
C H A P T E R 4

Curvature

4.1 Introduction

The curvature of a plane curve is the measure of change of the direction of the curve. Assuming
the curve parametrized by arc-length and expressing this direction as a unit tangent vector along
the curve exhibits the (unsigned) curvature as the modulus of the second derivative of the curve.
In the case of a surface in R3, Gauss had already shown how to measure curvature: this is the rate
of change of the normal direction of the surface. Locally, one chooses a unit normal vector field and
differentiates it at a point as a map into the unit sphere. Since the surface is two-dimensional, the
result is now a map, namely a linear endomorphism of the tangent space at that point. This turns
out to be symmetric, hence diagonalizable over R. Its eigenvalues are called the principal curvatures
λ1 and λ2. They represent the extreme values of the curvatures of the plane curves given by the
normal sections to the surface. Equivalently, one can look at 2H = λ1 + λ2 and K = λ1λ2. The
second expression is called the Gaussian curvature and, according to Gauss’ celebrated theorema
egregium, has an intrinsic meaning in the sense that it can be expressed solely in terms of the
coefficients of the metric in a coordinate system.

Riemann generalized Gauss’ results and explained how to define the curvature of a Riemannian
manifold M . Here the dimension of M is at least two, so we start by selecting a 2-plane E
contained in TpM . Exponentiating a small neighborhood of 0p in E gives a piece of surface S
through p contained in M . The curvature of M at E is defined to be the Gaussian curvature of S
at p. This gives the sectional curvature function.

As it is, this definition cannot be very useful: it is difficult to compute and, especially, it does
not reflect relations between the sectional curvatures of neighboring planes. After Riemann, the
matter took a few decades more of study to be settled, until tensor calculus entered the scene.

Throughout this chapter, (M,g) denotes a Riemannian manifold and ∇ denotes its Levi-Cività
connection.

4.2 The Riemann-Christoffel curvature tensor

The curvature tensor is the tri-linear map R : Γ(TM)× Γ(TM)× Γ(TM) → Γ(TM) given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

It is an easy consequence of the Leibniz rule for ∇ that R is C∞(M)-linear on each argument. As
in the case of connections, this suffices to show that the value of R(X,Y )Z at p depends only on
Xp, Yp, and Zp. Hence we have a tri-linear map

Rp : TpM × TpM × TpM → TpM.
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The following are the fundamental symmetries of this map.

4.2.1 Proposition (algebraic properties of the curvature tensor) We have that
a. R(X,Y )Z = −R(Y,X)Z
b. 〈R(X,Y )Z,W 〉 = −〈R(X,Y )W,Z〉
c. 〈R(X,Y )Z,W 〉 = 〈R(Z,W )X,Y 〉
d. R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0 (first Bianchi identity)

for every X, Y , Z, W ∈ Γ(TM).

Proof. (a) This is clear from the definition.
(b) We compute

〈R(X,Y )Z,Z〉 = 〈∇X∇Y Z,Z〉 − 〈∇Y ∇XZ,Z〉 − 〈∇[X,Y ]Z,Z〉

= X〈∇Y Z,Z〉 − 〈∇Y Z,∇XZ〉

−
(

Y 〈∇XZ,Z〉 − 〈∇XZ,∇Y Z〉
)

−
1

2
[X,Y ]〈Z,Z〉

=
1

2
XY 〈Z,Z〉 −

1

2
Y X〈Z,Z〉 −

1

2
[X,Y ]〈Z,Z〉

= 0,

where we have used several times the compatibility of the Levi-Cività connection with the metric.
The identity follows.

(d) We compute

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

+∇Y ∇ZX −∇Z∇Y X −∇[Y,Z]X

+∇Z∇XY −∇X∇ZY −∇[Z,X]Y

= ∇X(∇Y Z −∇ZY )−∇[X,Y ]Z

+∇Y (∇ZX −∇XZ)−∇[Y,Z]X

+∇Z(∇XY −∇Y X)−∇[Z,X]Y

= ∇X [Y,Z]−∇[Y,Z]X

+∇Y [Z,X] −∇[Z,X]Y

+∇Z [X,Y ]−∇[X,Y ]Z

= [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]]

= 0,

where we have used the fact that the Levi-Cività connection is torsionless several times, and the
Jacobi identity in the last line.

(c) We use (a), (b) and (d) to compute

〈R(X,Y )Z,W 〉 = −〈R(Y,Z)X,W 〉 − 〈R(Z,X)Y,W 〉

= 〈R(Y,Z)W,X〉 + 〈R(Z,X)W,Y 〉

= −〈R(Z,W )Y,X〉 − 〈R(W,Y )Z,X〉 − 〈R(X,W )Z, Y 〉 − 〈R(W,Z)X,Y 〉

= 2〈R(Z,W )X,Y 〉+ 〈R(W,Y )X +R(X,W )Y,Z〉

= 2〈R(Z,W )X,Y 〉 − 〈R(Y,X)W,Z〉

= 2〈R(Z,W )X,Y 〉 − 〈R(X,Y )Z,W 〉,
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which gives the result. �

Let p ∈ M and let E ⊂ TpM be a 2-plane. The sectional curvature of M at E is defined to be

K(E) = K(x, y) =
−〈Rp(x, y)x, y〉

||x||2||y||2 − 〈x, y〉2
,

where {x, y} is a basis of E. One checks that this expression does not depend on the choice of basis
of E as follows. It is very easy to see that K(y, x), K(λx, y) (λ 6= 0), K(x + y, y) are all equal to
K(x, y). But one can get from {x, y} to any other basis of E by performing a number of times the
simple transformations

{

x 7→ y
y 7→ x

,

{

x 7→ λx
y 7→ y

,

{

x 7→ x+ y
y 7→ y

.

4.2.2 Proposition We have the following identity

〈Rp(x, y)z, w〉

=
1

6

∂2

∂α∂β
(〈Rp(x+ αz, y + βw)(x + αz), y + βw〉 − 〈Rp(x+ αw, y + βz)(x + αw), y + βz〉) ,

where x, y, z, w ∈ TpM .

Proof. By direct computation. �

It is important to remark that the identity in the preceding proposition is proved using only the
algebraic properties of the curvature tensor. Of course, the next corollary is of an algebraic nature
as well.

4.2.3 Corollary The sectional curvature function E 7→ K(E) and the metric at a point p deter-
mine the curvature tensor at p.

A Riemannian manifold (M,g) of dimension n ≥ 2 is said to have constant curvature κ if
for every point p ∈ M and every 2-plane E ⊂ TpM , the sectional curvature at E equals κ. A
Riemannian manifold (M,g) of dimension n ≥ 2 is called flat if it has constant curvature κ and
κ = 0. This terminology is consistent with the one introduced in section 1.3: since local isometries
must preserve the sectional curvature (see end of this section), a Riemannian manifold locally
isometric to Euclidean space must have vanishing sectional curvatures; conversely, we will see in
chapter 6 that a Riemannian manifold with vanishing sectional curvatures is locally isometric to
Euclidean space. A one-dimensional Riemannian manifold is also called flat, although its tangent
spaces do not contain 2-planes, since in this case we have R ≡ 0 by Proposition 4.2.1(a). A
Riemannian manifold is said to have positive curvature (resp. negative curvature) if the sectional
curvature function is positive (resp. negative) everywhere.

If dimM = 2, then a 2-plane E must coincide with TpM , and then we have a scalar-valued
function K(p) = K(TpM), which can be shown to coincide with the Gaussian curvature of M in
the case in which M is a surface in R3 equipped with the induced metric (cf. Add. notes §2).

Next, suppose that dimM ≥ 3. In this case, we say that M has isotropic curvature at a point
p if K(E) = κp for every 2-plane E ⊂ TpM , where κp is a real constant. From the definition of
sectional curvature, we have that

〈Rp(x, y)x, y〉 = −κp
(

||x||2||y||2 − 〈x, y〉2
)
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for all p ∈ M and x, y ∈ TpM . Set

〈R0
p(x, y)z, w〉 = −〈x, z〉〈y,w〉 + 〈x,w〉〈y, z〉,

where p ∈ M and x, y, z, w ∈ TpM . Then R0 is a tensor that has the same symmetries as R.
Corollary 4.2.3 implies that

(4.2.4) Rp = κpR
0
p.

Obviously, a Riemannian manifold with constant curvature has isotropic curvature at all points.
It is a result due to Schur that the converse is true in dimensions at least 3.

4.2.5 Lemma (Schur) Let M be a connected Riemannian manifold. If M has isotropic curvature
at all points and dimM ≥ 3, then it has constant curvature.

We will prove the above lemma in section 4.4. Note that the curvature tensor of a Riemannian
manifold of constant curvature satisfies identity (4.2.4) where κp does not depend on p. We also
remark that local isometries must preserve the curvature tensor in the following sense, as is easily
seen by using arguments from section 2.5. If f : M → N is a local isometry between two Riemannian
manifolds, then

(4.2.6) Rf(p)(dfp(Xp), df(Yp))dfp(Zp) = Rp(Xp, Yp)Zp

for every p ∈ M and every X, Y , Z ∈ Γ(TM). Of course, it also follows that K(df(E)) = K(E)
for every 2-plane E contained in TpM and every p ∈ M .

4.2.7 Remark Let ϕ : N → M be a smooth map, let X, Y ∈ Γ(TN) be vector fields in N and let
U ∈ Γ(ϕ∗TM) be a vector field along ϕ. Recall the induced connection along ϕ that was introduced
in Proposition 2.6.1. Then one can check that the following identity holds:

R(ϕ∗X,ϕ∗Y )U = ∇ϕ
X∇ϕ

Y U −∇ϕ
Y ∇

ϕ
XU −∇ϕ

[X,Y ]U.

4.3 The Ricci tensor and scalar curvature

One can say that the Riemann curvature tensor contains so much information about the Riemannian
manifold that it makes sense to consider also some simpler tensors derived from it, and these are
the Ricci tensor and the scalar curvature.

The Ricci tensor Ric at a point p ∈ M is the bilinear map Ricp : TpM × TpM → R given by

Ricp(x, y) = trace (v 7→ −Rp(x, v)y),

where x, y ∈ TpM . Note that the Ricci tensor is defined directly in terms of the curvature tensor
without involving the metric. It follows immediately from the symmetries of the curvature tensor
given by Proposition 4.2.1 that Ric is symmetric, namely,

Ricp(x, y) = Ricp(y, x)

for x, y ∈ TpM and p ∈ M . So the Ricci tensor is of the same type as the metric tensor g, and
it makes sense to compare the two. An Einstein manifold is a Riemannian manifold whose Ricci
tensor is proportional to the metric. If dimM ≥ 3, it follows from Exercise 4 that the constant
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of proportionality is independent of the point, and hence the condition is that there exists λ ∈ R
such that

Ric = λ g.

Riemannian manifolds satisfying Ric = 0 are called Ricci-flat. Of course, a Riemannian manifold
of constant sectional curvature is Einstein, and a flat Riemannian manifold is Ricci-flat.

We can also use the metric to view the Ricci tensor at p ∈ M as a linear map TpM → TpM by
setting

〈Ric(x), y〉 = Ric(x, y).

for x, y ∈ TpM . Then it makes sense to take the trace of Ric: the scalar curvature is the smooth
function scal : M → R given by

scal(p) = traceRicp,

where p ∈ M .

Fix a point p ∈ M and an orthonormal basis {e1, . . . , en} of TpM . Then

Ricp(x, y) = −
n
∑

j=1

〈R(x, ej)y, ej〉,

where x, y ∈ TpM . In particular, if x is a unit vector, we can assume that e1 = x and then

(4.3.1) Ricp(x, x) =
n
∑

j=2

K(x, ej).

The quadratic form (4.3.1) is sometimes called the Ricci curvature; of course, its values on the unit
sphere of TpM completely determine the Ricci tensor at p, and (4.3.1) shows that Ricp(x, x) is the
(unnormalized) average of the sectional curvatures of the 2-planes containing x. We also have that

scal(p) =
n
∑

i=1

Ricp(ei, ei) =
∑

i 6=j

K(ei, ej) = 2
∑

i<j

K(ei, ej),

and this equation shows that the scalar curvature at p is the (unnormalized) average of the sectional
curvatures of the 2-planes in TpM .

4.4 Covariant derivative of tensors ⋆

At this juncture, we feel like it is time to discuss how to differentiate tensors on a manifold. If M
is a Riemannian manifold, there is a canonical way of differentiating smooth vector fields on M ,
namely, this is given by the Levi-Cività connection ∇. Viewing vector fields as tensor fields of type
(1, 0), we can prove that ∇ naturally extends to connections on all tensor bundles T (r,s)M . Denote
by c : T (r,s)M → T (r−1,s−1)M an arbitrary contraction.

4.4.1 Proposition There is a unique family of connections on the tensor bundles T (r,s)M for r,
s ≥ 0, still denoted by ∇, such that the following conditions hold for X ∈ Γ(TM):

a. ∇Xf = Xf for f ∈ C∞(M) = Γ(T (0,0)M);
b. ∇XY for Y ∈ Γ(TM) is the covariant derivative associated to the Levi-Cività connection;
c. ∇X commutes with contractions, that is, ∇Xc(T ) = c(∇XT ) for T ∈ Γ(T (r,s)M) with r,

s > 0;
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d. ∇X is a derivation, that is, ∇X(T ⊗ T ′) = ∇XT ⊗ T ′ + T ⊗ ∇XT ′ for T ∈ Γ(T (r,s)M) and
T ′ ∈ Γ(T (r′,s′)M).

Proof. One first proves uniqueness, as follows. Let X ∈ Γ(TM) and assume ∇X is defined and
satisfies the conditions in the statement. Using the same argument as in Subsection 2.2, for an
open subset U of M we see that if two tensor fields T , T ′ ∈ Γ(T (r,s)M) coincide on U then ∇XT
and ∇XT ′ also coincide on U .

It is now enough to show that ∇X(T |U ) is uniquely defined. Write T is a coordinate system
(U, x1, . . . , xn) as

T |U =
∑

ai1···irj1···js

∂

∂xi1
⊗ · · ·

∂

∂xir
⊗ dxj1 ⊗ · · · dxjs ,

where ai1···irj1···js
∈ C∞(U). The Leibniz rule (d) then gives a formula for ∇X(T |U ) is terms of the

action of ∇X on functions, vector fields and 1-forms; the first two cases are taken care by (a) and
(b), so we need only show that ∇Xω is uniquely defined for a 1-form ω on M . For that purpose,
let Y ∈ Γ(TM) and compute, using (a), (b), (c) and (d):

∇Xω(Y ) = c(∇Xω ⊗ Y )

= c(∇X(ω ⊗ Y )− ω ⊗∇XY )

= ∇Xc(ω ⊗ Y )− ω(∇XY )

= ∇X(ω(Y ))− ω(∇XY ),

where c denotes the obvious contraction. Since the last line of this equation is C∞(M)-linear with
respect to Y , yields ∇Xω as a 1-form.

For the existence, one first defines for ω ∈ Γ(T (0,s)M)

∇Xω(X1, . . . ,Xs)

= X(ω(X1, . . . ,Xs))−

s
∑

i=1

ω(X1, . . . ,∇XXi, . . . ,Xs).

Next, for T ∈ Γ(T (r,s)M), note that T (ω1, . . . , ωr) ∈ Γ(T (0,s)M) for ωi, . . . , ωr ∈ Γ(T ∗M), so we
can define

∇XT (ω1, . . . , ωr)

= ∇X(T (ω1, . . . , ωr))−
r

∑

i=1

T (ω1, . . . ,∇Xωi, . . . , ωs).

We leave to the reader to check that this definition satisfies (c) and (d). �

As a first application of Proposition 4.4.1, we view g as a tensor field of type (0, 2) and note that
the condition that the Levi-Cività connection be compatible with the metric (Proposition 2.2.5(b))
can be restated as simply saying that ∇g = 0, since

∇Xg(Y,Z) = Xg(Y,Z) − g(∇XY,Z)− g(Y,∇XZ).

This is referred to as the parallelism of the metric.
As another application of the Proposition 4.4.1, we prove the second Bianchi identity in Propo-

sition 4.4.3 below. Since R is C∞(M)-linear in each variable, we can view it as a tensor field of
type (1, 3), namely,

Γ(TM)⊗ Γ(TM)⊗ Γ(TM)⊗ Γ(T ∗M) → R
(X,Y,Z, ω) → ω(R(X,Y )Z).
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Conversely, ∇XR, as a tensor of type (1, 3), can be viewed as a map

Γ(TM)⊗ Γ(TM)⊗ Γ(TM) → Γ(TM).

It now follows from the definition of ∇X acting on Γ(T (1,3)M) that we have

(4.4.2) ∇XR(Y,Z)W = ∇X(R(Y,Z)W )−R(∇XY,Z)W −R(Y,∇XZ)W −R(Y,Z)∇XW.

4.4.3 Proposition (Second Bianchi identity) We have that

(4.4.4) ∇XR(Y,Z)W +∇Y R(Z,X)W +∇ZR(X,Y )W = 0

for every X, Y , Z, W ∈ Γ(TM).

Proof. Dropping the W in (4.4.2) and using the identity R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ], we get

∇XR(Y,Z) = [∇X , R(Y,Z)]−R(∇XY,Z)−R(Y,∇XZ)

= [∇X , [∇Y ,∇Z ]]− [∇X ,∇[Y,Z]]−R(∇XY,Z)−R(Y,∇XZ)

= [∇X , [∇Y ,∇Z ]]−∇[X,[Y,Z]] −R(X, [Y,Z]) −R(∇XY,Z)−R(Y,∇XZ).

Summing this formula with the other two obtained by cyclic permutation of (X,Y,Z), we see that
the first two terms on the right hand side cancel out because of the Jacobi identity, and invoking
the relation ∇XY − ∇YX = [X,Y ] also makes remaining terms also disappear. The identity is
proved. �

Finally, we use the second Bianchi identity to prove Lemma 4.2.5.

Proof of Lemma 4.2.5. We view κp = κ(p) as a function on M . Note that formula (4.2.4)
implies that this function is smooth. We use that formula to get

∇XR(Y,Z)W = (Xκ)R0(Y,Z)W + κ∇XR0(Y,Z)W.

Summing over the cyclic permutations of (X,Y,Z), we have

(Xκ)R0(Y,Z)W + (Y κ)R0(Z,X)W + (Zκ)R0(X,Y )W = 0

by an application of the second Bianchi identity (4.4.4) to R and R0. Let X be an arbitrary unit
vector field. As dimM ≥ 3, we can select Y , Z so that {X,Y,Z} is orthonormal. Also, put W = Y .
Then

Xκ = 0.

The connectedness of M implies that κ is constant, as desired. �

4.4.5 Remark The musical isomorphisms are defined as follows. For each vector field X on the
Riemannian manifold (M,g), one can define the differential 1-form ω given by ω(Y ) = g(X,Y ).
Note that smoothness of g implies that ω is indeed smooth, and non-degeneracy of g at each
point implies that this defines an isomorphism between spaces of sections ♭ : Γ(TM) → Γ(T ∗M),
the flat , so that ω = X♭. The inverse isomorphism is naturally called the sharp, denoted ♯, so
that X = ω♯. The flat and sharp isomorphisms extend to define isomorphisms Γ(T (r,s)M) →
Γ(T (r′,s′)M) for r + s = r′ + s′ and, as is easily seen, the parallelism of the metric implies that
these isomorphisms commute with the covariant derivatives on Γ(T (r,s)M) and Γ(T (r′,s′)M). As
an example, the curvature tensor R can be viewed as a (0, 4) tensor, namely, R(X,Y,Z,W ) =
W ♭(R(X,Y )Z) = g(R(X,Y )Z,W ).
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4.5 Examples

Flat manifolds

Euclidean space is flat, since

R(X,Y )Z = X(Y (Z))− Y (X(Z)) − [X,Y ](Z) = 0.

Since local isometries must preserve the curvature, it follows that the tori Rn/Γ are also flat.

Sn and RPn

Since Sn is a Riemannian submanifold of Rn+1, for its Levi-Cività connection we have that

(4.5.1) ∇XY = X(Y )− 〈X(Y ),p〉p,

where X, Y ∈ Γ(TSn) and we have denoted by p the position vector. It follows that

∇X∇Y Z = X(∇Y Z)− 〈X(∇Y Z),p〉p

= XY (Z)− 〈XY (Z),p〉p− 〈Y (Z),X〉p − 〈Y (Z),p〉X

−〈XY (Z),p〉p+ 〈XY (Z),p〉p+ 〈Y (Z),X〉p

= XY (Z)− 〈XY (Z),p〉p+ 〈Z, Y 〉X

where we have used that 〈Y (Z),p〉 = −〈Z, Y p〉 = −〈Z, Y 〉 since 〈Z,p〉 = 0. Therefore,

(4.5.2) R(X,Y )Z = 〈Y,Z〉X − 〈X,Z〉Y.

Comparing with (4.2.4) shows we have proved that Sn has constant curvature 1. Since RPn is
isometrically covered by Sn, it also has constant curvature 1.

RHn

Consider the hyperboloid model of RHn sitting inside the Lorentzian space R1,n. Although the
metric in the ambient space is now Lorentzian, the Levi-Cività connection of RHn is given by a
formula very similar to (4.5.1), namely, the tangential component of the ambient derivative:

∇XY = X(Y ) + 〈X(Y ),p〉p.

Indeed, one cheks easily that this formula specifies a connection on RHn that satisfies the defining
conditions for the Levi-Cività connection. A computation very similar to that in the case of Sn

thus gives that

(4.5.3) R(X,Y )Z = −〈Y,Z〉X + 〈X,Z〉Y.

Hence RHn has constant curvature −1.

Riemannian products

Let (M,g) = (M1, g1) × (M2, g2) be a Riemannian product. It follows immediately from the
description of the Levi-Cività connection on M for decomposable vector fields (2.8.1) that the
curvature tensor of M is given by

Rp(x, y)z = R1
p1(x1, y1)z1 +R2

p2(x2, y2)z2,
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where x, y, z ∈ TpM for p = (p1, p2) ∈ M1 × M2, x = x1 + x2, y = y1 + y2, z = z1 + z2 are
the decompositions relative to the splitting TpM = Tp1M1 ⊕ Tp2M2, and Ri denotes the curvature
tensor of M i.

In particular,

g(Rp(x1, y2)x1, y2) = g1(R
1
p1(x1, 0)x1, 0) + g2(R

2
p2(0, y2)0, y2) = 0.

This shows that a mixed plane in M , i.e. a plane with nonzero components in both M1 and M2,
has sectional curvature equal to zero. It also shows that the product of two positively curved
Riemannian manifolds has non-negative curvature.

Riemannian submersions and CPn �

Let π : (M̃ , g̃) → (M,g) be a Riemannian submersion and consider the splitting TM̃ = H⊕V into
the horizontal and vertical distributions. A vector field X̃ on M̃ is called:

• horizontal if X̃p̃ ∈ Hp̃ for all p̃ ∈ M̃ ;
• vertical if X̃p̃ ∈ Vp̃ for all p̃ ∈ M̃ ;
• projectable if, for fixed p ∈ M , dπ(X̃p̃) is independent of p̃ ∈ π−1(p);
• basic if it is horizontal and projectable.

Note that if X̃ is a smooth projectable vector field on M̃ , then it defines a smooth vector field X
on M by setting Xp = dπ(Xp̃) for any p̃ ∈ π−1(p); in this case, X̃ and X are π-related. It also
follows from the definitions that a vertical vector field is projectable and, indeed, a vector field on
M̃ is vertical if and only if it is π-related to 0.

If X is a smooth vector field on M , it is clear that there exists a unique basic vector field X̃ on
M̃ such that X̃ and X are π-related; the vector field X̃ is necessarily smooth and it is called the
horizontal lift of X.

4.5.4 Lemma Let X̃, Ỹ be horizontal lifts of X, Y ∈ Γ(TM), resp., and let U ∈ Γ(TM̃) be a

vertical vector field. Then the vector fields [X̃, Ỹ ]− [̃X,Y ] and [U, X̃ ] are vertical.

Proof. Since U is π-related to 0 and X̃ is π-related to X, we have that [U, X̃ ] is π-related to
[0,X] = 0. A similar argument proves the other assertion. �

The next proposition describes the Levi-Cività connection ∇̃ of M̃ in terms of the Levi-Cività
connection ∇ of M . Denote by (·)v the vertical component of a vector field on M̃ .

4.5.5 Proposition Let π : (M̃ , g̃) → (M,g) be a Riemannian submersion. If X, Y ∈ Γ(TM) with
horizontal lifts X̃, Ỹ ∈ Γ(TM̃), then

∇̃X̃ Ỹ = ∇̃XY +
1

2
[X̃, Ỹ ]v.

Proof. Apply the Koszul formula (2.2.6) to g̃(∇̃X̃ Ỹ , Z̃), where Z̃ is the horizontal lift of Z ∈
Γ(TM). Since dπ restricted to each Hp̃ is a linear isometry onto TpM for p = π(p̃),

X̃p̃g̃(Ỹ , Z̃) = Xpg(Y,Z).

Also, by the first assertion of Lemma 4.5.4,

g̃p̃([X̃, Ỹ ], Z̃) = gp([X,Y ], Z).
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Hence

(4.5.6) g̃p̃(∇̃X̃ Ỹ , Z̃) = gp(∇XY,Z) = g̃p̃(∇̃XY , Z̃).

Next, apply the Koszul formula to g̃(∇̃X̃ Ỹ , U), where U ∈ Γ(TM̃) is vertical. Since g̃(X̃, Ỹ ) is

constant along the fibers of π, Ug̃(X̃, Ỹ ) = 0. Using the second assertion of Lemma 4.5.4 yields
that

(4.5.7) g̃(∇̃X̃ Ỹ , U) =
1

2
g̃([X̃, Ỹ ], U).

The desired result is equivalent to (4.5.6) and (4.5.7). �

The next proposition relates the sectional curvatures of M and M̃ .

4.5.8 Proposition Let π : (M̃, g̃) → (M,g) be a Riemannian submersion. If X, Y ∈ Γ(TM) is
an orthonormal pair with horizontal lifts X̃, Ỹ ∈ Γ(TM̃), then

K(X,Y ) = K̃(X̃, Ỹ ) +
3

4
||[X̃, Ỹ ]v||2.

Proof. We start by observing that for a vertical vector field U on M̃ ,

g̃(∇̃X̃U, Ỹ ) = −g̃(U, ∇̃X̃ Ỹ ) = −
1

2
g̃(U, [X̃, Ỹ ]v)

by Proposition 4.5.5, and

g̃(∇̃U X̃, Ỹ ) = g̃(∇̃X̃U, Ỹ ) + g̃([U, X̃ ], Ỹ ) = g̃(∇̃X̃U, Ỹ ),

by Lemma 4.5.4. Using these identities and (4.5.5) a few times, we have

∇̃X̃∇̃Ỹ X̃ = ∇̃X̃

(

∇̃YX
)

+
1

2
∇̃X̃

(

[Ỹ , X̃ ]v
)

= ˜∇X∇Y X +
1

2
[X̃, ∇̃Y X ]v −

1

2
∇̃X̃

(

[X̃, Ỹ ]v
)

,

and

g̃(∇̃X̃∇̃Ỹ X̃, Ỹ ) = g̃( ˜∇X∇YX, Ỹ )−
1

2
g̃(∇̃X̃ [X̃, Ỹ ]v, Ỹ )

= g(∇X∇YX,Y ) +
1

4
||[X̃, Ỹ ]v ||2

Similarly

g̃(∇̃Ỹ ∇̃X̃X̃, Ỹ ) = g̃(∇̃Ỹ ∇̃XX, Ỹ ) = g(∇Y ∇XX,Y ),

and

g̃(∇̃[X̃,Ỹ ]X̃, Ỹ ) = g̃(∇̃
[̃X,Y ]

X̃, Ỹ ) + g̃(∇̃[X̃,Ỹ ]vX̃, Ỹ )

= g(∇[X,Y ]X,Y )−
1

2
||[X̃, Ỹ ]v||2.

It follows that

g̃(R̃(X̃, Ỹ )X̃, Ỹ ) = g(R(X,Y )X,Y )−
3

4
||[X̃, Ỹ ]v ||2,
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and this clearly implies the desired formula. �

We now apply the above results to the question of computing the sectional curvature of CPn.
Consider as usual the Riemannian submersion π : M̃ = S2n+1 → M = CPn. We will first define a
complex structure on each tangent space to M .�1� Since the horizontal space Hp̃ ⊂ Tp̃S

2n+1, for
p̃ ∈ S2n+1, is the orthogonal complement of R{p̃, ip̃} = Cp̃ in C2n+1, it follows that Hp̃ is a complex
vector subspace of Cn+1. We transfer the complex structure of Hp̃ to TpM , where p = π(p̃), by
conjugation with the isometry dπp̃|Hp̃

: Hp̃ → TpM , namely we set

Jpv = dπp̃ ◦ J0 ◦ (dπp̃|Hp̃
)−1(v) = dπ(iṽ),

where J0 : R2n+2 → R2n+2 is the standard complex structure on R2n+2 that allows us to identify
R2n+2 ∼= Cn+1, and ṽ is the horizontal lift of v at p̃. Let us check that Jp is well defined in the
sense that if we had started with a different point p̃′ ∈ π−1(p), we would have gotten the same
result. Indeed p̃′ = zp̃ for some z ∈ S1. Denote by ϕz : Cn+1 → Cn+1 the multiplication by z.
Then π ◦ ϕz = π which, via the chain rule, yields that dπp̃′ ◦ ϕz = dπp̃ and hence

dπp̃′ ◦ J0 ◦ (dπp̃′ |Hp̃′
)−1 = dπp̃ ◦ ϕz ◦ J0 ◦ ϕz−1 ◦ (dπp̃|Hp̃

)−1

= dπp̃ ◦ J0 ◦ (dπp̃|Hp̃
)−1,

since ϕz maps Hp̃ onto Hp̃′ . Next, it is clear that

J2
p = −idTpM ,

so Jp introduces on TpM the structure of a complex vector space. It is also easy to see that Jp is
a linear isometry because

g(Jpv, Jpw) = g̃(iṽ, iw̃) = g̃(ṽ, w̃) = g(v,w),

where v, w ∈ TpM and ṽ, w̃ ∈ Hp̃ are their corresponding lifts, and we have used the fact that
multiplication by i is an isometry of Cn+1. Now consider Jp for varying p ∈ CPn. If X is a smooth
vector field on CPn, then, plainly, JX = dπ(iX̃), and this implies that also JX is a smooth vector
field on CPn. Hence J is a smooth tensor field of type (1, 1) on CPn. Next, we introduce the
vertical vector field ξ by putting

(4.5.9) ξ(p̃) =
d

dθ

∣

∣

∣

θ=0
(eiθ p̃) = ip̃ = J0(p̃).

Note that ξ is a smooth, unit vector field on S2n+1. Then X̃(ξ) = J0(X̃) = iX̃ , so using the
expression of the Levi-Cività connection in S2n+1 (4.5.1), we have

∇̃X̃ξ = X̃(ξ)− 〈X̃(ξ),p〉p

= iX̃ − 〈iX̃,p〉p

= iX̃,

�1�For a real vector space V , a complex structure is an endomorphism J : V → V such that J2 = −idV . A complex
structure J on V allows one to view V as a complex vector space with half the real dimension of V , namely, one puts
(a+ ib)v = av + bJv for all a, b ∈ R, v ∈ V . A complex structure on V can exist only if the dimension of V is even
(since (detJ)2 = (−1)dimV ), in which case there are many such structures, for the general linear group of V acts on
the set of complex strutures by conjugation. Finally, if V is an Euclidean space, a complex structure J on V is called
orthogonal if J is an orthogonal transformation. The standard complex structure of R2n is given by J0(x, y) = (−y, x)
for all x, y ∈ R

n, so that the complex vector space (R2n, J0) is isomorphic to C
n via (x, y) 7→ x+ iy.
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as iX̃ is tangent to the sphere. Therefore

g̃(ξ, [X̃, Ỹ ]v) = 2g̃(ξ, ∇̃X̃ Ỹ ) (by Proposition 4.5.5)

= −2g̃(∇̃X̃ξ, Ỹ )

= −2g̃(iX̃, Ỹ )

= −2g(JX, Y ).

Since ξ is a unit vector field, in view of Proposition 4.5.8, we finally have that

(4.5.10) K(X,Y ) = 1 + 3〈JX, Y 〉2.

In particular, the sectional curvatures of CPn lie between 1 and 4. Further, the sectional curvature
of a 2-plane E is 4 (resp. 1) if and only if E is complex (resp. totally real).�2� On the other hand,
if we change the metric on CPn to the quotient metric coming from the Riemannian submersion
π : S2n+1(2) → CPn where S2n+1(2) denotes the sphere of radius 2, then its sectional curvatures
will lie between 1

4 and 1 (cf. exercise 2).
For a general even-dimensonal smooth manifold M , a smooth tensor field J of type (1, 1)

satisfying J2
p = −idTpM for all p ∈ M is called an almost complex structure. If J is an almost

complex structure on M , a Riemannian metric g on M is called a Hermitian metric if Jp is a linear
isometry of TpM with respect to gp for all p ∈ M . If, in addition, J is parallel (∇J ≡ 0) with
respect to the Levi-Cività connection of (M,g), then (M,g, J) is called an almost Kähler manifold.

A complex manifold is an even dimensional smooth manifold M admitting a holomorphic atlas,
namely, an atlas whose transition maps are holomorphic maps between open sets of Cn, after
identifying R2n ∼= Cn. It is easy to see that a holomorphic atlas allows one to transfer the complex
structure of R2n to the tangent spaces of M so that a complex manifold automatically inherits
a canonical almost complex structure. Not all almost complex structures on a smooth manifold
are obtained from a holomorphic atlas in this way and the ones that do are called integrable.
The celebrated Newlander-Nirenberg theorem supplies a criterium for the integrability of almost
complex structures, similar to the Frobenius theorem. An almost Kähler manifold with integrable
complex structure is called a Kähler manifold. An introduction to the theory of complex manifolds
is [Wel08].

We come back to the Riemannian submersion π : S2n+1 → CPn and the almost complex
structure J on CPn. Note first that Cn is obviously a complex manifold and indeed a Kähler
manifold: for vector fields X, Y : Cn → Cn the Levi-Cività connection ∇Cn

X Y = dY (X), so the
chain rule yields

∇C
n

X (J0Y ) = d(J0 ◦ Y )(X) = dJ0 ◦ dY (X) = J0∇
C

n

X Y

and hence ∇Cn

J0 = 0. Now J0 restricts to an endomorphism of H and the Levi-Cività connection
of S2n+1 is obtained from ∇Cn

by orthogonal projection, so

∇̃X̃(J0Ỹ ) = J0∇̃X̃ Ỹ

from which it follows that
∇X(JY ) = J∇XY,

for all X, Y ∈ Γ(TCPn). This proves that the almost complex structure of CPn is parallel. That
CPn is a Kähler manifold finally follows from the fact that the transition maps (1.3.4) of the
smooth atlas constructed in chapter 1 are holomorphic.

�2�A subspace E of an Euclidean vector space V with orthogonal complex structure J is called totally real (resp. com-

plex) if J(E) ⊥ E (resp. J(E) ⊂ E).
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Lie groups

Let G be a Lie group equipped with a bi-invariant metric. In this example, we will compute the
sectional curvatures of G. Denote by g the Lie algebra of G. Any 2-plane E contained in TgG,
g ∈ G, is spanned by Xg, Yg for some X, Y ∈ g, so K(E) = K(Xg, Yg). Further, since left-
translations are isometries, we can write K(Xg, Yg) = K(X,Y ) unambiguously. Next, recall the
formula (2.8.8) for the covariant derivative. It yields

∇X∇YX =
1

2
[X,∇Y X] =

1

4
[X, [Y,X]] =

1

4
[[X,Y ],X],

∇Y∇XX = 0,

∇[X,Y ]X =
1

2
[[X,Y ],X],

hence

R(X,Y )X = −
1

4
[[X,Y ],X].

Assuming that {X,Y } is orthonormal and using (2.8.7), we finally get that

K(X,Y ) =
1

4
||[X,Y ]||2.

We conclude that G has nonnegative curvature. Let X ∈ g be a unit vector and let {E1, . . . , En}
be an orthonormal basis of g with E1 = X. Due to (4.3.1), we also have

Ric(X,X) =
n
∑

j=2

K(X,Ej) =
1

4

n
∑

j=2

||[X,Ej ]||
2.

It follows that G has positive Ricci curvature in case its center is discrete. We can also rewrite the
preceding equation as

Ric(X,X) = −
1

4

n
∑

j=2

g([[X, [X,Ej ]], Ej) = −
1

4

n
∑

j=2

g(ad2XEj , Ej) = −
1

4
trace (ad2X).

Thus, by bilinearity and polarization,

(4.5.11) −4Ric(X,Y ) = trace (adX ◦ adY )

for every X, Y ∈ g.

For a general Lie group G, the right-hand side of equation (4.5.11) defines a bilinear symmetric
form Bg on g called the Killing form (or Cartan-Killing form) of g, and one easily checks that

Bg(adZX,Y ) +Bg(X, adZY ) = 0

for every X, Y , Z ∈ g. If, in addition, G is compact and the center of g is trivial, then one shows
that −Bg is also positive definite [Hel78, Prop. 6.6]. Assuming further that G is connected, it
follows by Proposition 2.8.5 and the discussion in chapter 1 that −Bg induces a bi-invariant metric
on G. Hence, in the special case in which the bi-invariant metric on G comes from the Killing form,
equation (4.5.11) shows that the Ricci tensor is a multiple of the metric tensor, and G is thus an
Einstein manifold.
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4.6 Additional notes

§1 We make a small digression into the classical theory of surfaces in R3, see e.g. [Car76], and prove
the following proposition.

4.6.1 Proposition Let M be a regular surface in R3 equipped with the induced metric. Then the
sectional curvature and the Gaussian curvature of M coincide at each point p ∈ M .

Proof. Let x : U → M be a parametrization, where U is an open subset of R2. We have
that {xu,xv} span the tangent plane to M at each point. The smooth functions E = 〈xu,xu〉,
F = 〈xu,xv〉, G = 〈xv,xv〉 are the coefficients of the first fundamental form of M (the induced
Riemannian metric). The unit normal vector field is given by

N =
xu × xv

||xu × xv||
.

This defines the Gauss map N : M → S2. Its differential at p ∈ M is a symmetric linear map
dNp : TpM → TpM which is represented in the basis {xu,xv} by the matrix

(

e f
f g

)

.

Using the Christoffel symbols, we can write

xuu = Γ1
11xu + Γ2

11xv + eN

xuv = Γ1
12xu + Γ2

12xv + fN

xvv = Γ1
22xu + Γ2

22xv + gN

The sectional curvature of M is given by

K(xu,xv) =
−〈R(xu,xv)xu,xv〉

||xu||2||xv||2 − 〈xu,xv〉2

= −
〈∇xu

∇xv
xu −∇xv

∇xu
xu,xv〉

EG− F 2
,

since [xu,xv] = 0. The Levi-Cività connection ∇ is just the tangential component of the derivative
in R3, so ∇xv

xu = (xvu)
⊤ = Γ1

12xu + Γ2
12xv and

∇xu
∇xv

xu =
(

(Γ1
12)uxu + Γ1

12xuu + (Γ2
12)uxv + Γ2

12xuv

)⊤

=
(

(Γ1
12)u + Γ1

12Γ
1
11 + Γ2

12Γ
1
12

)

xu +
(

(Γ2
12)u + Γ1

12Γ
2
11 + (Γ2

12)
2
)

xv.

Similarly, one computes that

∇xv
∇xu

xu =
(

(Γ1
11)v + Γ1

11Γ
1
12 + Γ2

11Γ
1
22

)

xu +
(

(Γ2
11)v + Γ1

11Γ
2
12 + Γ2

11Γ
2
22

)

xv.

It follows from formulas (5) and (5a) in [Car76, section 4.3] that K(xu,xv) equals the Gaussian
curvature of M . We realize that this proof is really a restatement of the proof of the Theorema
Egregium. In chapter 7, we will present an alternative way of proving this proposition. �

§2 Curvature, in any of its manifestations, is the single most important invariant in Riemannian
geometry. It is a local invariant that severely restricts the possibilities for local isometries of a
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Riemannian manifold; this is partially reflected in the fact that the group of global isometries of a
Riemannian manifold is a finite-dimensional Lie group. At the same time, it is really the presence
of curvature that gives rise to the huge variety of non-equivalent Riemannian metrics on a given
smooth manifold that we can see. The curvature tensor and its covariant derivatives are indeed
the only Riemannian invariants if one demands that they be algebraic invariants stemming from
the connection. However, if one requires only tensors that are invariant under isometries — the so-
called natural tensors — then there is not even hope of achieving a classification without imposing
further restrictions [Eps75].

§3 Does the curvature determine the metric? This is a very natural question, and an interest-
ing result of Kulkarni [Kul70] asserts that diffeomorphisms preserving the sectional curvature are
isometries if the sectional curvature is not constant and the dimension is bigger than 3. On the
other hand, it is important to realize that the curvature tensor, in general, does not determine
the metric, even given that for n > 3 the dimension of the space of (pointwise) curvature tensors
n2(n2−1)

12 is much larger than the dimension of the (pointwise) metric tensors n(n−1)
2 . Indeed, there

are many examples of nonisometric Riemannian manifolds admitting diffeomorphisms that preserve
the respective curvature tensors. Of course, the difference between the curvature tensor and the
sectional curvature is that the latter involves the metric.

4.7 Exercises

1 Let M be an n-dimensional Riemannian manifold of constant curvature κ. Compute that

Ric = (n− 1)κg and scal = n(n− 1)κ.

2 Let g and ḡ be two Riemannian metrics in the smooth manifold M such that ḡ = λg for a
constant λ > 0. Show that the curvature tensor, the sectional curvature, the Ricci tensor and
the scalar curvature of the Riemannian manifolds (M, ḡ) and (M,g) are related by the following
equations:

R = R, K = λ−1K, Ric = Ric and scal = λ−1scal.

3 Use the symmetries of the curvature tensor to show that the Ricci tensor determines the curva-
ture tensor in a Riemannian manifold of dimension 3.

4 Let M be a connected Einstein manifold of dimension at least 3. Prove that the constant of
proportionality is independent of the point. Deduce Lemma 4.2.5 from this result.

5 Let M be a Riemannian manifold with the property that for any two points p, q ∈ M , the
parallel transport map from p to q along a piecewise smooth curve γ joining p to q does not depend
on γ. Prove that M must be flat.

6 As a partial converse to the previous exercise, suppose M is a flat manifold, p, q ∈ M , and γ0,
γ1 are two smooth curves joining p to q. Prove that if γ0 and γ1 are smoothly homotopic with the
endpoints fixed, then the parallel transport maps from p to q along γ0 and along γ1 coincide.

7 Prove that the curvature tensor of CPn is

R(X,Y )Z = −〈X,Z〉Y + 〈Y,Z〉X + 〈X,JZ〉JY − 〈Y, JZ〉JX + 2〈X,JY 〉JZ

for vector fields X, Y , Z on CPn. (Hint: Use formula (4.5.10).)
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8 Prove that the curvature tensor and the Ricci tensor of a Kähler manifold (M,g, J) satisfy the
following identities:

R(X,Y )J = JR(X,Y ), R(JX, JY ) = R(X,Y ) and Ric(JX, JY ) = Ric(X,Y ),

for all vector fields X and Y on M .

9 Prove that the curvature tensor of a Riemannian manifold satisfies the following identities:
a. For tangent vectors x, y, z and w, we have

6〈R(x, y)z, w〉 = 〈R(x, y + z)(y + z), w〉 − 〈R(x, y − z)(y − z), w〉

+〈R(y, x− z)(x− z), w〉 − 〈R(y, x+ z)(x+ z), w〉

b. For tangent vectors a, b, c, we have

4〈R(a, b)a, c〉 = 〈R(a, b+ c)a, b+ c〉 − 〈R(a, b− c)a, b− c〉

Deduce an alternative proof of Corollary 4.2.3.

10 Extend the notion of parallel transport along a curve to tensors of type (r, s).

11 Let ϕ : N → M be a smooth map, let X, Y ∈ Γ(TN) be vector fields in N and let U ,
V ∈ Γ(ϕ∗TM) be vector fiels along ϕ. Prove that

R(ϕ∗X,ϕ∗Y )U = ∇ϕ
X∇ϕ

Y U −∇ϕ
X∇ϕ

Y U −∇ϕ
[X,Y ]U

where R denotes the curvature tensor of M and ∇ϕ denotes the induced connection along ϕ. (Hint:
Imitate the argument in the proof of Proposition 2.6.2.)

12 (Riemannian volume) Let (M,g) be an oriented Riemannian manifold of dimension n. Let E =
(E1, . . . , En) be a positively oriented orthonormal frame on an open subset U (that is, E1, . . . , En

are smooth vector fields defined on U which are orthonormal at each point), and let (θ1, . . . , θn) be
the dual coframe of 1-forms on U . Define the n-form ωE = θ1 ∧ · · · ∧ θn on U .

a. Prove that for another positively oriented orthonormal frame E ′ defined on U ′ we have ωE =
ωE ′ on U ∩ U ′. Deduce that there exists a smooth differential form volM of degree n on M
such that

(volM )p(e1, . . . , en) = 1

for every positively oriented orthonormal basis e1, . . . , en of TpM and all p ∈ M . The n-form
volM is called the volume form of (M,g) and the associated measure is called the Riemannian
measure on M associated to g.

b. Show that for a positively oriented basis v1, . . . , vn of TpM , we have

(volM )p(v1, . . . , vn) =
√

det (gp(vi, vj)).

Deduce that, in local coordinates (U,ϕ = (x1, . . . , xn)),

volM =
√

det(gij) dx
1 ∧ · · · ∧ dxn.

13 Let (M,g) be an n-dimensional Riemannian manifold.
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a. For any smooth function f : M → R, the gradient of f is the smooth vector field gradf
defined by g((gradf)p, v) = dfp(v) for all v ∈ TpM and all p ∈ M . Prove that

grad(f1 + f2) = gradf1 + gradf2 and grad(f1f2) = f1 gradf2 + f2 gradf1

for all smooth functions f1, f2 on M .
b. For any smooth vector field X on M , the divergence of X is the smooth function divX =

trace (v 7→ ∇vX). Prove that

div (X + Y ) = divX + div Y and div (fX) = 〈gradf,X〉+ f divX

for all smooth fuctions f and smooth vector fields X, Y on M .
c. For any smooth function f on M , the Laplacian of f is the smooth function ∆f = div gradf .

The function f is called harmonic is ∆f = 0. Prove that

∆(f1f2) = f1∆f2 + 2〈gradf1, gradf2〉+ f2∆f1

for all smooth functions f1, f2 on M .
d. For any smooth function f on M , the Hessian of f is the (0, 2)-tensor Hess(f) = ∇df . Prove

that
Hess(f)(X,Y ) = X(Y f)− (∇XY )f

and
Hess(f)(X,Y ) = Hess(f)(Y,X)

for all smooth vector fields X, Y on M . Show also that the trace of the Hessian coincides
with the Laplacian.

14 (Divergence theorem) Let M be an oriented Riemannian manifold.
a. Prove that for any smooth vector field

LX(dV ) = (divX) dV

where dV denotes the volume form volM . A vector field is called incompressible if it is
divergence-free. Deduce that a vector field is incompressible if and only if its local flows are
volume preserving.

b. Suppose now Ω is a domain in M with smooth boundary and let ∂Ω be oriented by the
outward unit normal ν. Denote the Riemannian volume form of ∂Ω by dS. Use Stokes’
theorem to show that for any compactly supported smooth vector field X on M we have

∫

Ω
divX dV =

∫

∂Ω
〈X, ν〉 dS

15 (Green identities) Let M be an oriented Riemannian manifold and let Ω be a domain in M as
in exercise 14.

a. Prove the “integration by parts formula”
∫

Ω
f1∆f2 dV +

∫

Ω
〈grad f1, grad f2〉 dV =

∫

∂Ω
f1

∂f2
∂ν

dS

for any compactly supported smooth functions f1, f2 on M . Deduce the weak maximum
principle: if f is compactly supported and sub- or super-harmonic (i.e. ∆f ≥ 0 or ∆f ≤ 0)
then f is constant. (Hint: first show ∆f = 0; then apply integration by parts to f = f1 = f2
and Ω = M .)
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b. Prove that
∫

Ω
(f1∆f2 − f2∆f1) dV =

∫

∂Ω

(

f1
∂f2
∂ν

− f2
∂f1
∂ν

)

dS

for any compactly supported smooth functions f1, f2 on M . Deduce that if f1 and f2 are two
eigenfunctions of the Laplacian on a compact oriented Riemannian manifold M associated to
different eigenvalues λ1, λ2, resp., then f1 and f2 are orthogonal in the sense that

∫

M f1f2 dV =
0.
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