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Chapter 1

Curves

1.1 Regular curves

A reqular parameterized curve in R" is a continuously differentiable map v : I —
R", where I C R is an interval, such that 7/(¢t) # 0 for ¢t € I. This condi-
tion implies that v admits a tangent line at every point. A regular curve is an
equivalence class of regular parameterized curves, where v ~ 7 if and only if
1 = vo for a continuously differentiable ¢ : J — I, ¢’ > 0. We shall normally
deal with curves satisfying some higher differentiability condition, like class
CFfork e {1,2,...,00}.
Examples 1.1 1. A line v(t) = p + tv = (a0 + at,y, + bt, 29 + ct), where p =
(20,90, 20) € R¥isa point and v = (a, b, ¢) € R" is a vector.

2. The circle y(t) = (cost,sint) in the plane, or, more generally, v(t) = (x¢ +
R coswt, yo + Rsinwt).

3. The helix ~(t) = (acost, asint, bt), where a, b # 0.

4. The semi-cubical parabola (t) = (t2,t3).

5. The cathenary ~(t) = (¢, cosh(at)), where a > 0.

6. The tractrix v(t) = (e, fot V1 — e 26 d¢).

The length of a regular parameterized curve v : [a,b] — R" is

b
L) = [ Il ae

It is invariant under reparameterization.

Lemma 1.2 Every regular curve y : [a,b] — R"™ admits a reparameterization by arc
T‘en/ﬁf'th, thatis, n : [0, (] — R™, where { = L(v), such that L(nlj,) = t; equivalently,
7| =1.

Proof. Define
t
v) = [ IV(©llde.
5
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Then ¢ : [a,b] — [0, 4], ¢’ > 0 and we can take o = =1, 7 =y o . O

1.2 Plane curves

Let v : I — R” be a regular parameterized curve of class C2. The curvature of
7 is the rate of change of the direction of v. Namely, let

)
) = T

be the unit tangent vector at time s, and complete it to a positively oriented
orthonormal base t, n of R®. Then (t,t) = 1 implies (t,t') = 0, som t' = xn for
some continuous function « : I — R. Similarly, (n,n) = 1 yields n’ = —xt. We

can write ,
t . 0 =~ t
n "\ -k 0 n )’

the so-called Frenet-Serret equations in R”.

Proposition 1.3 Suppose y is a regular curve parameterized by arc-length. Then k is
constant if and only = is either a circle (if k # 0) or a line (if k = 0).

Theorem 1.4 (Fundamental theorem of plane curves) The curvature is a com-
plete invariant of plane curves, up to rigid motion. More precisely, given a contin-
uous function o : [a,b] — R there is a unique curve in the plane defined on [a,b],
parametrized by arc-length, whose curvature at time s € [a,b] is a(s), up to a trans-
lation and rotation of the plane.

Proof. For the existence, set y(s) = (x(s),y(s), where

o5)= [ cos ( [ et df) dn. s) = [ sin ( [ et df) an

for s € [a, b]. Then 7 has curvature function given by «.

Conversely, suppose v : [a,b] = R, v(s) = (x(s), y(s)) is parameterized by
arc-length and has curvature . The Frenet-Serret frame ¢, n along v can be
written

t(s) = (cosB(s),sinf(s)), n(s) = (—sinb(s),cosb(s)).

Now

SO

Also, t = (2/,y') yields

z(s) = z(a) + /3 cos(0(1)) dr, y(s) = y(a) + /S sin(0(7)) dr.

This determines completely v up to the values of z(a), y(a), (a), that is, up to
translation and rotation. 0
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1.3 Space curves

Let v : I — R® be a regular parameterized curve of class C*> and assume that
v # 0 everywhere. Then we can associate an adapted trihedron to ~(s) for
each s € I. For simplicty, assume that v is parameterized by arc-length. Then
we put:

t =/ (tangent),n = ——— (normal),b =t x n (binormal).

,Y//
Iyl

The curvature is k = ||"||. It follows that ¢’ = xkn. Since n(s) is a unit vector for

alls,n’ L nso

n' = (0, t)t+ (n,b)b
= —(n,t")t+ (n',b)b.

We define the torsion T = (n/,b). Now
n' = —kt + 7b.
Finally,

bV = t'xn+txn
kn X n+tx (—kt + 7b)

= —Tn.

We summarize this discussion in matrix notation:

/

t 0 k 0 t
n = - 0 7 n |,
b 0 -7 0 b

the so-called Frenet-Serret equations in R>.

Remark 1.5 A space curve with nonzero curvature is planar if and only if 7 =
0.

Example 1.6 We compute the curvature and torsion of the helix
v(s) = (acos(s/c),asin(s/c),b(s/c)), s € R,
fora > 0,b € R and ¢ # 0. We have
7'(s) = (=(a/c) sin(s/c), (a/c) cos(s/c), b/c),
so vy is parameterized by arc-length precisely when

a? + 0% =2, (1.7)
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and then t(s) = +/(s). Further,
7"(s) = (—(a/c?) cos(s/c), —(a/c*) sin(s/c), 0),

SO
n(s) = (—cos(s/c), —sin(s/c),0)
and
b(s) = ((b/c)sin(s/c), —(b/c) cos(s/c),a/c).

We compute

n'(s) = ((1/c)sin(s/c), —(1/c) cos(s/c),0)

and
V(s) = ((b/c?) cos(s/c), (b/c?)sin(s/c),0).
It follows that
K(s) = [V (s)l| = a/c?
and

7(s) = (n'(s),b(s)) = b/c?
are constant functions. Moreover 2 + 72 = 1/¢?, so

K T
=——— and b= ——. 1.8
T K%+ 72 (18)
Therefore, given &, 7, we can solve equations (1.7), (1.8) for a, b, ¢ and obtain a
unique helix with curvature s and torsion 7.

Theorem 1.9 (Fundamental theorem of space curves) The curvature and torsion
are complete invariants of space curves. More precisely, given continuous functions
o, B : [a,b] — Rwith a(s) > 0 for all s, there exists a unique regular curve in R?
defined on [a,b], parameterized by arc-length, of class C3, whose curvature and tor-
sion at time s € [a, b] are respectively given by a(s) and ((s), up to a translation and
rotation of R®,

Proof. Consider

0 a 0
A=| —a 0 p
0 -5 0

as a matrix-valued function [a,b] — R**3. We consider the first order system
of linear differential equations

F' = AF

for a matrix-valued F : [a,b] — R**?, given by the Frenet-Serret equations.
Here the lines of F' will yield the Frenet-Serret frame of our curve 7 to be
constructed, namely, F(s) = (t(s),n(s),b(s)). For a given initial condition
F(a) = (e1, e2,e3), which is a positively oriented orthonormal basis of R?, the
system has a unique solution F(s) of class C* defined for s € [a, b].
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We claim that F'(s) is an ortogonal matrix of determinant 1 for all s € [a, b].
The crucial fact involved here is that A(s) is a skew-symmetric matrix. In fact,
set G = FF'. Then G(a) = I and

G = (FFY
= F'F'+F("
= F'F'+F(F)
— AFF' 4+ FF'A!
= AG+ GA".

Since the constant function given by the identity matrix also satisfies the differ-
ential equation G’ = AG + GA?, due to the fact that A(s) + A’(s) = 0 for all s,
by the uniqueness theorem of solutions of first order ODE, G(s) = I for all s.
This proves that F'(s) is an orthogonal matrix and hence det F'(s) = £1 for all
s. Since the determinant is a continuous function and det F'(0) = 1, we deduce
that det F'(s) = 1 for all s.

Now F'(s) = (t(s),n(s),b(s)) is a trihedron for all s. For a given initial point
v(a) = p € R?, the curve is completely determined by

v(s) =p+ /St(ﬁ) d€.

From the equation F’ = AF we see that (¢, n, b) is the Frenet-Serret frame along
v and «, § are its curvature and torsion respectively. Note that the ambiguity
in the construction of y precisely amounts to the choices of point p and positive
orthonormal basis (eq, €2, €3), so any two choices differ by a translation and a
rotation. 0

Remark 1.10 (Local form) Lety : I — R® be a regular curve of class C* param-
eterized by arc-length and suppose that x > 0 so that the Frenet-Serret frame
is well-defined. We may assume that 0 € I, v(0) = 0 and (¢(0), n(0), b(0)) is the
canonical basis of R®. Then the Taylor expansion of 7(s) = (z(s), y(s), z(s)) at
s = 0 yields:

z(s) = s— %())283-4-3@,
so) = Wy 0 g,
z(s) = 71‘{(0)67(0) s+ R.,

where lim,_,q S%(Rx, Ry, R.) = 0. Therefore the projections of v in the (¢,n)-
plane (osculating plane), (n,b)-plane (normal plane, (t,b)-plane (rectifying plane
plane) has the form of a parabola, semi-cubical parabola (if 7(0) # 0), cubical
parabola (if 7(0) # 0), respectively, up to third order.



