Math 217 - Calculus 3 for Chemical Engineering
Fall 2011

Instructor: Abdullah Hamadeh

Part Il

Differential calculus of multivariable functions

1 Multivariable functions

You will be familiar with single variable functions such d®se illustrated in Figure 1.
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Figure 1: Functions of a single variable.

In each of these cases, the functin) acts as a ‘black box’, operating on a single variakj@nd outputting one,
and only onenumberz = f(x), that depends only ox) as shown in Figure 2 (left). The values>obn whichf (x)

is defined is termed the domain bfx): in the three examples above, the domairf o) is, respectively, the real
line, the real line and the real line excluding the peirit The range (or image) df(x) is the set of points to which
the function maps its domain: for the three examples abbeesange is, respectively, the set of non-negative real
numbers, the segment of the real lirel, 1] and the real line excluding the point 0.

In this part of the course we shall be analyzing functions aftiple variables, of the form shown in Figure 2
(right). In this example, the functiofi(x,y) takes two inputsx andy and outputs oneand only one number,
z= f(x,y). Whereas the domains of the functioh&) in Figure 1 were subsets of the real line making up the
x-axis, the domain of the two variable functiar= f(x,y) is composed of subsets of the (two-dimensioms)
plane, as illustrated in Figure 3. The range of the functien f (x,y) is a subset of the real line that forms the
z-axis. Thereford (-,-) maps each poir(ix*,y*) in its domain onto the poirt' = f(x*,y*) in its range. In the three
dimensional space with coordinatey, z, the result of this mapping is the surface illustrated inuFég3, wherein
each point on the surface satisfies f(x,y).

Note that what distinguishes a surface formed by a funatienf (x,y) from any other surface is that the mapping
from (x,y) to zis unique. This is in contrast to the sphefet-y? + 2 = 1, for example, where each point in the
X,y plane maps onto two values of
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If f(-) were a function of three variables, such that f(x,y,z), the domain off (-) would be a subset of the three
dimensional space defined by the y- andz-axes. Drawing such a function would be very difficult as ituleb
require four axes. We shall mainly be concerned with fumdtiof two variables, although the techniques we shall
study are applicable to functions of any number of variables
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Figure 2: A functionf (x) of one variable (left) and a functiof(x,y) of multiple variables (right).

Figure 3: The variableis equal to a functiorf (x,y) of two variablesx andy.

As an example of a multivariable function, a plotof x2 — y? is shown in Figure 4. Note that the intersection
of this function with the planes of the formn=constant ang =constant yields a series of parabolic curves. For
example, the intersection of the function with the plgne 0 yields a parabolic curve in three dimensional space

in the shape of = x°.

Math 217 - Lecture 4

Figure 4: The functiorz = x% — y2.
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1.1 Contour plots

In a function such ag= f(x,y) the points in the function’s domain xy-plane map onto its range in tlzeaxis.
We now fix a point in the functions range= c, say, and we look for all the points in tig-plane which are such
that f(x,y) = ¢. The set of all such points is termedexel setof f(x,y). In the two dimensionaty-plane, such
a level set forms a curve, termedantour line Clearly there is a different level set of the function (amhte a
different curve in thexy-plane) for every point in the function’s range. For functions of three variableshsas
w = f(x,y,z), we have, rather than contour lines, contour surfaces @etimensional space, whefrgx,y, z) = c,
wherec is constant.

As an example, consider the functiar= f(x,y) = X2 +y?, shown in Figure 5. In three-dimensional space, this
function forms a bowl-shaped surface, as shown in Figuref)(l Level sets of this function are of the form
x? +y? = c¢. When projected onto the thxg-plane in acontour plot shown in Figure 5 (right), each level set forms
a circle of radius,/c, centered on the origin.

Note that as we move radially away from the origin of #yeplane, the circles gradually become closer together
for equally spaced values af What this signifies is that the sides of the bowl shown in Fedai(left) gradually
become steeper as the distance away from the origin ofypéane increases.

z=f(X,y)=x2+y2 y

Figure 5: The functiorz = f(x,y) = x* +y? and its contour plot showing the level surfaceszef f(x,y), at
z=1,2,3,4.

As another example, consider the plane x, shown in Figure 6 (left). Here, increases as increases. Further-
more, z is independent of, and will therefore not increase if we changeso long asx remains fixed. For this
reason, the contour plot in Figure 6 (right) shows that th&taar lines in this function are parallel to tyeaxis.

If we consider a particle moving on the plane illustratedigufe 6 (left), then if the motion of the particle is in a
direction parallel to the-axis, then the coordinate of the particle will not change, and the particik continue
moving along the same contour line. If, on the other handptrécle moves along theaxis, it will traverse the
level sets orthogonally, leading to a change in the value biote that the steepness of the plane is constant. This
is reflected in the contour plot by the fact that the contawediare equally spaced for equally spaced values of

The function and contour plot illustrated in Figure 7 aresthof the functiorz = x> —y?. Note that at the origin,
the function is locally flat, and this is reflected in the fawattthe contour lines are relatively distant from each
other at that point. The steepness of the function increalees the two axis and, correspondingly, the contour
lines become closer together along the two axis.

The hill-shaped functioz = e () illustrated in Figure 8 is relatively flat at the ‘foot of thdlt and this is
illustrated in the fact that at points that are radially aigtfrom the origin, the contour lines are far apart. The
contour lines are closest together at the sides of the Hilgresthe function is steepest. At the ‘top of the hill’, the
function is locally flat, which is reflected in the fact thatla¢ origin, the contour lines are again widely spaced.

As a further example, we consider the three variable funatie- f (x,y,z) = x?+y? + Z2. This function is difficult
to visualize, as it requires four axis, although some insiigio its contour plot can be gained by analogy with the
example of Figure 5. The level setswf= f(x,y,z) are the sets® +y? +z* = ¢, wherec is fixed for each level

Math 217 - Lecture 4 Fall 2011
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Figure 8: The functiorz = e (%) and its contour plot.

set. As such, the level sets of this function are spheriadses of radius,/c, centered on the origin, as shown in
Figure 9. In this case, ‘steepness’ of the functios f(x,y,z) roughly corresponds to how quicklywill increase

in response to an increase in distaRdefrom the originx=y = z= 0. As with the example of Figure 5(x,y,z)
becomes ‘steeper’ with radial distance from the origin. e this, consider the two level setsfdk,y, z):

W1=X2+y2+22=C1
W2:X2+y2+22:C2

wherec, > c¢;. Let the radial distance between the two spheres represbytthese surfaces l# so that,/C; —
/€, = €. For these two surfaces, —w; = ¢ — €1 = 2¢,/C1 + £2. Thereforew, —wj is an increasing function

of ¢1, meaning that as we move away from the oridifx, y, z) increases at an increasing rate - that is, it becomes
‘steeper’.

Math 217 - Lecture 4 Fall 2011
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Figure 9: Level sets of the functiom= x? +y? + 7.

2 Partial derivatives

We have used contour plots to show how functions of multiglgables vary across their domains. Figure 10
shows the contour lines of a functidr(x,y). At the point(x*,y*), the function will increase in the positive
direction and decrease in the positivdirection. Clearly therefore, any notion of slope of a nwaltiable function
will in general be a function adirection

y f(xy)=1
> e

fOx)=2

A3
L fxy)=4

> X

Figure 10: The rate of change fr(x,y) at (x*,y*) is dependent on directiodx leads to an increase if(x,y),
whilst Ay leads to a decrease.

This gives rise to a notion of steepness of such functionds fation is strongly related to the concept of the
derivative of a single variable function that you will aldgabe familiar with. In this section, we shall define this
idea in a more formal way.

As illustrated in Figure 11, the derivati@ (also denoted’(x)) of a single variable functiorfi(x) at any pointx
has the graphical interpretation of being the slope offthe atx.

Math 217 - Lecture 4 Fall 2011
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Formally, the derivative has the following definition

df im f(x+Ax) — f(X)
dx  ax-0 AX

In this definition, the derivative is the limit of the changefi(x) in response to an incrementirin the positive x
direction, in the domain of the function.

f(x)) N

& =X

X

Figure 11: A functiory = f(x) and its derivativ%.

Unlike single variable functions, functions of multipleriables have a multi-dimensional domain. For a function
of two variablesf(x,y), we can therefore conceive of the changef {®,y) in response to an increment xnin

the positivex direction and, separately, in response to an incremewtifinthe positivey direction. Forf(x,y)
therefore, this leads to the definition of tyartial derivatives, one in the direction &f one in the direction oy.

Definition 1. The partial derivative of a function(k,y) with respect to x is

9t _ i fxraxy) — f(xy)
0X  Ax—0 AX

The partial derivative of a function(k,y) with respectto y is

of . f(xy+ay) - f(xy)
— = lim
dy ny-0 Ay

of

The notation‘% is often shortened té. Likewise, 7y

is equivalentfy.

These two derivatives have the following interpretation:
e The partial derivativel: (,X at a point(x,y) = (Xo,Yo) is the slope of the functiori(x,y) at (xo,¥o) in the
direction of increasing, with y held fixed, as illustrated in Figure 12 (left).

e The partial derlvatlv% at a point(x,y) = (Xo,¥o) is the slope of the functiori(x,y) at (Xo,Yo) in the
direction of increasing, with x held fixed, as illustrated in Figure 12 (right).

Finding the partial derivative of a function with respecbite of its variables can be found by differentiating the
function with respect to that variable, whilst treatingthl other variables as constants.

Example 1. Evaluate the partial derivatives of(%,y) = (x> +y°) 3 with respectto x andy.

To find ‘;L, considely to be a constant, and differentiate with respectto

of 1 _1
ox 2 +y32

Math 217 - Lecture 4 Fall 2011



Part IlI: Differential calculus of multivariable functions 7
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Figure 12: The partial derivatives of a functid(x,y) at a point(xo, yo).

To find 2F

ay" considerx to be a constant, and differentiate with respegt.to

Jof 1., 1
— — 2

dy 5 (X +Y°)72(3%)

Example 2. For f(x,y,2) = e ®**¥+%) find 9t at (x,y,2) = (0,0,1).

To find 2f

a7+ considex andy to be constants, and differentiate with respect to

Of _ e 0R1212)
0z

At (0,0,1), 9L = 2.

2.1 Higher order partial derivatives

Note that a partial derivative of a function pfandy is, in general, itself a function of andy as well, as shown
in the examples above. We can therefore take further paeialatives of partial derivatives. For example, for the
function f (x,y) = sin(2x+y) the first partial derivatives are

‘;—L = 2C0g2x+Y) ‘;—; = cog2x+Y)

The second partial derivatives are

of 92f :
o (of 02 f .
9 (of 92f :
o (of\ _ 9°f
ay

5 ) = a7 = fw=—sin(2x+y)

In the above example, it is no coincidence, and, in fact,alvigys the case, that

02f 321
oxdy  0yox

Math 217 - Lecture 4 Fall 2011
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3 Differentials

Suppose that we know the valdéxy) and derivative% (xo) of a single variable functiori (x) at somex = Xg.
Given a smalbx, a rough approximation of the change in the value of the fandietweerx = xp andx = xg + 0X
is, as shown in Figure 13, given by

df
f(xo+0x)— f(X0) =o0f ~ &(xo)c‘ix

As dOx is made smaller, the approximation clearly becomes inorglysaccurate. In the limit adx — 0,

5f—>df:ﬂdx
dx

X0

Figure 13: A local approximation of(x).

We can carry out the same approximation exercise for a rauiilale functionf (x,y), with the difference that in
this case we make use of the multivariable function’s pkdgaivatives. Therefore, if we know the value ©fx, y)

atXx = Xp,y = Yp in addition to the partial derivative% andg—; at that point, then, given an incremedx in the

x-direction, and an independent increméytin the y-direction, the change ifi due to these increments in the
Xy-plane is approximately

of of
f(Xo+ 0X,Yo+ Oy) — f(Xo,Yo) = Of ~ 5(X07y0)5x+ éTy(XanO)éy

In the limits dx — 0 anddy — 0, we obtain theotal differential

ot . af
df = Gyt 5y

4 The chain rule for multivariable functions

4.1 Dependent and independent variables

For functionz = f(x,y), itis implied thatx andy are free to vary independently of each other, wiziistdependent
onxandy.

Math 217 - Lecture 5 Fall 2011
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Consider a flat hot plate, and suppose that points on the gdatéy described using,y) coordinates. Suppose
that we know the temperatufleat each point on the plate, so tiHat T (x,y).

Now define a parameterized cur@en thexy-plane parameterized ltyso that the position vector of points along
the curve i (t) = x(t)i +y(t)j. This curve can represent the path traced out by a particléng®n the surface
of the hot plate with time. As the particle moves along theseuit will sense a change in temperature axty)
coordinates vary. The temperatdrean therefore be regarded as

T=TX®Y,y1)
in other words;T can be regarded adanction of two functions,(k) and y(t), of a single, independent, variable t

In another scenario, suppose we know the pres€Bime volume of air (say, in a section of the atmosphere) at each
point in the volume, so that at each pojrty, z), we knowP = P(X,y,z). Suppose we also know the temperature
T at different points in the volume, so that= T(x,y,z). ThereforeP andT are functions of three independent
variables(x,y,z). Now if we know that the densit of the air at any point is a function of its local temperature
and pressure, then we can write the density as an expligitibtmofP andT:

D=D(P,T)=D(P(xy,2),T(xY,2))

In other words, D is a function of two functions (P and T) whick themselves functions of three independent
variables(x,y, z).

For functions such as those above, describing the tempematiuthe hot plate as a function of tinffe= T (x(t), y(t))
and the density in a volume of air as a function of positions D(P(x,y,z), T (X,Y,2)), we may wish to compute

derivatives such as
dr and b
dt 0x

To find such derivatives, we turn to tlehain rule

4.2 Constructing the chain rule for multivariable functions

For functions of functions of single variables suchyas f (u), with u = g(x), thechain ruleallows us to to find
the derivative%(’ thus

dy dydu

dx  dudx

The chain rule extends to multivariable functions. Consithe temperature profile of the hot plate described
above. We know that the differential @fwith respect toc andy is

oT oT
dT = ﬁdx+ a—ydy

and sincex andy are both functions df, we know the differentials of andy are

dx dy
dx= adt and dy= adt

If we substitute these latter differentials into the diffietial for T and divide bydt we obtain
dT _ 9T dx  oTdy
dt  dxdt Jdydt

which is the chain rule for the multivariable functidn= T (x,y).

As another example, consider the den§itin a volume of air which, as described above, is a functiomefibcal
pressurd® and the local temperatufig, both of which vary in space, and are therefore functionsosftpnx, y, z.
That is,

D=D(PT) P=P(xy,z T=T(XY,2) 1)

Math 217 - Lecture 5 Fall 2011
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Suppose we wish to find a quantity such as the rate of change aérsity along the-direction, % . SinceD is

an explicit function ofP andT, we can computéﬂ?% and Z—.'?. We therefore know that the differential Bf with
respect td® andT is

ob oD
dD= ﬁdPJF ﬁdT )
At the same time, we know that the differentialsFoAndT with respect tok, y, andz are
dP= JRdx+ g dy+ §Pdz dT= grdx+ G dy+ 4Ldz

which, when substituted into (2), yield

go_ (9D9P 9DOT\ . . (9DOP 9DOT\ .  (9DOP IDITY -
~ \dPdx  IT dx oP dy 0T dy 0P 0z 0T 9z
oD oD oD
ox ay 0z
Note that by comparing (3) with the structure of the diffdiain
oD oD oD
dD= ﬂdm— d—ydy+ Edz
we obtain the partial derivatives
9D _9DoP 9D oT @
ox 0P odx 0T dx
9D _9DoP 9D IT -
oy O0Pdy 0T dy
oD JDgP dDOT ©)
9z 9Pz aT oz

With reference to (4), the chain rule has the following iptetation. The densitlp depends on botR andT,
both of which depend oRr,y,z. Equation (4) quantifies ho® depends orx, since at different positions there
will be a different pressur® and temperatur@ and hence a different densify (i.e. a change ix will cause a
change in botlP and T, which will in turn cause a change D). The termg—B% can therefore be interpreted as
quantifying the change iB as a result of a change l(quantified byg—g) whenP changes as a result of a change

in X (quantified by%). The termg—.'?% can likewise be interpreted as the changB iarising from a change i,
arising from a change ir

4.3 Animportant remark

Let’'s examine each of the terms on the right of (4):

SinceD is a function ofP and ofT, this partial derivative will also, in general, be a functiof bothP andT.
SinceP is a function ofx, y, z, this partial derivative will also, in general, be a functiof x,y, z t.

SinceD is a function ofP and ofT, this partial derivative will also, in general, be a functiof bothP andT.

3 35 3 9

. SinceT is a function ofx,y, z, this partial derivative will also, in general, be a funectiof X, y, z.

Suppose we now wish to fin%%?. To do this, letF = %2. Becausej3, 42 are explicit functions oP andT,
P oT

and becausé’,% are explicit functions ok, y,z, we know that‘f,—'i will be a function of P, T,x,y,z. Therefore

X! 0X
2
F=% =FPT,xyY.2), and‘;T'g =,
Now F = F(P,T,x,y,z), and therefore we can regard it as an explicit functioR,df,x, y,z. However, at the same
time, P andT are both functions ok,y,z, and so we can also say that= F(P(x,y,2), T (X,,2),X,Y,2), and is
therefore an explicit function of,y,z only. Therefore when we compulﬁ, we need to draw the important
distinction between

Math 217 - Lecture 5 Fall 2011
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1. regardingF as a function oP, T,x,y,z and computing, with P,T,y,z held constant. This is denoted as
9k
( ox ) PTy.z

2. regarding- as a function ok,y,zonly and computing}'):( with y,zheld constant. This is denoted é%;>
\¥4

Using the differentials approach to constructing chaiesuthis translates to

dF = (35) AP+ (57) T+ (55 ) o0 (55) s (%) o, 02

= (BE+EE+ (Bony) & (FEEF(Boras) W+ (FEFE(Eony)
(%)) (%).. (% )y

and therefore
92D oF OF 0P 9F OT oF
2 <ax>y - apm*ww*(ax)mw)

_(a (DY) _(#Dop 2ot (0 (oD
S \ox\ox/),, \oP?2ox 9dT2ax \9x\0x)/pry,

4.4 Another important remark

Consider a point mass moving through the atmosphere, havitgntaneous positiofx(t), y(t),z(t)) at timet.
Suppose that the temperature in the atmosphere variesmeeand space. Let the temperature sensed by the point
mass as it moves through the atmosphere ber(x,y,zt). Then the rate of change of the sensed temperature is

dr _ordx ordy ordz ot
dt  oJxdt oJdydt dzdt ot

Note that we have used the notatigih %Y, 92 rather thar€?, %, 92, which is because the variablest), y(t), z(t))
are single variable functions of

Note also that the difference betweghand IF is that

° f,—{ is the rate of change of the temperature with the positiod fieéd. For example, this can represent the

temperature changes as sensed by a thermometer at a fix¢éthgbmatmosphere, where such changes oc-
cur due to seasonal changes. In other words, this partiabdiee signifieschanges in the local temperature
only.

° ‘é—{ is the rate of change in temperature with time due to the coetbéffect of the change in local temperature
at each point, in addition to the change in temperature semsmoving through the atmosphere between hot
and cold regions. For example, seasonal changes can matentperature at all points in the atmosphere
change with time. A particle moving through the atmosphene also move between hotter and cooler
regionswhilst these seasonal changes are occurrifignerefore the change in temperature sensed by the
particle would be from the combined effect of the change isifim (from hotter to cooler areas) and the
change in temperature (due to seasonal changes). Thereéooan split the chain rule fo%;{ into the

following
dr_ grdx ordy ogrdz ot
dt oxdt  dydt ozdt ot
~~

Sensed change in temperature due to change in positi®fnsed change in temperature due to local temperatureeshang

Math 217 - Lecture 5 Fall 2011
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4.5 The variable dependency graph method

A ‘variable dependency graph’ shows the dependencies aftims on their variables. Suppose we have the
functions
u=uvwt) v=v(xy,z) w=w(xy) x=x{t) y=yt) z=z2t)

we can sort the dependence of each function on the variablessdomain as a tree, as shown in Figure 14

u
X/L\Z x/\y
|
t t t t t

Figure 14: A variable dependency graph

This graph can be used to quickly calculate partial dekreatassociated with the above functions. As an example,
to find 2:
ox

Step 1 Find all the paths on the graph betweeandx.

Step 2 Starting with the top of each path, calculate the partiaivdéve of the variable at the top of each branch
with respect to the variable at the bottom of the same braaruthmultiply the partial derivatives associated
with each path.

Step 3 Sum the products of the partial derivatives obtained froohed the paths.

For the example oY, there are two paths betwearandx: u-v-x andu-w-x (Step 1). The product of the partial

ox’
derivatives along the branchv-x is 24 9¥, whilst for the branchu-w-x this product is3% ¥ (Step 2). Finally (Step

3), the sum of these two products gives the partial derie@\/as:

ou_ouov  ouov
OXx Ovax OJdwoax

Because all the sub-functions ofare in the end functions of the single varialbJewe can find the ordinary
derivative%J in exactly the same way as above. This yields

du dudvdx dudvdy dudvdz
dt ~ dvoxdt  dvaydt ' dvazdt
Jdudwdx duodwdy
Towaxdt " away dt

ou

i

Once more, note the distinction betwe$hand 4¢, highlighted in Section 4.4.

Math 217 - Lecture 5 Fall 2011
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As another example, consider the functions
u=w+t> w=x+t?

Suppose we wish to findy. One way of doing this is to say = w+t3 = x+t2 +t3 to obtain 3 = 2t + 3t.
However, we can also do this using the following variableetefency graph

u

X t

However, following the three step procedure described @abmuld yield the tern%u on both sides of the equation.
This is clearly incorrect. What we need to do is ensure thatrwierking down a dependency graph and a
particular partial differentiation is being performeal| other variables at the same level of the graph are kept
constant For this example, when, in Step 2, we fi%%ialong the path fronu to t, we do this withw kept constant.
This partial derivative is denoted
(&)
ot ),

and equalst? in this example. Then the total partial derivativeuofvith respect td is given by applying Step 3,
and, as before, we obtain

Jdu Ju\ Jw Jdu

— == = =) =2a+3?

at (aw)t ot +(0t)w *

Finally, if we are to use the variable dependency graph to $exxbnd (or higher order derivatives) we repeat
Steps 1-3 above, but we need to be careful with regards toatables on which depends the function we are
differentiating. With reference to the functions (1), trepdndency graph for the functi@ which is, explicitly,
only a function ofP andT is

D
P T
X y z X y z

However, the functior%—g obtained in (4) is, in general, an explicit function of eadhPgrT, x,y,z. Therefore its
variable dependency graph is

/T\ /-[r\x o
X y z X y z

Math 217 - Lecture 5 Fall 2011
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5 Gradients

We have seen that contour plots are useful for showing howethee of a function varies over its domain. Qualita-
tively, we can use the contour plot to visually determine gieample, that for a function= f(x,y), zwill remain
unchanged along the contour lines, but will vary across th&ve can also tell the function’s steepness by the
spacing between its contours. Therefore we can determaulirdctionof change of the function’s level sets, and
we can determine thmagnitudeof the rate of change of the function’s level sets. This ieplhat a vector can be
used to quantify the direction and magnitude of the rate ahgle of a multivariable function at each point in its
domain.

Consider a functiow = f(Xx,y, z). For constant, a level set of this function is a surfaB@n whichf(x,y,z) = ¢, as
shown in Figure 15 (left). We can define two lineg,andL, on the surfacé, that cross at a poifiR on the surface.
Each of these lines are parameterized by a paramé@rexamplet can represent time, which parameterizes the
the motion of a particle along each of these two lines).

SinceSis the level setv = f(x,y,z) = ¢, the value ofnv does not change along the two lines. Therefore on each of
L1 andLp, 4¥ =0.

Using the chain rule, we know that

dx
dw oJfdx odfdy oJfdz af  af oaf 1F §§,
L2y Py, 7 e | ot of of dy 7
dt ~ axdt  dydt  dzdt L & o % | qt (7)
dt
z z
L1
L2
X Point i X
b y
Surface S: SurfaceS:
f(x,y,2=c f(x,y,2=c

Figure 15: The gradierif f of the functionw = f(x,y,z) at the pointP.

We define the vector .
af  af  of
Of(xy,2) = | 3 ay oz }
to be thegradientvector of the functiorf (x,y,z). For a function of variables, the gradient is a vector of dimension
n.

Now, if the position vector of any point on the lig isr(t) = x(t)i +y(t)j + z(t)k, we have seen previously that
the vector% is tangential to the ling1 at that point. From (7), the dot product betweéeh and% is zero on lines
on the level surfac& We can therefore say that for any pointlop) the vectorI f at the point is perpendicular to
the tangent td.; at the point.

Note that this is also true of points &n, and of any other line running along the surf&e

If we now turn to the poinP, the tangent plane to the level surfasat the pointP is tangential all the lines
(Lg,Lp,--+) running alongS and passing through. But sincellf is perpendicular to all these linesRtwe can
therefore conclude thaif at the pointP is perpendicular to the tangent plane to the surfaaepointP.
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Part IlI: Differential calculus of multivariable functions 15

Example 3. Given the function (x,y) = x* +y?,

1 Sketch the level curves of the functiofx,f/) = 1, f(x,y) =4 and f(x,y) = 9.

2 Calculate the gradient of (k,y) at the points(1,0), (v/2,/2) and (0,3) and plot arrows representing the
directions of the gradient at each of these points.

See Figure 16. Note thatf (x,y) is a vector perpendicular to the level curvesf¢f,y).

y
=6

03
o Of=2v2(i+)

\p/z,vz\)\‘

" (0,0
‘( )

\_JJD#Z/

X

Figure 16: Level curves and gradients of the functigr,y) = x* + y°.

Example 4. Find the tangent vector to the curve C at the poir(t, 0,0), formed by the intersection between the
surfaces X+ y?>+ 2 = 1and z= 0.

The sphere@+y2+ 22 =1 is a level surface of the functiom= x2 +y? + 22 — 1, whenw = 0, whilst the plane
z=0is the level surface of the function= z, atv = 0. The gradients of each of these functions are normal to thei
level surfaces in three-dimensional space:

Ow = 2xi +2yj +2zk is normal to the surface +y?*+ 722 =1
Ov=k is normal to the surface=0

The curveC, lies on both of the level surfaces, and therefore the théovetlw and v are both normal to the
curveC. The tangent vector to the curveC is tangent to both level surfaces and therefore perperatitnilboth
gradient vectors. Given two vectors in three dimensionatspa third vector perpendicular to both is given by
their cross product. Therefore the tangent vegtto the curveC is given by

i)k
T=0OvxOw=| 0 0 1 |=-2i+2
X 2y 2z

At the point(1,0,0), T = 2j.

Figure 17 illustrates how the tangent vector to the c@vs obtained from the gradients of the two intersecting
surfaces. The surfacg = O is the unit sphere, centered on the origin, whilst the serfa= 0 is thexy-plane.
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The intersection of these two surfaces is the unit circldéé@xy-plane, centered on the origi In Figure 17, we
can see that the vectaiw points radially out of the unit sphere, which, at the pdihi0,0), points in the positive
x direction. The vectoflv points ‘upwards’ in the positive direction. The tangent to the unit circle @ 0, 0)
points in the positive direction, as expected from the cross product of the twoigrddectors at that point.

y
A

OvxOw

CurveC

v(x,y,2)=z=0—/‘

W(X,y,)=x2+y?+22-1=0

Figure 17: The tangent vector to curve formed by the inteéiseof the the unit sphere with the~plane.

5.1 Directional derivatives

We have seen that the gradient of a function at a point in thetiion’s domain is a vector that points in a direction
that is perpendicular to the level surface of the functiolong the level surface, the rate of change of the function
is zero, by definition. Because it is perpendicular to thellsurface, it may therefore be expected that the direction
of the gradient vector is that in which the rate of change efftimction is maximal. We shall next demonstrate that
this is so.

Consider the following three unit vectors, each alignedhwite of thex, y andz axis:

I

*

— - —
[

O O
O O
= O O

x=|
y=| I
2= | ]

and next consider the dot product of each of these unit veetith O f, wherew = f(x,y, ).

Df’fxz%
Df‘-’l\-zz%

We therefore see that the dot productof with a unit vector such a'?s'x,'f'y,'lA'z, gives the rate of change défin
the direction of the unit vector. In fact, this is true for amyit vectorT, and not only those aligned with the axes.
The quantity(lf - T is ascalar quantitycalled thedirectional derivative of f in the direction of the unit vecf,
and giveghe rate of change of f in the direction ®f

The directional derivative is, as the name suggests, aat®ev Suppose that for some functibfx, y), there exists
a parameterized curvdt) on thexy-plane, the domain of the function. The directional denxatan be used to
determine how the function changaleng the curveas shown in Figure 18.

We have seen that a tangent vecido the curver (t) at any point is given by

~ dr
T=3s
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fxpcs
“f(x,y)=cs

‘ f(x,y)=c>
“f(xy)=cy

Figure 18: The directional derivative along a parametera@ver (t) with tangent vectof .

wheres is a measure of arc length along the curve. Now the diredtideavative of f(x,y) along the tangent

vectorT is
or odfdx odfdy oJfdz df

ds~ oxds dyds' ozds ds
Therefore the directional derivative ¢fx,y) along the direction of the tangent vecibiis the rate of change of
f(x,y) with respect to distancgtraversed in the direction af, %

Of-T=0f- ®)

If the angle betweeflf andT is 6, the directional derivative is then

Of - T =|0f||T|cos8
—|Of|cos®  sinceT is a unit vector

From this relation, we observe the following:

e the maximum rate oincreaseof the functionf(x,y,z) is in the directionaligned with Of, since—1 <
cosf < 1 (i.e. whendf andT are parallel an® = 0),

e the maximum rate oflecreasef the functionf (x,y, z) is in the directioroppositeto Of, (i.e. 6 = 180°),

e the rate of change df(x,y, z) in the direction perpendicular {of (i.e., along a contour or level set) is always
zero, as per the definition of a contour.

Figure 19 shows a contour line of the functié(x,y) = x* +y?, wheref(x,y) = 1. At the pomt(\[ \[) the

directional derivative in the directiofiy (perpend|cular to the contour line) is 1. In Figure 20, thetoeT is
similarly perpendicular to the contour the pofat (f f) and thereford ; is the direction of the maximal rate

increase of the function= f(x,y) = x> +y? atA, given by
Figure 19 also shows that (%%, —%), tangentially to the contour line and in the directionTof the rate of

change of the function is zero (in agreement with the dedinitf the contour line). This is also illustrated in
Figure 20 where, at the poiBt= (— ﬁ, f)' the vectorT, points in a direction tangential to the contour line.

In this direction at the poirB, there is therefore no increase in the value of the fundtienf (x,y).

In Figure 19, directiori 3 is opposite to that ofIf, and is therefore the direction of greatest decrease of the
function, which gives a directional derivative ofl.

As a more practical example, consider a flat hot plate on wivielklefine a coordinate system y. At each point
on the plate, the temperature is given by a funcfigr,y). Fourier's law of heat conduction says that heat flow
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y
A T
by fxy) =1 S— Of(5) = V2i+V2
f(xy) =x"+y S
OF(y) =24 +2 L. i,
S W S A T S
Tz—*ﬁ!JrﬁJ . Df(**y*jg)'-rz—o A
Ta=—i+—7  Of(J5) Ta=-1 T2
Df(_%7_%):_\/§i_\/§j

Figure 19: Three different directional derivatives of tnedtion f (x,y) = x* +y2.

z=f(x,y)=x?+y?

Df-’l\-l

(Maximal increasein 2)

Figure 20: The directional derivative of the functib# f(x,y) in the direction of avector 1, parallel tol f, gives
the maximal rate of change af In the directionT », orthogonal td1f (and hence tangential to the contour line of
f(x,y)), the directional derivative is zero, indicating no chaigthe value ofz

per unit areag, in the direction of unit vecton, along which we measure distangas given by

dT
= —A —_—
d ds
whereA is the thermal conductivity of the material from which thatelis made. This is illustrated in Figure 21,
where the contour lines represent isotherms, which are biheonstant temperature across the plate. Asin (8), the
heat flow per unit areg can be rewritten as the directional derivative

q=(—AOT)-n 9)

Note that the negative sign is due to the fact that heat flomra fiot to cold areas, whilst the temperature gradient
0T points in the direction of maximum temperature increasentihe properties of the dot product, Equation (9)
shows that the heat flow per unit area is maximized Wh%%, that is, in theoppositedirection toIT, which

is the direction perpendicular to the isotherms and alsdlifgetion ofmaximum temperature decrease
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Figure 21: The heat flow per unit argain the directionn, across a flat, hot plate. Contour lines are isotherms
(lines of constant temperature).
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6 Taylor series for multivariable functions

Taylor series provide a means of representing a functionret@ point in its domain using a (possibly infinite)
power series. For a single variable functibfx), the Taylor series of (x) around the poink = Xg is

1
F(0) = f(x0) + (x—%0) '(X0) + 5 (x = X0)*"(0) -+
Truncating this series gives an approximation of how a fondbehaves around the point of interest. Note that a
first order approximation is given by
f(X) = f(x0) + (x—X0) '(X0)
which is a linear approximation to the function at the poigitshown in Figure 22 as a line approximating the
function y = sinx near the pointx = . As Figure 22 also shows, higher order truncations givee@singly
accurate approximations of the functige:= sinx near the poink = 1t.

2 LAY
A}

AY 1
N = Function y=sin(x) !
1.5¢ N . I

N - - - First order approx ,

N == Third order approx )

Fifth order approx

Figure 22: Taylor series approximations of the single \@edunctiony = sinx.

Taylor series extend to multivariable functions. For the-tvariable functiorz= f(x,y), at the point(Xo, yo), the
series takes the form
2f °f 1 0% f

_ of ot L 2O v 1,29t
f(Xay)—f(X07y0)+(X_XO)aX+(y yo)ay+2!(x Xo) o +(X—Xo)(y y0)0x0y+2!(y Yo) 6y2+
(10)

where all the partial derivatives are evaluatedxatyo).

As with the single variable case, the Taylor series of a mauitable function truncated to its first order approxima-
tion gives a linear approximation of the function of inteérd=or the functiorz = f(x,y), the truncated, first order
Taylor series near the poirf = f (Xo, o) is given by

of of
=2+ (X—Xo)&(xodo) +(y—yo)(7y(><o,yo)

which can be re-written as
X—Xo

Y—Yo
Z— 17

— %5 00,Y0) 5 (¥0,Y0) 1} =0 (11)
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The set of points in (11) is such that the vectofx—xo) (Y—Yo) (z—2) ]* is always orthogonal to the vector

[ 5000 —H00y0) 1] (12)

because the dot product between these two vectors is zenthdnwords, (11) defines a plane with normal vector
(12).

The significance of this vector is the following: the functio= f (x,y) defines a surface in the three dimensional
xyzspace. If we define the functiom= f(x,y) — z, then the level set of this function when= 0 is precisely the
surfacez= f(x,y). In other wordsz= f(x,y) is the surface composed of the set of points where 0. This is

a three dimensional equivalent to a contour line. For anptgeb, Yo, Zp) on a level surface of a function such as
w = f(x,y) — z, the gradient vector of the function at that point is alwasdiscussed previously, perpendicular
to the tangent plane to the level surface of the functionattbint. Therefore we can say that (11) is the equation
of the plane that is tangent to the level surface f(x,y) —z= 0, that is, the surface= f(x,y). As with Figure

22, we can thus see that, when truncated to the first ordefatyler series expansion of a function about a point
provides a linear approximation to the function at that poirich, in the case of a two variable function such as
f(x,y), is a plane.

6.1 Implicit partial differentiation
6.1.1 Functions of two variables.

Recall from first-year Calculus the idea iofiplicit differentiation if you have an equation that relatedandy

then you can treat as a function ok and differentiate implicitly with respect toto find the derivative(%(/. For
example, given the equation
X +y* =25 (13)

which we recognize as the equation of a circle, we diffeetatboth sides with respectxptreatingy as a function
of x, to obtain

dy
2X+2y— = 14
t2y S =0 (14)
and then solve for the derivative to obtain d
y X
>y__2 15
ax Ty (15)

Geometrically, this expression gives the slope of the tanlyee to the circle at a pointx,y) on the circle. (Note
that the expression is undefinedyat 0. Why?)

In this particular example, we could also have computed deigvative by solving fory in terms ofx but the
computation is more complicated. First of all, solving yor

y=4v25—x2 (16)

There are two solutions fgr namelyy; = /25— x2 andy, = —v/25— x2, corresponding to the top half of the circle
(y > 0) and the bottom halfy(< 0). (Recall that the / sign returns only th@ositivesquare root.) Nevertheless,
we can differentiate this expression (we'll differentibteth cases simultaneously) to give

dy _ i_ix
dx V25— x2

Although this result differs from that in (15), it is equiealt. We can re-substitute for tlyefunctions to obtain
(15).

7

In general, however, such “brute-force” computations afvddives are difficult if not impossible because of the
complexities of the expressions.
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With an eye to our discussion of several variables, let u® stee first-year calculus problem of finding: by

implicit differentiation in a more general way. Supposettive have a relation betweenandy that can be
expressed in the form
F(xy)=0 (18)

And now suppose that we wish to consigiers a function ok. In other words, we say that (18) defingsnplicitly
as a function ok. In this case, we considéras a functiorF (x, y(x)) so that its variable dependency graph has the
form

F
N\
]

X

Now differentiatef (x, y(x)) with respect toc using the chain rule,

dF 9F 9F dy

— = — = 19

dx  odx * dy dx (19)
We can now solve for the derivative as d e
y_ &

dx R (20)

For our previous exampl€,(x,y) = x* +y?, we haver, = 2x andFy, = 2y, thus yielding the result obtained in (15).

There is no need to memorize this equation. It is only to show what lies behind the process of implicit
differentiation, in order to move on to higher-dimensiopablems.

6.1.2 Implicit differentiation for functions of several variables.

Suppose we now have an equation that reltteevariables, e.g.,
F(x,y,2) =0 (21)
In principle, we can now consider any one variable as a fanatf the other two variables, e.g.,
= fiy,2) (22)
= fa(zx)
z = fi(xy)

Note thatwe may not be able to actually solve for the functions tlosed form Nevertheless, we can consider
(21) to define — at least mathematically — one of the thre@lBesimplicitly as a function of the other two.

This is quite relevant to your study of Physical Chemistryu Yvill recall that one often wishes to characterize the
state of a gas in terms of the three varialiPgpressure)y (volume) andT (temperature). Thequation of state
of the gas will then take the form

F(PRV,T)=0 (23)

For example, the well-known ideal gas law (one mole) willuass the form
F(PV,T)=PV—-RT=0 (24)
In this case, of course, we can easily solve for each of thetifums f;:

PV,T)= N1 V(TP =L T(RV) = (25)
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However, for more complicated equations of state, e.g.,radés Waals gas, it may not be possible to find closed-
form expressions for these functions. That is why implidifiedentiation is useful.

Example 5. Suppose we are experimenting with an ideal gas, so that jtsoihe ideal gas equation PYRT =0,
and suppose we consider P as a function of V and T, i.e. F?V, T). Find the partial derivative% and 3—5.

In this case we can simply solve fBri.e.
P=— (26)
so that the desired partial derivatives are

oP R oP RT
TN N V2 27)

However, if we were to use implicit differentiation Bf, then
1. Partial differentiation oPV — RT = 0 with respect td&/ gives
oF oF oP oF
) o (2 bl hall =0 28
(&), (), (%), (&), 29

P . . P P
d—VV+P_O, implying that TV (29)

SO

. : . . . . RT
This result is equivalent to our earlier result in (27) siRce v

2. Similarily, partial differentiation oPV — RT = 0 with respect td gives

oF oF oP oF
<oT>V - (ap)w (aT>V * <aT)p,v =0 (30)

oP . . P R
STV -R=0, implyingthat —— = (31)

SO

oT

Example 6. Suppose that
X227+ zxsiny = 5 (32)

defines z as a function of x and y. Then fgq)zéi

To find the desired derivative we could first define the functio
F(X,Y,2) = Xy*Z + zxsiny—5=0 (33)

But we don’t even have to do this. We can simply partiallyetiéntiate the original given equation, (32), implicitly
with respect t, taking into consideration thatis a function ofx andy:

2XYPZ + zsiny + C%xzyzzzd—Z ersinyé.—Z =0 (34)
X ox
Now solve for the partial derivative:

0z 2xy?Z° + zsiny

X 3x2y2Z2 + xsiny (35)

This is actually Example 12.20 from the textbook, Page 83it.nBte that we have not relied on any fancy formulas
— simple, straightforward differentiation will achieveetdesired result.
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6.1.3 Some relations between partial derivatives of implicfunctions.

We now want to talk about implicitly differentiatinig(x,y,z) = 0 in general. First of all, we have to settle on what
variable is to be considered a function of the other vargBippose that we wish to considexrs a function ok
andy, which we may write either as

z=2z(xy) or z=f(xy) (36)

We'll use the former to avoid too many variables. The vagal#pendency graph associated with this assumption
is as follows

F
T
X y z
/N
X y

Our goal is now to obtain the partial derivatives

0z 0z
I and diy (37)

Although the textbook uses this notation, it is often bettekeep track of all of the independent variables by
indicating which ones are being kept constant during théaalifferentation. The above derivatives would then

be written as 5 5
z z
— and () (38)
<0X> . ay /)

This is standard practice in applications, e.g., physibehaistry, and it is a good practice. Here, we shall alternate
between both notations as the need arises.

We differentiate (21), hende(x,y, z), with respect to each ofandy to obtain
dF _OF  OF 0z _
dx oJx dzodx
dF _OF  OF 0z _
dy o9y dzody

and solve for the derivatives in each case to obtain
0z Fx (02) Ry
— | =——=, — | === 40
( 0X) y I:Z ay X I:Z ( )

Once again, you shouldn’t need to memorize these final fasurhey have been presented only to outline the
method behind the process. If you perform the required witglifferentiation properly, you will be able to extract
the desired partial derivative.

(39)

We have already obtained the partialz0f y) with respect toc andy in (40). Now let us obtain the partials of (i)
x(y,2) and (i) y(x.2).

1. Case (i): We are treatingas a function ofy andz, i.e.,

F(x(y,2).,y,2 =0 (41)
Differentiating partially with respect tpyields
ox ox R
Fx=— +Fy =0, implyin =) =-2 42
oy THY plying <0y>z = (42)
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Differentiating partially with respect toyields

ax

Fx 0z

B _ _ ox\ R
+F,=0, implying (dz)ny (43)

2. Case (ii): We now tregtas a function ok andz, i.e.,
F(xy(x2),2)=0 (44)

Differentiating partially with respect tpyields

oy _ , oy K
FX+FyE( =0, implying (o”x)z R, (45)
Differentiating partially with respect tpyields
ay B . . oy R
Fyﬁ—Z +F,=0, implying (dz) ) =— R, (46)

We now derive some relations between the various parti?¢ateres involving these variables — you may have
seen or will see such relations in your physical chemistryrses.

First of all, note that
(704 1
e 47
(ay>z (3y/0%), *7)

This works for all other combinations, i.e,

(zz)c - Wlaa)c (48)

Also note that, for example,

(704 ay 0z\ Fy F B
(5).(2).5),- (=) () (=) )
If we now letx=P,y=V andz=T andF (P,V,T) = 0 be the ideal gas relatid? — RT = 0, then the reader can
verify by straightfoward calculation that

oP oV oT
(), (57).(58), = 0

7 Optimization

7.1 Relative critical points

A recurring application of differential calculus is the uskthe derivative of a function to find its maximum or
minimum values over its domain (given they exist). For a tardus function of a single variable caitical point

of the function is any point where the derivative is zero annslefined. At the point where the derivative is zero,
the function is neither increasing nor decreasing - it igllgcflat’. If the derivative is defined over the entire
domain of the function, there are three possible cases iohwdntritical point will occur

e For the functionf(x), illustrated in Figure 23, left column, the poixt, f(x*) is a critical point at which
f’(x*) = 0. The fact thatf” (x*) is positive, means that this critical point is a minimum.

e The functiong(x), in Figure 23, central column, depicts another criticahnpaitx*. We know that this is a
maximum becausg’(x*) < 0.
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f(x) g h(x)
\ - / X — AN X / = X
(%) g'(¥) h'(x)

% X Z X = X
f"(x) g"(x) h"(x)

X X X X 3 X

Figure 23: The extrema of a single variable function: Lefmiamimum. Center: a maximum. Right: a point of
inflexion.

e The functionh(x) in Figure 23, right column, depicts yet another criticalmiaat x*. This is a point of
inflexion, which we know from the fact that'(x*) = 0 and that'’(x) changes sign a¢'.

As with single variable functions, there will be points irttiomain of a multivariable function where the function
will reach either a maximum or a minimum. Such points are ncoraplex to find than in the single variable case.
For a function of two variabled,(x,y), we have the following definitions:

Definition 2 (Relative minimum) A point(x*,y*) in the domain of a function(k, y) is arelative minimunif there
exists a circle g, of radius R, centered ofx*,y*) such that

f(x,y) > f(x",y"), for all points (x,y) within Cg

Definition 3 (Relative maximum) A point (x*,y*) in the domain of a function (k,y) is a relative maximunif
there exists a circle g of radius R, centered ofx*, y*) such that

f(x,y) < f(x*,y"), for all points (x,y) within Cg

We have seen that at a critical point of a single variable tioncf (x), the first derivative is such thdt(x) = 0,
meaning that the tangent to the graph is flat (that is, hot@)prin a multivariable function, the analogous condition
is that thetangent plando the surface defined by the function is flat. To see this, idens-igure 24, left. The
functionz = x? +y? is such that atx,y) = (0,0), z= 0. Consider a circl€r with radiusR > 0, centered on
(x,y) = (0,0). Every point inCgr maps onto a point on the surface at which 0, which is greater than the value
of zat(0,0). Therefore we can conclude that the pdidi0) is a critical point of the functioz = x2 + y?, at which
the function attains a relative minimum. Note that at th&eai point, the function is locally flat and therefore has
a horizontal tangent plane at that point.

A similar argument holds for the local maximum of the funatio= 1 — x? — y? illustrated in Figure 24, right.
Here, for a circleCg, of radiusR > 0, centered o1(0, 0), every point in the circle maps onto a poirx 1. At (0,0),
z=1. Thereforg0,0) is a critical point at which the function attains a relativaximum. Note that, once more,
the tangent plane to the surface is horizontal.

We have therefore seen that a critical point of a multivdedhnction is characterized by having a horizontal
tangent plane. Consider now the surface defined Byf(x,y). This can be regarded as the level surface of a
functionw = F(x,y,z) = f(x,y) — z, at whichw = 0. The tangent plane to the level surface at a critical paint i
horizontal. This means that the normal to the tangent plapaiallel with the unit vectdk, which points in the
positivez direction. But we have already seen (in Section 5) that thimabto the tangent plane of a level surface
of a function such aw = f(x,y) — zis given by

B—Fi+0j'+ajk—ﬂi+ﬂ'—k
ox dyJ 0z 0x dyJ
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Z:X2'+'y2 Z:l-xZ_yZ

z
Tangent planes Cr
/ ?
y < y
X

Figure 24: Two multi-variable functions with critical pagat(x,y) = (0,0). Left: a relative minimum. Right: a
relative maximum.

4

Since the normal to the tangent plane is parallel withwe may conclude that at a critical point of a function

f(x,y), the partial derivatives‘% = a—; = 0. That is to say

It = | g |

For functions of three variables, suchvas- f(x,y, z), critical points are those where

H

Critical points of functions also occur when any of theirtirderivatives are undefined (but we will not be
considering this case).

ST
—X | =

Of(xy,2) =

NESIES

Example 7. Show that the critical points of the functions illustratedrigure 24 are both located &k,y) = (0,0).

For the case = x? + y?, the gradient is & + 2yj, whilst for z= 1 — x? —y? the gradient is—2xi — 2yj. The
components of both gradients equal zer@ay) = (0,0). This is therefore a critical point of both functions.

Example 8. Find the critical point of the functionz f(x,y) = 2x? + 10y? — 6xy— 18x — 6y + 100

First, compute‘%:

of
— =4x—6y—1
ox X—6y—18
Next, compute‘%:
of
7:2 — —
dy Oy—6x—6

At a critical point, the two partial derivative% and% must simultaneously equal zero. Solving the system of
equations

4x—6y—18=0

20y—6x—6=0

we find that these equations are satisfied wherd, y = 3. Therefore the critical point df(x,y) is at(x,y) = (9, 3).

Math 217 - Lecture 8 Fall 2011



Part IlI: Differential calculus of multivariable functions 28

7.2 The second derivative test

In Example 8, the functiof(x,y) can be written as a sum of squarégx, y) = 2x?+ 10y — 6xy— 18x— 6y +100=
(x—3y)?+ (y—3)2 4 (x—9)? 4 10. At the critical point, each of the squared terms vanisseshatf (9,3) = 10.
Since each of the squared terms is positive, it follows thaty) > 10, for all x,y. This shows that the critical
point of this function is a minimum.

Determining whether a critical point is a relative minimumamaximum in the above manner is not always
straightforward - in this case, we were able to re-write tinecfion as a sum of squares, but this is not always
possible. Instead, we need a more systematic way of detiexgnine nature of critical points for multivariable
functions. We shall focus on functions of two variables fsasf (x,y).

Suppose we determine that the critical point of a funcfigxy) is at(x,y) = (X*,y"). This implies that%f( and‘;—;
both equal zero gix*,y*).

Now consider the Taylor series expansionf @k, y) about the pointx*,y*), which, from (10) is

of

FOoy) = F(Xy7) + (x=x7) %(X*,W)+(Y—W)7y(x*,¢)+
—_—— N ,

= 10C,y)+ AKX+ B X)(y—¥') + 30~y + -

%A(x—x*)z—i— B(x—x)(y—y*) + %C(y_yk)h_ .

where 92f 92f 92f
A:T)@(X*7y*) B:m(x*7y*) C:T)ﬂ(x*7y*)

Suppose we now complete the square of the expression

SAG X B X )Yy + 5Cly—y' )P

by simply adding and subtracting the te%rﬁ;(y— y*)2. We would then obtain

1g?
2°A

* 1 *\ 2 * 182 2
Fxy) = F0,Y) + SAX=X) "+ BX=X)(y=y) + 5 (y=y)"~

LR AR (R SRE) ] ATV

(Y=Y Pt 5CH-y Pt
(5)

Term 1 Term 2

Now suppose the magnitudes of the quantitiesx* andy — y* are small enough such that Term 1 and Term 2 in
(51) dominate higher order terms)na- x* andy — y*. We can then determine the nature of the critical poihty*)
as follows:

7.2.1 Case I/AC—B? > 0andA > 0 (implying that C > 0)

The fact thaiA > 0 means that Term 1 in (51) is positive. Witfi> 0, the inequalityAC— B? > 0 also ensures that
Term 2 in (51) is positive. Therefore in a small neighborhoddx*,y*), we havef (x,y) > f(x*,y*). Therefore
under these condition§x*, y*) is arelative minimum.

7.2.2 Casell:AC—B? > 0andA < 0 (implying that C < 0)

The fact thatd < 0 means that Term 1 in (51) is negative. With< 0, the inequalityAC — B2 > 0 also ensures that
Term 2 in (51) is negative. Therefore in a small neighborhob@*,y*), we havef(x,y) < f(x*,y*). Therefore
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under these condition§x*,y*) is arelative maximum.

7.2.3 Casell:AC—B2<0

To analyze this case, assume first that O (a similar argument holds in the case: 0). This means that Term 1 in
(51) is non-negative whilst Term 2 is non-positive. Therefalong the ling/—y* = 0, sufficiently close t@x*,y*),
the functionf (x,y) will increase since Term 2 is zero. Along the libe— x*) + %(y— y*) =0, sufficiently close to
(x*,y*), the functionf (x,y) will decrease since Term 1 is zero. In other words, at thitcatipoint, f(x,y) can be
either increasing or decreasing, depending on the directianterest in thexy-plane. This is known as saddle
point. An example of such a point i%,y) = (0,0) when mapped by the functian= f(x,y) = x*> — y?, sketched
in Figure 25. Along the ling = 0, this function is increasing in both the positive and negat directions. Along
the linex = 0, this function is decreasing in both the positive and riegatdirections.

z

z=f(X,y)=x2-y?

Saddle point

Figure 25: A sketch of the functian= f(x,y) = X2 — y?, with a saddle point afx,y) = (0,0).

7.24 CaselVVAC—B2=0

In this case, no conclusion can be drawn regarding the nafubhe critical point from the second derivative test.

Math 217 - Lecture 8 Fall 2011



Part IlI: Differential calculus of multivariable functions 30

7.3 Absolute minima and maxima

We have now arrived at the most important aspect of optineizat determining the maximum and minimum
values attained by a functiof(x,y) over a regiorR of interest. This is analogous to the problem from first-year
calculus of finding the absolute maximum and minimum valdesfanction f (x) over an intervala, b].

Let us first state the important definitions:

1. Theabsolute maximumof a functionf (x,y) on a regiorR C R? is the largest valu# attained byf (x,y)
onR i.e.,
f(x,y) <M forall (x,y) € R (52)

The point(s)a,b) at which f attains this maximum value is (are) called absolute maxirpamt(s).

2. Theabsolute minimum of a functionf (x,y) on a regiorR C R? is the least valu# attained byf (x,y) on
R i.e.,
f(x,y) > M forall (x,y) € R. (53)

The point(s)a,b) at which f attains this minimum value is (are) called absolute mininpgimt(s).

Recall the procedure for finding absolute maximum and minimvalues of a functiorf (x) over an intervala, b|:

1. Determine all critical points of (x) in [a,b] and evaluatd at these points.
2. Evaluatef (x,y) at the endpoints di, b}, i.e., f(a) and f (b).

3. Select the largest and smallest value$ (@) attained at the points examined in Steps 1 and 2.

For functionsf (x,y), the regiorR will be a two-dimensional region @?, for example, the region contained inside
a circle or a rectangle. Such regidrsvill generally not have endpoints but will be encloseddmundary curves
The analogous procedure of finding the absolute maximum aninmm values off (x,y) over regionR will be

as follows:

1. Determine all critical points of (x,y) in Rand evaluatd at these points. (Note that we really don’t need to
spend time determining whether these critical points degive maxima, minima or saddle points - it is the
value of the functiorf (x,y) that is usually more important.)

2. Determine the maximum and minimum values achieved(kyy) over the boundary curve(s) &

3. Select the largest and smallest value$ (@fy) attained at the points examined in Steps 1 and 2.

Note: There is one important theoretical technicality. How do wew thatf attains an absolute maximum or
absolute minimum on a regid®? In most of the examples that we shall encourRavjll be aclosedandbounded
region ofR?, e.g., the interior of a rectangle, circle or ellipse. Intsgases, iff (x,y) is a continuous function of
andy, then it must attain absolute maximum and minimum valueR.ofRecall the case of continuous functions
f(x) on closed intervalga, bj in first-year calculus.)

Example 9. Find the maximum and minimum values of the functignyf) = x2 + xy+ y? over the square region
Rdefinedby-1<x<1, -1<y<1

Step 1 Solve for all critical points off (x,y) that lie inR. They must satisfy

ol —2x+y=0

=x+2y=0

S

y
The only solution of this system {§,0). At this pointf(0,0) = 0.
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1 Region R

Just for interest’s sake, we shall perform a second devavétist of this point:
A= (0,00 =2, B=fy(0,00=1, C=fy(0,0)=2, (54)
so thatAC — B? = 3 > 0. SinceA > 0, (0,0) is a relative minimum.
Step 2 We now determine the maximum and minimum values achievef{xyy) on the boundary oR.

(@) The liney = 1, with —1 < x < 1. On this line, the functiorf (x,y) is given by f(x,1) = x> +x+ 1,
which we shall callg(x). The problem is now to find the max and min valuegyf) on [-1,1], a
first-year calculus problem.

Sinced'(x) = 2x+ 1, the critical point ofy(x) is atx = —1/2. At this pointg(—1/2) = 3/4.
We must also check the endpoimts- +1: g(—1) = 1 andg(1) = 3.

(b) The liney = —1, with —1 < x < 1. Here,f(x,y) is given byf (x, —1) = x? — x4+ 1, which we shall call
h(x). Now find the max and min values gfx) on[—1,1].
Sincel'(x) = 2x— 1, the critical point oh(x) is atx = 1/2. At this pointh(1/2) = 3/4.
We also check the endpoints= +1: h(—1) = 3 andh(1) = 1.

(c) Thelinex= 1, with —1 <y < 1. Heref (x,y) is given byf(1,y) = 1+y-+Yy?, which we shall calk(y).
We must now find the max and min valueskgy) on [—1, 1]. This problem turns out to be identical to
the first case, except thais now calledy. But just to be complete, we’ll work it out in detail.

K (y) = 2y+ 1, the critical point ok(y) is aty = —1/2. At this pointk(—1/2) = 3/4.
We also check the endpoings= +1: k(—1) = 1 andk(1) = 3.

(d) The linex= —1, with —1 <y < 1. Here,f(x,y) is given byf(—1,y) = 1—y+Yy?, which we shall call
I(y). Now find the max and min values gfx) on[—1,1].

Sincel’(y) = 2x— 1, the critical point of (y) is atx = 1/2. At this pointl (1/2) = 3/4.
We also check the endpoints= +1: 1(—1) = 3 andl (1) = 1.

Reviewing all of the above results, we have found the foltayviOn the regiofiR, the functionf (x,y) = x? +xy+y?
achieves

1. the absolute maximum value 3(dt1) and(—1,—-1)

2. the absolute minimum value 0@, 0).

The results of our calculations are presented in the figu@be

Example 10. Find the absolute max/min values ofxfy) = x? + xy+ y? over the region D= {(x,y) | X +y? <
1, y>0}.
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y
f—1 f=3/4 f =3 absmax
l 1
(-
f=3/4
~L
X
-1 0 1
f=0
abs min T f=3/4
1 T
_ f=1
f=3 f=3/4
abs max

This is the same function as considered in the previous ebealup the regiorD is different.D is the semicircular
region that is enclosed by the ciroté+y? = 1 and thex-axis.

1. Step 1: Determine critical points of in D. (0,0) is the only critical point off. It also lies in the regiofR.
Heref(0,0) = 0.
2. Step 2: Examinef over the boundary dD. We examine the two curves that comprise the boundary.

(@) The liney =0, —1 < x < 1, on whichf(x,0) = x2. On this line,f achieves a minimum value of O at
(0,0) (the critical point of Step 1) and the maximum value of 1t 0).

(b) The semicircular curve? +y? = 1,y > 0. We can parameterize this curve as
X(t)=cost, yt)=sint, 0<t<m (55)
On this curve, we can define the function

git) = fx(t),y) (56)
= ot + cog sint + sirft

1+%sin2{, o<t<m
This is a first-year calculus problem.
Sinced/(t) = cos 2, the critical points ofy(t) lie att = 17/4 and 31/4:
i. Att=r11/4,9(m/4)=1+1/2=3/2. This occurs at = cog11/4) = 1/+/2,y=sin(r/4) = 1//2.

ii. Att=3rm/4,9(3m/4)=1-1/2=1/2. This occurs at=cog31m/4) = —1/+/2,y=sin(3m/4) =
1/V/2.

8 Least squares optimization

Suppose that you are given some experimental data in thedbomered pairgTi,R), i =1,2,--- ,N that, when
plotted, suggest that there is some kind of relationshipéen thel; andP, as sketched in Figure 26.

From Figure 26, it appears that as propertyncreases, so does propeRy (For example, this could be a plot
of pressureP vs. temperaturd of a gas at fixed volum¥.) Of course, one would like to be able describe the
relationship a little better than this, perhaps in the fofra tunctional relationship, i.e.,

P=f(T) (57)
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(Ti.R)

T N

Figure 26: Experimental data poin(§,R).

In practice, we have to acknowledge that there are errorsardata points, so we would not demand that the
graph of f(T) would necessarily pass through all data points. Note ththeifhumber of points is small, and we
allow f(T) to be a polynomial of sufficiently high degree, we could fit aveuthrough these points. An example
is presented in Figure 27. We would probably expect that ¢éfetionship betweeid andP to be much less
complicated, i.e. not as “bumpy”, which implies that thedtion f(T) would be much simpler in form.

p

(Ti,R)

Pt

T N

Figure 27: Fitting a high order polynomial to the data.

One of the simplest representations which is useful in mapyieations is the straight line, i.e., that the following
fundamental relationship underlies the pattern seen iexperimental data,

P=f(T)=aT+b (58)

wherea andb are constants. In other words, we shall try to produce agtréine approximation to the data points
so that
PR~aTi+b, i=12---,N (59)

is a good approximation, as sketched in Figure 28.
Question: “What is the line that ‘best fits’ the data points?”
Answer: There are actually many “best lines”: It all depends on theésure of fit” that you use.

In some way, we would like our straight-line fitting of the a@ab minimize theerror of the fit. The situation at
each value offj; is sketched in Figure 29.
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Pt

T TN T

Figure 28: Fitting the straight line relationshfp= aT + b to the data.

actual datavalue
/ P=aT+b

" predicted value

T T

Figure 29: The errog between the data poiliT;,R) and the prediction given by the fitted liffe= aT + b.

1. At each poinfl;, the “true” value ofy is the experimental valug.
2. The value predicted by the straight line fitfi§T;) = aT; +b.
3. Theerror associated with the straight line fit is
a=R—(aTi+b) (60)

Note that this error can be either positive or negative (00)zeAs such, it wouldhot be a good idea to consider
the total error of the fit to be simply the sum of the errors, i.e

s-5e (61

since we could have a large positive error cancelling a lagggtive error — the fit would be bad but the net error
would be close to zero.

Thus, in some way, we should look at the magnitudes of theeriidere are several possibilities, including

1. the total absolute error, i.e.,

N N
S=2 lal=2 IR —(@T+b)| (62)

This type of fitting is used quite often in statistical apptions and is known as am.* fit” Unfortunately,
it is somewhat complicated to perform because of the alesohities. (That being said, there is software
available to perform the fit.) A much easier method is to cdesi
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2. the sum of the squares of the errors:
N ) N )
S=> (a)"= ) [R—(aTli+b)] (63)
2972

This measure, which is very commonly employed in scientifiplizations, is the basis of the so-called
“method of least squares”.

Of course, the question still remains: How do we find the fig#tg line according to least squares? The answer
is that we consider the suBiwof squares as a function of the parameteandb:

N N

S(a,b) = ;(a)z =3 R-(@T+ b))? (64)

(Recall that the data point3;,R), 1 <i <N, as well aN, are given.) The “best” values afandb are those that
minimize the functiorS(a, b).

The minimum ofS(a,b) must occur at a critical point da, b) — points(a,b) for which the partial derivatives
g—g(a, b) and g—ﬁ(a, b) are both zero, or for which at least one of the derivativds faiexist.

We can compute both partial derivatives in a straightfodwsay — keep in mind that th§ andP, are constants
and we are differentiating with respecta@andb:

N
% = 2> R-aT-nCT) (©5)
= —Zi[F’.—aTi—b}Ti

S N
B - Z;[P. —aTi—bj(-1)

N
= -2 [R—aT —b
i; | i
Since both partial derivatives exist, the condition for iéieal point is that they both vanish. Settirﬁ(a, b) =0,
dividing by (-2) and expanding the sums yields the condition
N N ) N
TR—YaT*—$ bTj=0 (66)
220
s

Similarily, settinggp (a,b) = 0, dividing by (-2) and expanding the sums yields the coaditi

N N N
2,220 3 p=0 (67)

We can takea andb out of the summations above and rearrange the equationedage the following

(iixﬂz)a ’ (é“)b - iT‘P‘ (69)
<i;Ti>a + Nb i;p,

The coefficient ob in the second equation follows from

N N
i;b: bi;1: bN. (69)
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Equation (68) is a linear system of equations in the unknaaursdb of the form

Anja+Apbh = B (70)
Acia+Axpb = B
(Note thatAz1 = A1». The coefficientg\; andB; of aandb are determined from the data poili#, R ). This linear
system can be solved by elimination or by Cramer’s Rule, igexithat the determinant of the system is nonzero,

ie.,
D = A11A2— A21A12 # 0. (71)

Notes:

1. The method of least squares is easily extended to cortsglegr order polynomial fits of data. For example,
suppose that we wish to fit the data poiftsy;), 1 <i < N, with a quadratic, i.e.

y= f(x) =ad +bx+c, (72)
wherea, b andc are parameters to be determined. We would then considepliogving sum of squared
errors,

N
S@b.c)=3 v ax —bx —cf? (73)
i=

and impose the condition for a critical point, i.e.
9S_0S_0s_,
da odb oJc

This leads to a set of three linear equationa,ib andc which then can be solved.

(74)

2. Sometimes, the relation between #handy; is more complicated than a linear relation, for example,
y=bx, (75)

once again whera andb are to be determined. This problem can be recast into a Ipredtem if we take
logarithms of both sides, i.e.
logy = alogx+logh. (76)

We now consider our data points to be
ui =logx, Vi = logy;. (77)

A plot of v; vs. u; will be roughly approximated by a straight line with slagpandv-intercept. To determine
the best values of andb, we employ the method of least squares on the (ata; ).
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9 Optimization under constraints

The optimization problems we have looked at so far have waefinding the maximum or minimum of a function
z= f(x,y) on its domain. We saw that atypoint (x,y) in the domain off (x,y) whereOf = 0, the function will
have a critical point, which may be a relative minimum, orlatiee maximum or saddle point.

Suppose now that we are interested in finding the minima andmaeof f (x,y) (called theobjective functiojy

but only on a pre-specified set of points in its domain. Supmso that these points are those that satisfy the
constraintg(x,y) = 0. In such a case, this optimization problem is termembiastrained optimization problem
This problem can be formally stated as

Minimize/maximize z= f(x,y)
subject to g(xy)=0

To visualize this, remember that for the unconstrained lprabfinding maxima or minima af whenz = f(x,y)
involved finding points in théx,y) plane where the surface defined by the functien f (x,y) is locally flat (i.e.

has a horizontal tangent plane). In the constrained probhete that the constraigix,y) = 0 defines a curve in
thexy-plane and a surface in thgzspace. The intersection of the surfaces definedbyf (x,y) andg(x,y) =0
define a curve in thayzspace. Therefore in the constrained optimization probhemn seek the extreme (i.e.
minimum or maximum) value of attained by the curve resulting from the intersection ofshdaces given by
z= f(x,y) andg(x,y) = 0. Rather than seeking the maxima/minima of the two dimewsisurfacez = f(x,y),

the dimensionality of the problem is reduced by the numbepastraints (in this case, by one) so that we seek the
maxima/minima of the one dimensional curve given by therggetion ofz= f(x,y) andg(x,y) = 0.

The following examples will illustrate this idea.

Example 11. Find

e the minimum of the function=z x2 + y? in the xy-plane

e the minimum of the function=z x2 + y? subject to the constraint 1.

In the first problem, illustrated in Figure 30, the minimumzadcross thexy-plane can be found by inspection to
be at(x,y) = (0,0). At this point,z= 0.

Level setsof z=x2+y2
y

O

J

)

ZN\

.

Minimum at (x,y)=(0,0)

Figure 30: Unconstrained minimization n& x> +y2.

For the second problem, illustrated in Figure 31, note tlyasubstituting the constraint= 1 into the function
z=x?+Yy?, we obtainz= 1+ y?, which is a parabola. This is the same parabola illustraiegigure 31, right,
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which results from the intersection of the surfages 1 andz = x? +y?. By inspection, this curve has a minimum
aty = 0, and therefore the minimum af= x* 4 y? along the constraint = 1 occurs atx,y) = (1,0), at which
z=1.

Level sets of z=x2+y? 'Side' view "Front' view

N
<

Minimum at (x,y)=(1,0)

Figure 31: Minimization oz = x* +y? along the constraint= 1.

Example 12. Find the shortest distance between the origin and the plangx z= 1.

This can be solved in two ways. The first way is to find the lergjtthe line starting at the origin, as shown in
Figure 32, perpendicular to the plane, passing throughrilggno The line perpendicular to the plane is parallel to
the normal vector to the plane,=|[ 1 1 1]7. Since it passes through the origin, the parametric equatio
the position vector (t) of points in this line is

This line intersects the planet y+z= 1 when

(11 1] =3=1=1t=73

Att = % the position vector is (%) = %[ 1 1 1]'. The minimum distance to the plane from the origin is the
length of the vector (), which is%. Note that at the point of intersection of this line, the sphef radius%

just touches the plane+y+z=1, as shown in Figure 32.

(U313413)

Figure 32: The shortest distance from the origin to the plang +z= 1. The vecton is normal to the plane.

The other method of solving this problem is to regard it asojhtEmization
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Minimize h(x,y,2) = /X2 +y2 + 22

Subjectto  x+y+z=1
This is equivalent to the somewhat easier-to-solve optition

Minimize m(X,Y,z) = X2 4+ y? + 2
Subjectto  x+y+z=1

Level sets of the functiow = m(x,y,z) are spheres of radiu/s%, centered on the origin, as shown in Figure 33.
Therefore this minimization problem is equivalent to firglthe minimum radius of the sphene= m(x,y, z) that
just touches the plane+y+z=1, as in Figure 32.

Decreasing values of function w=x2+y2+z2
[

Figure 33: Decreasing values of the function= X2 +y? + 7°.

To find this sphere, we now re-write the constraint as
z=1-x-y
and substitute this condition into the objective functiofx,y,z) to obtain
m(X,y,1—X—Y) = 2 + 2y* — 2x — 2y + 2xy+1
which is to be minimized over they-plane. To do this, we solve for the critical point(s) in theplane where

| X=2+2y | _| O
Dm(X,y,l—X—y) - |: 4y_2+2x :| = |: 0 :|
Solving these simultaneous equations, we find that the aitigal point isx =y = % To ensure that this is a
minimum, it can be verified that the second derivative testdgA = C = 4 > 0 andAC— B? = 12> 0. On the
planex+y+z=1,x=y= 1 = z= 1. Atthe point(x,y,z) = (3,3, 3), w= 3, which corresponds to the sphere

of radius%, which is the distance from the origin to the constraint plan agreement with the previous method.

Note the parallels between this optimization and that ofrigxe@ 11. There, the constrairt= 1 reduced the
problem from optimizing over the two-dimensional surface f(x,y) = x? +y? to optimizing over the one-
dimensional curve defined by

z=1+y?

x=1

If the optimization in this example were unconstrainedntlige goal would be to minimize the function=
m(x,y,z) = x> +y? + 72 over the entire three-dimensional spaké, as illustrated in Figure 33. This would yield

a minimum at the origin (that is, the sphere with radius larggro). In the constrained case however, the con-
straintx+y+ z = 1 reduces the dimension of the space over which we seek thenorm of m(x,y,z) to the
two-dimensional surface given log(x,y,1 — X —y) = 2x° + 2y* — 2x — 2y + 2xy+ 1.
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9.1 The Lagrange multiplier optimization method

For constrained optimizations, we have seen examples whereonstraint can be re-arranged and substituted
into the objective function to be maximized or minimized.id[fs not always easy or straightforward. One such
example is the optimization

Maximize f(x,y) =xy
Subjectto  g(xy) =x*+y?*—1=0

Instead, we turn to another method finding the critical poaftthe objective functiori (x,y) on the constraint.

Figure 34 shows some of the level setsfgk,y) plotted on thexy-plane, along with the constraig(x,y) =
x? +y? —1 =0 (which is the unit circle). Visually, we can see that the maxoccur at the points where the

highest level hyperbola just touches the unit circle? afx,y) = (%,%) and atR, (x,y) = (—%,—\%). Note
11

also that there are two minima@t(x,y) = (ﬁ,—ﬁ) and atsS, (x,y) = (—%7%)

Note that atP the vectorTp is tangent to both the level curvgx,y) = 0.5 and the constraint cungx,y) = 0,
as are the vectorg,q atQ, Tr atR, Ts atS. Note also that the gradient vectdid andg are also parallel at
PQRS

tg

fxy)=-0.75-"" f(x,y)=0.75
f(xy)=-05 -- ’T‘S ) f(x,y)=0.5
f(xy)=-025---"" —— f(x,y)=0.25

f(xy)=0.25 —— .- f(xy)=-025

f(xy)=05 To.- f(xy)=-05
f(x,y)=0.75 R
of, Og \TR\

- f(xy)=-0.75
Figure 34: Level curves of (x,y) = xy and the constraint® +y? = 1. ArrowsTp, T, Tr, Ts represent tangent
vectors to both the level curves and the constraint cunRQ@tR, Srespectively.

To see why this is the case, note that for the unconstraingohiaption of a functionz= f(x,y), a point in the
xy-plane is a critical point oz = f(x,y) if, alonganycurver(t) = [ x(t) y(t) ]T passing through the point in
anydirection, is such that

dz dr(t)

—=0f . —= =

dt dt 0
Sincedg—(tt) can represent a vector anydirection, this condition requires thatf = 0 for the point to be a critical
one.

However in the constrained optimization case, we requ'me%ﬁ: 0 along theconstraint direction onlyIn other
words, for a point on a constraint to be a critical one, we ireqihat the directional derivative df(x,y) be zero
only along the constraint. i represents a unit tangent vector to the constraint (which iectoralong the
constraint), then a critical point on the constraint is eletgrized by the condition

Of-T=0
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which means that the gradiehif is orthogonal to any vector that is tangent to the constraiaw since the
gradient of the constraintlg is also orthogonal to any tangent to the constraint, it malkii that(0f anddg are
parallel. Two parallel vectors can therefore be related bgadingA (which, in this case, we call thieagrange
multiplier):

Of =A0g (78)
In order to solve for the coordinates of the critical poi@8) gives two simultaneous equations:

of _ y dg

535

ay ay
and the constraint

g(X, y) =0

gives a third equation. Since there are three unknowys , these equations can be solved for the critical point(s)
(%,y).
For the above example therefore, the simultaneous eqsétisolve are then
s i
ay ay
gxy) =0 =x*+y?—1=0
Solving these equations gives four stationary points (peebed from Figure 34) at which we can evalube y):

P:/\:%pl(:%,ly:%wlf(xy):% ) R:/\:%,lx:—%l,y:—?wf(x,y):%l
Qid=—3x=Fy=-F~fxy)=-3 SiA=—3x=-Fy=5~fxy)=-3

which, as Figure 34) shows, the maximafdk, y) along the constrairg(x,y) = 0 occur at° andR and equa%.
Example 13. Solve the optimization

Minimize  w= f(x,y,2)
Subjectto  ¢x,y,z) =0and hx,y,z) =0

The functionw = f(x,y,z) maps points in three dimensional space onto a variabléEach of the constraints
g(x,y,z) = 0 andh(x,y,z) = 0 defines a surface in three-dimensional space. Their ettosn defines a curvé

in three-dimensional space, as shown in Figure 35. Theifmet= f(x,y,z) takes a value at each point on this
curve, and we wish to find the point(s) on this curve wheiie at a minimum.

At each point(x,y, z), the vectorg is orthogonal to the tangent plane of the surfgbey,z) = 0. Similarly, the
vectorUh is orthogonal to the tangent plane of the surfapey,z) = 0. The curveC lies along bothg(x,y,z) =0
andh(x,y,z) =0, and thereforélg andUh are both normal t€, and lie in a plan® thatC crosses orthogonally. At
the same time, the vectaig x [h is orthogonal bottilg andJh (and hence orthogonal to plaRg and therefore
tangential tcC.

Now a critical point ofw = f(x,y, 2) is such that the directional derivative @ff along in a direction tangential to
C is zero. In other words

Of - (Ogx0Oh)=0
This means thaflf is orthogonal taC and therefore must lie in the plae For this reason, we can write the
vector[f as a linear sum oflg and [h (assuming thaflg and [Ih are not parallel). In other words, using the
Lagrange multiplierd andu, we have

Of =A0g+ pbh
In the five unknowns,y,z A, u we therefore have the five equations
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g(x,y,2=0

Curve C

Figure 35: Intersection curvg of the two surfaces defined by the constra(s y,z) = 0 andh(x,y,z) = 0. A
vector tangent to the curv@ and orthogonal to the plarfe containing the two vector8lg and Ch is given by

(g x Oh.

which we can solve for the critical pointg,y, z).
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