that

(4.5.3) R(X,Y )Z = −〈Y, Z〉X + 〈X,Z〉Y.

Hence RHn has constant curvature −1.

Riemannian products

Let (M, g) = (M1, g1) × (M2, g2) be a Riemannian product. It follows immediately from the
description of the Levi-Cività connection on M for decomposable vector fields (2.8.1) that the
curvature tensor of M is given by

Rp(x, y)z = R1
p1(x1, y1)z1 +R2

p2(x2, y2)z2,
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where x, y, z ∈ TpM for p = (p1, p2) ∈ M1 ×M2, x = x1 + x2, y = y1 + y2, z = z1 + z2 are
the decompositions relative to the splitting TpM = Tp1M1 ⊕ Tp2M2, and R

i denotes the curvature
tensor of M i.

In particular,

g(Rp(x1, y2)x1, y2) = g1(R
1
p1(x1, 0)x1, 0) + g2(R

2
p2(0, y2)0, y2) = 0.

This shows that a mixed plane in M , i.e. a plane with nonzero components in both M1 and M2,
has sectional curvature equal to zero. It also shows that the product of two positively curved
Riemannian manifolds has non-negative curvature.

Riemannian submersions and CPn �

Let π : (M̃, g̃) → (M, g) be a Riemannian submersion and consider the splitting TM̃ = H⊕V into
the horizontal and vertical distributions. A vector field X̃ on M̃ is called:

• horizontal if Xp̃ ∈ Hp̃ for all p̃ ∈ M̃ .
• vertical if Xp̃ ∈ Vp̃ for all p̃ ∈ M̃ ;
• projectable if, for fixed p ∈M , dπ(Xp̃) is independent of p̃ ∈ π−1(p).
• basic if it is horizontal and projectable.

Note that if X̃ is a smooth projectable vector field on M̃ , then it defines a smooth vector field X
on M by setting Xp = dπ(Xp̃) for any p̃ ∈ π−1(p); in this case, X̃ and X are π-related. It also
follows from the definitions that a vertical vector field is projectable and, indeed, a vector field on
M̃ is vertical if and only if it is π-related to 0.

If X is a smooth vector field on M , it is clear that there exists a unique basic vector field X̃ on
M̃ such that X̃ and X are π-related; the vector field X̃ is necessarily smooth and it is called the
horizontal lift of X.

4.5.4 Lemma Let X̃, Ỹ be horizontal lifts of X, Y ∈ Γ(TM), resp., and let U ∈ Γ(TM̃) be a

vertical vector field. Then the vector fields [X̃, Ỹ ]− [̃X,Y ] and [U, X̃] are vertical.

Proof. Since U is π-related to 0 and X̃ is π-related to X, we have that [U, X̃] is π-related to
[0, X] = 0. A similar argument proves the other assertion. �

The next proposition describes the Levi-Cività connection ∇̃ of M̃ in terms of the Levi-Cività
connection ∇ of M . Denote by (·)v the vertical component of a vector field on M̃ .

4.5.5 Proposition Let π : (M̃, g̃) → (M, g) be a Riemannian submersion. If X, Y ∈ Γ(TM) with
horizontal lifts X̃, Ỹ ∈ Γ(TM̃), then

∇̃X̃ Ỹ = ∇̃XY +
1

2
[X̃, Ỹ ]v.

Proof. Apply the Koszul formula (2.2.6) to g̃(∇̃X̃ Ỹ , Z̃), where Z̃ is the horizontal lift of Z ∈
Γ(TM). Since dπ restricted to each Hp̃ is a linear isometry onto TpM for p = π(p̃),

X̃p̃g̃(Ỹ , Z̃) = Xpg(Y, Z).

Also, by the first assertion of Lemma 4.5.4,

g̃p̃([X̃, Ỹ ], Z̃) = gp([X,Y ], Z).
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Hence

(4.5.6) g̃p̃(∇̃X̃ Ỹ , Z̃) = gp(∇XY, Z) = g̃p̃(∇̃XY , Z̃).

Next, apply the Koszul formula to g̃(∇̃X̃ Ỹ , U), where U ∈ Γ(TM̃) is vertical. Since g̃(X̃, Ỹ ) is

constant along the fibers of π, Ug̃(X̃, Ỹ ) = 0. Using the second assertion of Lemma 4.5.4 yields
that

(4.5.7) g̃(∇̃X̃ Ỹ , U) =
1

2
g̃([X̃, Ỹ ], U).

The desired result is equivalent to (4.5.6) and (4.5.7). �

The next proposition relates the sectional curvatures of M and M̃ .

4.5.8 Proposition Let π : (M̃, g̃) → (M, g) be a Riemannian submersion. If X, Y ∈ Γ(TM) is
an orthonormal pair with horizontal lifts X̃, Ỹ ∈ Γ(TM̃), then

K(X,Y ) = K̃(X̃, Ỹ ) +
3

4
||[X̃, Ỹ ]v||2.

Proof. We start by observing that for a vertical vector field U on M̃ ,

g̃(∇̃X̃U, Ỹ ) = −g̃(U, ∇̃X̃ Ỹ ) = −1

2
g̃(U, [X̃, Ỹ ]v)

by Proposition 4.5.5, and

g̃(∇̃U X̃, Ỹ ) = g̃(∇̃X̃U, Ỹ ) + g̃([U, X̃], Ỹ ) = g̃(∇̃X̃U, Ỹ ),

by Lemma 4.5.4. Using these identities and (4.5.5) a few times, we have

∇̃X̃∇̃Ỹ X̃ = ∇̃X̃

(

∇̃YX
)

+
1

2
∇̃X̃

(

[Ỹ , X̃]v
)

= ˜∇X∇YX +
1

2
[X̃, ∇̃YX]v − 1

2
∇̃X̃

(

[X̃, Ỹ ]v
)

,

and

g̃(∇̃X̃∇̃Ỹ X̃, Ỹ ) = g̃( ˜∇X∇YX, Ỹ )− 1

2
g̃(∇̃X̃ [X̃, Ỹ ]v, Ỹ )

= g(∇X∇YX,Y ) +
1

4
||[X̃, Ỹ ]v||2

Similarly

g̃(∇̃Ỹ ∇̃X̃X̃, Ỹ ) = g̃(∇̃Ỹ ∇̃XX, Ỹ ) = g(∇Y∇XX,Y ),

and

g̃(∇̃[X̃,Ỹ ]X̃, Ỹ ) = g̃(∇̃
[̃X,Y ]

X̃, Ỹ ) + g̃(∇̃[X̃,Ỹ ]vX̃, Ỹ )

= g(∇[X,Y ]X,Y )− 1

2
||[X̃, Ỹ ]v||2.

It follows that

g̃(R̃(X̃, Ỹ )X̃, Ỹ ) = g(R(X,Y )X,Y )− 3

4
||[X̃, Ỹ ]v||2,
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and this clearly implies the desired formula. �

We now apply the above results to the question of computing the sectional curvature of CPn.
Consider as usual the Riemannian submersion π : M̃ = S2n+1 →M = CPn. We will first define a
complex structure on each tangent space to M .�1� Since the horizontal space Hp̃ ⊂ Tp̃S

2n+1, for
p̃ ∈ S2n+1, is the orthogonal complement of R{p̃, ip̃} = Cp̃ in C2n+1, it follows that Hp̃ is a complex
vector subspace of Cn+1. We transfer the complex structure of Hp̃ to TpM , where p = π(p̃), by
conjugation with the isometry dπp̃|Hp̃

: Hp̃ → TpM , namely we set

Jpv = dπp̃ ◦ J0 ◦ (dπp̃|Hp̃
)−1(v) = dπ(iṽ),

where J0 : R2n+2 → R2n+2 is the standard complex structure on R2n+2 that allows us to identify
R2n+2 ∼= Cn+1, and ṽ is the horizontal lift of v at p̃. Let us check that Jp is well defined in the
sense that if we had started with a different point p̃′ ∈ π−1(p), we would have gotten the same
result. Indeed p̃′ = zp̃ for some z ∈ S1. Denote by ϕz : Cn+1 → Cn+1 the multiplication by z.
Then π ◦ ϕz = π which, via the chain rule, yields that dπp̃′ ◦ ϕz = dπp̃ and hence

dπp̃′ ◦ J0 ◦ (dπp̃′ |Hp̃′
)−1 = dπp̃ ◦ ϕz ◦ J0 ◦ ϕz−1 ◦ (dπp̃|Hp̃

)−1

= dπp̃ ◦ J0 ◦ (dπp̃|Hp̃
)−1,

since ϕz maps Hp̃ onto Hp̃′ . Next, it is clear that

J2
p = −idTpM ,

so Jp introduces on TpM the structure of a complex vector space. It is also easy to see that Jp is
a linear isometry because

g(Jpv, Jpw) = g̃(iṽ, iw̃) = g̃(ṽ, w̃) = g(v, w),

where v, w ∈ TpM and ṽ, w̃ ∈ Hp̃ are their corresponding lifts, and we have used the fact that
multiplication by i is an isometry of Cn+1. Now consider Jp for varying p ∈ CPn. If X is a smooth
vector field on CPn, then, plainly, JX = dπ(iX̃), and this implies that also JX is a smooth vector
field on CPn. Hence J is a smooth tensor field of type (1, 1) on CPn. Next, we introduce the
vertical vector field ξ by putting

(4.5.9) ξ(p̃) =
d

dθ

∣
∣
∣
θ=0

(eiθp̃) = ip̃ = J0(p).

Note that ξ is a smooth, unit vector field on S2n+1. Then X̃(ξ) = J0(X̃) = iX̃, so using the
expression of the Levi-Civita connection in S2n+1 (4.5.1), we have

∇̃X̃ξ = X̃(ξ)− 〈X̃(ξ),p〉p
= iX̃ − 〈iX̃,p〉p
= iX̃,

�1�For a real vector space V , a complex structure is an endomorphism J : V → V such that J2 = −idV . A complex
structure J on V allows one to view V as a complex vector space with half the real dimension of V , namely, one puts
(a+ ib)v = av + bJv for all a, b ∈ R, v ∈ V . A complex structure on V can exist only if the dimension of V is real
(since (det J)2 = (−1)dimV ), in which case there are many such structures, for the general linear group of V acts on
the set of complex strutures by conjugation. Finally, if V is an Euclidean space, a complex structure J on V is called
orthogonal if J is an orthogonal transformation. The standard complex structure of R2n is given by J0(x, y) = (−y, x)
for all x, y ∈ R

n, so that the complex vector space (R2n, J0) is isomorphic to C
n via (x, y) 7→ x+ iy.
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as iX̃ is tangent to the sphere. Therefore

g̃(ξ, [X̃, Ỹ ]v) = 2g̃(ξ, ∇̃X̃ Ỹ ) (by Proposition 4.5.5)

= −2g̃(∇̃X̃ξ, Ỹ )

= −2g̃(iX̃, Ỹ )

= −2g(JX, Y ).

Since ξ is a unit vector field, in view of Proposition 4.5.8, we finally have that

(4.5.10) K(X,Y ) = 1 + 3〈JX, Y 〉2.

In particular, the sectional curvatures of CPn lie between 1 and 4. Further, the sectional curvature
of a 2-plane E is 4 (resp. 1) if and only if E is complex (resp. totally real).�2� On the other hand,
if we change the metric on CPn to the quotient metric coming from the Riemannian submersion
π : S2n+1(2) → CPn where S2n+1(2) denotes the sphere of radius 2, then its sectional curvatures
will lie between 1

4 and 1 (cf. exercise 2).
For a general even-dimensonal smooth manifold M , a smooth tensor field J of type (1, 1)

satisfying J2
p = −idTpM for all p ∈ M is called an almost complex structure If J is an almost

complex structure on M , a Riemannian metric g on M is called a Hermitian metric if Jp is a linear
isometry of TpM with respect to gp for all p ∈ M . If, in addition, J is parallel (∇J ≡ 0) with
respect to the Levi-Cività connection of (M, g), then (M, g, J) is called an almost Kähler manifold.

A complex manifold is an even dimensional smooth manifold M admitting a holomorphic atlas,
namely, an atlas whose transition maps are holomorphic maps between open sets of Cn, after
identifying R2n ∼= Cn. It is easy to see that a holomorphic atlas allows one to transfer the complex
structure of R2n to the tangent spaces of M so that a complex manifold automatically inherits
a canonical almost complex structure. Not all almost complex structures on a smooth manifold
are obtained from a holomorphic atlas in this way and the ones that do are called integrable.
The celebrated Newlander-Nirenberg theorem supplies a criterium for the integrability of almost
complex structures, similar to the Frobenius theorem. An almost Kähler manifold with integrable
complex structure is called a Kähler manifold. An introduction to the theory of complex manifolds
is [Wel08].

We come back to the Riemannian submersion π : S2n+1 → CPn and the almost complex
structure J on CPn. Note first that Cn is obviously a complex manifold and indeed a Kähler
manifold: for vector fields X, Y : Cn → Cn the Levi-Cività connection ∇Cn

X Y = dY (X), so the
chain rule yields

∇Cn

X (J0Y ) = d(J0 ◦ Y )(X) = dJ0 ◦ dY (X) = J0∇Cn

X Y

and hence ∇Cn
J0 = 0. Now J0 restricts to an endomorphism of H and the Levi-Cività connection

of S2n+1 is obtained from ∇Cn
by orthogonal projection, so

∇̃X̃(J0Ỹ ) = J0∇̃X̃ Ỹ

from which follows that
∇X(JY ) = J∇XY,

for all X, Y ∈ Γ(TCPn). This proves that the almost complex structure of CPn is parallel. That
CPn is a Kähler manifold finally follows from the fact that the transition maps (1.3.5) of the
smooth atlas constructed in chapter 1 are holomorphic.

�2�A subspace E of an Euclidean vector space V with orthogonal complex structure J is called totally real (resp. com-

plex ) if J(E) ⊥ E (resp. J(E) ⊂ E).
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Lie groups

Let G be a Lie group equipped with a bi-invariant metric. In this example, we will compute the
sectional curvatures of G. Denote by g the Lie algebra of G. Any 2-plane E contained in TgG,
g ∈ G, is spanned by Xg, Yg for some X, Y ∈ g, so K(E) = K(Xg, Yg). Further, since left-
translations are isometries, we can write K(Xg, Yg) = K(X,Y ) unambiguously. Next, recall the
formula (2.8.8) for the covariant derivative. It yields

∇X∇YX =
1

2
[X,∇YX] =

1

4
[X, [Y,X]] =

1

4
[[X,Y ], X],

∇Y∇XX = 0,

∇[X,Y ]X =
1

2
[[X,Y ], X],

hence

R(X,Y )X = −1

4
[[X,Y ], X].

Assuming that {X,Y } is orthonormal and using (2.8.7), we finally get that

K(X,Y ) =
1

4
||[X,Y ]||2.

We conclude that G has nonnegative curvature. Let X ∈ g be a unit vector and let {E1, . . . , En}
be an orthonormal basis of g with E1 = X. Due to (4.3.1), we also have

Ric(X,X) =
n∑

j=2

K(X,Ej) =
1

4

n∑

j=2

||[X,Ej ]||2.

It follows that G has positive Ricci curvature in case its center is discrete. We can also rewrite the
preceding equation as

Ric(X,X) = −1

4

n∑

j=2

g([[X, [X,Ej ]], Ej) = −1

4

n∑

j=2

g(ad2XEj , Ej) = −1

4
trace (ad2X).

Thus, by bilinearity and polarization,

(4.5.11) −4Ric(X,Y ) = trace (adX ◦ adY )

for every X, Y ∈ g.
For a general Lie group G, the right-hand side of equation (4.5.11) defines a bilinear symmetric

form Bg on g called the Killing form (or Cartan-Killing form) of g, and one easily checks that

Bg(adZX,Y ) +Bg(X, adZY ) = 0

for every X, Y , Z ∈ g. If, in addition, G is compact and the center of g is trivial, then one
shows (see �3�) that −Bg is also positive definite. Assuming further that G is connected, it follows
by Proposition 2.8.5 and the discussion in chapter 1 that −Bg induces a bi-invariant metric on
G. Hence, in the special case in which the bi-invariant metric on G comes from the Killing form,
equation (4.5.11) shows that the Ricci tensor is a multiple of the metric tensor, and G is thus an
Einstein manifold.

�3�Ref?
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4.6 Additional notes

§1 We make a small digression into the classical theory of surfaces in R3, see e.g. [Car76], and prove
the following proposition.

4.6.1 Proposition Let M be a regular surface in R3 equipped with the induced metric. Then the
sectional curvature and the Gaussian curvature of M coincide at each point p ∈M .

Proof. Let x : U → M be a parametrization, where U is an open subset of R2. We have
that {xu,xv} span the tangent plane to M at each point. The smooth functions E = 〈xu,xu〉,
F = 〈xu,xv〉, G = 〈xv,xv〉 are the coefficients of the first fundamental form of M (the induced
Riemannian metric). The unit normal vector field is given by

N =
xu × xv

||xu × xv||
.

This defines the Gauss map N : M → S2. Its differential at p ∈ M is a symmetric linear map
dNp : TpM → TpM which is represented in the basis {xu,xv} by the matrix

(
e f
f g

)

.

Using the Christoffel symbols, we can write

xuu = Γ1
11xu + Γ2

11xv + eN

xuv = Γ1
12xu + Γ2

12xv + fN

xvv = Γ1
22xu + Γ2

22xv + gN

The sectional curvature of M is given by

K(xu,xv) =
−〈R(xu,xv)xu,xv〉

||xu||2||xv||2 − 〈xu,xv〉2

= −〈∇xu∇xvxu −∇xv∇xuxu,xv〉
EG− F 2

,

since [xu,xv] = 0. The Levi-Cività connection ∇ is just the tangential component of the derivative
in R3, so ∇xvxu = (xvu)

⊤ = Γ1
12xu + Γ2

12xv and

∇xu∇xvxu =
(
(Γ1

12)uxu + Γ1
12xuu + (Γ2

12)uxv + Γ2
12xuv

)⊤

=
(
(Γ1

12)u + Γ1
12Γ

1
11 + Γ2

12Γ
1
12

)
xu +

(
(Γ2

12)u + Γ1
12Γ

2
11 + (Γ2

12)
2
)
xv.

Similarly, one computes that

∇xv∇xuxu =
(
(Γ1

11)v + Γ1
11Γ

1
12 + Γ2

11Γ
1
22

)
xu +

(
(Γ2

11)v + Γ1
11Γ

2
12 + Γ2

11Γ
2
22

)
xv.

It follows from formulas (5) and (5a) in [Car76, section 4.3] that K(xu,xv) equals the Gaussian
curvature of M . We realize that this proof is really a restatement of the proof of the theorema
egregium. In chapter ??, we will present an alternative way of proving this proposition. �

§2 Curvature, in any of its manifestations, is the single most important invariant in Riemannian
geometry. It is a local invariant that severely restricts the possibilities for local isometries of a
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Riemannian manifold; this is partially reflected in the fact the group of global isometries of a
Riemannian manifold is a finite-dimensional Lie group. At the same time, it is really the presence
of curvature that gives rise to the huge variety of non-equivalent Riemannian metrics on a given
smooth manifold that we can see. The curvature tensor and its covariant derivatives are indeed
the only Riemannian invariants if one demands that they be algebraic invariants stemming from
the connection. However, if one requires only tensors that are invariant under isometries — the so-
called natural tensors — then there is not even hope of achieving a classification without imposing
further restrictions [Eps75].

§3 Does the curvature determine the metric? This is a very natural question, and an interest-
ing result of Kulkarni [Kul70] asserts that diffeomorphisms preserving the sectional curvature are
isometries if the sectional curvature is not constant and the dimension is bigger than 3. On the
other hand, it is important to realize that the curvature tensor, in general, does not determine
the metric, even given that for n > 3 the dimension of the space of (pontwise) curvature tensors
n2(n2−1)

12 is much larger than the dimension of the (pointwise) metric tensors n(n−1)
2 . Indeed, there

are many examples of nonisometric Riemannian manifolds admitting diffeomorphisms that preserve
the respective curvature tensors. Of course, the difference between the curvature tensor and the
sectional curvature is that the latter involves the metric.

4.7 Exercises

1 Let M be an n-dimensional Riemannian manifold of constant curvature κ. Compute that

Ric = (n− 1)κg and scal = n(n− 1)κ.

2 Let g and ḡ be two Riemannian metrics in the smooth manifold M such that ḡ = λg for a
constant λ > 0. Show that the curvature tensor, the sectional curvature, the Ricci tensor and
the scalar curvature of the Riemannian manifolds (M, ḡ) and (M, g) are related by the following
equations:

R = R, K = λ−1K, Ric = Ric and scal = λ−1scal.

3 Use the symmetries of the curvature tensor to show that the Ricci tensor determines the curva-
ture tensor in a Riemannian manifold of dimension 3.

4 Let M be a Riemannian manifold with the property that for any two points p, q ∈ M , the
parallel transport map from p to q along a piecewise smooth curve γ joining p to q does not depend
on γ. Prove that M must be flat.

5 As a partial converse to the previous exercise, suppose M is a flat manifold, p, q ∈ M , and γ0,
γ1 are two smooth curves joining p to q. Prove that if γ0 and γ1 are smoothly homotopic with the
endpoints fixed, then the parallel transport maps from p to q along γ0 and along γ1 coincide.

6 Prove that the curvature tensor of CPn is

R(X,Y )Z = −〈X,Z〉Y + 〈Y, Z〉X + 〈X, JZ〉JY − 〈Y, JZ〉JX + 2〈X, JY 〉JZ

for vector fields X, Y , Z on CPn. (Hint: Use formula (4.5.10).)
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7 Prove that the curvature tensor and the Ricci tensor of a Kähler manifold (M, g, J) satisfy the
following identities:

R(X,Y )J = JR(X,Y ), R(JX, JY ) = R(X,Y ) and Ric(JX, JY ) = Ric(X,Y ),

for all vector fields X and Y on M .

8 Prove that the curvature tensor of a Riemannian manifold satisfies the following identities:
a. For tangent vectors x, y, z and w, we have

6〈R(x, y)z, w〉 = 〈R(x, y + z)(y + z), w〉 − 〈R(x, y − z)(y − z), w〉
+〈R(y, x− z)(x− z), w〉 − 〈R(y, x+ z)(x+ z), w〉

b. For tangent vectors a, b, c, we have

4〈R(a, b)a, c〉 = 〈R(a, b+ c)a, b+ c〉 − 〈R(a, b− c)a, b− c〉

Deduce an alternative proof of Corollary 4.2.3.

9 (Riemannian volume) Let (M, g) be an oriented Riemannian manifold of dimension n. Let
E = (E1, . . . , En) a positively oriented orthonormal frame on an open subset U (that is, E1, . . . , En
are smooth vector fields defined on U which are orthonormal at each point), and let (θ1, . . . , θn) be
the dual coframe of 1-forms on U . Define the n-form ωE = θ1 ∧ · · · ∧ · · · θn on U .
a. Prove that for another positively oriented orthonormal frame E ′ defined on U ′ we have ωE =

ωE ′ on U ∩ U ′. Deduce that there exists a smooth differential form volM of degree n on M
such that

(volM )p(e1, . . . , en) = 1

for every positively oriented orthonormal basis e1, . . . , en of TpM and all p ∈M . The n-form
volM is called the volume form of (M, g) and the associated measure is called the Riemannian
measure on M associated to g.

b. Show that for a positively oriented basis v1, . . . , vn of TpM , we have

(volM )p(v1, . . . , vn) =
√

det (gp(vi, vj)).

Deduce that, in local coordinates (U,ϕ = (x1, . . . , xn)),

volM =
√

det(gij) dx
1 ∧ · · · ∧ dxn.

10 Let (M, g) be an n-dimensional Riemannian manifold.
a. For any smooth function f : M → R, the gradient of f is the smooth vector field gradf

defined by g((gradf)p, v) = dfp(v) for all v ∈ TpM and all p ∈M . Prove that

grad(f1 + f2) = gradf1 + gradf2 and grad(f1f2) = f1 gradf2 + f2 gradf1

for all smooth functions f1, f2 on M .
b. For any smooth vector field X on M , the divergence of X is the smooth function divX =

trace (v 7→ ∇vX). Prove that

div (X + Y ) = divX + div Y and div (fX) = 〈gradf,X〉+ f divX

for all smooth fuctions f and smooth vector fields X, Y on M .
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c. For any smooth function f on M , the Laplacian of f is the smooth function ∆f = div gradf .
The function f is called harmonic is ∆f = 0. Prove that

∆(f1f2) = f1∆f2 + 〈gradf1, gradf2〉+ f2∆f1

for all smooth functions f1, f2 on M .
d. For any smooth function f on M , the Hessian of f is the (0, 2)-tensor Hess(f) = ∇df . Prove

that
Hess(f)(X,Y ) = X(Y f)− (∇XY )f

and
Hess(f)(X,Y ) = Hess(f)(Y,X)

for all smooth vector fields X, Y on M . Show also that the trace of the Hessian coincides
with the Laplacian.

11 (Divergence theorem) Let M be an oriented Riemannian manifold.
a. Prove that for any smooth vector field

LX(dV ) = (divX) dV

where dV denotes the volume form volM . A vector field is called incompressible if it is
divergence free. Deduce that a vector field is incompressible if and only if its local flows are
volume preserving.

b. Suppose now Ω is a domain in M with smooth boundary and let ∂Ω be oriented by the
outward unit normal ν. Denote the Riemannian volume form of ∂Ω by dS. Use Stokes’
theorem to show that for any compactly supported smooth vector field X on M we have

∫

Ω
divX dV =

∫

∂Ω
〈X, ν〉 dS

12 (Green identities) Let M be an oriented Riemannian manifold and let Ω be a domain in M as
in exercise 11.
a. Prove the “integration by parts formula”

∫

Ω
f1∆f2 dV +

∫

Ω
〈grad f1, grad f2〉 dV =

∫

∂Ω
f1
∂f2
∂ν

dS

for any compactly supported smooth functions f1, f2 on M . Deduce the weak maximum
principle: if f is compactly supported and sub- or super-harmonic (i.e. ∆f ≥ 0 or ∆f ≤ 0)
then f is constant. (Hint: first show ∆f = 0; then apply integration by parts to f = f1 = f2
and Ω =M .)

b. Prove that ∫

Ω
(f1∆f2 − f2∆f1) dV =

∫

∂Ω

(

f1
∂f2
∂ν

− f2
∂f1
∂ν

)

dS

for any compactly supported smooth functions f1, f2 on M . Deduce that if f1 and f2 are two
eigenfunctions of the Laplacian on a compact oriented Riemannian manifold M associated to
different eigenvalues λ1, λ2, resp., then f1 and f2 are orthogonal in the sense that

∫

M f1f2 dV =
0.
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C H A P T E R 5

Variational calculus

5.1 Introduction

We continue to study the problem of minimization of geodesics in Riemannian manifolds that was
started in chapter 3. We already know that geodesics are the locally minimizing curves. Also,
long segments of geodesics need not be minimizing, and the study of this phenomenon in complete
Riemannian manifolds motivates the definition of cut locus.

Herein we take a different standpoint in that we consider finite segments of curves. Namely,
consider a complete Riemannian manifoldM . Given two points p, q ∈M , the Hopf-Rinow theorem
ensures the existence of at least one minimizing geodesic γ joining p and q. It follows that γ is
a global minimum for the length functional L defined in the space of piecewise smooth curves
joining p and q. Of course, the calculus approach to finding global minima of a function is to
differentiate it, compute critical points and decide which of them are local minima by using the
second derivative. In our case, the apparatus of classical calculus of variations can be applied to
carry out this program.

To begin with, we show that the critical points of the length functional in the space of piecewise
smooth curves joining p and q are exactly the geodesic segments, up to reparametrization. The main
result of this chapter is the Jacobi-Darboux theorem that gives a necessary and sufficient condition
for a geodesic segment between p and q to be a local minimum for L. In order to prove this
theorem, we introduce Jacobi fields and conjugate points. Finally, we study the relation between
the concepts of cut locus and conjugate locus. These results will be generalized in chapter 8,�1�

where we will prove the Morse index theorem.
Throughout this chapter, (M, g) denotes a Riemannian manifold.

5.2 The energy functional

Instead of working with the length functional L, we will be working with the energy functional E,
which will be defined in a moment. The reason for that is that the critical point theory of E is very
much related to the one of L and, from a variational calculus point of view, E is easier to work
with than L.

The energy of a piecewise smooth curve γ : [a, b] →M is defined to be

E(γ) =
1

2

∫ b

a
||γ′(t)||2 dt.

The factor 1/2 in this expression is a normalization constant and it is not very important.

�1�Add \ref
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It is interesting to note that, in contrast to L, E is not invariant under reparametrizations of
the curve. On the one hand, this points out to the fact that E is not a geometrical invariant like L.
On the other hand, this can be seen as an advantage since, as we will soon see, critical points of E
come already equipped with a very specific parametrization.

5.2.1 Lemma Let γ : [a, b] →M be a piecewise smooth curve, and let γ(a) = p and γ(b) = q.
a. If γ is minimizing, that is L(γ) = d(p, q), then γ is a geodesic, up to reparametrization.
b. If γ minimizes the energy in the space of piecewise smooth curves defined on [a, b] and joining
p and q, then γ is a minimizing geodesic.

Proof. (a) If γ is minimizing, then it is locally minimizing (Lemma 3.2.5) and hence a geodesic
(Theorem 3.2.6).

(b) In the space of piecewise continuous functions [a, b] → R, consider the scalar product

〈f, g〉 =
∫ b
a f(t)g(t) dt. The Cauchy-Schwarz inequality says that 〈f, g〉2 ≤ ||f ||2||g||2 with the

equality holding if and only if {f, g} is linearly dependent. Applying this to f = ||γ′|| and g = 1
yields that

(∫ b

a
||γ′(t)|| dt

)2

≤ (b− a)

∫ b

a
||γ′(t)||2 dt,

and hence

(5.2.2) L(γ)2 ≤ 2E(γ)(b− a)

with the equality holding if and only if γ is parametrized with constant speed. Let η be any
piecewise smooth curve defined on [a, b] and joining p and q, and assume that it is parametrized
with constant speed. By assumption E(γ) ≤ E(η), so using (5.2.2)

L(γ)2 ≤ 2E(γ)(b− a) ≤ 2E(η)(b− a) = L(η)2.

Since the length of a curve does not depend on its parametrization, this shows that γ is a minimizing
curve. Due to the result of (a), γ is a geodesic, up to reparametrization. Finally, we observe that γ
must be parametrized with constant speed for otherwise it would not minimize the energy by the
same (5.2.2) and the condition of equality thereto pertaining. �

5.3 Variations of curves

A variation of a piecewise smooth curve γ : [a, b] →M is a continuous map H : [a, b]×(−ǫ, ǫ) →M ,
where ǫ > 0, such that H(s, 0) = γ(s) for all s ∈ [a, b], and there exists a subdivision

a = s0 < s1 < · · · < sn = b

such that H|[si−1,si]×(−ǫ,ǫ) is smooth for all i = 1, . . . , n. For each t ∈ (−ǫ, ǫ), the curve

t 7→ H(s, t)

will be denoted by γt. We say that H is a variation with fixed endpoints if H is a variation satisfying

H(a, t) = γt(a) = γ(a) and H(b, t) = γt(b) = γ(b)

for every t ∈ (−ǫ, ǫ). A variation H is called smooth if H : [a, b]× (−ǫ, ǫ) →M is smooth. Finally,
we say that H is a variation through geodesics H is a variation such that γt is a geodesic for every
t ∈ (−ǫ, ǫ).
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For a variationH of a piecewise smooth curve γ : [a, b] →M , we will denote by∇ the connection
induced along H according to Proposition 2.7.1, and we will consider the following vector fields
along H:

∂̄

∂t
= dH

(
∂

∂t

)

and
∂̄

∂s
= dH

(
∂

∂s

)

.

Note that
∂̄

∂s
= γ′t

is discontinuous at s = si. On the other hand, ∂̄
∂t and ∇ ∂

∂t

∂̄
∂t are continuous vector fields; this

is true because [a, b] × (−ǫ, ǫ) = ∪ni=1[si−1, si] × (−ǫ, ǫ) is a decomposition into a finite union of
closed subsets, and the restrictions of those vector fields to [si−1, si] × (−ǫ, ǫ) are continuous for
i = 1, . . . , n. Hence we have that

Y =
∂̄

∂t

∣
∣
∣
t=0

is a piecewise smooth vector field along γ called the variational vector field associated to H. Con-
versely, we have the following result.

5.3.1 Lemma Given a piecewise smooth vector field Y along a piecewise smooth curve γ : [a, b] →
M , there exists a smooth variation H of γ whose associated variational vector field is Y .

Proof. Set H(s, t) = expγ(s)(tY (s)). Since the interval [a, b] is compact, we can find ǫ > 0 such
that H is well defined on [a, b]× (−ǫ, ǫ), and

∂̄

∂t

∣
∣
∣
t=0

= d(expγ(s))0γ(s)(Y (s)) = Y (s).

�

5.3.2 Proposition (First variation of energy) Let γ : [a, b] →M be a piecewise smooth curve,
and let H be a variation of γ with associated variational vector field Y . Then

(5.3.3)
d

dt

∣
∣
∣
t=0

E(γt) =
n∑

i=1

〈Y, γ′〉
∣
∣
∣

s−i

s+i−1

−
∫ b

a
〈Y,∇ ∂

∂s
γ′〉 ds.

Proof. Consider first the case in which γ and H are smooth. Then the integrand of

E(γt) =
1

2

∫ b

a
〈γ′t, γ′t〉 ds =

1

2

∫ b

a
〈 ∂̄
∂s
,
∂̄

∂s
〉 ds

is smooth and we can compute
d

dt
E(γt) by differentiation under the integral sign, namely,

d

dt
E(γt) =

1

2

∫ b

a

∂

∂t
〈 ∂̄
∂s
,
∂̄

∂s
〉 ds

=

∫ b

a
〈∇ ∂

∂t

∂̄

∂s
,
∂̄

∂s
〉 ds(5.3.4)

=

∫ b

a
〈∇ ∂

∂s

∂̄

∂t
,
∂̄

∂s
〉 ds

=

∫ b

a

∂

∂s
〈 ∂̄
∂t
,
∂̄

∂s
〉 − 〈 ∂̄

∂t
,∇ ∂

∂s

∂̄

∂s
〉 ds.

97



Here we have used that ∇ ∂
∂t

∂̄
∂s−∇ ∂

∂s

∂̄
∂t = H∗[ ∂∂t ,

∂
∂s ] = 0, according to Proposition 2.7.2. Evaluating

the above formula at t = 0 gives the desired formula in the case in which γ and H are smooth:

d

dt

∣
∣
∣
t=0

E(γt) = 〈Y, γ′〉
∣
∣
∣

b−

a+
−
∫ b

a
〈Y,∇ ∂

∂s
γ′〉 ds.

The formula in the general case is obtained from this one by observing that the energy is additive
over a union of subintervals. �

5.3.5 Proposition (Critical points of E) Let γ : [a, b] → M be a piecewise smooth curve. We
have that

d

dt

∣
∣
∣
t=0

E(γt) = 0

for every variation with fixed endpoints if and only if γ is a geodesic.

Proof. In the class of variations with fixed endpoints, we have that Y (a) = Y (b) = 0, so
formula (5.3.3) can be rewritten as

(5.3.6)
d

dt

∣
∣
∣
t=0

E(γt) = −
n−1∑

i=1

〈Y, γ′〉
∣
∣
∣

s+i

s−i

−
∫ b

a
〈Y,∇ ∂

∂s
γ′〉 ds.

If γ is a geodesic, then ∇̄ ∂
∂s
γ′ = 0 and γ′ is continuous, so both terms in (5.3.6) vanish proving one

direction of the proposition.
Conversely, suppose that 0 = d

dt

∣
∣
t=0

E(γt) = 0 for every variation with fixed endpoints. Let
f : [a, b] → R be a smooth function such that f(s) > 0 if s 6= si and f(si) = 0 for i = 0, . . . , n,
and set Y = f∇̄ ∂

∂s
γ′. Then Y is a piecewise smooth vector field along γ (note that Y is indeed

continuous at si) with Y (a) = Y (b) = 0, and so it defines via Lemma 5.3.1 a variation {γt} with

fixed endpoints for which (5.3.6) gives that 0 = −
∫ b
a f ||∇ ∂

∂s
γ′||2 ds. This already implies that γ

is a geodesic on (si−1, si) for i = 1, . . . , n. Since γ|[si−1,si] is smooth by assumption, it follows that

∇ ∂
∂s
γ′|si = 0 in the sense of side derivatives.

Next, we take Y to be a smooth vector field along γ satisfying Y (a) = Y (b) = 0 and Y (si) =
γ′(s+i )− γ′(s−i ) for i = 2, . . . , n− 1. Substituting into (5.3.6) now gives that 0 = −∑n−1

i=2 ||γ′(s+i )−
γ′(s−i )||2. This of course implies that γ is of class C1. Since we already know that γ|[si−1,si] is a
geodesic for i = 1, . . . , n, this implies that these restrictions are segments of the same geodesic γ
defined on [a, b] by the uniqueness result (Proposition 2.4.3). �

5.3.7 Corollary (Critical points of L) Let γ : [a, b] → M be a piecewise smooth curve. We
have that

d

dt

∣
∣
∣
t=0

L(γt) = 0

for every variation with fixed endpoints if and only if γ is a geodesic, up to reparametrization.

Proof. Let γ̃ = γ ◦ϕ be a reparametrization of γ with constant speed, where ϕ : [a, b] → [a, b] is
an orientation-preserving diffeomorphism. Given a variation H with fixed endpoints of γ, we define
a variation H̃ of γ̃ by setting H̃(s, t) = H(ϕ(s), t), and we denote γ̃t(s) = H̃(s, t) = (γt ◦ ϕ)(s). Of
course L(γt) = L(γ̃t), so we may assume without loss of generalization that γ is parametrized with
constant speed from the outset. Now

d

dt
L(γt) =

∫ b

a

∂

∂t
〈 ∂̄
∂s
,
∂̄

∂s
〉1/2 ds = 1

2

∫ b

a
〈 ∂̄
∂s
,
∂̄

∂s
〉−1/2 ∂

∂t
〈 ∂̄
∂s
,
∂̄

∂s
〉 ds.
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Evaluating at t = 0 and using that ||γ′|| is a constant k 6= 0 gives that

d

dt

∣
∣
∣
t=0

L(γt) =
1

2k

∫ b

a

∂

∂t

∣
∣
∣
t=0

〈 ∂̄
∂s
,
∂̄

∂s
〉 ds = 1

k

d

dt

∣
∣
∣
t=0

E(γt).

This shows that L and E have the same critical points, up to reparametrization. Thus the desired
result is an immediate consequence of Proposition 5.3.5. �

5.3.8 Proposition (Second variation of energy) Let γ : [a, b] → M be a unit speed geodesic,
and let H be a piecewise smooth variation of γ with associated variational vector field Y . Then

(5.3.9)
d2

dt2

∣
∣
∣
t=0

E(γt) = 〈∇ ∂
∂t

∂̄

∂t

∣
∣
∣
t=0

, γ′〉
∣
∣
∣

b

a
+

∫ b

a
||Y ′||2 + 〈R(γ′, Y )γ′, Y 〉 ds.

Proof. Starting with formula (5.3.4), we compute that

d2

dt2
E(γt) =

∫ b

a

∂

∂t
〈∇ ∂

∂t

∂̄

∂s
,
∂̄

∂s
〉 ds

=

∫ b

a

∂

∂t
〈∇ ∂

∂s

∂̄

∂t
,
∂̄

∂s
〉 ds

=

∫ b

a
〈∇ ∂

∂t
∇ ∂

∂s

∂̄

∂t
,
∂̄

∂s
〉+ 〈∇ ∂

∂s

∂̄

∂t
,∇ ∂

∂t

∂̄

∂s
〉 ds

=

∫ b

a
〈∇ ∂

∂s
∇ ∂

∂t

∂̄

∂t
,
∂̄

∂s
〉+ 〈R( ∂̄

∂t
,
∂̄

∂s
)
∂̄

∂t
,
∂̄

∂s
〉+

∣
∣
∣

∣
∣
∣∇ ∂

∂s

∂̄

∂t

∣
∣
∣

∣
∣
∣

2
ds

=

∫ b

a

∂

∂s
〈∇ ∂

∂t

∂̄

∂t
,
∂̄

∂s
〉 − 〈∇ ∂

∂t

∂̄

∂t
,∇ ∂

∂s

∂̄

∂s
〉+ 〈R( ∂̄

∂s
,
∂̄

∂t
)
∂̄

∂s
,
∂̄

∂t
〉+

∣
∣
∣

∣
∣
∣∇ ∂

∂s

∂̄

∂t

∣
∣
∣

∣
∣
∣

2
ds

In the fourth equality, we used that ∇ ∂
∂t
∇ ∂

∂s

∂̄
∂t − ∇ ∂

∂s
∇ ∂

∂t

∂̄
∂t = R( ∂̄∂t ,

∂̄
∂s)

∂̄
∂t , according to Proposi-

tion 2.7.2. Evaluating this formula at t = 0 yields that

d2

dt2

∣
∣
∣
t=0

E(γt) =

∫ b

a

∂

∂s
〈∇ ∂

∂t

∂̄

∂t

∣
∣
∣
t=0

, γ′〉 − 〈∇ ∂
∂t

∂̄

∂t

∣
∣
∣
t=0

, γ′′〉+ 〈R(γ′, Y )γ′, Y 〉+ ||Y ′||2 ds

Since γ′ and ∇ ∂
∂t

∂̄
∂t are continuous and γ′′ = 0, this proves the desired formula. �

5.4 Jacobi fields

Throughout this section, we fix a geodesic γ : [0, ℓ] → M . The second variation formula (5.3.9)
defines a quadratic form on the space of piecewise smooth vector fields along γ vanishing at 0 and
ℓ whose associated symmetric bilinear form I is called the index form and is clearly given by

I(X,Y ) =

∫ ℓ

0
〈X ′, Y ′〉+ 〈R(γ′, X)γ′, Y 〉 ds.

99



Let 0 = s0 < s1 < · · · < sn = ℓ be a subdivision of [0, ℓ] such that X and Y are smooth on [si−1, si]
for i = 1, . . . , n. Since 〈X ′, Y ′〉 = 〈X,Y ′〉′ − 〈X,Y ′′〉 on each [si−1, si], we can write

I(X,Y ) =
n∑

i=1

∫ si

si−1

〈X,Y ′〉′ ds+
∫ ℓ

0
−〈X,Y ′′〉+ 〈R(γ′, Y )γ′, X〉 ds

=
n∑

i=1

〈X,Y ′〉
∣
∣
∣

s−i

s+i−1

+

∫ ℓ

0
〈−Y ′′ +R(γ′, Y )γ′, X〉 ds

= −
n−1∑

i=1

〈Y ′(s+i )− Y ′(s−i ), X〉+
∫ ℓ

0
〈−Y ′′ +R(γ′, Y )γ′, X〉 ds(5.4.1)

A Jacobi field along γ is a smooth vector field Y along γ (not necessarily vanishing at the
endpoints of γ) such that

(5.4.2) −Y ′′ +R(γ′, Y )γ′ = 0.

Hence the space of Jacobi fields along γ vanishing at the endpoints of γ is contained in the kernel
of I as a bilinear form; it is easy to show that these spaces in fact coincide by using ideas very
similar to the ones in the proof of Proposition 5.3.5 (cf. exercise 2). Equation (5.4.2) is called the
Jacobi equation along γ.

Next, denote by J the space of all Jacobi fields along γ. It is obvious that J is a vector space.
It is also a very simple matter to check that the smooth vector fields along γ given by Y0(s) = γ′(s)
and Y1(s) = sγ′(s) belong to J . The next proposition shows that a Jacobi field Y along γ, being
a solution of a second-order linear ordinary differential equation, is completely determined by its
initial conditions Y (0) ∈ TpM and Y ′(0) ∈ TpM . It follows that J is a finite-dimensional vector
space and dimJ = 2dimM .

5.4.3 Proposition Let γ : [0, ℓ] →M be a geodesic, and put γ(0) = p.
a. Given u, v ∈ Tγ(0)M , there exists a unique Jacobi field Y ∈ J such that Y (0) = u and

Y ′(0) = v.
b. If X, Y ∈ J , then the function 〈X ′, Y 〉 − 〈X,Y ′〉 is constant on [0, ℓ]. It follows that

〈γ′(s), Y (s)〉 = as+ b for some constants a, b ∈ R and s ∈ [0, ℓ].

Proof. (a) Select an orthonormal basis {e1, . . . , en} of TpM with e1 = γ′(0) and extend it to
an orthonormal frame {E1, . . . , En} of parallel vector fields along γ; since γ is a geodesic, E1 = γ′.
Let Y be a smooth vector field along γ. Then we can write Y =

∑n
i=1 fiEi, where fi : [0, ℓ] → R

are smooth functions. In these terms, the Jacobi equation (5.4.2) is

n∑

i=1

−f ′′i + fiR(γ
′, Ei)γ

′ = 0.

Taking the inner product of the left-hand side with Ej yields that

−f ′′j +
n∑

i=2

〈R(γ′, Ei)γ′, Ej〉fi = 0

for j = 1, . . . , n. This is a system of second-order ordinary linear differential equations for which
the standard theorems of existence and uniqueness of solutions apply, hence, the result.
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(b) In order to prove the constancy of the function, it suffices to differentiate it along γ:

(〈X ′, Y 〉 − 〈X,Y ′〉)′ = (〈X ′′, Y 〉+ 〈X ′, Y ′〉)− (〈X ′, Y ′〉+ 〈X,Y ′′〉)
= 〈R(γ′, X)γ′, Y 〉 − 〈X,R(γ′, Y )γ′〉
= 0,

where we have used the Jacobi equation (5.4.2) and the symmetry of R (Proposition 4.2.1(c)).

Finally, in order to get the last assertion, take X = γ′ in the function. Then 〈γ′, Y ′〉 = 〈γ′, Y 〉′
is a constant. It follows that 〈γ′, Y 〉 has the required form. �

Proposition 5.4.3(b) shows that Y ∈ J satisfies 〈γ′(s), Y (s)〉 = as + b for all s ∈ [0, ℓ] where
a = 〈γ′(0), Y ′(0)〉 and b = 〈γ′(0), Y (0)〉. Writing

Y = (Y − aY1 − bY0) + bY0 + aY1

shows that there exists a splitting

J = J ⊥ ⊕RY0 ⊕RY1,

where J ⊥ is the subspace of Jacobi fields along γ that are always orthogonal to γ′, namely,

J ⊥ = {Y ∈ J | 〈Y (s), γ′(s)〉 = 0 for all s ∈ [0, ℓ] }.

Since Y0 and Y1 always belong to J , it is the subspace J ⊥ that can give us effective information
about the geodesic γ, if any.

The next proposition refines the information of Lemma 5.3.1. It also points out to the fact that
the Jacobi fields along a geodesic somehow control the behaviour of the near by geodesics.

5.4.4 Proposition Let γ : [0, ℓ] → M be a geodesic. If H is a smooth variation of γ through
geodesics, then the associated variational vector field Y is a Jacobi field along γ. On the other
hand, every Jacobi field Y along γ is the variational vector field associated to a variation H of γ
through geodesics.

Proof. Suppose first that H is a smooth variation of γ through geodesics and let Y = ∂
∂t

∣
∣
t=0

be

the associated variational vector field. Then, ∇ ∂
∂s

∂̄
∂s = 0, so using Proposition 2.7.2,

∇ ∂
∂s
∇ ∂

∂s

∂̄

∂t
= ∇ ∂

∂s
∇ ∂

∂t

∂̄

∂s
= ∇ ∂

∂t
∇ ∂

∂s

∂̄

∂s
+R(

∂̄

∂s
,
∂̄

∂t
)
∂̄

∂s
= R(

∂̄

∂s
,
∂̄

∂t
)
∂̄

∂s
.

Evaluating this formula at t = 0 gives that Y ′′ = R(γ′, Y )γ′, and hence, Y is a Jacobi field.

Suppose now that Y is a Jacobi field along γ. We construct a variation H of γ as follows. Take
any smooth curve η satisfying η(0) = γ(0) and η′(0) = Y (0). Let X0 and X1 be the parallel vector
fields along η such that X0(0) = γ′(0) and X1(0) = Y ′(0), and let X(t) = X0(t) + tX1(t). Finally,
set H(s, t) = expη(t)(sX(t)).

By construction, H is a variation through geodesics, so ∂̄
∂t

∣
∣
t=0

= dH( ∂∂t)
∣
∣
t=0

is a Jacobi field

along γ by the first part of this proof. Let us compute the initial conditions of ∂̄
∂t

∣
∣
t=0

at s = 0.
Since H(0, t) = η(t), we have

∂̄

∂t

∣
∣
∣
t=0
s=0

= η′(0) = Y (0).
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Moreover,
∂̄

∂s

∣
∣
∣
s=0

= d(expη(t))0η(t)(X(t)) = X(t),

so

∇ ∂
∂s

∂̄

∂t

∣
∣
∣
t=0
s=0

= ∇ ∂
∂t

∂̄

∂s

∣
∣
∣
t=0
s=0

= X ′(0) = X1(0) = Y ′(0).

Since ∂̄
∂t

∣
∣
t=0

and Y are Jacobi fields along γ having the same initial conditions at s = 0, they are
equal, and this finishes the proof of the proposition. �

5.4.5 Scholium Consider a point p ∈ M and two tangent vectors u, v ∈ TpM . Let γ be the
geodesic γ(s) = expp(sv), and let Y be the Jacobi field along γ satisfying Y (0) = 0 and Y ′(0) = u.
Then

Y (s) = d(expp)sv(su)

for all s is the domain of γ.

Proof. This proof is contained in the proof of second assertion in the statement of Proposi-
tion 5.4.4. Indeed, using the notation from that proof, η is the constant curve at p, X0 is the con-
stant vector field γ′(0) = v andX1 is the constant vector field Y

′(0) = u, soH(s, t) = expp(s(v+tu))
and

Y (s) =
∂̄

∂t

∣
∣
∣
(s,0)

= d(expp)sv(su),

as desired. �

5.4.6 Example In special cases, knowledge of the Jacobi fields can be used to compute the sec-
tional curvature. Recall the surface of revolution inR3 as in Example 1.2.2(b). Note that the merid-
ians θ = const. are geodesics by the reflection argument used in the case of Sn (cf. page 56). By ro-
tational symmetry, it suffices to compute the sectional curvature along the meridian γ(s) = ϕ(s, 0).
We produce a variation of γ by using nearby meridians, namely H(s, t) = x(s, t). In this case the

Jacobi field is Y (s) = ∂̄
∂t

∣
∣
(s,0)

= xθ(s, 0) = f(s) ∂∂y . Note that {γ′, ∂∂y} is a parallel orthonormal

frame along γ. Therefore the Jacobi equation (5.4.2) is −f ′′(s) − K(s)f(s) = 0, where K is the
Gaussian curvature along the parallel x(s, ·). Hence K = −f ′′/f .

5.5 Conjugate points

Let γ(s) = expp(sv) be a geodesic in M , where p ∈M and v ∈ TpM . A point γ(s0), where s0 > 0,
is called a point conjugate to p along γ if there exists a nontrivial Jacobi field Y along γ such that
Y (0) = 0 and Y (s0) = 0; the parameter value s0 is called a conjugate value; note that such a Jacobi
field Y must be everywhere perpendicular to γ. In this case, we also have that p is conjugate to
γ(s0) along γ

−1, so we sometimes say that p and γ(s0) are conjugate points along γ. A point q ∈M
is called a point conjugate to p if q is conjugate to p along some geodesic emanating from p. The
set of all points of M conjugate to p is called the conjugate locus of p.

If q = γ(s0) is conjugate to p along γ(s) = expp(sv), and Y is a Jacobi field along γ such that
Y (0) = 0 and Y (s0) = 0, then Y is everywhere perpendicular to γ′ by Proposition 5.4.3(b). Even
more interesting, Y ′(0) lies in the kernel of the map d(expp)s0v as it follows from Scholium 5.4.5.
Hence, the points conjugate to p are exactly the critical values of expp. The multiplicity of q as a
point conjugate to p along γ is the dimension of the kernel of d(expp)s0v.
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Intuitively speaking, the meaning of q being a conjugate point of p along a geodesic γ is that
some nearby geodesics emanating from p must meet γ at q at least in the infinitesimal sense. Before
proceeding with the main result of this section, we prove two lemmas.

5.5.1 Lemma (Gauss, global version) Consider a point p ∈ M , two tangent vectors u, v ∈
TpM , and the geodesic γ(s) = expp(sv). Then

gγ(s)
(
d(expp)sv(u), d(expp)sv(v)

)
= gp(u, v).

Proof. Note the right-hand-side in the formula is the value at s = 0 of the left-hand-side
of it. Note also that d(expp)sv(v) = γ′(s). Next, let Y denote the Jacobi field along γ with
initial conditions Y (0) = 0 and Y ′(0) = u. On the one hand, we know from Scholium 5.4.5
that d(expp)sv(u) = 1

sY (s) for s 6= 0. On the other hand, decompose u = λv + u1, where u1
is perpendicular to v, and let Y0, Y1 be the Jacobi fields along γ vanishing at s = 0 such that
Y ′
0(0) = λv and Y ′

1(0) = u1. Then Y0(s) = λsγ′(s) and Y (s) = Y0(s) + Y1(s) = λsγ′(s) + Y1(s), so,
if s 6= 0,

gγ(s)
(
d(expp)sv(u), d(expp)sv(v)

)
= gγ(s)

( 1

s
Y (s), γ′(s)

)

= λgγ(s)
(
γ′(s), γ′(s)

)
+

1

s
gγ(s)

(
Y1(s), γ

′(s)
)
.

The first term in the last line of the above calculation is λgp(v, v) = gp(u, v), since the length of the
tangent vector of a geodesic is constant. The second term in there is zero by Proposition 5.4.3(b)
because Y1(0) and Y

′
1(0) are perpendicular to γ′(0), and this proves the formula. �

5.5.2 Lemma Consider a point p ∈ M , and a tangent vector v ∈ TpM . Let ϕ : [0, 1] → TpM
denote the radial segment ϕ(s) = sv, and let ψ : [0, 1] → TpM be an arbitrary piecewise smooth
curve joining the origin 0 to v. Then

L(expp ◦ψ) ≥ L(expp ◦ϕ) = ||v||.

Proof. Without loss of generality, we may assume that ψ(s) 6= 0 for s > 0. In the case in which
ψ is smooth, write ψ(s) = r(s)u(s) where r : (0, 1] → (0,+∞) and u : (0, 1] → Sn−1 are smooth,
and Sn−1 denotes the unit sphere of (TpM, gp). Then

ψ′(s) = r′(s)u(s) + r(s)u′(s)

with 〈u(s), u′(s)〉 = 0. Applying Gauss lemma 5.5.1 twice in the following computation,

||(expp ◦ψ)′(s)||2 = ||d(expp)ψ(s)(ψ′(s))||2

= (r′(s))2 ||d(expp)ψ(s)(u(s))||2
︸ ︷︷ ︸

=||u(s)||2=1

+(r(s))2||d(expp)ψ(s)(u′(s))||2

≥ (r′(s))2,

we get that

L(expp ◦ψ) ≥
∫ 1

0
|r′(s)| ds ≥ |r(1)− lim

s→0+
r(0)| = ||v||.

In the general case, we repeat the argument above over each subinterval where ψ is smooth and
add up the estimates. �

Next, we prove the main result of this chapter. It gives a sufficient condition and a necessary
condition for a geodesic segment to be locally minimizing.
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5.5.3 Theorem (Jacobi-Darboux) Let γ : [0, ℓ] → M be a geodesic segment parametrized with
unit speed and with endpoints γ(0) = p and γ(ℓ) = q.

a. If there are no points conjugate to p along γ, then there exists a neighborhood V of γ in the
C0-topology in the space of piecewise smooth curves parametrized on [0, ℓ] and joining p to q
such that E(η) ≥ E(γ) and L(η) ≥ L(γ) for every η ∈ V . Moreover, if L(η) = L(γ) for some
η ∈ V , then η and γ differ by a reparametrization.

b. If γ(s0) is conjugate to p along γ for some s0 ∈ (a, b), then there exists a variation {γt} of γ
with fixed endpoints such that E(γt) < E(γ) and L(γt) < L(γ) for sufficiently small t.

Proof. Put γ′(0) = v and define ϕ : [0, ℓ] → TpM by ϕ(s) = sv. By assumption, ϕ(s) is a regular
point of expp for s ∈ [0, ℓ]. Since ϕ([0, ℓ]) is compact, we can cover it by a union ∪ki=1Wi of open
balls Wi ⊂ TpM such that expp is a diffeomorphism of Wi onto an open subset Ui ⊂ M . Choose
a subdivision 0 = s0 < s1 < . . . < sk = ℓ such that ϕ([si−1, si]) ⊂ Wi for all i. Let V be the open
ball centered at γ of radius ǫ > 0, namely, V consists of the piecewise smooth curves η : [0, ℓ] →M
joining p to q and satisfying d(η(s), γ(s)) < ǫ for s ∈ [0, ℓ]. We take ǫ so that η([si−1, si]) ⊂ Ui for
η ∈ V and i = 1, . . . , k. Note that expp(Wi−1 ∩Wi) is an open neighborhood of γ(si−1) contained
in Ui−1 ∩ Ui. We further decrease ǫ, if necessary, so as to obtain that η(si−1) ∈ expp(Wi−1 ∩Wi)
for η ∈ V and i = 2, . . . , k.

For each η ∈ V , we lift η to a piecewise smooth curve ψ in TpM as follows. Define

ψ(s) = (expp |W1)
−1(η(s)) for s ∈ [0, s1].

Note that ψ(0) = 0. Assume that ψ has already been defined on [0, si−1] for some 2 ≤ i ≤ k such
that it satisfies expp(ψ(s)) = η(s) for s ∈ [0, si−1] and ψ(si−1) ∈ Wi−1. Note that these conditions
imply that

expp(ψ(si−1)) = η(si−1) ∈ expp(Wi−1 ∩Wi),

so ψ(si−1) ∈Wi. Hence it makes sense to define

ψ(s) = (expp |Wi
)−1(η(s)) for s ∈ [si−1, si].

This completes the induction step and shows that ψ can be defined on [0, ℓ]. Since η(ℓ) ∈ Wk, we
have ψ(ℓ) = ℓv. By Lemma 5.5.2,

L(η) = L(expp ◦ψ) ≥ L(expp ◦ϕ) = L(γ).

Moreover, since d(expp)ψ(s) is injective for s ∈ [0, ℓ], the proof of the lemma shows that the inequality
is sharp unless u is constant and r′ is nonnegative in the notation of that proof, that is, η coincides
with γ up to reparametrization. As for the assertion concerning the energy, we observe that

E(η) ≥ 1

2ℓ
L(η)2 ≥ 1

2ℓ
L(γ)2 = E(γ)

by the Cauchy-Schwarz inequality (5.2.2). This proves part (a).

(b) By assumption, there exists a nontrivial Jacobi field Y along γ such that Y (0) = Y (s0) =
0. Owing to the non-triviality of Y , Y ′(s0) 6= 0. Let Z1 be the parallel vector field along γ
with Z1(s0) = −Y ′(s0), construct a smooth function θ : [0, ℓ] → R such that θ(0) = θ(ℓ) = 0
and θ(s0) = 1, and set Z(s) = θ(s)Z1(s). Also, extend Y to a piecewise smooth vector field on
[0, ℓ] by putting Y |[s0,ℓ] = 0, and set Yα(s) = Y (s) + αZ(s) for s ∈ [0, ℓ] and α ∈ R.
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Now Yα is a piecewise smooth vector field along γ which is everywhere normal to γ′ and vanishes
at 0 and ℓ. Consider a variation with fixed endpoints {γt} with associated variational vector field Yα.
Then

I(Yα, Yα) = I(Y, Y ) + 2αI(Y, Z) + α2I(Z,Z)

= −2α〈Y ′(s+0 )− Y ′(s−0 ), Z(s0)〉+ α2I(Z,Z)

= −2α||Y ′(s−0 )||2 + α2I(Z,Z)

< 0,

where α is chosen sufficiently small so as to ensure the last inequality. Hence E(γt) < E(γ) for
sufficiently small t. Also,

L(γt)
2 ≤ 2ℓE(γt) < 2ℓE(γ) = L(γ)2,

and this completes the proof. �

As a corollary of the theorem of Jacobi-Darboux 5.5.3, we have the following refinement of
Proposition 3.4.3.

5.5.4 Corollary Let M be a complete Riemannian manifold. Then, for each p ∈M , the exponen-
tial map

expp : Dp →M \ Cut(p)

is a diffeomorphism.

Proof. We have already seen that expp(Dp) =M \Cut(p). Theorem 5.5.3 implies that a geodesic
γv : [0,+∞) →M , where v ∈ TpM and ||v|| = 1, does not minimize L past its first conjugate point,
so a conjugate point along γv, if existing, must occur at a parameter value s0 ≥ ρ(v). It follows
that expp is a local diffeomorphism at sv for s ∈ [0, ρ(v)). Since v is an arbitrary unit tangent
vector at p, this shows that expp is a local diffeomorphism on Dp. It remains only to check that
expp is injective on Dp. But this is clear since any point in expp(Dp) can be joined to p by a unique
minimal geodesic as was already observed right after the proof of Proposition 3.4.3. �

The first conjugate point along a geodesic γ(s) = expp(sv), where p ∈ M and v ∈ TpM , is the
smallest parameter value s0 > 0 such that γ(s0) is conjugate to p along γ. It also follows from the
theorem of Jacobi-Darboux 5.5.3 that the first conjugate point to p along γ cannot occur before
the cut point; in particular, the conjugate locus of a point is empty if its cut locus is empty. The
following proposition gives more information.

5.5.5 Proposition Let M be a complete Riemannian manifold, and let p ∈ M . Then a point q
belongs to the cut locus Cut(p) if and only if one of the following non-mutually exclusive assertions
is true:

a. There exists at least two distinct minimizing geodesics joining p to q.
b. The point q is the first conjugate point to p along a minimizing geodesic.

In particular, q ∈ Cut(p) if and only if p ∈ Cut(q).

Proof. By Lemma 3.4.1 and Theorem 5.5.3, we already know that the conditions in the statement
are sufficient for q to belong to Cut(p). Conversely, suppose that q ∈ Cut(p). Then we can write
q = expp(ρ(v)v) for some unit vector v ∈ TpM with ρ(v) < +∞. In particular, γ(s) = expp(sv),
where 0 ≤ s ≤ ρ(v), is a minimal geodesic joining p to q. Choose a sequence (sj) of real numbers
such that sj % ρ(v). For each j, there exists a minimal geodesic γj joining p to γ(sj), say γj(s) =
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expp(swj), where wj ∈ TpM and ||wj || = 1. Let dj = d(p, γ(sj)), so that γj(dj) = γ(sj). Since
sj > ρ(v), we have that γ|[0,sj ] is not minimal so that dj < sj .

Next, by compactness of the unit sphere in TpM and by passing to a subsequence if necessary,
we may assume that (wj) converges to a unit vector w ∈ TpM . Since the distance d is continuous,
dj = d(p, γ(sj)) → d(p, γ(ρ(v))) = ρ(v). By the taking the limit as j 7→ +∞ in γ(sj) = γj(dj) =
expp(djwj), we get that q = expp(ρ(v)w). Now there are two cases to be considered.

If w 6= v, then η(s) = expp(sw) is a minimizing geodesic joining p to q and η 6= γ, so we are
in situation (a). On the other hand, if w = v, then we already have that expp(djwj) = γ(sj) =
expp(sjv) for all j, where djwj → ρ(v)v and sjv → ρ(v)v. It follows that expp is not locally injective
at ρ(v)v, so ρ(v)v is a singular point of expp. Hence q = expp(ρ(v)v) is conjugate to p along γ.
Since γ is minimizing on [0, ρ(v)], q must be the first conjugate point to p along γ, and we are in
situation (b).

For the last assertion, one needs to note that conditions (a) and (b) are symmetric in p and q.
This is clear for (a) and follows from Theorem 5.5.3(b) for (b). �

All possibilities given by Proposition 5.5.5 for a point q ∈ Cut(p) can indeed occur: both (a)
and (b); (a) and not (b); (b) and not (a). Comparing the examples in the sequel with the examples
of section 3.5, one immediately finds situations in which the first two possibilities occur. However,
the third possibility — in which q is the first conjugate point along a minimizing geodesic γ and
there is no other minimizing geodesic from p to q — is not so easy to detect. The Heisenberg group
(consisting of upper triangular real matrices of size 3 with 1’s along the diagonal) equipped with
some left-invariant metric provides such an example [Wal97, p. 352].

5.6 Examples

Flat manifolds

For a flat manifold, R ≡ 0, so the Jacobi equation is Y ′′ = 0. Hence Jacobi fields along a geodesic
γ have the form Y (s) = sE1(t) + E2(s), where E1 and E2 are parallel vector fields along γ. For
instance, a Jacobi field Y along a geodesic γ in Euclidean space Rn is of the form Y (s) = u+ sv,
where u, v ∈ Rn. If Tn is a flat torus and π : Rn → Tn denotes the corresponding Riemannian
covering, then a Jacobi field along the geodesic π ◦ γ in Tn is of the form Ȳ (s) = dπγ(s)(Y (s)) =
dπγ(s)(u) + tdπγ(s)(v).

In particular, in a flat manifold there are no conjugate points, so any geodesic segment is a local
minimum for L. Note that in a flat torus there are infinitely many geodesics with given endpoints
p and q, and generically (meaning the case in which q 6∈ Cut(p)) only one of them is a global
minimum.

Manifolds of nonzero constant curvature

Consider first the unit sphere Sn. If γ is a unit speed geodesic and Y is a Jacobi field along γ
which is everywhere perpendicular to γ′, then formula (4.5.2) says that R(γ′, Y )γ′ = −Y , so the
Jacobi equation is Y ′′ = −Y . It follows that Y (s) = cos sE1(s) + sin sE2(s), where E1 and E2

are parallel vector fields along γ which are perpendicular to γ′ (Note that a parallel vector field
along γ which is perpendicular to γ′ is nothing but a constant vector field on the surrounding Rn+1

which is perpendicular to the 2-plane spanned by γ(0) and γ′(0).) In particular, if Y vanishes at
s = 0, then E1 = 0. Assuming Y is nontrivial, that is, E2 6= 0, then the conjugate values are
s = π, 2π, 3π, . . .. Therefore the first conjugate point of p = γ(0) along γ is −p, so that the first
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conjugate locus coincides with the cut locus; since Y ′(0) can be any vector perpendicular to γ′(0),
the multiplicity of −p is n− 1. Note also that p is conjugate to itself along γ.

Consider now RPn. Since it has the same curvature tensor as Sn, it has also the same Jacobi
equation, the same Jacobi fields and the same conjugate values. However, the difference to Sn is
that now the first conjugate point γ(π) along a geodesic γ coincides with γ(0), so the first conjugate
point occurs after the cut point γ(π2 ). In particular, a geodesic of length π

2 + ǫ, ǫ > 0 small, is a
local minimum for L, but not a global one.

The case of RHn is similar to that of Sn. By (4.5.3), the Jacobi equation is Y ′′ = Y , so the
Jacobi fields along a geodesic γ have the form Y (s) = cosh sE1(s) + sinh sE2(s), where E1 and E2

are parallel vector fields along γ which are perpendicular to γ′. In particular, if Y vanishes at s = 0,
then E1 = 0. Assuming Y is nontrivial, that is, E2 6= 0, there are no conjugate values. Hence the
conjugate locus of a point is empty. Of course, this result is in line with the remark after the proof
of Corollary 5.5.4 since we already knew that the cut locus of RHn is empty.

CPn

Owing to Proposition 3.5.1, the geodesics of CPn are the projections of the horizontal geodesics
of S2n+1 with respect to the Riemannian submersion π : S2n+1 → CPn. Let γ̃(s) = cos sp̃+ sin sṽ
be a horizontal geodesic of S2n+1, where p̃ ∈ S2n+1 and ṽ ∈ Hp̃ is a unit vector, and consider
the geodesic γ = π ◦ γ̃ of CPn. It follows that the Jacobi fields along γ are projections of some
Jacobi fields along γ̃. Note that whereas a Jacobi field along γ is associated to a variation of γ̃
through horizontal geodesics, this does not imply that the associated Jacobi field along γ̃ must
be horizontal. In the following, we want to describe the conjugate points along γ, so we need to
describe the Jacobi fields along γ that vanish at s = 0 and are everywhere orthogonal to γ′.

Consider first the variation through horizontal geodesics

H̃0(s, t) = eit · γ̃(s) = cos s(cos t+ sin t(ip̃)) + sin s(cos t+ sin t(iṽ)).

The associated Jacobi field is
Ỹ0(s) = iγ̃(s),

and it coincides with the restriction of the vertical vector field (4.5.9) along γ̃. Of course, the
corresponding variation of γ is trivial and, accordingly, Ỹ0 projects down to a trivial Jacobi field
along γ.

Next, consider an arbitrary Jacobi field Ỹ along γ̃ associated to a variation through horizontal
geodesics and with the property that it projects down to a Jacobi field Y along γ such that Y (0) = 0
and 〈Y, γ′〉 ≡ 0. We already know that Ỹ (s) = cos sẼ1(s)+sin sẼ2(s) for some parallel vector fields
E1, E2 along γ̃. The condition that 0 = Y (0) = dπp̃(Ỹ ) imposes that Ỹ (0) must be vertical, namely,
a multiple of ip. Since Ỹ0 projects down to zero and the Jacobi fields along a geodesic form a vector
space, we can add a suitable multiple of Ỹ0 to Ỹ and assume that Ỹ (0) = 0. Now E1 = 0 and
Ỹ (s) = sin sE2(s). We must have 〈Ỹ , γ̃′〉 ≡ 0, so E2(s) is a constant vector ũ ∈ Rn+1 orthogonal
to p̃ and ṽ. A variation associated to Ỹ is

H̃(s, t) = cos s p̃+ sin s(cos t ṽ + sin t ũ).

Note that γ̃t is horizontal if and only if γ̃′t(0) = cos tṽ+sin tũ is orthogonal to ip̃ if and only if ũ ⊥ ip̃.
We compute

〈Ỹ (s), iγ̃(s)〉 = 〈sin s ũ, cos s(ip̃) + sin s(iṽ)〉
= sin2 s〈ũ, iṽ〉.

107



Now there are two cases. If ũ ⊥ iṽ, then Ỹ is a horizontal vector field and the corresponding Jacobi
field is Y (s) = sin sU(s), where U(s) is the parallel vector field along γ with U(0) = dπp̃(ũ); the
space of such Jacobi fields is 2n− 2-dimensional and the associated conjugate values are multiples
of π. On the other hand, if ũ = iṽ, then the horizontal component of Ỹ is

Ỹ (s)− sin2 s(iγ̃(s)) = sin s(iṽ)− sin2 s(cos s(ip̃) + sin s(iṽ))

= sin s(cos s2(iṽ)− sin s cos s(ip̃))

= sin s cos s(iγ̃′(s)).

In this case, Y (s) = sin s cos s(Jv) = 1
2 sin 2s(Jv), where v = γ′(0) = dπp̃(ṽ); the space of such

Jacobi fields is one-dimensional and the associated conjugate values are multiples of π/2. Finally,
it follows from our considerations that the first conjugate locus of a point coincides with the cut
locus.

Lie groups

Let G be a Lie group equipped with a bi-invariant metric. In this example, we will describe the
conjugate locus of a point in G. By homogeneity, it suffices to compute the conjugate locus of the
identity. Denote by g the Lie algebra of G. Any geodesic through 1 has the form γ(t) = exp tX for
some X ∈ g. Let {E1, . . . , En} be a basis of g. Consider the Jacobi equation −Y ′′+R(γ′, Y )γ′ = 0
along γ. Write Y (t) =

∑n
i=1 yi(t)Ei where yi are smooth functions on R. Note that γ′(t) =

d(Lγ)1γ
′(0) = Xγ(t). Then

Y ′′ =
∑

i

y′′i Ei + 2y′i∇XEi + yi∇X∇XEi

and
R(γ′, Y )γ′ = R(X,Y )X =

∑

i

yi
(
∇X∇Ei

X −∇[X,Ei]X
)
.

A simple calculation using the formula (2.8.8) for the Levi-Cività connection yields that the Jacobi
equation along γ has the form

(5.6.1) Y ′′ + adXY
′ = 0.

Recall that adX is a skew-symmetric endomorphism of g ∼= T1G with respect to the metric at the
identity, so there exists an adX -invariant orthogonal decomposition

g = V0 ⊕
r⊕

j=1

Vj

where V0 is the kernel of adX and for j = 1, . . . , r we have dimVj is even and the eigenvalues of
adX on Vj are ±iλj , λj 6= 0. Now the general solution of (5.6.1) has the form

(5.6.2) Y (t) = C + Y0t+
r∑

j=1

cos(λjt)Yj +
sin(λjt)

λj
adXYj

where Yj ∈ Vj for j = 0, . . . , r and C ∈ g. Therefore the space of Jacobi fields vanishing at t = 0 is
spanned by

Y0t− Yj + cos(λjt)Yj +
sin(λjt)

λj
adXYj
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where Yj ∈ Vj for j = 1, . . . , r. This Jacobi field can vanish again only if Y0 = 0; in this case, it
is periodic and vanishes exactly when t is a multiple of 2π/λj . We finally deduce that the points
conjugate to 1 along γ are γ(2πk/λj), where k ∈ Z, with multiplicity dimVj . In particular, the
multiplicity of a conjugate point is always even.

5.7 Additional notes

§1 One can recover the results of this chapter by replacing variational calculus by standard calculus
on infinite-dimensional smooth manifolds as follows. To begin with, it is necessary to consider a
larger class of curves to work with, namely, the absolutely continuous curves γ : [a, b] →M joining
p to q with square-integrable ||γ′||. This is a metric space with respect to the distance

d(γ1, γ2) = sup
t∈[a,b]

d(γ1(t), γ2(t)) +

(∫ b

a
||γ′1(s)− γ′2(s)||2 ds

)1/2

.

Plainly, E and L are continuous functions with respect to this distance. Next, there is a natural
way of endowing this space with the structure of a smooth Hilbert manifold. We will not discuss
the details of this construction, for which the interested reader is referred to [Kli95].�2� It turns
out that E becomes a smooth function and the first and second variation formulas correspond to
its first two derivatives. The main results of this chapter can then be fashioned in the context of
Morse theory in Hilbert spaces.

§2 In 1921-30, in the three editions of Blaschke’s book [Bla30], it was discussed the problem of
whether it is true that a closed surface in R3 with the property that the first conjugate locus of
any point reduces to a single point must be isometric to S2; he called surfaces with this property
wiedersehens surfaces. Blaschke studied a number of features of these surfaces and showed, among
other things, that: they can be equivalently defined by requiring that the first conjugate point
always occurs at the same distance; all of their geodesics are closed and of the same length (hence
their name in German); they are homeomorphic to S2. Of course, if we admit abstract 2-dimensional
Riemannian manifolds, then RP 2 also shares this property. In 1963, L. Green [Gre63] proved that
a S2 and RP 2 are indeed the only examples. Later, the work of Weinstein [Wei74], Berger-
Kazdan [BK80] and Yang [Yan80] extended this result to all dimensions proving that a simply-
connected n-dimensional wiedersehens manifold is isometric to Sn.

§3 More generally, it is natural ask to which extent the conjugate locus structure restricts the
topological, differentiable or metric structure of a n-dimensional Riemannian manifold M [War67].
The case of empty conjugate locus will be discussed in the additional notes of chapter 6. The
case in which the first tangential conjugate locus of every point p ∈ M is a round hypersphere in
(TpM, gp) of the same radius is exactly the subject of §2 above. Consider now the case in which
the first tangential conjugate locus of every p is a round sphere in TpM of the same radius but
the multiplicity of the corresponding conjugate points is possibly less than maximal. Namely, we
assume that there exists a number ℓ > 0 and an integer k between 1 and n− 1 such that, for every
p ∈M and every geodesic starting at p, the first conjugate point of p occurs at distance ℓ and has
multiplicity k; such a manifold is called an Allamigeon-Warner manifold [Bes78, chap. 5]. We have
already seen that Sn and CPn are examples of simply-connected Allamigeon-Warner manifolds;
other examples are the quaternionic projective spaces HPn and the Cayley projective plane CaP 2,
manifolds that we will discuss later in this book (indeed, we will see that the spheres Sn and the
compact projective spaces RPn, CPn, HPn, CaP 2 are collectively known as the compact rank one

�2�Ref?
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symmetric spaces). Non-simply-connected examples are given by quotients of those; for instance,
RPn and lens spaces.

§4 A somehow more specialized condition on a manifold is requiring that the cut-locus structure
of each point be similar to that of a compact rank one symmetric space; see [Bes78, chap. 5]. Namely,
for distinct points p and q in a complete Riemannian manifold M , the link from p to q is the subset
Λ(p, q) of the unit sphere UqM of TqM comprising of the vectors of the form −γ′(d(p, q)) ∈ TqM ,
where γ : [0, d(q, p)] →M is a unit speed minimizing geodesic joining p to q. A compact Riemannian
manifold M is called a Blaschke manifold if for every p ∈ M and q ∈ Cut(p), the link Λ(p, q) is a
great sphere of UqM ; here it is not required that the tangential cut-locus at a point is a round sphere,
but this follows from the definition. It is known that a Blaschke manifold is Allamigeon-Warner,
and both concepts are equivalent in the simply-connected case. Note that Λ(p, q) equals UqM
for Sn, it consists of two antipodal points of UqM for RPn, and it consists of a great circle of UqM
for CPn. One sees that Λ(p, q) is a great 3-sphere of UqM for HPn and a great 7-sphere of UqM
for CaP 2. The Blaschke conjecture asserts that every Blaschke manifold is isometric to a compact
rank one symmetric space. This is one the famous yet open problems in geometry, with many
partial results proved. The book [Bes78] contains a discussion of this conjecture as well as more
general discussions of Riemannian manifolds all of whose geodesics are closed; see [Rez94] for a
more recent bibliography.

5.8 Exercises

1 Let γ : [a, b] → M be a geodesic parametrized with unit speed in a Riemannian manifold M ,
and let H be a piecewise smooth variation of γ with associated variational vector field Y . Show
that

d2

dt2

∣
∣
∣
t=0

L(γt) = 〈∇ ∂
∂t

∂

∂t

∣
∣
∣
t=0

, γ′〉
∣
∣
∣

b

a
+

∫ b

a
||Y ′||2 + 〈R(γ′, Y )γ′, Y 〉 − 〈Y ′, γ′〉2 ds

= 〈∇ ∂
∂t

∂

∂t

∣
∣
∣
t=0

, γ′〉
∣
∣
∣

b

a
+

∫ b

a
||Y ′

⊥||2 + 〈R(γ′, Y⊥)γ′, Y⊥〉 ds,

where Y⊥ = Y − 〈Y, γ′〉γ′ is the normal component of Y .

2 Let γ : [0, ℓ] → M be a geodesic in a Riemannian manifold M . Consider the index form I on
the space of piecewise smooth vector fields along γ vanishing at 0 and ℓ. Prove that the kernel of I
consists precisely of the Jacobi fields along γ vanishing at 0 and ℓ. (Hint: Use the formula (5.4.1),
and for a given element Y in the kernel of I, choose suitable elements X as it was done in the proof
of Proposition 5.3.5).

3 Let N1 and N2 be two closed submanifolds of a complete Riemannian manifold M . Assume
that one of N1, N2 is compact.

a. Prove that there exist points p1 ∈ N1 and p2 ∈ N2 such that d(N1, N2) = d(p1, p2).
b. Prove that there exists a geodesic γ of M joining p1 and p2 and that L(γ) = d(N1, N2).
c. Prove that γ is perpendicular to N1 (resp. N2) at p1 (resp. p2). (Hint: Use the first variation

formula.)

4 Let γ : [a, b] → M be a geodesic in a Riemannian manifold, and let γ(a) = p and γ(b) = q.
Prove that if p and q are not conjugate along γ, then given u ∈ TpM and v ∈ TqM , there exists a
unique Jacobi field J along γ such that J(a) = u and J(b) = v.
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5 Let M be a Riemannian manifold, and let X be a Killing field on M .
a. If γ is a geodesic in M , prove that the restriction J = X ◦ γ of X to a vector field along γ is

a Jacobi field.
b. If M is complete and p ∈M , prove that X is completely determined by the values of X(p) ∈
TpM and (∇X)p ∈ End(TpM).

c. Deduce from part (b) that the dimension of the Lie algebra of Killing fields on M is bounded
by 1

2n(n+ 1), where n = dimM .

6 Let M be a Riemannian manifold and let X be a Killing field on M . Prove that

∇U∇VX −∇∇UVX +R(X,U)V = 0

for all smooth vector fields U and V on M . (Hint: Use Exercise 5(a).)

7 Let (M, g) be a Riemannian manifold, fix p ∈M and choose an orthonormal basis {e1, . . . , en}
of TpM . Let ǫ > 0 be such that expp : B(0p, ǫ) ⊂ TpM → M is a diffeomorphism onto its image
U , and use it to define a local coordinates x1, . . . , xn around p. Let v ∈ TpM be a unit vector and
consider the geodesic t 7→ expp(tv). Show that the coefficients of the metric in this chart admit
expansions

gij(expp tv) = δij + 〈R(v, ei)v, ej〉
t2

3
+ O(t3),

where 1 ≤ i, j ≤ n, 0 < t < ǫ, and O(t3) denotes a term such that O(t3)/t2 → 0 as t → 0. (Hint:
Use the result of Scholium 5.4.5.)

8 Let (M, g) be a compact Riemannian manifold.
a. Prove that if the Ricci tensor of M is negative definite everywhere, th en the isometry

group Iso(M, g) is finite. (Hint: Use exercise 6 and the divergence theorem (exercise 11
in chapter 4) to show that there are no nontrivial Killing fields on M .)

b. Prove that if the Ricci tensor ofM is negative semi-definite everywhere, then any Killing field
is parallel.

9 Let G be a Lie group equipped with a bi-invariant metric. Use exercise 12 of chapter 2 and
exercise 5(a) above to show that the restriction of a left-invariant or right-invariant vector field
along a geodesic γ is a Jacobi field. Deduce that a general Jacobi field along γ has the form J1+J2,
where J1 = X1 ◦ γ, J2 = X2 ◦ γ, X1 is left-invariant and X2 is right-invariant. Reconcile this result
with formula (5.6.2).

10 Prove that the “cut-distance” function ρ : UpM → (0,+∞] is continuous. (Hint: for vi → v,
prove that lim sup ρ(vi) ≤ ρ(v) and lim inf ρ(vi) ≥ ρ(v) using ideas from the proof of Proposi-
tion 5.5.5.)
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C H A P T E R 6

Applications

6.1 Introduction

In this chapter, we collect a few basic and important theorems of Riemannian geometry that we
prove by using the concepts introduced so far. We also introduce some other important techniques
along the way.

We start by discussing manifolds of constant curvature. If one agrees that curvature is the main
invariant of Riemannian geometry, then in some sense the spaces of constant curvature should be
the simplest models of Riemannian manifolds. It is therefore very natural to try to understand
those manifolds. Since curvature is a local invariant, one can only expect to get global results by
further imposing other topological conditions.

Next we turn to the relation between curvature and topology. This a a central and recurring
theme for research in Riemannian geometry. One of its early pioneers was Heinz Hopf in the 1920’s
who asked to what extent the existence of a Riemannian metric with particular curvature properties
restricts the topology of the underlying smooth manifold. Since then the subject has expanded so
much that the scope of this book can only afford a glimpse at it.

It is worthwhile pointing out that not only the theorems in this chapter are part of a central
core of results in Riemannian geometry, but also the arguments and techniques in the proofs can
be applied in more general contexts to a wealth of other important problems in geometry.

6.2 Space forms

A complete Riemannian manifold with constant curvature is called a space form. If M is a space
form, its universal Riemannian covering manifold M̃ is a simply-connected space form by Proposi-
tion 3.3.8. Moreover, M is isometric to M̃/Γ with the quotient metric, where Γ is a free and proper
discontinuous subgroup of isometries of M̃ , see section 1.3. So the classification of space forms can
be accomplished in two steps, as follows:
a. Classification of the simply-connected space forms.
b. For each simply-connected space form, classification of the subgroups of isometries acting

freely and properly discontinuously.
In this section, we will prove the Killing-Hopf theorem that solves part (a) in this program. Despite
a lot being known about part (b), it is yet an unsolved problem, and we include a brief discussion
about it after the proof of the theorem.

We first prove a local result.

6.2.1 Theorem Fix k ∈ R. Then any two Riemannian manifolds of constant curvature k are
locally isometric.
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Proof. Let M , M̃ be two Riemannian manifolds of constant curvature k. Fix points p ∈ M ,
p̃ ∈ M̃ and choose a linear isometry f : TpM → Tp̃M̃ . Choose open balls U ⊂ TpM , Ũ ⊂ Tp̃M̃
with Ũ = f(U) that determine normal neighborhoods V = expp(U), Ṽ = expp̃(Ũ). Now we have a

diffeomorphism F : V → Ṽ given by

U
f−−−−→ Ũ

expp



y



yexpp̃

V −−−−→
F

Ṽ

namely, F ◦expp = expp̃ ◦f . Note that F (p) = p̃ and dFp = f . We shall prove that F is an isometry.

We need to prove that dFq : TqM → Tq̃M̃ is a linear isometry, where q ∈ V is arbitrary and
q̃ = F (q). Write q = γv(t0) where γv is the radial geodesic from p with initial unit speed v ∈ TpM
and t0 ∈ [0, ǫ). We orthogonally decompose TqM = Rγ′v(t0) ⊕ W , where W is the orthogonal
complement, and similarly Tq̃M̃ = Rγ′ṽ(t0)⊕ W̃ , where ṽ = f(v).

Note F ◦ γv is the geodesic γṽ in M̃ , so by the chain rule

||dFq(γ′v(t))|| = ||γ′ṽ(t)|| = ||ṽ|| = ||v|| = ||γ′v(t)||.

Furthermore, by the Gauss lemma 5.5.1 (or 3.2.1), d(expp)t0v : TpM → TqM sends the orthogonal

decomposition TpM = Rv ⊕ (Rv)⊥ to the orthogonal decomposition TqM = Rγ′v(t0) ⊕W , and
similarly for d(expp̃)t0ṽ. It follows that dFq sends the orthogonal decomposition TqM = Rγ′v(t0)⊕W
to Tq̃M̃ = Rγ′ṽ(t0)⊕ W̃ . It remains only to check that dFq restricts to an isometry W → W̃ .

It is here and only here that we use the assumption on the sectional curvatures. Let u ∈ TpM
be orthogonal to v and let ũ = f(u) ∈ Tp̃M̃ . Extend u, ũ to parallel vector fields U , Ũ along γv,
γṽ, respectively. On one hand, the Jacobi fields Y , Ỹ along γv, γṽ, resp., with initial conditions
Y (0) = Ỹ (0) = 0, Y ′(0) = u, Ỹ ′(0) = ũ are given by Y (t) = d(expp)tv(tu), Ỹ (t) = d(expp̃)tṽ(tũ),
due to Scholium 5.4.5. On the other hand, the Jacobi equation along a geodesic in a space of
constant curvature k is given by Y ′′ + kY = 0. It follows that

Y (t) =
sin(kt)

k
U(t) and Ỹ (t) =

sin(kt)

k
Ũ(t)

if k 6= 0 and

Y (t) = tU(t) and Ỹ (t) = tŨ(t)

if k = 0. In any case

||Ỹ (t)|| = ||Y (t)||.

Since Y (t0) ∈W is an arbitrary vector and

dFq(Y (t)) = dFq
(
d(expp)tv(tu)

)

= d(expp̃)tṽ(tf(u))

= Ỹ (t),

it follows that dFq :W → W̃ is an isometry, and this finishes the proof. �

If (M, g) is a space form of curvature k, then, for a positive real number λ, (M,λg) is a space
form of curvature λ−1k, see Exercise 2 in chapter 4. Therefore, the metric g can be normalized so
that k becomes equal to either one of 0, 1, or −1.
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6.2.2 Theorem (Killing-Hopf) Let M be a simply-connected space form of curvature k and
dimension bigger than one. Then M is isometric to:
a. the Euclidean space Rn, if k = 0;
b. the real hyperbolic space RHn, if k = −1;
c. the unit sphere Sn, if k = 1.

Proof. Let M̃ be Rn, RHn or Sn according to whether k = 0, −1 or 1. Fix p̃ ∈ M̃ , p ∈ M
and choose a linear isometry f : Tp̃M̃ → TpM . As in the proof of Theorem 6.2.1, this data can be
used to define an isometry F : Ṽ → V with intial data F (p̃) = p, dFp̃ = f , where V , Ṽ are certain
normal neighborhoods of p, p̃. We shall see that F can be extended to an isometry M̃ →M .

Consider first the case k = 0 or −1. Since the cut locus of a point in Rn or RHn is empty,
we can take Ṽ = M̃ as a normal neighborhood, and using the completeness of M , extend F
to a map M̃ → M by the same formula, namely, F ◦ expp̃ = expp ◦f . Note, however, that in

principle F does not have to be a diffeomorphism, because f(Tp̃M̃) = TpM does not in principle
exponentiate to a normal neighborhood of p. Nevertheless, the proof of Theorem 6.2.1 (using the
global Gauss lemma 5.5.1) carries through to show that F is a local isometry. Since M̃ is complete,
Proposition 3.3.8(b) can be applied to yield that F is a Riemannian covering map and hence, since
M is assumed to be simply-connected, F must be an isometry.

Consider now k = 1. Here the above argument yields a local isometry F : Ṽp̃ → M , where
Ṽp̃ = Sn \ {−p̃} is the maximal normal neighborhood of p̃. To finish, we choose another point
q̃ ∈ Sn \ {p̃,−p̃} and construct a similar local isometry G : Ṽq̃ → Sn, with initial data G(q̃) = F (q̃)
and dGq̃ = dFq̃, where Vq̃ = Sn\{−q̃}. By exercise 15 of chapter 3, F and G can be pasted together
to define a local isometry Sn →M . The rest of the proof is as above, using the completeness of Sn

and the simple-connectedness of M . �

Depending on the context in which one is interested, it is possible to find in the literature other
proofs of Theorem 6.2.2 different from the above one. The argument that we chose to use, based
on Jacobi fields, works in a more general context, and will be used to prove a generalization of
this theorem in chapter ??? of part 2. Note that the main argument in the proof of that theorem
really proves the following local result: two Riemannian manifolds of the same constant curvature
are locally isometric; the other arguments therein are used to get a global result in each one of the
three particular cases.

Next, we discuss the case of non-simply-connected space forms. In the flat case, the main result
is the following theorem.

6.2.3 Theorem (Bieberbach) A compact flat manifold M is finitely covered by a torus.

Namely, Bieberbach showed that the fundamental group π1(M) contains a free Abelian normal
subgroup Γ of rank n = dimM and finite index, so there is a finite covering

π1(M)/Γ → Rn/Γ → Rn/π1(M) =M.

(For an example, review the contents of exercise 10 of chapter 1.) The complete classification of
compact flat Riemannian manifolds is known only in the cases n = 2, 3; see [Wol84, Cha86] for
proofs of Bieberbach’s theorem and these classifications.

Next we consider non-simply-connected space forms of positive curvature. In even dimensions,
the only examples are the real projective spaces, as the following result shows.

6.2.4 Theorem A even-dimensional space form of positive curvature is isometric either to S2n or
to RP 2n.
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Proof. We know thatM = S2n/Γ, where Γ is a subgroup ofO(2n+ 1) acting freely and properly
discontinuously on S2n. Since this action is free, if an element of Γ admits a +1-eigenvalue then it
must be the identity id. Recall that the eigenvalues of an orthogonal transformation are unimodular
complex numbers, and the non-real ones must occur in complex conjugate pairs.

Next, let γ ∈ Γ. Then γ2 ∈ SO(2n+ 1), and since 2n+ 1 is odd, γ2 admits an eigenvalue +1,
thus γ2 = id. This implies that all the eigenvalues of γ are ±1. If γ 6= id, it follows that all the
eigenvalues of γ are −1, namely, γ = −id. Hence Γ = {id} or Γ = {±id}. �

The odd-dimensional space forms of positive curvature have been completely classified by J.
Wolf [Wol84]. Here we just present a very rich family of examples.

6.2.5 Example (Lens spaces) Let p, q be relatively prime integers. The lens space Lp;q is the
quotient Riemannian manifold S3/Γ, where we view

S3 = { (z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1 },

and Γ is the cyclic group of order p generated by the element

tp;q(z1, z2) = (ωz1, ω
qz2),

where ω is a pth root of unity. Note that L2;1 = RP 3. More generally, let q2, . . . , qn be integers
relatively prime to an integer p. The lens space Lp;q2,...,qn is the quotient Riemannian manifold
S2n−1/Γ, where we view

S2n−1 = { (z1, . . . , zn) ∈ C2 | |z1|2 + · · ·+ |zn|2 = 1 },

and Γ is the cyclic group of order p generated by the element

tp;q2,...,qn(z1, z2, . . . , zn) = (ωz1, ω
q2z2, . . . , ω

qnzn).

Of course, a lens space is a non-simply-connected space form of positive curvature. The 3-
dimensional lens spaces were introduced by Tietze in 1908. In general, lens spaces are important
in topology because they provide examples of non-homeomorphic manifolds which are homotopy-
equivalent (see [Mun84, §40, §69]). ⋆

A space form of negative curvature is called a hyperbolic manifold. Of course, a hyperbolic
manifold is isometric to the quotient of RHn by a group of isometries Γ acting freely and proper
discontinously. A compact orientable surface of genus g ≥ 2 admits many hyperbolic metrics,
which are constructed as follows. It is a theorem of Radó [Rad24] that any compact surface is
homeomorphic to the identification space of a polygon whose sides are identified in pairs. In
particular, a compact orientable surface Sg of genus g is realized as a regular 4g-sided polygon P
with a certain identification of the sides. The vertices of P are all identified to one point, so in
order to get a smooth surface it is necessary that the sum of the inner angles of P be 2π. Note
that P cannot be taken to be an Euclidean polygon, for in that case the sum of the inner angles
is known to be (4g − 2)π > 2π for g ≥ 2. Instead, we construct P as a regular polygon in the
disk model D2 of RH2 having the center at (0, 0) and with the sides being geodesic segments. In
this case, by the Gauss-Bonnet theorem the sum of the inner angles is (4g − 2)π − A, where A
denotes the area of P . It is clear that there exist such polygons in D2 with arbitrary diameter, and
that A varies continuously with the diameter, between zero (when the diameter is near zero) and
(4g − 2)π (when the angles are near zero). Since (4g − 2)π > 2π, it follows from the intermediate
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value theorem that it is possible to construct P such that the sum of the inner angles is 2π. Next
one sees that the identifications between pairs of sides can be realized by isometries of D2 such
that these isometries generate a discrete subgroup Γ of the isometry group of D2 acting freely and
properly discontinuously. This shows that Sg = D2/Γ admits a hyperbolic metric. Further, it
is known that the hyperbolic metric on Sg for g ≥ 2 is not unique. It is a classical result that
there exist natural bijections between the following sets of structures on a compact oriented surface
Sg: conformal classes of Riemannian metrics; complex structures compatible with the orientation;
hyperbolic metrics (see e.g. [Jos06]). The moduli space Mg of Sg is the space of equivalence classes
of hyperbolic metrics on Sg, where two hyperbolic metrics belong to the same class if and only
if they differ by a diffeomorphism of Sg. It turns out that Mg is not a manifold: singularities
develop exactly at the hyperbolic metrics admitting nontrivial isometry groups. For this reason,
Teichmüller introduced a weaker equivalence relation on the space of hyperbolic metrics on Sg by
requiring two of them to be equivalent if they differ by a diffeomorphism which is homotopic to the
identity; the Teichmüller space Tg of Sg is the resulting space of equivalence classes. It is known
that Tg admits the structure of a smooth manifold of dimension 6g − 6 if g ≥ 2 [EE69].

In the higher dimensional case, it is much more difficult to construct hyperbolic metrics, and
most of the progress in this direction has been made in the 3-dimensional case, see [Thu97].

6.3 Synge’s theorem

We will use the following lemma in the proofs of Synge’s and Preissmann’s theorems. It is easy to
see that the compactness assumption in it is essential.

6.3.1 Lemma (Cartan) Let M be a compact Riemannian manifold. Assume that M is not
simply-connected. Then every nontrivial free homotopy class C of loops contains a closed geodesic
of minimal length in C.

Proof. We first claim that since M is compact, it is possible to find ǫ > 0 such that any two
points of M within distance less than ǫ can be joined by a unique minimizing geodesic, and this
geodesic depends smoothly on its endpoints. Indeed, cover M by finitely many balls B(pi, ǫi/2)
where pi ∈M , ǫi > 0, and B(pi, ǫi) is a δi-totally normal ball for some δi > 0 as in Proposition 2.4.7,
for i = 1, . . . , k. Take ǫ = mini{1

2ǫi, δi}. If d(x, y) < ǫ for points x, y ∈ M , then x ∈ B(pi0 , ǫi0/2)
for some i0, and then

d(y, pi0) ≤ d(y, x) + d(x, pi0) < ǫ+
ǫi0
2

≤ ǫi0 .

Hence x, y ∈ B(pi0 , ǫi0) with d(x, y) < δi0 , so the claim follows from the quoted proposition.

Let ℓ be the infimum of the lengths of the piecewise smooth curves in C, and take a minimizing
sequence (ηj) in C such that each ηj is parametrized on [0, 1] with constant speed. Since (ηj) is a
minimizing sequence, L = supj L(ηj) is finite. Choose a subdivision 0 = t0 < t1 < . . . < tn = 1
with ti − ti−1 < ǫ/2L for i = 1, . . . , n. Then

d(ηj(ti−1), ηj(t)) ≤
∫ t

ti−1

||η′j(t)|| dt ≤ L(ti − ti−1) <
ǫ

2

for ti−1 ≤ t ≤ ti. This estimate allows us to replace each curve ηj by the broken geodesic γj joining
the points ηj(0), ηj(t1), . . . , ηj(1). For every j, γj is homotopic to ηj ; this can be seen as follows.
Owing to

d(γj(t), ηj(t)) ≤ d(γj(t), γj(ti−1)) + d(ηj(ti−1), ηj(t)) <
ǫ

2
+
ǫ

2
= ǫ
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for ti−1 ≤ t ≤ ti, we can construct a smooth homotopy from ηj |[ti−1,ti] into γj |[ti−1,ti] by using the
shortest geodesic from ηj(t) to γj(t).

It is clear that L(γj) ≤ L(ηj), so (γj) is also a minimizing sequence in C. Using again the
compactness of M , we can select a subsequence of (γj), denoted by the same symbol, such that
(γj(ti)) converges to a point pi as j → ∞ for all i. It follows that (γj) converges in the C1-topology
to the broken geodesic γ joining the pi. It is clear that γ belongs to C and has length ℓ. Since γ is
of minimal length in C, it is locally minimizing. By Theorem 3.2.6, γ is a geodesic. �

In the case of a simply connected compact Riemannian manifold, it is still true that there exists
at least one closed geodesic (Lyusternik-Fet [LF51]). More specifically, in the case of S2, it is
known that every Riemannian metric must admit at least 3 geometrically distinct closed geodesics
(Lyusternik-Schnirelmann [LŠ47] �1�).

6.3.2 Theorem (Synge) An even-dimensional orientable compact Riemannian manifold M of
positive sectional curvature must be simply connected.

We remark that each one of the hypotheses in the statement of Synge’s theorem is essential.
In fact, the following manifolds are not simply-connected: RP 2 is even-dimensional, compact and
positively curved, and nonorientable; RP 3 is compact, orientable and positively curved, and odd-
dimensional; and a flat 2-torus is even-dimensional, compact and orientable and flat.

Proof of Theorem 6.3.2. Suppose, on the contrary, that M is not simply-connected and let C
denote a nontrivial free homotopy class of loops. By Lemma 6.3.1, there exists a closed geodesic
γ : [0, ℓ] → M , parametrized with unit speed, such that L(γ) = ℓ = infη∈C L(η). Let p = γ(0) =
γ(ℓ), and denote by P : TpM → TpM the parallel translation map along γ from 0 to ℓ. Fix an
orientation of M . Since the parallel translation maps along γ from 0 to t, for 0 ≤ t ≤ ℓ, join P to
the identity map of TpM , we have that P is orientation-preserving. Since γ is a geodesic, γ′(0) is a
fixed vector of P . Now P , being an isometry, leaves the orthogonal complement 〈γ′(0)〉⊥ invariant.
Since the dimension of this subspace is odd, it contains a nonzero vector y that is fixed under P .
Let Y be the parallel vector field along γ that extends y, and construct a variation {γt} of γ with
associated variational vector field given by Y . Since M is positively curved, 〈R(Y, γ′)Y, γ′〉 < 0.
Using the variation formulas (5.3.3) and (5.3.9), we get that

d

dt

∣
∣
∣
t=0

E(γt) = 0 and
d2

dt

∣
∣
∣
t=0

E(γt) < 0.

Then, for t sufficiently small, we have that E(γt) < E(γ) and

L(γt)
2 ≤ 2ℓ E(γt) < 2ℓE(γ) = L(γ)2,

and this contradicts the fact that γ is of minimal length in C. Hence C cannot exist and M is
simply-connected. �

6.3.3 Corollary An even-dimensional compact Riemannian manifold M of positive sectional cur-
vature has fundamental group of order at most two.

Proof. Let M̃ be the orientable double cover of M . Then M̃ satisfies the hypotheses of Synge’s
theorem 6.3.2, so it is simply connected. The result follows. �

It follows from Corollary 6.3.3 that there exists no Riemannian metric of positive sectional
curvature in RPm × RPn if m + n is even. Indeed, otherwise this manifold would satisfy the

�1�Check Klingenberg and simpleness of curves.
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hypotheses of the corollary but its fundamental group is isomorphic to Z2 ⊕Z2. It is interesting to
compare this example with the fact that the nonexistence of a positively curved Riemannian metric
in S2 × S2 is still an unsettled question (see Add. note 4).

6.4 Bonnet-Myers’ theorem

The following result is an elementary example of a comparison theorem in Riemannian geometry.
Note that the right-hand side in (6.4.2) is exactly the Ricci curvature of the sphere Sn(R).

6.4.1 Theorem (Bonnet-Myers) Let M be a complete Riemannian manifold of dimension n.
Assume there exists a constant R > 0 such that

(6.4.2) Ric(v, v) ≥ n− 1

R2
g(v, v)

for every v ∈ TM . Then
diam(M) ≤ diam(Sn(R)) = πR.

In particular, M is compact and has finite fundamental group π1(M).

Proof. Recall that diam(M) = sup{ d(x, y) | x, y ∈ M }. We will show that the distance of
two given points p, q ∈ M is bounded above by πR. Since M is complete, there exists a minimal
geodesic γ : [0, L] → M with unit speed and such that γ(0) = p and γ(L) = q. Because γ is
minimal, I(Y, Y ) ≥ 0 for all vector fields Y along γ vanishing at the endpoints. We will use this
remark below for some suitable vector fields.

Select an orthonormal basis {e1, . . . , en} of TpM with e1 = γ′(0), and extended it to parallel
orthonormal frame {E1, . . . , En} along γ; of course, E1 = γ′. Set

Yi(s) = sin
πs

L
Ei(s)

for i = 2, . . . , n. Then

I(Yi, Yi) =

∫ L

0
−〈Y ′′

i , Yi〉+ 〈R(γ′, Yi)γ′, Yi〉 ds

=

∫ L

0
sin2

πs

L

(
π2

L2
+ 〈R(γ′, Ei)γ′, Ei〉

)

ds.

Noting that each Yi vanishes at the endpoints of γ, we have

0 ≤
n∑

i=2

I(Yi, Yi) =

∫ L

0
sin2

πs

L

(

(n− 1)
π2

L2
− Ric(γ′, γ′)

)

ds

≤ (n− 1)

(
π2

L2
− 1

R2

)∫ L

0
sin2

πs

L
ds,

using the assumption on the Ricci curvature. This proves that d(p, q) = L ≤ πR. We conclude
that diam(M) ≤ πR.

The other assertions in the statement can now be easily verified. The manifold M is complete
and bounded, thus, in view of Corollary 3.3.7, compact. Let M̃ denote the Riemannian universal
covering manifold ofM . Since M̃ is complete and satisfies the same estimate on the Ricci curvature
as M , the previous results imply that M̃ is compact, forcing π1(M) to be finite. This completes
the proof of the theorem. �
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6.4.3 Corollary No compact nontrivial product manifold S1×M admits a metric of positive Ricci
curvature.

6.4.4 Remark The assumption about the Ricci curvature in the statement of the Bonnet-Myers
theorem cannot be relaxed in the sense of requiring that the Ricci curvature only be positive, as
the following example shows. The two-sheeted hyperboloid

{ (x, y, z) ∈ R3 | x2 + y2 − z2 = −1 }

with the metric induced from R3 is complete, non-compact, and has Gaussian curvature at a point
(x, y, z) given by (x2 + y2 + z2)−2, which, despite being positive, goes to zero as the point tends to
infinity. ⋆

6.5 Nonpositively curved manifols

One of the main features of nonpositively curved manifols is the abundance of convex functions.
Recall that a continuous function f : I → R defined on an interval I is called convex if f((1 −
t)x+ ty) ≤ (1− t)f(x) + tf(y) for every t ∈ [0, 1] and x, y ∈ I. If f is of smooth, this condition is
equivalent to requiring that its second derivative f ′′ ≥ 0. In the case of a continous function f on
a complete Riemannian manifold M , we say that f is convex if its restriction f ◦ γ is convex for
every geodesic γ of M . Strict convexity is defined analogously by replacing the inequalities above
the strict inequalities. Our point of view in this section is that most of the important results about
the geometry of manifolds with nonpositive curvature can be derived by using appropriate convex
functions on the manifold.

We will use the following remark in the proof of Lemma 6.5.1. If a convex function admits two
global minima, then a geodesic connecting these two points also consists of global minima of the
function. In fact, the function restricted to the geodesic is convex, and this implies that it cannot
have bigger values on the interior of the segment than at the endpoints forcing it to be constant
along the geodesic segment. A similar argument shows that any local minimum of a convex function
must in fact be a global one.

6.5.1 Lemma Let γ be a geodesic in a Riemannian manifold M . If the sectional curvature along
γ is nonpositive, then there are no conjugate points along γ.

Proof. Let Y be a Jacobi field along γ. We claim that the fuction f = ||Y ||2 is convex. In order
to prove this, we recall the Jacobi equation −Y ′′ +R(γ′, Y )γ′ = 0 and differentiate f twice to get

f ′′ = 2(〈Y ′′, Y 〉+ ||Y ′||2)
= 2(〈R(γ′, Y )γ′, Y ) + ||Y ′||2)
≥ 0,

in view of the assumption on the curvature; this proves the claim. Now if f(t1) = f(t2) = 0 for
some t1 < t2, then f |[t1,t2] ≡ 0, whence Y is trivial. Hence there are no conjugate points along γ. �

6.5.2 Theorem (Hadamard-Cartan) Let M be a complete Riemannian manifold with nonpos-
itive sectional curvature. Then, for every point p ∈M , the exponential map expp : TpM →M is a
smooth covering. In particular, M is diffeomorphic to Rn if it is simply-connected.
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Proof. Fix a point p ∈ M . In view of Lemma 6.5.1, we know that expp : TpM → M is a local
diffeomorphism. This being so, we may endow TpM with the pull-back metric g̃ = exp∗p g. Since a
local isometry maps geodesics to geodesics, the geodesics of (TpM, g̃) through the origin 0p are the
straight lines, thus, defined on all of R due to the completeness of M . In view of Theorem 3.3.5(c),
this implies that (TpM, g̃) is complete. Now expp is a covering because of Proposition 3.3.8(b), and
the last asertion in the statement is obvious. �

A complete simply-connected manifold of nonpositive sectional curvature is called a Hadamard
manifold .

6.5.3 Corollary LetM be a Hadamard manifold. Then, given p, q ∈M , there is a unique geodesic
joining p to q.

Proof. Let γ be a geodesic joining p to q. Consider the diffeomorphism expp : TpM → M . Then
exp−1

p ◦γ is the straight line in TpM joining the origin and exp−1
p (q), as in the proof of Theorem 6.5.2,

and this proves the uniqueness of γ. �

In particular, the preceding corollary implies that the cut-lcus of an arbitrary point in a
Hadamard manifold is empty.

The Hadamard-Cartan theorem says that the universal covering manifold of a complete Rie-
mannian manifold M of nonpositive sectional curvature is Rn. Since Rn is contractible, the higher
homotopy groups πi(M), where i ≥ 2, are all trivial. Consequently, the topological information
about M is contained in its fundamental group π1(M). In the following, we prove some classical
results about the fundamental group of nonpositively curved manifolds. We start with a lemma.

6.5.4 Lemma Let M be a Hadamard manifold. Then, for any point p ∈ M , the function fp :
M → R given by fp(x) =

1
2d(p, x)

2 is smooth and strictly convex.

Proof. Fix a point p ∈ M . Denote by γx : [0, 1] → M the unique geodesic parametrized with
constant speed joining p to x. Plainly, γx is minimizing, so

fp(x) =
1

2
L(γx)2 = E(γx) =

1

2
||γx′(0)||2 = 1

2
|| exp−1

p (x)||2,

showing that fp is smooth.

Next, let η be a geodesic; we intend to verify that f ◦ η is strictly convex. For that purpose, we
set γt = γη(t) and invoke the second variation formula (5.3.9) to write:

d2

dt2

∣
∣
∣
t=0

(fp ◦ η)(t) =
d2

dt2

∣
∣
∣
t=0

E(γt)

= 〈∇ ∂
∂t

∂̄

∂t

∣
∣
∣
t=0

, γ′〉
∣
∣
∣

1

0
+

∫ 1

0
||Y ′||2 + 〈R(γ′, Y )γ′, Y 〉 ds.

(6.5.5)

Since the variational vector field Y = ∂̄
∂t |t=0 vanishes at s = 0 and ∇ ∂

∂t

∂̄
∂t

∣
∣
s=1
t=0

= η′′(0) = 0, the first

term in the sum is zero; the assumption on the curvature and the fact that Y is nonzero imply that
the second term there is positive. We conclude that f is strictly convex. �

6.5.6 Remark We can get more refined information about the second derivatives of fp. It im-
mediately follows from the Cauchy-Schwarz inequality that a smooth function f : [0, 1] → R with
f(0) = 0 must satisfy the inequality

∫ 1
0 (f

′)2 ds ≥ f(1)2. Retaining the notation in the proof of
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Lemma 6.5.4, we write Y (s) =
∑

i ai(s)Ei(s) for smooth functions ai : [0, 1] → R and an orthonor-
mal frame {Ei} of parallel vectors along γ0. Then

∫ 1

0
||Y ′||2 ds =

∑

i

∫ 1

0
(ai)

′2 ds

≥
∑

i

ai(1)
2

= ||Y (1)||2

= ||η′(0)||2.

Together with (6.5.5), this shows that (see exercise 10 in chapter 4)

Hess(fp) ≥ g

at every point of M , as bilinear symmetric forms. ⋆

Lemma 6.5.4 allows one to generalize the notion of center of mass of a finite set of points in
Euclidean space to the context of Hadamard manifolds. For that purpose, two remarks are in order.
First, we note that a non-negative strictly convex proper function has a unique minimum. In fact,
because of properness, there must a minimum. If there were two minima, the function would be
strictly convex when restricted to a geodesic joining the two minima, and this would imply that
the function has smaller values on the interior of this segment than at the endpoints, contradicting
the fact that the endpoints are minima. The second remark is that the maximum of any number of
strictly convex functions is still strictly convex, as one sees easily. Now, given a finite set of points
p1, . . . , pk in a Hadamard manifold, the center of mass of the set {p1, . . . , pk} is defined to be the
uniquely defined minimum of the non-negative strictly convex proper function

x 7→ max{fp1(x), . . . , fpk(x)}.

6.5.7 Theorem (Cartan) Let M be a Hadamard manifold. Then any isometry of finite order of
M has a fixed point.

Proof. Let ϕ be an isometry of M of order k ≥ 1. For an arbitrary point p ∈M , set q to be the
center of mass of the finite set {p, ϕ(p), . . . , ϕk−1(p)}. This means that q is the unique minimum
of the function

f(x) = max{fp(x), fϕ(p)(x), . . . , fϕk−1(p)(x)}.

Since ϕk(p) = p and ϕ is distance-preserving,

f(ϕ(q)) =
1

2
max

{
d(p, ϕ(q))2, d(ϕ(p), ϕ(q))2, . . . , d(ϕk−1(p), ϕ(q))2

}

=
1

2
max

{
d(ϕk−1(p), q)2, d(p, q)2, . . . , d(ϕk−2(p), q)2

}

= f(q),

which shows that also ϕ(q) is a minimum of f . Hence, ϕ(q) = q. �

6.5.8 Corollary Let M be a complete Riemannian manifold of nonpositive sectional curvature.
Then the fundamental group of M is torsion-free.
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Proof. The Riemannian universal covering M̃ of M is a Hadamard manifold, and the elements
of π1(M) act on M̃ as deck transformations, thus, without fixed points; Theorem 6.5.7 implies that
they cannot have finite order. �

Before proving the next theorem, we recall some facts about the relation between the funda-
mental group π1(M,p) and the set of free homotopy classes of loops, which we denote by [S1,M ],
for a connected manifold M and p ∈M .

6.5.9 Lemma The ‘forgetful’ map F : π1(M,p) → [S1,M ], which is obtained by ignoring base-
points, sets up a one-to-one correspondance between [S1,M ] and the set of conjugacy classes in
π1(M,p).

Proof. First we remark that F is onto. In fact, let ζ1 : [0, 1] → M be a loop in M , with
ζ1(0) = ζ1(1) = q, representing a class in [S1,M ]. Since M is arcwise connected, there is a
continuous path c joining p to q. Then ζt := c|[t,1] · ζ · (c|[t,1])−1 is a continuous homotopy between
ζ0 and ζ1, and ζ0 lies in the image of F .

Next, if γ, η are loops based at p then F [η ·γ ·η−1] = F [η] ·F [γ] ·F [η−1] = F [η−1] ·F [η] ·F [γ] =
F [γ], where for the second equality we cyclically permite the order of concatenation by changing
the basepoint. This proves that F is constant on conjugacy classes.

Conversely, let γ0, γ1 : [0, 1] → M be loops based at p with F [γ0] = F [γ1]. This means there
is a homotopy γt from between those curves without necessarily preserving basepoints. The curve
c(t) = γt(0) = γt(1) traces out the path taken by the basepoints and thus is a loop. Now the
concatenation γ̃t := c|[0,t] · γt · (c|[0,t])−1 is a homotopy from γ0 to c · γ1 · c−1 preserving basepoints.

�

6.5.10 Lemma Let γ, η be loops in M based at p, q, respectively. Then the classes [γ] = [η] in
[S1,M ] if and only if [γ] ∈ π1(M,p) and [η] ∈ π1(M, q) act by the same deck transformation on the
universal cover M̃ .

Proof. Let ζ be a curve joining p to q. Then ζ · η · ζ−1 is in the same free homotopy class as
η. Using Lemma 6.5.9, by concatenating ζ with a loop at p, we may assume that ζ is such that
[γ] = [η] in [S1,M ] if and only if [ζ · η · ζ−1] = [γ] in π1(M,p). The desired result follows from the
standard relation between the fundamental group and deck transformations. �

6.5.11 Theorem (Preissmann) Let M be a compact Riemannian manifold of negative sectional
curvature. Then every nontrivial Abelian subgroup of its fundamental group is infinite cyclic.

Proof. We can assume that M is not simply-connected. Let M̃ be the Riemannian universal
covering of M , and let ϕ ∈ π1(M) an element different from the identity which we view as an
isometry of M̃ . Recall that ϕ acts on M̃ without fixed points. The fundamental remark is that
the displacement function f : M̃ → R given by f(x) = d(x, ϕ(x)) is smooth and convex. For the
purpose of proving this claim, consider the function Φ : TM →M×M , given by Φ(v) = (x, expx(v))
for v ∈ TxM , that was introduced in Lemma 2.4.6. Since M̃ is a Hadamard manifold, we easily
see that Φ is well defined and a global diffeomorphism. Now d : M̃ × M̃ \ ∆M̃ → R is given by

d(x, y) = gx(Φ
−1(x, y),Φ−1(x, y))1/2, so it is also smooth; here ∆M̃ denotes the diagonal of M̃ . This

proves that f is smooth. In order to prove the convexity of f , we resort to the second variation
formula of the length given in exercise 1 of chapter 5. Let η be a geodesic; similarly to in (6.5.5),
we can write

(6.5.12)
d2

dt2

∣
∣
∣
t=0

(f ◦ η)(t) =
∫ 1

0
||Y ′

⊥||2 + 〈R(γ′, Y⊥)γ′, Y⊥〉 ds ≥ 0,
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where γt is the geodesic joinig η(t) to ϕ(η(t)), Y is the variational vector field along γ0 and Y⊥
denotes its normal component, and we have used that ∇ ∂

∂t

∂̄
∂t

∣
∣
t=0

is equal to η′′(0) = 0 and (ϕ ◦
η)′′(0) = 0 for s = 0 and 1, respectively. Although f is not strictly convex, we can derive more
refined information from formula (6.5.12). Since M̃ has negative curvature, the equality holds
in (6.5.12) if and only if Y is a constant multiple of γ′, so at any given point x ∈ M̃ , f is stricly
convex in any direction different from the direction of the geodesic joining x to ϕ(x).

Next, we introduce a definition. An axis of ϕ is a geodesic of M̃ that is invariant under ϕ.
Note that ϕ cannot reverse the orientation of an axis γ for otherwise the midpoint of the geodesic
segment between γ(t) and ϕ(γ(t)) would be a fixed point of ϕ for any t ∈ R. Hence the restriction
of ϕ to γ must be translation along it:

ϕ(γ(t)) = γ(t+ t0)

for some t0 ∈ R and all t ∈ R. The number t0 will be called the period of ϕ along the axis γ. For
later reference, we also note that

f(ϕ(x)) = d(ϕ(x), ϕ2(x)) = d(x, ϕ(x)) = f(x)

for every x ∈ M̃ .
Now we give three important properties of axes. The first one is that f is constant along an

axis γ of ϕ. Indeed,

f(γ(t+ t0)) = f(ϕ(γ(t))) = f(γ(t))

for all t ∈ R, where t0 is the period of γ. It follows that f ◦ γ is convex and periodic, and it is
easy to see that such a function must be constant. The second one is that an axis of ϕ is a set of
minima of f . This follows immediately from the formula of the first variation of length. The last
one is that if f is constant on a geodesic segment xy for points x 6= y, then the supporting geodesic
γ of that segment is an axis of ϕ. Indeed, f is not stricly convex along xy, so γ must coincide with
the geodesic joining x and ϕ(x). It follows that ϕ(x) lies in the image of γ. Similarly, ϕ(y) lies in
the image of γ. Since a geodesic in M̃ is uniquely defined by two points on it, γ must be an axis
of ϕ.

The next step is to prove that ϕ admits one and only one axis, up to reparametrization and
reorientation. Note that the value f at a point x ∈ M̃ is the length of the unique geodesic in M̃
joining x to ϕ(x). Such geodesics project to geodesics in M all lying in the same free homotopy
class of loops in M , independent of the point x̃, according to Lemma 6.5.10. Since M is compact,
f admits a global minimum p ∈ M̃ by Lemma 6.3.1. Since f(ϕ(p)) = f(p), we have that ϕ(p) is
also a global minimum. By convexity, f is constant along the geodesic segment joining p and ϕ(p);
let γ be the unit speed geodesic that supports this segment. By the above, γ is an axis of ϕ. Now
the points in the image of γ comprise a set of minima at each point of which f is strictly convex in
any direction different from γ. It follows that there cannot be another axis.

Finally, suppose that H is an Abelian subgroup of π1(M), and that ϕ belongs to H and has γ
as an axis as above. Since the elements of H commute with ϕ, they map γ to a geodesic which is
invariant under ϕ; by the above uniqueness result, γ is an axis for all the elements of H. Consider
now the period map H → R. This map is clearly an injective homomorphism, thus its image is a
subgroup of R isomorphic to H. It is not difficult to see that every subgroup of R is either infinite
cyclic or dense. Since the orbits of H on M̃ are discrete, H must be infinite cyclic. �

6.5.13 Corollary No compact nontrivial product manifold M ×N admits a metric with negative
sectional curvature.
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Proof. Suppose, on the contrary, that M ×N supports a metric of negative sectional curvature.
Notice that M and N , being compact, cannot be simply-connected by the Hadamard-Cartan theo-
rem 6.5.2. Since π1(M) and π1(N) are non-trivial, they contain non-trivial cyclic groups H and K,
respectively. But then H ×K is a non-trivial Abelian subgroup of π1(M) × π1(N) ∼= π1(M ×N)
which is not infinite cyclic, contradicting Preissmann’s theorem. This proves the corollary. �

6.5.14 Remark An isometry ϕ of a Hadamard manifold M̃ can be of three types. Let f be the
displacement function associated to ϕ as in Preissmann’s theorem 6.5.11. Then ϕ is said to be:
a. elliptic if f attains the value zero (i.e. ϕ admits a fixed point);
b. hyperbolic if f attains a positive minimum;
c. parabolic if f attains no minimum.

The argument in Preissmann’s theorem proves that a hyperbolic isometry of a Hadamard manifold
admits an axis (which is unique in the case in which the curvature of M̃ is negative).

6.6 Additional notes

§1 The Gauss-Lobatchevsky-Bolyai discovery of hyperbolic geometry in the early nineteenth century
finally pointed out the impossibility of proving Euclid’s fifth postulate from the other postulates of
Euclidean geometry. In 1868, Beltrami proved the consistency of hyperbolic geometry by realizing
it as the intrinsic geometry of a well known surface in Euclidean 3-space — the so-called pseudo-
sphere — which has constant negative curvature. In his Habilitationsvortrag of 1854 in which
Riemann laid the foundations of Riemannian geometry were also exhibited examples of metrics
of arbitrary constant curvature. Based on Riemann’s ideas, Beltrami published another article
in 1869 in which he discussed spaces of constant curvature in arbitrary dimensions. In this way,
the non-Euclidean geometries were for the first time incorporated into the realm of Riemannian
geometry. In 1890, Klein drew attention to Clifford’s 1873 discovery of a 2-torus — nowadays known
as the Clifford torus — sitting in S3 with constant zero curvature and formulated the problem of
classifying Riemannian manifolds of arbitrary constant curvature in arbitrary dimensions. The
problem, referred to as the Clifford-Klein space forms problem, was extensively studied by Killing
in an article in 1891 and a book in 1893, and then again by Heinz Hopf in 1925 culminating in
Theorem 6.2.2.

§2 The argument in the proof of the Hadamard-Cartan theorem 6.5.2 shows that if there is a
point in a simply-connected Riemannian manifold possessing no conjugate points, then the manifold
is diffeomorphic to Euclidean space. Eberhard Hopf [Hop48] proved that a compact Riemannian
manifold M without conjugate points satisfies the inequality

∫

M
scal ≤ 0

where the integral is taken with respect to the canonical Riemannian measure �2�, and the equality
holds if and only ifM is flat. In the 2-dimensional case, the left-hand side equals 2π times the Euler
characteristic ofM by the Gauss-Bonnet theorem. It follows E. Hopf’s result that a metric without
conjugate points on T 2 must be flat. It was a long standing conjecture that the same result should
be also valid for the higher dimensional tori. In 1994, Burago and Ivanov [BI94] finally settled the
conjecture in the positive sense.

§3 Techniques from geometric analysis have been proved to be very powerful in dealing with
problems involving curvature in Riemannian manifolds. We would like to mention two spectacular

�2�Ref?
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instances of this fact. In 1960, Yamabe [Yam60] tried to deform conformally a given Riemannian
metric g on a manifold M into a metric f · g of constant scalar curvature, where f is an unknown
positive smooth function on M . If n = dimM = 2, this is classical result and amounts to showing
that M admits isothermal coordinates [Jos06], so he was dealing with the case n ≥ 3. There was
a problem with Yamabe’s arguments, though, and the question became the Yamabe problem. In
order to find f , one needs to solve the nonlinear partial differential equation

∆f +
n− 2

4(n− 1)
scal(M, g) = f

n+2
n−2 .

This is an extremely difficult question in analysis because the exponent of f is exactly the “critical
exponent” in regard to which the standard Sobolev embedding theorems do not apply. The problem
was eventually solved through the work of of Aubin [Aub76] and Schoen [Sch84]. Thanks to
contributions by other mathematicians, the Yamabe problem is today almost completely understood
and it is known that the set of metrics of constant scalar curvature in a given conformal class of
metrics is an infinite-dimensional space if n > 2. See [Aub98] for these results in book form.

Deformation techniques like that concerning the Yamabe problem are used to prove the existence
of several objects in geometry. An interesting approach is to consider deformations on the level of
the space of Riemannian metrics on a given smooth manifold M . For instance, Hamilton [Ham82]
introduced the following normalized Ricci flow equation in the space of Riemannian metrics on a
compact n-dimensional manifold M :

d

dt
g(t) = −2Ric(g(t)) + 2

τ

n
g(t),

where Ric(g(t)) denotes the Ricci curvature of the metric g(t), and τ denotes the integral of the
scalar curvature of g(t). The fixed points of this equation are the metrics of constant Ricci cur-
vature. One considers t as time and studies the equation as an initial value problem for a fixed
Riemannian metric g0 = g(0) on M . Hamilton proved that if n = 3 and the Ricci curvature
of g0 is positive, then the Ricci flow converges smoothly to a metric of constant Ricci curvature.
In particular, the manifold is diffeomorphic to a spherical space form. At that time, this was a
very interesting application of Riemannian geometry to provide a partial answer to a long-standing
open problem in topology, the so called Poincaré conjecture: Is every simply-connected compact
3-dimensional manifold homeomorphic to S3? The difficulty in using Hamilton’s method to prove
the full Poincaré conjecture was that if one removes the assumption that Ric(g0) > 0, then the Ricci
flow develops finite-time singularities that impede the convergence to a nice metric, and those sin-
gularities were not completely understood. As it turns out, Perelman was able to overcome those
analytic difficulties. He extended Hamilton’s results and in particular proved the full Poincaré
conjecture (see e.g. [MT06]).

§4 A famous, open conjecture of Heinz Hopf asserts that S2 × S2 does not admit a metric
of positive sectional curvature. Indeed, known examples of simply-connected compact manifolds
with positive sectional curvature are relatively rare (owing to the Bonnet-Myers theorem 6.4.1, the
non-simply-connected examples are quotients of the simply-connected ones by finite subgroups of
isometries). The standard examples are the compact rank one symmetric spaces (see Add. notes ?
of chapter ?). Apart from these, the homogeneous examples have been classified by Wallach [Wal72]
in the odd-dimensional case and by Bérard-Bergery [BB76] in the even dimensional case. These
examples occur only in dimensions 6, 7, 12, 13 and 24, and are due to Berger, Wallach and Allof-
Wallach. The only other examples known are given by biquotients G//H. Here G is a Lie group
equipped with a bi-invariant metric and H is subgroup of G×G acting on G by (h1, h2)·g = h1gh

−1
2 .
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This action is always proper and isometric, and if it is also free, then the quotient space is a manifold
denoted byG//H. In this case, there is a unique metric onG//H making the projectionG→ G//H
into a Riemannian submersion and it follows from Proposition 4.5.8 that G//H has always non-
negative curvature. More generally, one can also construct bi-quotients by considering left-invariant
metrics on G more general than the bi-invariant ones. It turns out that the only known examples
of positively curved biquotients occur in dimensions 6, 7 and 13, and these are due to Eschenburg
and Bazaikin. There is no general classification of positively curved biquotients. See [Zil07] for a
recent survey on these results and related ones.

6.7 Exercises

1 Let M be a complete Riemannian manifold of dimension n. Prove that the following assertions
are equivalent:
a. M has constant sectional curvature.
b. M is homogeneous, and its isotropy group at any point is isomorphic to O(n).
c. Given two triples (p, q, r), (p′, q′, r′) of points in M such that d(p, q) = d(p′, q′), d(q, r) =
d(q′, r′), d(r, p) = d(r′, p′), there exists an isometry of M that maps the first triple to the
second one (Riemannian manifolds with this property are called 3-point homogeneous).

2 Prove that an odd-dimensional compact Riemannian manifold of positive sectional curvature is
orientable.

3 LetM be a complete Riemannian manifold of nonpositive curvature. Prove that each homotopy
class of curves with given endpoints in M contains a unique geodesic.

4 Consider the disk model Dn of RHn and let ϕ be an isometry of RHn.
a. Prove that ϕ uniquely extends to a homeomorphism of the closed ball Dn. (Hint: Use

exercise 4 of chapter 3.)
b. Prove that ϕ is hyperbolic if and only if its extension to Dn admits exactly two fixed points

and those lie in the boundary Sn−1.
c. Prove that ϕ is parabolic if and only if its extension to Dn admits exactly one fixed point

and that lies in the boundary Sn−1.

5 Let G be an Abelian subgroup of the fundamental group of a nonflat space form M . Prove that
G is cyclic.

6 An isometry ϕ of a Riemannian manifold M is called a Clifford translation if the associated
displacement function x 7→ d(x, ϕ(x)) is constant. Prove that:
a. The Clifford translations for Rn are just the ordinary translations.
b. The only Clifford translation of RHn is the identity transformation.
c. A linear transformation A ∈ O(n+1) is a Clifford trsnaformation of Sn+1 if and only if either
A = ±I or there is a unimodular complex number λ such that half the eigenvalues of A are
λ and the other half are λ̄.

7 Let M be a Hadamard manifold. Prove that an isometry ϕ of M is a Clifford translation
(cf. exercise 6) if and only if the vector field X on M given by expp(Xp) = ϕ(p) is parallel.

8 Extend Preissmann’s theorem 6.5.11 to show that every solvable subgroup of the fundamental
group of a compact Riemannian manifold of negative curvature must be infinite cyclic.
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9 In this exercise, we prove that a compact homogeneous Riemannian manifold M whose Ricci
tensor is negative semidefinite everywhere is isometric to a flat torus.
a. Use exercise 8 of chapter 5 to show that the identity component of the isometry group of M

is Abelian.
b. Check that M can be identified with an n-torus equipped with a left-invariant Riemannian

metric.
c. Show that an n-torus equipped with a left-invariant Riemannian metric admits a global

parallel orthonormal frame and hence is flat.

10 A Riemannian manifold M is called locally symmetric if every point p ∈ M admits a normal
neighborhood V and an isometry ϕ : V → V such that ϕ(p) = p and dϕp = −id.
a. Show that space forms and Lie groups with bi-invariant metrics are locally symmetric. (Hint:

for the second example, use group inversion.)
b. Prove that the curvature tensor of a locally symmetric manifold is parallel. (Hint: Use the

version of equation (4.2.6) for ∇R.)

11 Let M be a Riemannian manifold with curvature tensor R.
a. Prove that R is parallel if and only if for every smooth curve γ in M and parallel vector fields

X, Y , Z, W along γ we have that 〈R(X,Y )Z,W 〉 is constant.
b. Prove that if R is parallel then the Jacobi equation along a geodesic has constant coefficients

in a suitable basis.

12 In this exercise, we prove the converse of the result of exercise 10(a).
a. Let M and M̃ be a Riemannian manifolds with parallel curvature tensors. Suppose there are

points p ∈ M , p̃ ∈ M̃ and a linear isometry f : TpM → Tp̃M̃ such that takes any 2-plane in
TpM to a 2-plane in Tp̃M̃ with the same sectional curvature. Prove that there exists normal
neighborhoods V , Ṽ of p, p̃, resp., and an isometry F : V → Ṽ such that F (p) = p̃ and
dFp = f . (Hint: combine the idea in the proof of Theorem 6.2.1 with exercise 11(b)).

b. Prove that a Riemannian manifold with parallel curvature tensor is locally symmetric. (Hint:
Apply part (a) to M = M̃ and f = −id.)
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Index

ǫ-totally normal neighborhood, 51

action, 20
isotropy group, 20
orbit, 20
orbit space, 20
proper, 20
smooth, 20
transitive, 22

adjoint representation
of Lie algebra, 19
of Lie group, 19

Allamigeon-Warner manifold, 109
almost complex structure, 89
almost Kähler manifold, 89

Bianchi identity
first, 80
second, 84

biquotient, 126
Blaschke

conjecture, 110
manifold, 110

Cartan-Killing form, 90
center of mass, 122
Clifford translation, 127
complex projective space, 34
complex structure, 88
conjugate locus, 102
conjugate point, 102

first, 105
conjugate value, 102
connection, 43

Christoffel symbols, 45
covariant derivative along a curve, 47
Levi-Cività, 45
Koszul formula, 45

convex function, 120
strictly, 120

coordinate vector, 3
covering

smooth, 8

topological, 7
covering transformation, 8
curvature

Ricci, 83
scalar, 83
sectional, 81
tensor, 79

cut locus, 72

deck transformation, 8
diameter, 69
diffeomorphism, 2

local, 2
differential of a map, 5
displacement function, 123
divergence, 93

embedding, 6
energy, 95
Euclidean space, 28
exponential map, 50

flat torus, 30
Fubini-Study metric, 34
fundamental group, 7

Gauss
lemma, 63, 103

geodesic, 49
equation, 49
is locally minimizing, 66
local existence and uniqueness, 50

gradient, 93
Green identities, 94

Hadamard manifold, 121
harmonic

function, 94
Heisenberg algebra, 15
Hermitian metric, 89
Hessian, 94
homogeneous space, 22
hyperbolic manifold, 116
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immersion, 5
index form, 99
injectivity radius, 71
isometric immersion, 28
isometry group, 27
isotropy group, 20
isotropy representation, 37

Jacobi
equation, 100
field, 100

Kähler manifold, 89
Killing form, 90
Killing vector field, 53
Klein bottle, 32

Laplacian, 94
lens space, 116
Lie algebra, 15
Lie bracket, 12
Lie group, 14

exponential map, 16
homomorphism, 17

local section, 22

manifold
smooth, 1

map
differential, 5
proper, 6
smooth, 2

normal neighborhood, 51

orbit, 20
orbit space, 20

Poincaré conjecture, 126

real hyperbolic space, 29
real projective space, 32
Ricci

flow, 126
Riemannian covering, 31
Riemannian manifold, 25

as metric space, 65
complete, 69
conformally flat, 29
geodesically complete, 67
homogeneous, 36
isotropic, 60
normal homogeneous, 37
submanifold, 28

Riemannian measure, 93

Riemannian metric, 25
bi-invariant, 35
conformal, 29
existence, 27
flat, 28
homothetic, 29
induced, 28
left-invariant, 35
product, 29, 55
pulled-back, 28
right-invariant, 35

Riemannian submersion, 33

Schur lemma, 82
smooth manifold, 1

homogeneous, 22
space form, 113
sphere, 29
submanifold

embedded, 2
immersed, 5

submersion, 6

tangent bundle, 5
tangent space, 3
Teichmüller space, 117
tensor

curvature, 79
Ricci, 82

theorem of
Bieberbach, 115
Bonnet-Myers, 119
Cartan, 122
divergence, 94
Hadamard-Cartan, 120
Hopf-Rinow, 67
inverse function, 5
Jacobi-Darboux, 104
Killing-Hopf, 115
Myers-Steenrod, 27
Preissmann, 123
Synge, 118

totally normal neighborhood, see ǫ-totally normal neigh-
borhood

variation of curve, 96
first variation of energy, 97
second variation of energy, 99
variational vector field, 97

vector field
f -related, 13
flow, 11
incompressible, 94
integral curve, 10
Lie bracket, 12
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volume form, 93

warped product, 33
weak maximum principle, 94
wiedersehens surfaces, 109

Yamabe problem, 126
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