A short course on the differential geometry of curves and surfaces in Euclidean spaces

Claudio Gorodski

August 17, 2023

Contents

1	Curves		
	1.1	Regular curves	5
	1.2	Plane curves	6
	1.3	Space curves	7

CONTENTS

4

Chapter 1

Curves

1.1 Regular curves

A regular parameterized curve in \mathbb{R}^n is a continuously differentiable map $\gamma : I \to \mathbb{R}^n$, where $I \subset \mathbb{R}$ is an interval, such that $\gamma'(t) \neq 0$ for $t \in I$. This condition implies that γ admits a tangent line at every point. A regular curve is an equivalence class of regular parameterized curves, where $\gamma \sim \eta$ if and only if $\eta = \gamma \circ \varphi$ for a continuously differentiable $\varphi : J \to I, \varphi' > 0$. We shall normally deal with curves satisfying some higher differentiability condition, like class \mathcal{C}^k for $k \in \{1, 2, \dots, \infty\}$.

Examples 1.1 1. A line $\gamma(t) = p + tv = (x_0 + at, y_o + bt, z_0 + ct)$, where $p = (x_0, y_0, z_0) \in \mathbb{R}^3$ is a point and $v = (a, b, c) \in \mathbb{R}^n$ is a vector.

2. The *circle* $\gamma(t) = (\cos t, \sin t)$ in the plane, or, more generally, $\gamma(t) = (x_0 + R \cos \omega t, y_0 + R \sin \omega t)$.

- 3. The *helix* $\gamma(t) = (a \cos t, a \sin t, bt)$, where $a, b \neq 0$.
- 4. The semi-cubical parabola $\gamma(t) = (t^2, t^3)$.
- 5. The *cathenary* $\gamma(t) = (t, \cosh(at))$, where a > 0.
- 6. The tractrix $\gamma(t) = (e^{-t}, \int_0^t \sqrt{1 e^{-2\xi}} d\xi).$

The *length* of a regular parameterized curve $\gamma : [a, b] \to \mathbb{R}^n$ is

$$L(\gamma) = \int_{a}^{b} ||\gamma'(t)|| \, dt.$$

It is invariant under reparameterization.

Lemma 1.2 Every regular curve $\gamma : [a, b] \to \mathbb{R}^n$ admits a reparameterization by arc length, that is, $\eta : [0, \ell] \to \mathbb{R}^n$, where $\ell = L(\gamma)$, such that $L(\eta|_{[0,t]}) = t$; equivalently, $||\eta'|| \equiv 1$.

Proof. Define

$$\psi(t) = \int_a^t ||\gamma'(\xi)|| \, d\xi.$$

Then $\psi : [a, b] \to [0, \ell], \psi' > 0$ and we can take $\varphi = \psi^{-1}, \eta = \gamma \circ \varphi$.

1.2 Plane curves

Let $\gamma : I \to \mathbb{R}^2$ be a regular parameterized curve of class \mathcal{C}^2 . The curvature of γ is the rate of change of the direction of γ . Namely, let

$$t(s) = \frac{\gamma'(s)}{||\gamma(s)||}$$

be the unit tangent vector at time *s*, and complete it to a positively oriented orthonormal base *t*, *n* of \mathbb{R}^2 . Then $\langle t, t \rangle = 1$ implies $\langle t, t' \rangle = 0$, som $t' = \kappa n$ for some continuous function $\kappa : I \to \mathbb{R}$. Similarly, $\langle n, n \rangle = 1$ yields $n' = -\kappa t$. We can write

$$\left(\begin{array}{c}t\\n\end{array}\right)' = \left(\begin{array}{c}0&\kappa\\-\kappa&0\end{array}\right)\left(\begin{array}{c}t\\n\end{array}\right),$$

the so-called *Frenet-Serret equations in* \mathbb{R}^2 .

Proposition 1.3 Suppose γ is a regular curve parameterized by arc-length. Then κ is constant if and only γ is either a circle (if $\kappa \neq 0$) or a line (if $\kappa = 0$).

Theorem 1.4 (Fundamental theorem of plane curves) The curvature is a complete invariant of plane curves, up to rigid motion. More precisely, given a continuous function $\alpha : [a,b] \rightarrow \mathbb{R}$ there is a unique curve in the plane defined on [a,b], parametrized by arc-length, whose curvature at time $s \in [a,b]$ is $\alpha(s)$, up to a translation and rotation of the plane.

Proof. For the existence, set $\gamma(s) = (x(s), y(s))$, where

$$x(s) = \int_{a}^{s} \cos\left(\int_{a}^{\eta} \alpha(\xi) \, d\xi\right) \, d\eta, \ y(s) = \int_{a}^{s} \sin\left(\int_{a}^{\eta} \alpha(\xi) \, d\xi\right) \, d\eta$$

for $s \in [a, b]$. Then γ has curvature function given by α .

Conversely, suppose $\gamma : [a, b] \to \mathbb{R}$, $\gamma(s) = (x(s), y(s))$ is parameterized by arc-length and has curvature α . The Frenet-Serret frame *t*, *n* along γ can be written

$$t(s) = (\cos \theta(s), \sin \theta(s)), \ n(s) = (-\sin \theta(s), \cos \theta(s)).$$

Now

$$\alpha(s) = \langle t'(s), n(s) \rangle = \theta'(s),$$

so

$$\theta(s) = \theta(a) + \int_{a}^{s} \alpha(\xi) d\xi.$$

Also, t = (x', y') yields

$$x(s) = x(a) + \int_a^s \cos(\theta(\tau)) d\tau, \ y(s) = y(a) + \int_a^s \sin(\theta(\tau)) d\tau$$

This determines completely γ up to the values of x(a), y(a), $\theta(a)$, that is, up to translation and rotation.

1.3 Space curves

Let $\gamma : I \to \mathbb{R}^3$ be a regular parameterized curve of class \mathcal{C}^3 and assume that $\gamma'' \neq 0$ everywhere. Then we can associate an adapted trihedron to $\gamma(s)$ for each $s \in I$. For simplicity, assume that γ is parameterized by arc-length. Then we put:

$$t = \gamma'$$
 (tangent), $n = \frac{\gamma''}{||\gamma''||}$ (normal), $b = t \times n$ (binormal).

The *curvature* is $\kappa = ||\gamma''||$. It follows that $t' = \kappa n$. Since n(s) is a unit vector for all $s, n' \perp n$ so

$$\begin{aligned} n' &= \langle n', t \rangle t + \langle n', b \rangle b \\ &= - \langle n, t' \rangle t + \langle n', b \rangle b. \end{aligned}$$

We define the *torsion* $\tau = \langle n', b \rangle$. Now

$$n' = -\kappa t + \tau b.$$

Finally,

$$b' = t' \times n + t \times n'$$

= $\kappa n \times n + t \times (-\kappa t + \tau b)$
= $-\tau n.$

We summarize this discussion in matrix notation:

$$\left(\begin{array}{c}t\\n\\b\end{array}\right)' = \left(\begin{array}{cc}0&\kappa&0\\-\kappa&0&\tau\\0&-\tau&0\end{array}\right) \left(\begin{array}{c}t\\n\\b\end{array}\right),$$

the so-called *Frenet-Serret equations in* \mathbb{R}^3 .

Remark 1.5 A space curve with nonzero curvature is planar if and only if $\tau \equiv 0$.

Example 1.6 We compute the curvature and torsion of the helix

$$\gamma(s) = (a\cos(s/c), a\sin(s/c), b(s/c)), \ s \in \mathbb{R},$$

for a > 0, $b \in \mathbb{R}$ and $c \neq 0$. We have

$$\gamma'(s) = (-(a/c)\sin(s/c), (a/c)\cos(s/c), b/c),$$

so γ is parameterized by arc-length precisely when

$$a^2 + b^2 = c^2, (1.7)$$

and then $t(s) = \gamma'(s)$. Further,

$$\gamma''(s) = (-(a/c^2)\cos(s/c), -(a/c^2)\sin(s/c), 0),$$

so

and

$$n(s) = (-\cos(s/c), -\sin(s/c), 0)$$

$$b(s) = ((b/c)\sin(s/c), -(b/c)\cos(s/c), a/c)$$

We compute

$$n'(s) = ((1/c)\sin(s/c), -(1/c)\cos(s/c), 0)$$

and

$$b'(s) = ((b/c^2)\cos(s/c), (b/c^2)\sin(s/c), 0)$$

It follows that

$$\kappa(s) = ||\gamma''(s)|| = a/c^2$$

and

$$\tau(s) = \langle n'(s), b(s) \rangle = b/c^2$$

are constant functions. Moreover $\kappa^2 + \tau^2 = 1/c^2$, so

$$a = \frac{\kappa}{\kappa^2 + \tau^2}$$
 and $b = \frac{\tau}{\kappa^2 + \tau^2}$. (1.8)

Therefore, given κ , τ , we can solve equations (1.7), (1.8) for *a*, *b*, *c* and obtain a unique helix with curvature κ and torsion τ .

Theorem 1.9 (Fundamental theorem of space curves) The curvature and torsion are complete invariants of space curves. More precisely, given continuous functions α , $\beta : [a, b] \to \mathbb{R}$ with $\alpha(s) > 0$ for all s, there exists a unique regular curve in \mathbb{R}^3 defined on [a, b], parameterized by arc-length, of class C^3 , whose curvature and torsion at time $s \in [a, b]$ are respectively given by $\alpha(s)$ and $\beta(s)$, up to a translation and rotation of \mathbb{R}^3 .

Proof. Consider

$$A = \left(\begin{array}{ccc} 0 & \alpha & 0\\ -\alpha & 0 & \beta\\ 0 & -\beta & 0 \end{array}\right)$$

as a matrix-valued function $[a, b] \to \mathbb{R}^{3 \times 3}$. We consider the first order system of linear differential equations

$$F' = AF$$

for a matrix-valued $F : [a, b] \to \mathbb{R}^{3 \times 3}$, given by the Frenet-Serret equations. Here the lines of F will yield the Frenet-Serret frame of our curve γ to be constructed, namely, F(s) = (t(s), n(s), b(s)). For a given initial condition $F(a) = (e_1, e_2, e_3)$, which is a positively oriented orthonormal basis of \mathbb{R}^3 , the system has a unique solution F(s) of class C^3 defined for $s \in [a, b]$. We claim that F(s) is an ortogonal matrix of determinant 1 for all $s \in [a, b]$. The crucial fact involved here is that A(s) is a skew-symmetric matrix. In fact, set $G = FF^t$. Then G(a) = I and

$$G' = (FF^{t})'$$

= $F'F^{t} + F(F^{t})'$
= $F'F^{t} + F(F')^{t}$
= $AFF^{t} + FF^{t}A^{t}$
= $AG + GA^{t}$.

Since the constant function given by the identity matrix also satisfies the differential equation $G' = AG + GA^t$, due to the fact that $A(s) + A^t(s) = 0$ for all s, by the uniqueness theorem of solutions of first order ODE, G(s) = I for all s. This proves that F(s) is an orthogonal matrix and hence det $F(s) = \pm 1$ for all s. Since the determinant is a continuous function and det F(0) = 1, we deduce that det F(s) = 1 for all s.

Now F(s) = (t(s), n(s), b(s)) is a trihedron for all s. For a given initial point $\gamma(a) = p \in \mathbb{R}^3$, the curve is completely determined by

$$\gamma(s) = p + \int_a^s t(\xi) \, d\xi.$$

From the equation F' = AF we see that (t, n, b) is the Frenet-Serret frame along γ and α , β are its curvature and torsion respectively. Note that the ambiguity in the construction of γ precisely amounts to the choices of point p and positive orthonormal basis (e_1, e_2, e_3) , so any two choices differ by a translation and a rotation.

Remark 1.10 (Local form) Let $\gamma : I \to \mathbb{R}^3$ be a regular curve of class C^3 parameterized by arc-length and suppose that $\kappa > 0$ so that the Frenet-Serret frame is well-defined. We may assume that $0 \in I$, $\gamma(0) = 0$ and (t(0), n(0), b(0)) is the canonical basis of \mathbb{R}^3 . Then the Taylor expansion of $\gamma(s) = (x(s), y(s), z(s))$ at s = 0 yields:

$$\begin{aligned} x(s) &= s - \frac{\kappa(0)^2}{6} s^3 + R_x, \\ y(s) &= \frac{\kappa(0)}{2} s^2 + \frac{\kappa'(0)}{6} s^3 + R_y, \\ z(s) &= \frac{\kappa(0)\tau(0)}{6} s^3 + R_z, \end{aligned}$$

where $\lim_{s\to 0} \frac{1}{s^3}(R_x, R_y, R_z) = 0$. Therefore the projections of γ in the (t, n)-plane (osculating plane), (n, b)-plane (normal plane, (t, b)-plane (rectifying plane plane) has the form of a parabola, semi-cubical parabola (if $\tau(0) \neq 0$), cubical parabola (if $\tau(0) \neq 0$), respectively, up to third order.