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Chapter 1

Curves

1.1 Regular curves

A regular parameterized curve in R
n is a continuously differentiable map γ : I →

R
n, where I ⊂ R is an interval, such that γ′(t) 6= 0 for t ∈ I . This condi-

tion implies that γ admits a tangent line at every point. A regular curve is an
equivalence class of regular parameterized curves, where γ ∼ η if and only if
η = γ ◦ϕ for a continuously differentiable ϕ : J → I , ϕ′ > 0. We shall normally
deal with curves satisfying some higher differentiability condition, like class
Ck for k ∈ {1, 2, . . . ,∞}.

Examples 1.1 1. A line γ(t) = p + tv = (x0 + at, yo + bt, z0 + ct), where p =
(x0, y0, z0) ∈ R

3 is a point and v = (a, b, c) ∈ R
n is a vector.

2. The circle γ(t) = (cos t, sin t) in the plane, or, more generally, γ(t) = (x0 +
R cosωt, y0 +R sinωt).

3. The helix γ(t) = (a cos t, a sin t, bt), where a, b 6= 0.
4. The semi-cubical parabola γ(t) = (t2, t3).
5. The cathenary γ(t) = (t, cosh(at)), where a > 0.

6. The tractrix γ(t) = (e−t,
∫ t

0

√
1− e−2ξ dξ).

The length of a regular parameterized curve γ : [a, b] → R
n is

L(γ) =

∫ b

a

||γ′(t)|| dt.

It is invariant under reparameterization.

Lemma 1.2 Every regular curve γ : [a, b] → R
n admits a reparameterization by arc

length, that is, η : [0, ℓ] → R
n, where ℓ = L(γ), such that L(η|[0,t]) = t; equivalently,

||η′|| ≡ 1.

Proof. Define

ψ(t) =

∫ t

a

||γ′(ξ)|| dξ.
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6 CHAPTER 1. CURVES

Then ψ : [a, b] → [0, ℓ], ψ′ > 0 and we can take ϕ = ψ−1, η = γ ◦ ϕ. �

1.2 Plane curves

Let γ : I → R
2 be a regular parameterized curve of class C2. The curvature of

γ is the rate of change of the direction of γ. Namely, let

t(s) =
γ′(s)

||γ(s)||
be the unit tangent vector at time s, and complete it to a positively oriented
orthonormal base t, n of R2. Then 〈t, t〉 = 1 implies 〈t, t′〉 = 0, som t′ = κn for
some continuous function κ : I → R. Similarly, 〈n, n〉 = 1 yields n′ = −κt. We
can write

(

t
n

)

′

=

(

0 κ
−κ 0

)(

t
n

)

,

the so-called Frenet-Serret equations in R
2.

Proposition 1.3 Suppose γ is a regular curve parameterized by arc-length. Then κ is
constant if and only γ is either a circle (if κ 6= 0) or a line (if κ = 0).

Theorem 1.4 (Fundamental theorem of plane curves) The curvature is a com-
plete invariant of plane curves, up to rigid motion. More precisely, given a contin-
uous function α : [a, b] → R there is a unique curve in the plane defined on [a, b],
parametrized by arc-length, whose curvature at time s ∈ [a, b] is α(s), up to a trans-
lation and rotation of the plane.

Proof. For the existence, set γ(s) = (x(s), y(s), where

x(s) =

∫ s

a

cos

(∫ η

a

α(ξ) dξ

)

dη, y(s) =

∫ s

a

sin

(∫ η

a

α(ξ) dξ

)

dη

for s ∈ [a, b]. Then γ has curvature function given by α.
Conversely, suppose γ : [a, b] → R, γ(s) = (x(s), y(s)) is parameterized by

arc-length and has curvature α. The Frenet-Serret frame t, n along γ can be
written

t(s) = (cos θ(s), sin θ(s)), n(s) = (− sin θ(s), cos θ(s)).

Now
α(s) = 〈t′(s), n(s)〉 = θ′(s),

so

θ(s) = θ(a) +

∫ s

a

α(ξ) dξ.

Also, t = (x′, y′) yields

x(s) = x(a) +

∫ s

a

cos(θ(τ)) dτ, y(s) = y(a) +

∫ s

a

sin(θ(τ)) dτ.

This determines completely γ up to the values of x(a), y(a), θ(a), that is, up to
translation and rotation. �
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1.3 Space curves

Let γ : I → R
3 be a regular parameterized curve of class C3 and assume that

γ′′ 6= 0 everywhere. Then we can associate an adapted trihedron to γ(s) for
each s ∈ I . For simplicty, assume that γ is parameterized by arc-length. Then
we put:

t = γ′ (tangent), n =
γ′′

||γ′′|| (normal), b = t× n (binormal).

The curvature is κ = ||γ′′||. It follows that t′ = κn. Since n(s) is a unit vector for
all s, n′ ⊥ n so

n′ = 〈n′, t〉t+ 〈n′, b〉b
= −〈n, t′〉t+ 〈n′, b〉b.

We define the torsion τ = 〈n′, b〉. Now

n′ = −κt+ τb.

Finally,

b′ = t′ × n+ t× n′

= κn× n+ t× (−κt+ τb)

= −τn.

We summarize this discussion in matrix notation:




t
n
b





′

=





0 κ 0
−κ 0 τ
0 −τ 0









t
n
b



 ,

the so-called Frenet-Serret equations in R
3.

Remark 1.5 A space curve with nonzero curvature is planar if and only if τ ≡
0.

Example 1.6 We compute the curvature and torsion of the helix

γ(s) = (a cos(s/c), a sin(s/c), b(s/c)), s ∈ R,

for a > 0, b ∈ R and c 6= 0. We have

γ′(s) = (−(a/c) sin(s/c), (a/c) cos(s/c), b/c),

so γ is parameterized by arc-length precisely when

a2 + b2 = c2, (1.7)
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and then t(s) = γ′(s). Further,

γ′′(s) = (−(a/c2) cos(s/c),−(a/c2) sin(s/c), 0),

so
n(s) = (− cos(s/c),− sin(s/c), 0)

and
b(s) = ((b/c) sin(s/c),−(b/c) cos(s/c), a/c).

We compute
n′(s) = ((1/c) sin(s/c),−(1/c) cos(s/c), 0)

and
b′(s) = ((b/c2) cos(s/c), (b/c2) sin(s/c), 0).

It follows that
κ(s) = ||γ′′(s)|| = a/c2

and
τ(s) = 〈n′(s), b(s)〉 = b/c2

are constant functions. Moreover κ2 + τ2 = 1/c2, so

a =
κ

κ2 + τ2
and b =

τ

κ2 + τ2
. (1.8)

Therefore, given κ, τ , we can solve equations (1.7), (1.8) for a, b, c and obtain a
unique helix with curvature κ and torsion τ .

Theorem 1.9 (Fundamental theorem of space curves) The curvature and torsion
are complete invariants of space curves. More precisely, given continuous functions
α, β : [a, b] → R with α(s) > 0 for all s, there exists a unique regular curve in R

3

defined on [a, b], parameterized by arc-length, of class C3, whose curvature and tor-
sion at time s ∈ [a, b] are respectively given by α(s) and β(s), up to a translation and
rotation of R3.

Proof. Consider

A =





0 α 0
−α 0 β
0 −β 0





as a matrix-valued function [a, b] → R
3×3. We consider the first order system

of linear differential equations

F ′ = AF

for a matrix-valued F : [a, b] → R
3×3, given by the Frenet-Serret equations.

Here the lines of F will yield the Frenet-Serret frame of our curve γ to be
constructed, namely, F (s) = (t(s), n(s), b(s)). For a given initial condition
F (a) = (e1, e2, e3), which is a positively oriented orthonormal basis of R3, the
system has a unique solution F (s) of class C3 defined for s ∈ [a, b].
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We claim that F (s) is an ortogonal matrix of determinant 1 for all s ∈ [a, b].
The crucial fact involved here is that A(s) is a skew-symmetric matrix. In fact,
set G = FF t. Then G(a) = I and

G′ = (FF t)′

= F ′F t + F (F t)′

= F ′F t + F (F ′)t

= AFF t + FF tAt

= AG+GAt.

Since the constant function given by the identity matrix also satisfies the differ-
ential equation G′ = AG +GAt, due to the fact that A(s) + At(s) = 0 for all s,
by the uniqueness theorem of solutions of first order ODE, G(s) = I for all s.
This proves that F (s) is an orthogonal matrix and hence detF (s) = ±1 for all
s. Since the determinant is a continuous function and detF (0) = 1, we deduce
that detF (s) = 1 for all s.

Now F (s) = (t(s), n(s), b(s)) is a trihedron for all s. For a given initial point
γ(a) = p ∈ R

3, the curve is completely determined by

γ(s) = p+

∫ s

a

t(ξ) dξ.

From the equation F ′ = AF we see that (t, n, b) is the Frenet-Serret frame along
γ and α, β are its curvature and torsion respectively. Note that the ambiguity
in the construction of γ precisely amounts to the choices of point p and positive
orthonormal basis (e1, e2, e3), so any two choices differ by a translation and a
rotation. �

Remark 1.10 (Local form) Let γ : I → R
3 be a regular curve of class C3 param-

eterized by arc-length and suppose that κ > 0 so that the Frenet-Serret frame
is well-defined. We may assume that 0 ∈ I , γ(0) = 0 and (t(0), n(0), b(0)) is the
canonical basis of R3. Then the Taylor expansion of γ(s) = (x(s), y(s), z(s)) at
s = 0 yields:

x(s) = s− κ(0)2

6
s3 +Rx,

y(s) =
κ(0)

2
s2 +

κ′(0)

6
s3 +Ry,

z(s) =
κ(0)τ(0)

6
s3 +Rz,

where lims→0
1
s3
(Rx, Ry, Rz) = 0. Therefore the projections of γ in the (t, n)-

plane (osculating plane), (n, b)-plane (normal plane, (t, b)-plane (rectifying plane
plane) has the form of a parabola, semi-cubical parabola (if τ(0) 6= 0), cubical
parabola (if τ(0) 6= 0), respectively, up to third order.


