A short course on the differential geometry of curves and surfaces in Euclidean spaces

Claudio Gorodski

August 17, 2023

Contents

1 Curves 5
1.1 Regular curves 5
1.2 Plane curves 6
1.3 Space curves 7

Chapter 1

Curves

1.1 Regular curves

A regular parameterized curve in \mathbb{R}^{n} is a continuously differentiable map $\gamma: I \rightarrow$ \mathbb{R}^{n}, where $I \subset \mathbb{R}$ is an interval, such that $\gamma^{\prime}(t) \neq 0$ for $t \in I$. This condition implies that γ admits a tangent line at every point. A regular curve is an equivalence class of regular parameterized curves, where $\gamma \sim \eta$ if and only if $\eta=\gamma \circ \varphi$ for a continuously differentiable $\varphi: J \rightarrow I, \varphi^{\prime}>0$. We shall normally deal with curves satisfying some higher differentiability condition, like class \mathcal{C}^{k} for $k \in\{1,2, \ldots, \infty\}$.

Examples 1.1 1. A line $\gamma(t)=p+t v=\left(x_{0}+a t, y_{o}+b t, z_{0}+c t\right)$, where $p=$ $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ is a point and $v=(a, b, c) \in \mathbb{R}^{n}$ is a vector.
2. The circle $\gamma(t)=(\cos t, \sin t)$ in the plane, or, more generally, $\gamma(t)=\left(x_{0}+\right.$ $\left.R \cos \omega t, y_{0}+R \sin \omega t\right)$.
3. The helix $\gamma(t)=(a \cos t, a \sin t, b t)$, where $a, b \neq 0$.
4. The semi-cubical parabola $\gamma(t)=\left(t^{2}, t^{3}\right)$.
5. The cathenary $\gamma(t)=(t, \cosh (a t))$, where $a>0$.
6. The tractrix $\gamma(t)=\left(e^{-t}, \int_{0}^{t} \sqrt{1-e^{-2 \xi}} d \xi\right)$.

The length of a regular parameterized curve $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ is

$$
L(\gamma)=\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t
$$

It is invariant under reparameterization.
Lemma 1.2 Every regular curve $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ admits a reparameterization by arc length, that is, $\eta:[0, \ell] \rightarrow \mathbb{R}^{n}$, where $\ell=L(\gamma)$, such that $L\left(\left.\eta\right|_{[0, t]}\right)=t$; equivalently, $\left\|\eta^{\prime}\right\| \equiv 1$.

Proof. Define

$$
\psi(t)=\int_{a}^{t}\left\|\gamma^{\prime}(\xi)\right\| d \xi
$$

Then $\psi:[a, b] \rightarrow[0, \ell], \psi^{\prime}>0$ and we can take $\varphi=\psi^{-1}, \eta=\gamma \circ \varphi$.

1.2 Plane curves

Let $\gamma: I \rightarrow \mathbb{R}^{2}$ be a regular parameterized curve of class \mathcal{C}^{2}. The curvature of γ is the rate of change of the direction of γ. Namely, let

$$
t(s)=\frac{\gamma^{\prime}(s)}{\|\gamma(s)\|}
$$

be the unit tangent vector at time s, and complete it to a positively oriented orthonormal base t, n of \mathbb{R}^{2}. Then $\langle t, t\rangle=1$ implies $\left\langle t, t^{\prime}\right\rangle=0$, som $t^{\prime}=\kappa n$ for some continuous function $\kappa: I \rightarrow \mathbb{R}$. Similarly, $\langle n, n\rangle=1$ yields $n^{\prime}=-\kappa t$. We can write

$$
\binom{t}{n}^{\prime}=\left(\begin{array}{cc}
0 & \kappa \\
-\kappa & 0
\end{array}\right)\binom{t}{n}
$$

the so-called Frenet-Serret equations in \mathbb{R}^{2}.
Proposition 1.3 Suppose γ is a regular curve parameterized by arc-length. Then κ is constant if and only γ is either a circle (if $\kappa \neq 0$) or a line (if $\kappa=0$).
Theorem 1.4 (Fundamental theorem of plane curves) The curvature is a complete invariant of plane curves, up to rigid motion. More precisely, given a continuous function $\alpha:[a, b] \rightarrow \mathbb{R}$ there is a unique curve in the plane defined on $[a, b]$, parametrized by arc-length, whose curvature at time $s \in[a, b]$ is $\alpha(s)$, up to a translation and rotation of the plane.

Proof. For the existence, set $\gamma(s)=(x(s), y(s)$, where

$$
x(s)=\int_{a}^{s} \cos \left(\int_{a}^{\eta} \alpha(\xi) d \xi\right) d \eta, y(s)=\int_{a}^{s} \sin \left(\int_{a}^{\eta} \alpha(\xi) d \xi\right) d \eta
$$

for $s \in[a, b]$. Then γ has curvature function given by α.
Conversely, suppose $\gamma:[a, b] \rightarrow \mathbb{R}, \gamma(s)=(x(s), y(s))$ is parameterized by arc-length and has curvature α. The Frenet-Serret frame t, n along γ can be written

$$
t(s)=(\cos \theta(s), \sin \theta(s)), n(s)=(-\sin \theta(s), \cos \theta(s))
$$

Now

$$
\alpha(s)=\left\langle t^{\prime}(s), n(s)\right\rangle=\theta^{\prime}(s)
$$

so

$$
\theta(s)=\theta(a)+\int_{a}^{s} \alpha(\xi) d \xi
$$

Also, $t=\left(x^{\prime}, y^{\prime}\right)$ yields

$$
x(s)=x(a)+\int_{a}^{s} \cos (\theta(\tau)) d \tau, y(s)=y(a)+\int_{a}^{s} \sin (\theta(\tau)) d \tau .
$$

This determines completely γ up to the values of $x(a), y(a), \theta(a)$, that is, up to translation and rotation.

1.3 Space curves

Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a regular parameterized curve of class \mathcal{C}^{3} and assume that $\gamma^{\prime \prime} \neq 0$ everywhere. Then we can associate an adapted trihedron to $\gamma(s)$ for each $s \in I$. For simplicty, assume that γ is parameterized by arc-length. Then we put:

$$
t=\gamma^{\prime}(\text { tangent }), n=\frac{\gamma^{\prime \prime}}{\left\|\gamma^{\prime \prime}\right\|}(\text { normal }), b=t \times n(\text { binormal })
$$

The curvature is $\kappa=\left\|\gamma^{\prime \prime}\right\|$. It follows that $t^{\prime}=\kappa n$. Since $n(s)$ is a unit vector for all $s, n^{\prime} \perp n$ so

$$
\begin{aligned}
n^{\prime} & =\left\langle n^{\prime}, t\right\rangle t+\left\langle n^{\prime}, b\right\rangle b \\
& =-\left\langle n, t^{\prime}\right\rangle t+\left\langle n^{\prime}, b\right\rangle b .
\end{aligned}
$$

We define the torsion $\tau=\left\langle n^{\prime}, b\right\rangle$. Now

$$
n^{\prime}=-\kappa t+\tau b
$$

Finally,

$$
\begin{aligned}
b^{\prime} & =t^{\prime} \times n+t \times n^{\prime} \\
& =\kappa n \times n+t \times(-\kappa t+\tau b) \\
& =-\tau n
\end{aligned}
$$

We summarize this discussion in matrix notation:

$$
\left(\begin{array}{c}
t \\
n \\
b
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{c}
t \\
n \\
b
\end{array}\right)
$$

the so-called Frenet-Serret equations in \mathbb{R}^{3}.
Remark 1.5 A space curve with nonzero curvature is planar if and only if $\tau \equiv$ 0 .

Example 1.6 We compute the curvature and torsion of the helix

$$
\gamma(s)=(a \cos (s / c), a \sin (s / c), b(s / c)), s \in \mathbb{R}
$$

for $a>0, b \in \mathbb{R}$ and $c \neq 0$. We have

$$
\gamma^{\prime}(s)=(-(a / c) \sin (s / c),(a / c) \cos (s / c), b / c)
$$

so γ is parameterized by arc-length precisely when

$$
\begin{equation*}
a^{2}+b^{2}=c^{2} \tag{1.7}
\end{equation*}
$$

and then $t(s)=\gamma^{\prime}(s)$. Further,

$$
\gamma^{\prime \prime}(s)=\left(-\left(a / c^{2}\right) \cos (s / c),-\left(a / c^{2}\right) \sin (s / c), 0\right)
$$

so

$$
n(s)=(-\cos (s / c),-\sin (s / c), 0)
$$

and

$$
b(s)=((b / c) \sin (s / c),-(b / c) \cos (s / c), a / c)
$$

We compute

$$
n^{\prime}(s)=((1 / c) \sin (s / c),-(1 / c) \cos (s / c), 0)
$$

and

$$
b^{\prime}(s)=\left(\left(b / c^{2}\right) \cos (s / c),\left(b / c^{2}\right) \sin (s / c), 0\right)
$$

It follows that

$$
\kappa(s)=\left\|\gamma^{\prime \prime}(s)\right\|=a / c^{2}
$$

and

$$
\tau(s)=\left\langle n^{\prime}(s), b(s)\right\rangle=b / c^{2}
$$

are constant functions. Moreover $\kappa^{2}+\tau^{2}=1 / c^{2}$, so

$$
\begin{equation*}
a=\frac{\kappa}{\kappa^{2}+\tau^{2}} \quad \text { and } \quad b=\frac{\tau}{\kappa^{2}+\tau^{2}} . \tag{1.8}
\end{equation*}
$$

Therefore, given κ, τ, we can solve equations (1.7), (1.8) for a, b, c and obtain a unique helix with curvature κ and torsion τ.

Theorem 1.9 (Fundamental theorem of space curves) The curvature and torsion are complete invariants of space curves. More precisely, given continuous functions $\alpha, \beta:[a, b] \rightarrow \mathbb{R}$ with $\alpha(s)>0$ for all s, there exists a unique regular curve in \mathbb{R}^{3} defined on $[a, b]$, parameterized by arc-length, of class C^{3}, whose curvature and torsion at time $s \in[a, b]$ are respectively given by $\alpha(s)$ and $\beta(s)$, up to a translation and rotation of \mathbb{R}^{3}.

Proof. Consider

$$
A=\left(\begin{array}{ccc}
0 & \alpha & 0 \\
-\alpha & 0 & \beta \\
0 & -\beta & 0
\end{array}\right)
$$

as a matrix-valued function $[a, b] \rightarrow \mathbb{R}^{3 \times 3}$. We consider the first order system of linear differential equations

$$
F^{\prime}=A F
$$

for a matrix-valued $F:[a, b] \rightarrow \mathbb{R}^{3 \times 3}$, given by the Frenet-Serret equations. Here the lines of F will yield the Frenet-Serret frame of our curve γ to be constructed, namely, $F(s)=(t(s), n(s), b(s))$. For a given initial condition $F(a)=\left(e_{1}, e_{2}, e_{3}\right)$, which is a positively oriented orthonormal basis of \mathbb{R}^{3}, the system has a unique solution $F(s)$ of class \mathcal{C}^{3} defined for $s \in[a, b]$.

We claim that $F(s)$ is an ortogonal matrix of determinant 1 for all $s \in[a, b]$. The crucial fact involved here is that $A(s)$ is a skew-symmetric matrix. In fact, set $G=F F^{t}$. Then $G(a)=I$ and

$$
\begin{aligned}
G^{\prime} & =\left(F F^{t}\right)^{\prime} \\
& =F^{\prime} F^{t}+F\left(F^{t}\right)^{\prime} \\
& =F^{\prime} F^{t}+F\left(F^{\prime}\right)^{t} \\
& =A F F^{t}+F F^{t} A^{t} \\
& =A G+G A^{t} .
\end{aligned}
$$

Since the constant function given by the identity matrix also satisfies the differential equation $G^{\prime}=A G+G A^{t}$, due to the fact that $A(s)+A^{t}(s)=0$ for all s, by the uniqueness theorem of solutions of first order ODE, $G(s)=I$ for all s. This proves that $F(s)$ is an orthogonal matrix and hence $\operatorname{det} F(s)= \pm 1$ for all s. Since the determinant is a continuous function and $\operatorname{det} F(0)=1$, we deduce that $\operatorname{det} F(s)=1$ for all s.

Now $F(s)=(t(s), n(s), b(s))$ is a trihedron for all s. For a given initial point $\gamma(a)=p \in \mathbb{R}^{3}$, the curve is completely determined by

$$
\gamma(s)=p+\int_{a}^{s} t(\xi) d \xi
$$

From the equation $F^{\prime}=A F$ we see that (t, n, b) is the Frenet-Serret frame along γ and α, β are its curvature and torsion respectively. Note that the ambiguity in the construction of γ precisely amounts to the choices of point p and positive orthonormal basis $\left(e_{1}, e_{2}, e_{3}\right)$, so any two choices differ by a translation and a rotation.

Remark 1.10 (Local form) Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a regular curve of class \mathcal{C}^{3} parameterized by arc-length and suppose that $\kappa>0$ so that the Frenet-Serret frame is well-defined. We may assume that $0 \in I, \gamma(0)=0$ and $(t(0), n(0), b(0))$ is the canonical basis of \mathbb{R}^{3}. Then the Taylor expansion of $\gamma(s)=(x(s), y(s), z(s))$ at $s=0$ yields:

$$
\begin{aligned}
& x(s)=s-\frac{\kappa(0)^{2}}{6} s^{3}+R_{x} \\
& y(s)=\frac{\kappa(0)}{2} s^{2}+\frac{\kappa^{\prime}(0)}{6} s^{3}+R_{y} \\
& z(s)=\frac{\kappa(0) \tau(0)}{6} s^{3}+R_{z},
\end{aligned}
$$

where $\lim _{s \rightarrow 0} \frac{1}{s^{3}}\left(R_{x}, R_{y}, R_{z}\right)=0$. Therefore the projections of γ in the (t, n) plane (osculating plane), (n, b)-plane (normal plane, (t, b)-plane (rectifying plane plane) has the form of a parabola, semi-cubical parabola (if $\tau(0) \neq 0$), cubical parabola (if $\tau(0) \neq 0$), respectively, up to third order.

