
Math 217 - Calculus 3 for Chemical Engineering
Fall 2011

Instructor: Abdullah Hamadeh

Part II

Differential calculus of multivariable functions

1 Multivariable functions

You will be familiar with single variable functions such as those illustrated in Figure 1.

z= f (x) = x2 z= f (x) = sinx z= f (x) = 1
x+1

x x x

1

−1
−1

Figure 1: Functions of a single variable.

In each of these cases, the functionf (·) acts as a ‘black box’, operating on a single variable,x, and outputting one,
and only one, number,z= f (x), that depends only onx, as shown in Figure 2 (left). The values ofx on which f (x)
is defined is termed the domain off (x): in the three examples above, the domain off (x) is, respectively, the real
line, the real line and the real line excluding the point−1. The range (or image) off (x) is the set of points to which
the function maps its domain: for the three examples above, the range is, respectively, the set of non-negative real
numbers, the segment of the real line[−1,1] and the real line excluding the point 0.

In this part of the course we shall be analyzing functions of multiple variables, of the form shown in Figure 2
(right). In this example, the functionf (x,y) takes two inputs,x andy and outputs one,and only one, number,
z= f (x,y). Whereas the domains of the functionsf (x) in Figure 1 were subsets of the real line making up the
x-axis, the domain of the two variable functionz= f (x,y) is composed of subsets of the (two-dimensional)xy-
plane, as illustrated in Figure 3. The range of the functionz= f (x,y) is a subset of the real line that forms the
z-axis. Thereforef (·, ·) maps each point(x∗,y∗) in its domain onto the pointz∗ = f (x∗,y∗) in its range. In the three
dimensional space with coordinatesx,y,z, the result of this mapping is the surface illustrated in Figure 3, wherein
each point on the surface satisfiesz= f (x,y).

Note that what distinguishes a surface formed by a functionz= f (x,y) from any other surface is that the mapping
from (x,y) to z is unique. This is in contrast to the spherex2+ y2+ z2 = 1, for example, where each point in the
x,y plane maps onto two values ofz.

1



Part II: Differential calculus of multivariable functions 2

If f (·) were a function of three variables, such thatw= f (x,y,z), the domain off (·) would be a subset of the three
dimensional space defined by thex-, y- andz-axes. Drawing such a function would be very difficult as it would
require four axes. We shall mainly be concerned with functions of two variables, although the techniques we shall
study are applicable to functions of any number of variables.

f (x,y)
x

y
zf (x)x z

Figure 2: A functionf (x) of one variable (left) and a functionf (x,y) of multiple variables (right).
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z=f(x,y)
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(x*,y*)

z*=f(x*,y*)

Figure 3: The variablez is equal to a functionf (x,y) of two variables,x andy.

As an example of a multivariable function, a plot ofz= x2− y2 is shown in Figure 4. Note that the intersection
of this function with the planes of the formx=constant andy=constant yields a series of parabolic curves. For
example, the intersection of the function with the planey= 0 yields a parabolic curve in three dimensional space
in the shape ofz= x2.
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Figure 4: The functionz= x2−y2.
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1.1 Contour plots

In a function such asz= f (x,y) the points in the function’s domain inxy-plane map onto its range in thez-axis.
We now fix a point in the functions range,z= c, say, and we look for all the points in thexy-plane which are such
that f (x,y) = c. The set of all such points is termed alevel setof f (x,y). In the two dimensionalxy-plane, such
a level set forms a curve, termed acontour line. Clearly there is a different level set of the function (and hence a
different curve in thexy-plane) for every pointc in the function’s range. For functions of three variables such as
w= f (x,y,z), we have, rather than contour lines, contour surfaces in three dimensional space, wheref (x,y,z) = c,
wherec is constant.

As an example, consider the functionz= f (x,y) = x2+ y2, shown in Figure 5. In three-dimensional space, this
function forms a bowl-shaped surface, as shown in Figure 5 (left). Level sets of this function are of the form
x2+y2 = c. When projected onto the thexy-plane in acontour plot, shown in Figure 5 (right), each level set forms
a circle of radius

√
c, centered on the origin.

Note that as we move radially away from the origin of thexy-plane, the circles gradually become closer together
for equally spaced values ofz. What this signifies is that the sides of the bowl shown in Figure 5 (left) gradually
become steeper as the distance away from the origin of thexy-plane increases.
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z=1
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z=4

Figure 5: The functionz= f (x,y) = x2 + y2 and its contour plot showing the level surfaces ofz= f (x,y), at
z= 1,2,3,4.

As another example, consider the planez= x, shown in Figure 6 (left). Here,z increases asx increases. Further-
more,z is independent ofy, and will therefore not increase if we changey, so long asx remains fixed. For this
reason, the contour plot in Figure 6 (right) shows that the contour lines in this function are parallel to they-axis.
If we consider a particle moving on the plane illustrated in Figure 6 (left), then if the motion of the particle is in a
direction parallel to they-axis, then thez coordinate of the particle will not change, and the particlewill continue
moving along the same contour line. If, on the other hand, theparticle moves along thex axis, it will traverse the
level sets orthogonally, leading to a change in the value ofz. Note that the steepness of the plane is constant. This
is reflected in the contour plot by the fact that the contour lines are equally spaced for equally spaced values ofz.

The function and contour plot illustrated in Figure 7 are those of the functionz= x2−y2. Note that at the origin,
the function is locally flat, and this is reflected in the fact that the contour lines are relatively distant from each
other at that point. The steepness of the function increasesalong the two axis and, correspondingly, the contour
lines become closer together along the two axis.

The hill-shaped functionz= e−(x2+y2) illustrated in Figure 8 is relatively flat at the ‘foot of the hill’, and this is
illustrated in the fact that at points that are radially distant from the origin, the contour lines are far apart. The
contour lines are closest together at the sides of the hill, where the function is steepest. At the ‘top of the hill’, the
function is locally flat, which is reflected in the fact that atthe origin, the contour lines are again widely spaced.

As a further example, we consider the three variable function w= f (x,y,z) = x2+y2+z2. This function is difficult
to visualize, as it requires four axis, although some insight into its contour plot can be gained by analogy with the
example of Figure 5. The level sets ofw= f (x,y,z) are the setsx2+ y2+ z2 = c, wherec is fixed for each level
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Figure 6: The functionz= x and its contour plot.
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Figure 7: The functionz= x2−y2 and its contour plot.
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Figure 8: The functionz= e−(x2+y2) and its contour plot.

set. As such, the level sets of this function are spherical surfaces of radius
√

c, centered on the origin, as shown in
Figure 9. In this case, ‘steepness’ of the functionw= f (x,y,z) roughly corresponds to how quicklyw will increase
in response to an increase in distance

√
c from the originx= y= z= 0. As with the example of Figure 5,f (x,y,z)

becomes ‘steeper’ with radial distance from the origin. To see this, consider the two level sets off (x,y,z):

w1 = x2+y2+z2 = c1

w2 = x2+y2+z2 = c2

wherec2 > c1. Let the radial distance between the two spheres represented by these surfaces beε, so that
√

c2−√
c1 = ε. For these two surfaces,w2−w1 = c2− c1 = 2ε√c1+ ε2. Thereforew2−w1 is an increasing function

of c1, meaning that as we move away from the origin,f (x,y,z) increases at an increasing rate - that is, it becomes
‘steeper’.
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Figure 9: Level sets of the functionw= x2+y2+z2.

2 Partial derivatives

We have used contour plots to show how functions of multiple variables vary across their domains. Figure 10
shows the contour lines of a functionf (x,y). At the point(x∗,y∗), the function will increase in the positivex
direction and decrease in the positivey direction. Clearly therefore, any notion of slope of a multivariable function
will in general be a function ofdirection.

x

y f(x,y)=1

f(x,y)=2

f(x,y)=3

f(x,y)=4

(x*,y*)

∆y

∆x

Figure 10: The rate of change inf (x,y) at (x∗,y∗) is dependent on direction:∆x leads to an increase inf (x,y),
whilst ∆y leads to a decrease.

This gives rise to a notion of steepness of such functions. This notion is strongly related to the concept of the
derivative of a single variable function that you will already be familiar with. In this section, we shall define this
idea in a more formal way.

As illustrated in Figure 11, the derivatived f
dx (also denotedf ′(x)) of a single variable functionf (x) at any pointx

has the graphical interpretation of being the slope of thef (x) atx.
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Formally, the derivative has the following definition

d f
dx

= lim
∆x→0

f (x+∆x)− f (x)
∆x

In this definition, the derivative is the limit of the change in f (x) in response to an increment inx in thepositive x
direction, in the domain of the function.

f (x)
d f
dx = f ′(x)

y

x

Figure 11: A functiony= f (x) and its derivatived f
dx .

Unlike single variable functions, functions of multiple variables have a multi-dimensional domain. For a function
of two variablesf (x,y), we can therefore conceive of the change inf (x,y) in response to an increment inx in
the positivex direction and, separately, in response to an increment iny in the positivey direction. For f (x,y)
therefore, this leads to the definition of twopartial derivatives, one in the direction ofx, one in the direction ofy.

Definition 1. The partial derivative of a function f(x,y) with respect to x is

∂ f
∂x

= lim
∆x→0

f (x+∆x,y)− f (x,y)
∆x

The partial derivative of a function f(x,y) with respect to y is

∂ f
∂y

= lim
∆y→0

f (x,y+∆y)− f (x,y)
∆y

The notation∂ f
∂x is often shortened tofx. Likewise, ∂ f

∂y is equivalentfy.

These two derivatives have the following interpretation:

• The partial derivative∂ f
∂x at a point(x,y) = (x0,y0) is the slope of the functionf (x,y) at (x0,y0) in the

direction of increasingx, with y held fixed, as illustrated in Figure 12 (left).

• The partial derivative∂ f
∂y at a point(x,y) = (x0,y0) is the slope of the functionf (x,y) at (x0,y0) in the

direction of increasingy, with x held fixed, as illustrated in Figure 12 (right).

Finding the partial derivative of a function with respect toone of its variables can be found by differentiating the
function with respect to that variable, whilst treating allthe other variables as constants.

Example 1. Evaluate the partial derivatives of f(x,y) = (x2+y3)
1
2 with respect to x and y.

To find ∂ f
∂x , considery to be a constant, and differentiate with respect tox.

∂ f
∂x

=
1
2
(x2+y3)−

1
2 (2x)
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Figure 12: The partial derivatives of a functionf (x,y) at a point(x0,y0).

To find ∂ f
∂y , considerx to be a constant, and differentiate with respect toy.

∂ f
∂y

=
1
2
(x2+y3)−

1
2 (3y2)

Example 2. For f (x,y,z) = e−(x2+y2+z2), find ∂ f
∂z at (x,y,z) = (0,0,1).

To find ∂ f
∂z , considerx andy to be constants, and differentiate with respect toz.

∂ f
∂z

=−2ze−(x2+y2+z2)

At (0,0,1), ∂ f
∂z =−2

e.

2.1 Higher order partial derivatives

Note that a partial derivative of a function ofx andy is, in general, itself a function ofx andy as well, as shown
in the examples above. We can therefore take further partialderivatives of partial derivatives. For example, for the
function f (x,y) = sin(2x+y) the first partial derivatives are

∂ f
∂x = 2cos(2x+y) ∂ f

∂y = cos(2x+y)

The second partial derivatives are

∂
∂x

(
∂ f
∂x

)

= ∂ 2 f
∂x2 = fxx =−4sin(2x+y)

∂
∂y

(
∂ f
∂x

)

= ∂ 2 f
∂y∂x = fyx =−2sin(2x+y)

∂
∂x

(
∂ f
∂y

)

= ∂ 2 f
∂x∂y = fxy =−2sin(2x+y)

∂
∂y

(
∂ f
∂y

)

= ∂ 2 f
∂y2 = fyy =−sin(2x+y)

In the above example, it is no coincidence, and, in fact, it isalways the case, that

∂ 2 f
∂x∂y

=
∂ 2 f

∂y∂x
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Part II: Differential calculus of multivariable functions 8

3 Differentials

Suppose that we know the valuef (x0) and derivatived f
dx(x0) of a single variable functionf (x) at somex = x0.

Given a smallδx, a rough approximation of the change in the value of the function betweenx= x0 andx= x0+δx
is, as shown in Figure 13, given by

f (x0+δx)− f (x0) = δ f ≈ d f
dx

(x0)δx

As δx is made smaller, the approximation clearly becomes increasingly accurate. In the limit asδx→ 0,

δ f → d f =
d f
dx

dx

d f
dx(x0)

x

f (x)

d f
dx(x0)δx

δx

δ f

f (x0)

x0

Figure 13: A local approximation off (x).

We can carry out the same approximation exercise for a multivariable functionf (x,y), with the difference that in
this case we make use of the multivariable function’s partial derivatives. Therefore, if we know the value off (x,y)
at x = x0,y= y0 in addition to the partial derivatives∂ f

∂x and ∂ f
∂y at that point, then, given an incrementδx in the

x-direction, and an independent incrementδy in the y-direction, the change inf due to these increments in the
xy-plane is approximately

f (x0+δx,y0+δy)− f (x0,y0) = δ f ≈ ∂ f
∂x

(x0,y0)δx+
∂ f
∂y

(x0,y0)δy

In the limitsδx→ 0 andδy→ 0, we obtain thetotal differential

d f =
∂ f
∂x

dx+
∂ f
∂y

dy

4 The chain rule for multivariable functions

4.1 Dependent and independent variables

For functionsz= f (x,y), it is implied thatx andy are free to vary independently of each other, whilstz is dependent
onx andy.

Math 217 - Lecture 5 Fall 2011
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Consider a flat hot plate, and suppose that points on the platecan by described using(x,y) coordinates. Suppose
that we know the temperatureT at each point on the plate, so thatT = T(x,y).

Now define a parameterized curveC in thexy-plane parameterized byt, so that the position vector of points along
the curve isr(t) = x(t)i + y(t)j . This curve can represent the path traced out by a particle moving on the surface
of the hot plate with time. As the particle moves along the curve, it will sense a change in temperature as its(x,y)
coordinates vary. The temperatureT can therefore be regarded as

T = T(x(t),y(t))

in other words,T can be regarded as afunction of two functions, x(t) and y(t), of a single, independent, variable t.

In another scenario, suppose we know the pressureP in a volume of air (say, in a section of the atmosphere) at each
point in the volume, so that at each point(x,y,z), we knowP= P(x,y,z). Suppose we also know the temperature
T at different points in the volume, so thatT = T(x,y,z). ThereforeP andT are functions of three independent
variables(x,y,z). Now if we know that the densityD of the air at any point is a function of its local temperature
and pressure, then we can write the density as an explicit function ofP andT:

D = D(P,T) = D(P(x,y,z),T(x,y,z))

In other words, D is a function of two functions (P and T) whichare themselves functions of three independent
variables(x,y,z).

For functions such as those above, describing the temperature on the hot plate as a function of time,T =T(x(t),y(t))
and the density in a volume of air as a function of position,D = D(P(x,y,z),T(x,y,z)), we may wish to compute
derivatives such as

dT
dt

and
∂D
∂x

To find such derivatives, we turn to thechain rule.

4.2 Constructing the chain rule for multivariable functions

For functions of functions of single variables such asy= f (u), with u= g(x), thechain ruleallows us to to find
the derivativedy

dx thus
dy
dx

=
dy
du

du
dx

The chain rule extends to multivariable functions. Consider the temperature profile of the hot plate described
above. We know that the differential ofT with respect tox andy is

dT =
∂T
∂x

dx+
∂T
∂y

dy

and sincex andy are both functions oft, we know the differentials ofx andy are

dx=
dx
dt

dt and dy=
dy
dt

dt

If we substitute these latter differentials into the differential forT and divide bydt we obtain

dT
dt

=
∂T
∂x

dx
dt

+
∂T
∂y

dy
dt

which is the chain rule for the multivariable functionT = T(x,y).

As another example, consider the densityD in a volume of air which, as described above, is a function of the local
pressureP and the local temperatureT, both of which vary in space, and are therefore functions of positionx,y,z.
That is,

D = D(P,T) P= P(x,y,z) T = T(x,y,z) (1)

Math 217 - Lecture 5 Fall 2011
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Suppose we wish to find a quantity such as the rate of change of air density along thex-direction, ∂D
∂x . SinceD is

an explicit function ofP andT, we can compute∂D
∂P and ∂D

∂T . We therefore know that the differential ofD with
respect toP andT is

dD=
∂D
∂P

dP+
∂D
∂T

dT (2)

At the same time, we know that the differentials ofP andT with respect tox, y, andz are

dP= ∂P
∂x dx+ ∂P

∂y dy+ ∂P
∂zdz dT= ∂T

∂x dx+ ∂T
∂y dy+ ∂T

∂z dz

which, when substituted into (2), yield

dD=

(
∂D
∂P

∂P
∂x

+
∂D
∂T

∂T
∂x

)

︸ ︷︷ ︸

∂D
∂x

dx+

(
∂D
∂P

∂P
∂y

+
∂D
∂T

∂T
∂y

)

︸ ︷︷ ︸

∂D
∂y

dy+

(
∂D
∂P

∂P
∂z

+
∂D
∂T

∂T
∂z

)

︸ ︷︷ ︸

∂D
∂z

dz (3)

Note that by comparing (3) with the structure of the differential

dD=
∂D
∂x

dx+
∂D
∂y

dy+
∂D
∂z

dz

we obtain the partial derivatives
∂D
∂x

=
∂D
∂P

∂P
∂x

+
∂D
∂T

∂T
∂x

(4)

∂D
∂y

=
∂D
∂P

∂P
∂y

+
∂D
∂T

∂T
∂y

(5)

∂D
∂z

=
∂D
∂P

∂P
∂z

+
∂D
∂T

∂T
∂z

(6)

With reference to (4), the chain rule has the following interpretation. The densityD depends on bothP andT,
both of which depend onx,y,z. Equation (4) quantifies howD depends onx, since at different positionsx there
will be a different pressureP and temperatureT and hence a different densityD (i.e. a change inx will cause a
change in bothP andT, which will in turn cause a change inD). The term∂D

∂P
∂P
∂x can therefore be interpreted as

quantifying the change inD as a result of a change inP (quantified by∂D
∂P ) whenP changes as a result of a change

in x (quantified by∂P
∂x ). The term∂D

∂T
∂T
∂x can likewise be interpreted as the change inD arising from a change inT,

arising from a change inx.

4.3 An important remark

Let’s examine each of the terms on the right of (4):

∂D
∂P : SinceD is a function ofP and ofT, this partial derivative will also, in general, be a function of bothP andT.

∂P
∂x : SinceP is a function ofx,y,z, this partial derivative will also, in general, be a function of x,y,z, t.

∂D
∂T : SinceD is a function ofP and ofT, this partial derivative will also, in general, be a function of bothP andT.

∂T
∂x : SinceT is a function ofx,y,z, this partial derivative will also, in general, be a function of x,y,z.

Suppose we now wish to find∂
2D

∂x2 . To do this, letF = ∂D
∂x . Because∂D

∂P , ∂D
∂T are explicit functions ofP andT,

and because∂P
∂x ,∂T

∂x are explicit functions ofx,y,z, we know that∂D
∂x will be a function ofP,T,x,y,z. Therefore

F = ∂D
∂x = F(P,T,x,y,z), and ∂ 2D

∂x2 = ∂F
∂x .

Now F = F(P,T,x,y,z), and therefore we can regard it as an explicit function ofP,T,x,y,z. However, at the same
time, P andT are both functions ofx,y,z, and so we can also say thatF = F(P(x,y,z),T(x,y,z),x,y,z), and is
therefore an explicit function ofx,y,z only. Therefore when we compute∂F

∂x , we need to draw the important
distinction between

Math 217 - Lecture 5 Fall 2011
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1. regardingF as a function ofP,T,x,y,z and computing∂F
∂x with P,T,y,z held constant. This is denoted as

(
∂F
∂x

)

P,T,y,z

2. regardingF as a function ofx,y,zonly and computing∂F
∂x with y,zheld constant. This is denoted as

(
∂F
∂x

)

y,z

Using the differentials approach to constructing chain rules, this translates to

dF =
(

∂F
∂P

)

dP+
(

∂F
∂T

)

dT+
(

∂F
∂x

)

P,T,y,z
dx+

(
∂F
∂y

)

P,T,x,z
dy+

(
∂F
∂z

)

P,T,x,y
dz

=

(

∂F
∂P

∂P
∂x +

∂F
∂T

∂T
∂x +

(
∂F
∂x

)

P,T,y,z

)

︸ ︷︷ ︸

( ∂F
∂x )y,z

dx+

(

∂F
∂P

∂P
∂y +

∂F
∂T

∂T
∂y +

(
∂F
∂y

)

P,T,x,z

)

︸ ︷︷ ︸
(

∂F
∂y

)

x,z

dy+

(

∂F
∂P

∂P
∂z +

∂F
∂T

∂T
∂z +

(
∂F
∂z

)

P,T,x,y

)

︸ ︷︷ ︸

( ∂F
∂z )x,y

dz

and therefore

∂ 2D
∂x2 =

(
∂F
∂x

)

y,z
=

(

∂F
∂P

∂P
∂x

+
∂F
∂T

∂T
∂x

+

(
∂F
∂x

)

P,T,y,z

)

=

(
∂
∂x

(
∂D
∂x

))

y,z
=

(

∂ 2D
∂P2

∂P
∂x

+
∂ 2D
∂T2

∂T
∂x

+

(
∂
∂x

(
∂D
∂x

))

P,T,y,z

)

4.4 Another important remark

Consider a point mass moving through the atmosphere, havinginstantaneous position(x(t),y(t),z(t)) at timet.
Suppose that the temperature in the atmosphere varies over time and space. Let the temperature sensed by the point
mass as it moves through the atmosphere beτ = τ(x,y,z, t). Then the rate of change of the sensed temperature is

dτ
dt

=
∂τ
∂x

dx
dt

+
∂τ
∂y

dy
dt

+
∂τ
∂z

dz
dt

+
∂τ
∂ t

Note that we have used the notationdx
dt ,

dy
dt ,

dz
dt rather than∂x

∂ t , ∂y
∂ t , ∂z

∂ t , which is because the variables(x(t),y(t),z(t))
are single variable functions oft.

Note also that the difference between∂τ
∂ t and dτ

dt is that

• ∂τ
∂ t is the rate of change of the temperature with the position held fixed. For example, this can represent the
temperature changes as sensed by a thermometer at a fixed point in the atmosphere, where such changes oc-
cur due to seasonal changes. In other words, this partial derivative signifieschanges in the local temperature
only.

• dτ
dt is the rate of change in temperature with time due to the combined effect of the change in local temperature
at each point, in addition to the change in temperature sensed by moving through the atmosphere between hot
and cold regions. For example, seasonal changes can make thetemperature at all points in the atmosphere
change with time. A particle moving through the atmosphere can also move between hotter and cooler
regionswhilst these seasonal changes are occurring. Therefore the change in temperature sensed by the
particle would be from the combined effect of the change in position (from hotter to cooler areas) and the
change in temperature (due to seasonal changes). Thereforewe can split the chain rule fordτ

dt into the
following

dτ
dt

=
∂τ
∂x

dx
dt

+
∂τ
∂y

dy
dt

+
∂τ
∂z

dz
dt

︸ ︷︷ ︸

Sensed change in temperature due to change in position

+
∂τ
∂ t
︸︷︷︸

Sensed change in temperature due to local temperature changes
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4.5 The variable dependency graph method

A ‘variable dependency graph’ shows the dependencies of functions on their variables. Suppose we have the
functions

u= u(v,w, t) v= v(x,y,z) w= w(x,y) x= x(t) y= y(t) z= z(t)

we can sort the dependence of each function on the variables in its domain as a tree, as shown in Figure 14

t t t t t

t

x y z x y

v w

u

Figure 14: A variable dependency graph

This graph can be used to quickly calculate partial derivatives associated with the above functions. As an example,
to find ∂u

∂x :

Step 1 Find all the paths on the graph betweenu andx.

Step 2 Starting with the top of each path, calculate the partial derivative of the variable at the top of each branch
with respect to the variable at the bottom of the same branch,and multiply the partial derivatives associated
with each path.

Step 3 Sum the products of the partial derivatives obtained from each of the paths.

For the example of∂u
∂x , there are two paths betweenu andx: u-v-x andu-w-x (Step 1). The product of the partial

derivatives along the branchu-v-x is ∂u
∂v

∂v
∂x, whilst for the branchu-w-x this product is∂u

∂w
∂v
∂x (Step 2). Finally (Step

3), the sum of these two products gives the partial derivative ∂u
∂x as:

∂u
∂x

=
∂u
∂v

∂v
∂x

+
∂u
∂w

∂v
∂x

Because all the sub-functions ofu are in the end functions of the single variablet, we can find the ordinary
derivativedu

dt in exactly the same way as above. This yields

du
dt

=
∂u
∂v

∂v
∂x

dx
dt

+
∂u
∂v

∂v
∂y

dy
dt

+
∂u
∂v

∂v
∂z

dz
dt

+
∂u
∂w

∂w
∂x

dx
dt

+
∂u
∂w

∂w
∂y

dy
dt

+
∂u
∂ t

Once more, note the distinction betweendu
dt and ∂u

∂ t , highlighted in Section 4.4.

Math 217 - Lecture 5 Fall 2011



Part II: Differential calculus of multivariable functions 13

As another example, consider the functions

u= w+ t3 w= x+ t2

Suppose we wish to find∂u
∂ t . One way of doing this is to sayu = w+ t3 = x+ t2 + t3 to obtain ∂u

∂ t = 2t + 3t2.
However, we can also do this using the following variable dependency graph

t

x t

w

u

However, following the three step procedure described above would yield the term∂u
∂ t on both sides of the equation.

This is clearly incorrect. What we need to do is ensure that when working down a dependency graph and a
particular partial differentiation is being performed,all other variables at the same level of the graph are kept
constant. For this example, when, in Step 2, we find∂u

∂ t along the path fromu to t, we do this withw kept constant.
This partial derivative is denoted

(
∂u
∂ t

)

w

and equals 3t2 in this example. Then the total partial derivative ofu with respect tot is given by applying Step 3,
and, as before, we obtain

∂u
∂ t

=

(
∂u
∂w

)

t

∂w
∂ t

+

(
∂u
∂ t

)

w
= 2t +3t2

Finally, if we are to use the variable dependency graph to findsecond (or higher order derivatives) we repeat
Steps 1-3 above, but we need to be careful with regards to the variables on which depends the function we are
differentiating. With reference to the functions (1), the dependency graph for the functionD, which is, explicitly,
only a function ofP andT is

D

P T

x y z x y z

However, the function∂D
∂x obtained in (4) is, in general, an explicit function of each of P,T,x,y,z. Therefore its

variable dependency graph is

∂D
∂x

P T

x y z x y z

x y z
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5 Gradients

We have seen that contour plots are useful for showing how thevalue of a function varies over its domain. Qualita-
tively, we can use the contour plot to visually determine, for example, that for a functionz= f (x,y), zwill remain
unchanged along the contour lines, but will vary across them. We can also tell the function’s steepness by the
spacing between its contours. Therefore we can determine the directionof change of the function’s level sets, and
we can determine themagnitudeof the rate of change of the function’s level sets. This implies that a vector can be
used to quantify the direction and magnitude of the rate of change of a multivariable function at each point in its
domain.

Consider a functionw= f (x,y,z). For constantc, a level set of this function is a surfaceSon which f (x,y,z) = c, as
shown in Figure 15 (left). We can define two lines,L1 andL2 on the surfaceS, that cross at a pointP on the surface.
Each of these lines are parameterized by a parametert (for example,t can represent time, which parameterizes the
the motion of a particle along each of these two lines).

SinceS is the level setw= f (x,y,z) = c, the value ofw does not change along the two lines. Therefore on each of
L1 andL2, dw

dt = 0.

Using the chain rule, we know that

dw
dt

=
∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

+
∂ f
∂z

dz
dt

=
[

∂ f
∂x

∂ f
∂y

∂ f
∂z

]∗




dx
dt
dy
dt
dz
dt



 (7)

∇f

x
y

z

Surface S:�
f(x,y,z)=c

Tangent�
planex

y

z

Surface S:�
f(x,y,z)=c

L1

L2

Point�
P

Figure 15: The gradient∇ f of the functionw= f (x,y,z) at the pointP.

We define the vector
∇ f (x,y,z) =

[
∂ f
∂x

∂ f
∂y

∂ f
∂z

]∗

to be thegradientvector of the functionf (x,y,z). For a function ofn variables, the gradient is a vector of dimension
n.

Now, if the position vector of any point on the lineL1 is r(t) = x(t)i +y(t)j +z(t)k, we have seen previously that
the vectordr

dt is tangential to the lineL1 at that point. From (7), the dot product between∇ f and dr
dt is zero on lines

on the level surfaceS. We can therefore say that for any point onL1, the vector∇ f at the point is perpendicular to
the tangent toL1 at the point.

Note that this is also true of points onL2, and of any other line running along the surfaceS.

If we now turn to the pointP, the tangent plane to the level surfaceS at the pointP is tangential all the lines
(L1,L2, · · · ) running alongSand passing throughP. But since∇ f is perpendicular to all these lines atP, we can
therefore conclude that∇ f at the pointP is perpendicular to the tangent plane to the surfaceSat pointP.
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Example 3. Given the function f(x,y) = x2+y2,

1 Sketch the level curves of the function f(x,y) = 1, f (x,y) = 4 and f(x,y) = 9.

2 Calculate the gradient of f(x,y) at the points(1,0), (
√

2,
√

2) and (0,3) and plot arrows representing the
directions of the gradient at each of these points.

See Figure 16. Note that∇ f (x,y) is a vector perpendicular to the level curves off (x,y).

x

y

f(x,y)=4
f(x,y)=9

f(x,y)=1 ∇f=2√2(i+j )

∇f=6j

∇f=2i
(0,1)

(√2,√2)

(0,3)

Figure 16: Level curves and gradients of the functionf (x,y) = x2+y2.

Example 4. Find the tangent vectorT to the curve C at the point(1,0,0), formed by the intersection between the
surfaces x2+y2+z2 = 1 and z= 0.

The spherex2+ y2+ z2 = 1 is a level surface of the functionw= x2+ y2+ z2−1, whenw= 0, whilst the plane
z= 0 is the level surface of the functionv= z, atv= 0. The gradients of each of these functions are normal to their
level surfaces in three-dimensional space:

∇w= 2xi +2yj +2zk is normal to the surfacex2+y2+z2 = 1
∇v= k is normal to the surfacez= 0

The curveC, lies on both of the level surfaces, and therefore the the vectors ∇w and∇v are both normal to the
curveC. The tangent vectorT to the curveC is tangent to both level surfaces and therefore perpendicular to both
gradient vectors. Given two vectors in three dimensional space, a third vector perpendicular to both is given by
their cross product. Therefore the tangent vectorT to the curveC is given by

T = ∇v×∇w=

∣
∣
∣
∣
∣
∣

i j k
0 0 1
2x 2y 2z

∣
∣
∣
∣
∣
∣

=−2yi +2xj

At the point(1,0,0), T = 2j .

Figure 17 illustrates how the tangent vector to the curveC is obtained from the gradients of the two intersecting
surfaces. The surfacew = 0 is the unit sphere, centered on the origin, whilst the surface v = 0 is thexy-plane.
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The intersection of these two surfaces is the unit circle in thexy-plane, centered on the originO. In Figure 17, we
can see that the vector∇w points radially out of the unit sphere, which, at the point(1,0,0), points in the positive
x direction. The vector∇v points ‘upwards’ in the positivez direction. The tangent to the unit circle at(1,0,0)
points in the positivey direction, as expected from the cross product of the two gradient vectors at that point.

w(x,y,z)=x2+y2+z2-1=0

v(x,y,z)=z=0

Curve C

∇v

∇w

∇v×∇w

(1,0,0) Curve C

x

yz

x

y

(1,0,0)

∇v×∇w

O

Figure 17: The tangent vector to curve formed by the intersection of the the unit sphere with thexy-plane.

5.1 Directional derivatives

We have seen that the gradient of a function at a point in the function’s domain is a vector that points in a direction
that is perpendicular to the level surface of the function. Along the level surface, the rate of change of the function
is zero, by definition. Because it is perpendicular to the level surface, it may therefore be expected that the direction
of the gradient vector is that in which the rate of change of the function is maximal. We shall next demonstrate that
this is so.

Consider the following three unit vectors, each aligned with one of thex, y andzaxis:

T̂x =
[

1 0 0
]∗

T̂y =
[

0 1 0
]∗

T̂z =
[

0 0 1
]∗

and next consider the dot product of each of these unit vectors with ∇ f , wherew= f (x,y,z).

∇ f · T̂x =
∂ f
∂x

∇ f · T̂y =
∂ f
∂y

∇ f · T̂z =
∂ f
∂z

We therefore see that the dot product of∇ f with a unit vector such aŝTx, T̂y, T̂z, gives the rate of change off in
the direction of the unit vector. In fact, this is true for anyunit vectorT̂, and not only those aligned with the axes.
The quantity∇ f · T̂ is ascalar quantitycalled thedirectional derivative of f in the direction of the unit vector T̂,
and givesthe rate of change of f in the direction ofT̂.

The directional derivative is, as the name suggests, a derivative. Suppose that for some functionf (x,y), there exists
a parameterized curver(t) on thexy-plane, the domain of the function. The directional derivative can be used to
determine how the function changesalong the curve, as shown in Figure 18.

We have seen that a tangent vectorT̂ to the curver(t) at any point is given by

T̂ =
dr
ds
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f(x,y)=c1

(x*,y*)

f(x,y)=c2

f(x,y)=c3

f(x,y)=c4

T̂

r (t)

Figure 18: The directional derivative along a parameterized curver(t) with tangent vector̂T.

wheres is a measure of arc length along the curve. Now the directional derivative of f (x,y) along the tangent
vectorT̂ is

∇ f · T̂ = ∇ f · ∂ r
ds

=
∂ f
∂x

dx
ds

+
∂ f
∂y

dy
ds

+
∂ f
∂z

dz
ds

=
d f
ds

(8)

Therefore the directional derivative off (x,y) along the direction of the tangent vectorT̂ is the rate of change of
f (x,y) with respect to distances traversed in the direction of̂T, d f

ds.

If the angle between∇ f andT̂ is θ , the directional derivative is then

∇ f · T̂ = |∇ f ||T̂|cosθ

= |∇ f |cosθ sinceT̂ is a unit vector

From this relation, we observe the following:

• the maximum rate ofincreaseof the function f (x,y,z) is in the directionaligned with ∇ f , since−1 ≤
cosθ ≤ 1 (i.e. when∇ f andT̂ are parallel andθ = 0),

• the maximum rate ofdecreaseof the functionf (x,y,z) is in the directionoppositeto ∇ f , (i.e. θ = 180◦),

• the rate of change off (x,y,z) in the direction perpendicular to∇ f (i.e., along a contour or level set) is always
zero, as per the definition of a contour.

Figure 19 shows a contour line of the functionf (x,y) = x2 + y2, where f (x,y) = 1. At the point( 1√
2
, 1√

2
), the

directional derivative in the direction̂T1 (perpendicular to the contour line) is 1. In Figure 20, the vector T̂1 is
similarly perpendicular to the contour the pointA= ( 1√

2
, 1√

2
), and thereforêT1 is the direction of the maximal rate

increase of the functionz= f (x,y) = x2+y2 atA, given by

Figure 19 also shows that at(− 1√
2
,− 1√

2
), tangentially to the contour line and in the direction ofT̂2, the rate of

change of the function is zero (in agreement with the definition of the contour line). This is also illustrated in
Figure 20 where, at the pointB= (− 1√

2
,− 1√

2
), the vectorT̂2 points in a direction tangential to the contour line.

In this direction at the pointB, there is therefore no increase in the value of the functionz= f (x,y).

In Figure 19, directionT̂3 is opposite to that of∇ f , and is therefore the direction of greatest decrease of the
function, which gives a directional derivative of−1.

As a more practical example, consider a flat hot plate on whichwe define a coordinate systemx−y. At each point
on the plate, the temperature is given by a functionT(x,y). Fourier’s law of heat conduction says that heat flow

Math 217 - Lecture 6 Fall 2011



Part II: Differential calculus of multivariable functions 18

x

y

T̂1

T̂3

f (x,y) = x2+y2

∇ f (x,y) = 2xi+2yj
T̂1 =

1√
2
i+ 1√

2
j ∇ f ( 1√

2
, 1√

2
) · T̂1 = 1

T̂2 =− 1√
2
i+ 1√

2
j ∇ f (− 1√

2
,− 1√

2
) · T̂2 = 0

T̂3 =− 1√
2
i+− 1√

2
j ∇ f ( 1√

2
, 1√

2
) · T̂3 =−1

∇ f ( 1√
2
, 1√

2
) =

√
2i+

√
2jf (x,y) = 1

T̂2

∇ f (− 1√
2
,− 1√

2
) =−

√
2i−

√
2j

Figure 19: Three different directional derivatives of the function f (x,y) = x2+y2.

x

y

z=f(x,y)=x2+y2

z=1

x2+y2=1

z

T1

∇f·T1

T2

∇f·T2
(No increase in z)

(Maximal increase in z)

A

B

ˆ

ˆ
ˆ

ˆ

Figure 20: The directional derivative of the functionz= f (x,y) in the direction of a vector̂T1, parallel to∇ f , gives
the maximal rate of change ofz. In the directionT̂2, orthogonal to∇ f (and hence tangential to the contour line of
f (x,y)), the directional derivative is zero, indicating no changein the value ofz.

per unit area,q, in the direction of unit vectorn, along which we measure distances, is given by

q=−λ
dT
ds

whereλ is the thermal conductivity of the material from which the plate is made. This is illustrated in Figure 21,
where the contour lines represent isotherms, which are lines of constant temperature across the plate. As in (8), the
heat flow per unit areaq can be rewritten as the directional derivative

q= (−λ∇T) ·n (9)

Note that the negative sign is due to the fact that heat flows from hot to cold areas, whilst the temperature gradient
∇T points in the direction of maximum temperature increase. From the properties of the dot product, Equation (9)
shows that the heat flow per unit area is maximized whenn =− ∇T

|∇T| , that is, in theoppositedirection to∇T, which
is the direction perpendicular to the isotherms and also thedirection ofmaximum temperature decrease.
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HOT

COLD

q=−[λ∇T]·n=−λ ∂T
∂s

T(x,y)=T4

T(x,y)=T3

T(x,y)=T2

T(x,y)=T1

∇T

s

∇T

n

q

Figure 21: The heat flow per unit areaq, in the directionn, across a flat, hot plate. Contour lines are isotherms
(lines of constant temperature).
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6 Taylor series for multivariable functions

Taylor series provide a means of representing a function around a point in its domain using a (possibly infinite)
power series. For a single variable functionf (x), the Taylor series off (x) around the pointx= x0 is

f (x) = f (x0)+(x−x0) f ′(x0)+
1
2!
(x−x0)

2 f ′′(x0)+ · · ·

Truncating this series gives an approximation of how a function behaves around the point of interest. Note that a
first order approximation is given by

f (x)≈ f (x0)+(x−x0) f ′(x0)

which is a linear approximation to the function at the pointx0, shown in Figure 22 as a line approximating the
function y = sinx near the pointx = π. As Figure 22 also shows, higher order truncations give increasingly
accurate approximations of the functiony= sinx near the pointx= π.

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

 

 

Function y=sin(x)
First order approx
Third order approx
Fifth order approx

Figure 22: Taylor series approximations of the single variable functiony= sinx.

Taylor series extend to multivariable functions. For the two-variable functionz= f (x,y), at the point(x0,y0), the
series takes the form

f (x,y) = f (x0,y0)+(x−x0)
∂ f
∂x

+(y−y0)
∂ f
∂y

+
1
2!
(x−x0)

2 ∂ 2 f
∂x2 +(x−x0)(y−y0)

∂ 2 f
∂x∂y

+
1
2!
(y−y0)

2 ∂ 2 f
∂y2 + · · ·

(10)
where all the partial derivatives are evaluated at(x0,y0).

As with the single variable case, the Taylor series of a multivariable function truncated to its first order approxima-
tion gives a linear approximation of the function of interest. For the functionz= f (x,y), the truncated, first order
Taylor series near the pointz0 = f (x0,y0) is given by

z= z0+(x−x0)
∂ f
∂x

(x0,y0)+(y−y0)
∂ f
∂y

(x0,y0)

which can be re-written as

[

− ∂ f
∂x (x0,y0) − ∂ f

∂y (x0,y0) 1
]





x−x0

y−y0

z−z0



= 0 (11)
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The set of points in (11) is such that the vector
[
(x−x0) (y−y0) (z−z0)

]∗
is always orthogonal to the vector

[

− ∂ f
∂x (x0,y0) − ∂ f

∂y (x0,y0) 1
]∗

(12)

because the dot product between these two vectors is zero. Inother words, (11) defines a plane with normal vector
(12).

The significance of this vector is the following: the function z= f (x,y) defines a surface in the three dimensional
xyz-space. If we define the functionw= f (x,y)−z, then the level set of this function whenw= 0 is precisely the
surfacez= f (x,y). In other words,z= f (x,y) is the surface composed of the set of points wherew= 0. This is
a three dimensional equivalent to a contour line. For any point (x0,y0,z0) on a level surface of a function such as
w= f (x,y)− z, the gradient vector of the function at that point is always,as discussed previously, perpendicular
to the tangent plane to the level surface of the function at that point. Therefore we can say that (11) is the equation
of the plane that is tangent to the level surfacew= f (x,y)−z= 0, that is, the surfacez= f (x,y). As with Figure
22, we can thus see that, when truncated to the first order, theTaylor series expansion of a function about a point
provides a linear approximation to the function at that point, which, in the case of a two variable function such as
f (x,y), is a plane.

6.1 Implicit partial differentiation

6.1.1 Functions of two variables.

Recall from first-year Calculus the idea ofimplicit differentiation: if you have an equation that relatedx andy

then you can treaty as a function ofx and differentiate implicitly with respect tox to find the derivative
dy
dx

. For

example, given the equation
x2+y2 = 25 (13)

which we recognize as the equation of a circle, we differentiate both sides with respect tox, treatingy as a function
of x, to obtain

2x+2y
dy
dx

= 0 (14)

and then solve for the derivative to obtain
dy
dx

=−x
y

(15)

Geometrically, this expression gives the slope of the tangent line to the circle at a point(x,y) on the circle. (Note
that the expression is undefined aty= 0. Why?)

In this particular example, we could also have computed thisderivative by solving fory in terms ofx but the
computation is more complicated. First of all, solving fory:

y=±
√

25−x2 (16)

There are two solutions fory, namelyy1 =
√

25−x2 andy2 =−
√

25−x2, corresponding to the top half of the circle
(y≥ 0) and the bottom half (y≤ 0). (Recall that the√ sign returns only thepositivesquare root.) Nevertheless,
we can differentiate this expression (we’ll differentiateboth cases simultaneously) to give

dy
dx

=± −x√
25−x2

(17)

Although this result differs from that in (15), it is equivalent. We can re-substitute for theyi functions to obtain
(15).

In general, however, such “brute-force” computations of derivatives are difficult if not impossible because of the
complexities of the expressions.
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With an eye to our discussion of several variables, let us state the first-year calculus problem of finding
dy
dx

by

implicit differentiation in a more general way. Suppose that we have a relation betweenx and y that can be
expressed in the form

F(x,y) = 0 (18)

And now suppose that we wish to considery as a function ofx. In other words, we say that (18) definesy implicitly
as a function ofx. In this case, we considerF as a functionF(x,y(x)) so that its variable dependency graph has the
form

F

yx

x

Now differentiateF(x,y(x)) with respect tox using the chain rule,

dF
dx

=
∂F
∂x

+
∂F
∂y

dy
dx

(19)

We can now solve for the derivative as
dy
dx

=−Fx

Fy
(20)

For our previous example,F(x,y) = x2+y2, we haveFx = 2x andFy = 2y, thus yielding the result obtained in (15).

There is no need to memorize this equation. It is only to show you what lies behind the process of implicit
differentiation, in order to move on to higher-dimensionalproblems.

6.1.2 Implicit differentiation for functions of several variables.

Suppose we now have an equation that relatesthreevariables, e.g.,

F(x,y,z) = 0 (21)

In principle, we can now consider any one variable as a function of the other two variables, e.g.,

x = f1(y,z) (22)

y = f2(z,x)

z = f3(x,y)

Note thatwe may not be able to actually solve for the functions fi in closed form. Nevertheless, we can consider
(21) to define – at least mathematically – one of the three variablesimplicitly as a function of the other two.

This is quite relevant to your study of Physical Chemistry. You will recall that one often wishes to characterize the
state of a gas in terms of the three variablesP (pressure),V (volume) andT (temperature). Theequation of state
of the gas will then take the form

F(P,V,T) = 0 (23)

For example, the well-known ideal gas law (one mole) will assume the form

F(P,V,T) = PV−RT= 0 (24)

In this case, of course, we can easily solve for each of the functions fi :

P(V,T) =
RT
V

, V(T,P) =
RT
P

, T(P,V) =
PV
R

(25)
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However, for more complicated equations of state, e.g., a Van der Waals gas, it may not be possible to find closed-
form expressions for these functions. That is why implicit differentiation is useful.

Example 5. Suppose we are experimenting with an ideal gas, so that it obeys the ideal gas equation PV−RT= 0,
and suppose we consider P as a function of V and T, i.e., P= P(V,T). Find the partial derivatives∂P

∂T and ∂P
∂V .

In this case we can simply solve forP, i.e.

P=
RT
V

(26)

so that the desired partial derivatives are

∂P
∂T

=
R
V
,

∂P
∂V

=−RT
V2 (27)

However, if we were to use implicit differentiation ofF , then

1. Partial differentiation ofPV−RT= 0 with respect toV gives
(

∂F
∂V

)

T
=

(
∂F
∂P

)

T,V

(
∂P
∂V

)

T
+

(
∂F
∂V

)

P,T
= 0 (28)

so
∂P
∂V

V +P= 0, implying that
∂P
∂T

=−P
V

(29)

This result is equivalent to our earlier result in (27) sinceP=
RT
V

.

2. Similarily, partial differentiation ofPV−RT= 0 with respect toT gives
(

∂F
∂T

)

V
=

(
∂F
∂P

)

T,V

(
∂P
∂T

)

V
+

(
∂F
∂T

)

P,V
= 0 (30)

so
∂P
∂T

V −R= 0, implying that
∂P
∂T

=
R
V

(31)

Example 6. Suppose that
x2y2z3+zxsiny= 5 (32)

defines z as a function of x and y. Then find
∂z
∂x

.

To find the desired derivative we could first define the function

F(x,y,z) = x2y2z3+zxsiny−5= 0 (33)

But we don’t even have to do this. We can simply partially differentiate the original given equation, (32), implicitly
with respect tox, taking into consideration thatz is a function ofx andy:

2xy2z3+zsiny+3x2y2z2 ∂z
∂x

+xsiny
∂z
∂x

= 0 (34)

Now solve for the partial derivative:
∂z
∂x

=− 2xy2z3+zsiny
3x2y2z2+xsiny

(35)

This is actually Example 12.20 from the textbook, Page 837. But note that we have not relied on any fancy formulas
– simple, straightforward differentiation will achieve the desired result.
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6.1.3 Some relations between partial derivatives of implicit functions.

We now want to talk about implicitly differentiatingF(x,y,z) = 0 in general. First of all, we have to settle on what
variable is to be considered a function of the other variables. Suppose that we wish to considerzas a function ofx
andy, which we may write either as

z= z(x,y) or z= f (x,y) (36)

We’ll use the former to avoid too many variables. The variable dependency graph associated with this assumption
is as follows

y

F

x y z

x

Our goal is now to obtain the partial derivatives

∂z
∂x

and
∂z
∂y

(37)

Although the textbook uses this notation, it is often betterto keep track of all of the independent variables by
indicating which ones are being kept constant during the partial differentation. The above derivatives would then
be written as (

∂z
∂x

)

y
and

(
∂z
∂y

)

x
(38)

This is standard practice in applications, e.g., physical chemistry, and it is a good practice. Here, we shall alternate
between both notations as the need arises.

We differentiate (21), henceF(x,y,z), with respect to each ofx andy to obtain

dF
dx

=
∂F
∂x

+
∂F
∂z

∂z
∂x

= 0 (39)

dF
dy

=
∂F
∂y

+
∂F
∂z

∂z
∂y

= 0

and solve for the derivatives in each case to obtain
(

∂z
∂x

)

y
=−Fx

Fz
,

(
∂z
∂y

)

x
=−Fy

Fz
(40)

Once again, you shouldn’t need to memorize these final formulas. They have been presented only to outline the
method behind the process. If you perform the required implicit differentiation properly, you will be able to extract
the desired partial derivative.

We have already obtained the partials ofz(x,y) with respect tox andy in (40). Now let us obtain the partials of (i)
x(y,z) and (ii)y(x,z).

1. Case (i): We are treatingx as a function ofy andz, i.e.,

F(x(y,z),y,z) = 0 (41)

Differentiating partially with respect toy yields

Fx
∂x
∂y

+Fy = 0, implying

(
∂x
∂y

)

z
=−Fy

Fx
(42)
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Differentiating partially with respect toz yields

Fx
∂x
∂z

+Fz = 0, implying

(
∂x
∂z

)

y
=−Fz

Fx
(43)

2. Case (ii): We now treaty as a function ofx andz, i.e.,

F(x,y(x,z),z) = 0 (44)

Differentiating partially with respect toy yields

Fx+Fy
∂y
∂x

= 0, implying

(
∂y
∂x

)

z
=−Fx

Fy
(45)

Differentiating partially with respect toz yields

Fy
∂y
∂z

+Fz = 0, implying

(
∂y
∂z

)

x
=−Fz

Fy
(46)

We now derive some relations between the various partial derivatives involving these variables – you may have
seen or will see such relations in your physical chemistry courses.

First of all, note that (
∂x
∂y

)

z
=

1
(∂y/∂x)z

(47)

This works for all other combinations, i.e,
(

∂a
∂b

)

c
=

1
(∂b/∂a)c

(48)

Also note that, for example,
(

∂x
∂y

)

z

(
∂y
∂z

)

x

(
∂z
∂x

)

y
=

(

−Fy

Fx

)(

−Fz

Fy

)(

−Fx

Fz

)

=−1 (49)

If we now letx= P, y=V andz= T andF(P,V,T) = 0 be the ideal gas relationPV−RT= 0, then the reader can
verify by straightfoward calculation that

(
∂P
∂V

)

T

(
∂V
∂T

)

P

(
∂T
∂P

)

V
=−1 (50)

7 Optimization

7.1 Relative critical points

A recurring application of differential calculus is the useof the derivative of a function to find its maximum or
minimum values over its domain (given they exist). For a continuous function of a single variable, acritical point
of the function is any point where the derivative is zero or isundefined. At the point where the derivative is zero,
the function is neither increasing nor decreasing - it is locally ‘flat’. If the derivative is defined over the entire
domain of the function, there are three possible cases in which a critical point will occur

• For the functionf (x), illustrated in Figure 23, left column, the pointx∗, f (x∗) is a critical point at which
f ′(x∗) = 0. The fact thatf ′′(x∗) is positive, means that this critical point is a minimum.

• The functiong(x), in Figure 23, central column, depicts another critical point atx∗. We know that this is a
maximum becauseg′′(x∗)< 0.
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Figure 23: The extrema of a single variable function: Left: aminimum. Center: a maximum. Right: a point of
inflexion.

• The functionh(x) in Figure 23, right column, depicts yet another critical point at x∗. This is a point of
inflexion, which we know from the fact thath′′(x∗) = 0 and thath′′(x) changes sign atx∗.

As with single variable functions, there will be points in the domain of a multivariable function where the function
will reach either a maximum or a minimum. Such points are morecomplex to find than in the single variable case.
For a function of two variables,f (x,y), we have the following definitions:

Definition 2 (Relative minimum). A point(x∗,y∗) in the domain of a function f(x,y) is a relative minimumif there
exists a circle CR, of radius R, centered on(x∗,y∗) such that

f (x,y)≥ f (x∗,y∗), for all points(x,y) within CR

Definition 3 (Relative maximum). A point (x∗,y∗) in the domain of a function f(x,y) is a relative maximumif
there exists a circle CR, of radius R, centered on(x∗,y∗) such that

f (x,y)≤ f (x∗,y∗), for all points(x,y) within CR

We have seen that at a critical point of a single variable function f (x), the first derivative is such thatf ′(x) = 0,
meaning that the tangent to the graph is flat (that is, horizontal). In a multivariable function, the analogous condition
is that thetangent planeto the surface defined by the function is flat. To see this, consider Figure 24, left. The
function z= x2 + y2 is such that at(x,y) = (0,0), z= 0. Consider a circleCR with radiusR> 0, centered on
(x,y) = (0,0). Every point inCR maps onto a point on the surface at whichz≥ 0, which is greater than the value
of zat (0,0). Therefore we can conclude that the point(0,0) is a critical point of the functionz= x2+y2, at which
the function attains a relative minimum. Note that at the critical point, the function is locally flat and therefore has
a horizontal tangent plane at that point.

A similar argument holds for the local maximum of the function z= 1− x2 − y2 illustrated in Figure 24, right.
Here, for a circleCR, of radiusR> 0, centered on(0,0), every point in the circle maps onto a pointz≤ 1. At (0,0),
z= 1. Therefore(0,0) is a critical point at which the function attains a relative maximum. Note that, once more,
the tangent plane to the surface is horizontal.

We have therefore seen that a critical point of a multivariable function is characterized by having a horizontal
tangent plane. Consider now the surface defined byz= f (x,y). This can be regarded as the level surface of a
function w = F(x,y,z) = f (x,y)− z, at whichw = 0. The tangent plane to the level surface at a critical point is
horizontal. This means that the normal to the tangent plane is parallel with the unit vectork, which points in the
positivez direction. But we have already seen (in Section 5) that the normal to the tangent plane of a level surface
of a function such asw= f (x,y)−z is given by

∂F
∂x

i +
∂F
∂y

j +
∂F
∂z

k =
∂ f
∂x

i +
∂ f
∂y

j −k
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z
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x

z

y
x

z=1-x2-y2z=x2+y2

Tangent planes CR

CR

Figure 24: Two multi-variable functions with critical points at(x,y) = (0,0). Left: a relative minimum. Right: a
relative maximum.

Since the normal to the tangent plane is parallel withk, we may conclude that at a critical point of a function
f (x,y), the partial derivatives∂ f

∂x = ∂ f
∂y = 0. That is to say

∇ f (x,y) =

[
0
0

]

For functions of three variables, such asw= f (x,y,z), critical points are those where

∇ f (x,y,z) =






∂ f
∂x
∂ f
∂y
∂ f
∂z




=





0
0
0





Critical points of functions also occur when any of their partial derivatives are undefined (but we will not be
considering this case).

Example 7. Show that the critical points of the functions illustrated in Figure 24 are both located at(x,y) = (0,0).

For the casez= x2 + y2, the gradient is 2xi + 2yj , whilst for z= 1− x2 − y2 the gradient is−2xi − 2yj . The
components of both gradients equal zero at(x,y) = (0,0). This is therefore a critical point of both functions.

Example 8. Find the critical point of the function z= f (x,y) = 2x2+10y2−6xy−18x−6y+100.

First, compute∂ f
∂x :

∂ f
∂x

= 4x−6y−18

Next, compute∂ f
∂y :

∂ f
∂y

= 20y−6x−6

At a critical point, the two partial derivatives,∂ f
∂x and ∂ f

∂y must simultaneously equal zero. Solving the system of
equations

4x−6y−18= 0
20y−6x−6= 0

we find that these equations are satisfied whenx= 9,y= 3. Therefore the critical point off (x,y) is at(x,y) = (9,3).

Math 217 - Lecture 8 Fall 2011



Part II: Differential calculus of multivariable functions 28

7.2 The second derivative test

In Example 8, the functionf (x,y) can be written as a sum of squares:f (x,y) = 2x2+10y2−6xy−18x−6y+100=
(x−3y)2+(y−3)2+(x−9)2+10. At the critical point, each of the squared terms vanishes, so thatf (9,3) = 10.
Since each of the squared terms is positive, it follows thatf (x,y) ≥ 10, for all x,y. This shows that the critical
point of this function is a minimum.

Determining whether a critical point is a relative minimum or a maximum in the above manner is not always
straightforward - in this case, we were able to re-write the function as a sum of squares, but this is not always
possible. Instead, we need a more systematic way of determining the nature of critical points for multivariable
functions. We shall focus on functions of two variables, such as f (x,y).

Suppose we determine that the critical point of a functionf (x,y) is at(x,y) = (x∗,y∗). This implies that∂ f
∂x and ∂ f

∂y
both equal zero at(x∗,y∗).

Now consider the Taylor series expansion off (x,y) about the point(x∗,y∗), which, from (10) is

f (x,y) = f (x∗,y∗)+(x−x∗)
∂ f
∂x

(x∗,y∗)
︸ ︷︷ ︸

=0

+(y−y∗)
∂ f
∂y

(x∗,y∗)
︸ ︷︷ ︸

=0

+
1
2!

A(x−x∗)2+B(x−x∗)(y−y∗)+
1
2!

C(y−y∗)2+ · · ·

= f (x∗,y∗)+
1
2

A(x−x∗)2+B(x−x∗)(y−y∗)+
1
2

C(y−y∗)2+ · · ·

where
A= ∂ 2 f

∂x2 (x
∗,y∗) B= ∂ 2 f

∂x∂y(x
∗,y∗) C= ∂ 2 f

∂y2 (x
∗,y∗)

Suppose we now complete the square of the expression

1
2

A(x−x∗)2+B(x−x∗)(y−y∗)+
1
2

C(y−y∗)2

by simply adding and subtracting the term12
B2

A (y−y∗)2. We would then obtain

f (x,y) = f (x∗,y∗)+
1
2

A(x−x∗)2+B(x−x∗)(y−y∗)+
1
2

B2

A
(y−y∗)2− 1

2
B2

A
(y−y∗)2+

1
2

C(y−y∗)2+ · · ·

= f (x∗,y∗)+
1
2

A

(

(x−x∗)+
B
A
(y−y∗)

)2

︸ ︷︷ ︸

Term 1

+
1
2

(

C− B2

A

)

(y−y∗)2

︸ ︷︷ ︸

Term 2

+ · · · (51)

Now suppose the magnitudes of the quantitiesx−x∗ andy−y∗ are small enough such that Term 1 and Term 2 in
(51) dominate higher order terms inx−x∗ andy−y∗. We can then determine the nature of the critical point(x∗,y∗)
as follows:

7.2.1 Case I:AC−B2 > 0 and A> 0 (implying that C> 0)

The fact thatA> 0 means that Term 1 in (51) is positive. WithA> 0, the inequalityAC−B2 > 0 also ensures that
Term 2 in (51) is positive. Therefore in a small neighborhoodof (x∗,y∗), we havef (x,y) ≥ f (x∗,y∗). Therefore
under these conditions,(x∗,y∗) is arelative minimum .

7.2.2 Case II:AC−B2 > 0 and A< 0 (implying that C< 0)

The fact thatA< 0 means that Term 1 in (51) is negative. WithA< 0, the inequalityAC−B2 > 0 also ensures that
Term 2 in (51) is negative. Therefore in a small neighborhoodof (x∗,y∗), we havef (x,y) ≤ f (x∗,y∗). Therefore
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under these conditions,(x∗,y∗) is arelative maximum.

7.2.3 Case III:AC−B2 < 0

To analyze this case, assume first thatA> 0 (a similar argument holds in the caseA< 0). This means that Term 1 in
(51) is non-negative whilst Term 2 is non-positive. Therefore along the liney−y∗ = 0, sufficiently close to(x∗,y∗),
the functionf (x,y) will increase since Term 2 is zero. Along the line(x−x∗)+ B

A(y−y∗) = 0, sufficiently close to
(x∗,y∗), the functionf (x,y) will decrease since Term 1 is zero. In other words, at this critical point, f (x,y) can be
either increasing or decreasing, depending on the direction of interest in thexy-plane. This is known as asaddle
point. An example of such a point is(x,y) = (0,0) when mapped by the functionz= f (x,y) = x2−y2, sketched
in Figure 25. Along the liney= 0, this function is increasing in both the positive and negative x directions. Along
the linex= 0, this function is decreasing in both the positive and negative y directions.

Saddle point

z

y
x

inc

inc

decdec

z=f(x,y)=x2-y2

Figure 25: A sketch of the functionz= f (x,y) = x2−y2, with a saddle point at(x,y) = (0,0).

7.2.4 Case IV:AC−B2 = 0

In this case, no conclusion can be drawn regarding the natureof the critical point from the second derivative test.
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7.3 Absolute minima and maxima

We have now arrived at the most important aspect of optimization - determining the maximum and minimum
values attained by a functionf (x,y) over a regionR of interest. This is analogous to the problem from first-year
calculus of finding the absolute maximum and minimum values of a function f (x) over an interval[a,b].

Let us first state the important definitions:

1. Theabsolute maximumof a function f (x,y) on a regionR⊆ R
2 is the largest valueM attained byf (x,y)

onR, i.e.,
f (x,y)≤ M for all (x,y) ∈ R. (52)

The point(s)(a,b) at which f attains this maximum value is (are) called absolute maximumpoint(s).

2. Theabsolute minimum of a function f (x,y) on a regionR⊆ R
2 is the least valueM attained byf (x,y) on

R, i.e.,
f (x,y)≥ M for all (x,y) ∈ R. (53)

The point(s)(a,b) at which f attains this minimum value is (are) called absolute minimumpoint(s).

Recall the procedure for finding absolute maximum and minimum values of a functionf (x) over an interval[a,b]:

1. Determine all critical points off (x) in [a,b] and evaluatef at these points.

2. Evaluatef (x,y) at the endpoints of[a,b], i.e., f (a) and f (b).

3. Select the largest and smallest values off (x) attained at the points examined in Steps 1 and 2.

For functionsf (x,y), the regionRwill be a two-dimensional region ofR2, for example, the region contained inside
a circle or a rectangle. Such regionsR will generally not have endpoints but will be enclosed byboundary curves.
The analogous procedure of finding the absolute maximum and minimum values off (x,y) over regionR will be
as follows:

1. Determine all critical points off (x,y) in Rand evaluatef at these points. (Note that we really don’t need to
spend time determining whether these critical points are relative maxima, minima or saddle points - it is the
value of the functionf (x,y) that is usually more important.)

2. Determine the maximum and minimum values achieved byf (x,y) over the boundary curve(s) ofR.

3. Select the largest and smallest values off (x,y) attained at the points examined in Steps 1 and 2.

Note: There is one important theoretical technicality. How do we know that f attains an absolute maximum or
absolute minimum on a regionR? In most of the examples that we shall encounter,Rwill be aclosedandbounded
region ofR2, e.g., the interior of a rectangle, circle or ellipse. In such cases, iff (x,y) is a continuous function ofx
andy, then it must attain absolute maximum and minimum values onR. (Recall the case of continuous functions
f (x) on closed intervals[a,b] in first-year calculus.)

Example 9. Find the maximum and minimum values of the function f(x,y) = x2+xy+y2 over the square region
R defined by−1≤ x≤ 1, −1≤ y≤ 1

Step 1: Solve for all critical points off (x,y) that lie inR. They must satisfy

∂ f
∂x = 2x+y= 0
∂ f
∂y = x+2y= 0

The only solution of this system is(0,0). At this point f (0,0) = 0.
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Just for interest’s sake, we shall perform a second derivative test of this point:

A= fxx(0,0) = 2, B= fxy(0,0) = 1, C= fyy(0,0) = 2, (54)

so thatAC−B2 = 3> 0. SinceA> 0, (0,0) is a relative minimum.

Step 2: We now determine the maximum and minimum values achieved byf (x,y) on the boundary ofR.

(a) The liney = 1, with −1 ≤ x ≤ 1. On this line, the functionf (x,y) is given by f (x,1) = x2+ x+1,
which we shall callg(x). The problem is now to find the max and min values ofg(x) on [−1,1], a
first-year calculus problem.

Sinceg′(x) = 2x+1, the critical point ofg(x) is atx=−1/2. At this pointg(−1/2) = 3/4.

We must also check the endpointsx=±1: g(−1) = 1 andg(1) = 3.

(b) The liney=−1, with−1≤ x≤ 1. Here,f (x,y) is given by f (x,−1) = x2−x+1, which we shall call
h(x). Now find the max and min values ofg(x) on [−1,1].

Sinceh′(x) = 2x−1, the critical point ofh(x) is atx= 1/2. At this pointh(1/2) = 3/4.

We also check the endpointsx=±1: h(−1) = 3 andh(1) = 1.

(c) The linex= 1, with−1≤ y≤ 1. Here,f (x,y) is given by f (1,y) = 1+y+y2, which we shall callk(y).
We must now find the max and min values ofk(y) on [−1,1]. This problem turns out to be identical to
the first case, except thatx is now calledy. But just to be complete, we’ll work it out in detail.

k′(y) = 2y+1, the critical point ofk(y) is aty=−1/2. At this pointk(−1/2) = 3/4.

We also check the endpointsy=±1: k(−1) = 1 andk(1) = 3.

(d) The linex=−1, with−1≤ y≤ 1. Here,f (x,y) is given by f (−1,y) = 1−y+y2, which we shall call
l(y). Now find the max and min values ofg(x) on [−1,1].

Sincel ′(y) = 2x−1, the critical point ofl(y) is atx= 1/2. At this pointl(1/2) = 3/4.

We also check the endpointsx=±1: l(−1) = 3 andl(1) = 1.

Reviewing all of the above results, we have found the following: On the regionR, the functionf (x,y) = x2+xy+y2

achieves

1. the absolute maximum value 3 at(1,1) and(−1,−1)

2. the absolute minimum value 0 at(0,0).

The results of our calculations are presented in the figure below.

Example 10. Find the absolute max/min values of f(x,y) = x2+ xy+ y2 over the region D= {(x,y) | x2+ y2 ≤
1, y≥ 0}.
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1-1 0

1

-1

x

y

f = 3/4

f = 1

f = 3/4

f = 3

f = 3

f = 1
f = 3/4

f = 3/4

f = 0

abs min

abs max

abs max

This is the same function as considered in the previous example but the regionD is different.D is the semicircular
region that is enclosed by the circlex2+y2 = 1 and thex-axis.

1. Step 1: Determine critical points off in D. (0,0) is the only critical point off . It also lies in the regionR.
Here f (0,0) = 0.

2. Step 2: Examinef over the boundary ofD. We examine the two curves that comprise the boundary.

(a) The liney= 0, −1≤ x≤ 1, on which f (x,0) = x2. On this line, f achieves a minimum value of 0 at
(0,0) (the critical point of Step 1) and the maximum value of 1 at(±1,0).

(b) The semicircular curvex2+y2 = 1, y≥ 0. We can parameterize this curve as

x(t) = cost, y(t) = sint, 0≤ t ≤ π (55)

On this curve, we can define the function

g(t) = f (x(t),y(t)) (56)

= cos2 t +cost sint +sin2 t

= 1+
1
2

sin2t, 0≤ t ≤ π.

This is a first-year calculus problem.

Sinceg′(t) = cos2t, the critical points ofg(t) lie at t = π/4 and 3π/4:

i. At t = π/4,g(π/4) = 1+1/2= 3/2. This occurs atx= cos(π/4) = 1/
√

2,y= sin(π/4) = 1/
√

2.

ii. At t = 3π/4,g(3π/4) = 1−1/2= 1/2. This occurs atx= cos(3π/4) =−1/
√

2,y= sin(3π/4) =
1/
√

2.

8 Least squares optimization

Suppose that you are given some experimental data in the formof ordered pairs(Ti ,Pi), i = 1,2, · · · ,N that, when
plotted, suggest that there is some kind of relationship between theTi andPi , as sketched in Figure 26.

From Figure 26, it appears that as propertyT increases, so does propertyP. (For example, this could be a plot
of pressureP vs. temperatureT of a gas at fixed volumeV.) Of course, one would like to be able describe the
relationship a little better than this, perhaps in the form of a functional relationship, i.e.,

P= f (T) (57)
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Figure 26: Experimental data points(Ti ,Pi).

In practice, we have to acknowledge that there are errors in the data points, so we would not demand that the
graph of f (T) would necessarily pass through all data points. Note that ifthe number of points is small, and we
allow f (T) to be a polynomial of sufficiently high degree, we could fit a curve through these points. An example
is presented in Figure 27. We would probably expect that the relationship betweenT and P to be much less
complicated, i.e. not as “bumpy”, which implies that the function f (T) would be much simpler in form.

+ +

+

+
+

+

+

T1
T

P

+

TN

PN

P1

(Ti,Pi)
+

Figure 27: Fitting a high order polynomial to the data.

One of the simplest representations which is useful in many applications is the straight line, i.e., that the following
fundamental relationship underlies the pattern seen in theexperimental data,

P= f (T) = aT+b (58)

wherea andb are constants. In other words, we shall try to produce a straight line approximation to the data points
so that

Pi ≈ aTi +b, i = 1,2, · · · ,N (59)

is a good approximation, as sketched in Figure 28.

Question: “What is the line that ‘best fits’ the data points?”

Answer: There are actually many “best lines”: It all depends on the “measure of fit” that you use.

In some way, we would like our straight-line fitting of the data to minimize theerror of the fit. The situation at
each value ofTi is sketched in Figure 29.
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P= aT+b

Figure 28: Fitting the straight line relationshipP= aT+b to the data.

+

Ti

Pi
P= aT+b

aTi +b
predicted value

actual data value

error ei

T

P

Figure 29: The errorei between the data point(Ti ,Pi) and the prediction given by the fitted lineP= aT+b.

1. At each pointTi , the “true” value ofy is the experimental valuePi .

2. The value predicted by the straight line fit isf (Ti) = aTi +b.

3. Theerror associated with the straight line fit is

ei = Pi − (aTi +b) (60)

Note that this error can be either positive or negative (or zero). As such, it wouldnot be a good idea to consider
the total error of the fit to be simply the sum of the errors, i.e.,

S=
n

∑
i=1

ei (61)

since we could have a large positive error cancelling a largenegative error – the fit would be bad but the net error
would be close to zero.

Thus, in some way, we should look at the magnitudes of the errors. There are several possibilities, including

1. the total absolute error, i.e.,

S=
N

∑
i=1

|ei |=
N

∑
i=1

|Pi − (aTi +b)| (62)

This type of fitting is used quite often in statistical applications and is known as an “L1 fit.” Unfortunately,
it is somewhat complicated to perform because of the absolute values. (That being said, there is software
available to perform the fit.) A much easier method is to consider
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2. the sum of the squares of the errors:

S=
N

∑
i=1

(ei)
2 =

N

∑
i=1

[Pi − (aTi +b)]2 (63)

This measure, which is very commonly employed in scientific applications, is the basis of the so-called
“method of least squares”.

Of course, the question still remains: How do we find the best-fitting line according to least squares? The answer
is that we consider the sumSof squares as a function of the parametersa andb:

S(a,b) =
N

∑
i=1

(ei)
2 =

N

∑
i=1

[Pi − (aTi +b)]2 (64)

(Recall that the data points(Ti ,Pi), 1≤ i ≤ N, as well asN, are given.) The “best” values ofa andb are those that
minimize the functionS(a,b).

The minimum ofS(a,b) must occur at a critical point ofS(a,b) – points(a,b) for which the partial derivatives
∂S
∂a(a,b) and ∂S

∂b(a,b) are both zero, or for which at least one of the derivatives fails to exist.

We can compute both partial derivatives in a straightforward way – keep in mind that theTi andPi are constants
and we are differentiating with respect toa andb:

∂S
∂a

= 2
N

∑
i=1

[Pi −aTi −b](−Ti) (65)

= −2
N

∑
i=1

[Pi −aTi −b]Ti

∂S
∂b

= 2
N

∑
i=1

[Pi −aTi −b](−1)

= −2
N

∑
i=1

[Pi −aTi −b]

Since both partial derivatives exist, the condition for a critical point is that they both vanish. Setting∂S
∂a(a,b) = 0,

dividing by (-2) and expanding the sums yields the condition

N

∑
i=1

TiPi −
N

∑
i=1

aT2
i −

N

∑
i=1

bTi = 0 (66)

Similarily, setting∂S
∂b(a,b) = 0, dividing by (-2) and expanding the sums yields the condition

N

∑
i=1

Pi −
N

∑
i=1

aTi −
N

∑
i=1

b= 0. (67)

We can takea andb out of the summations above and rearrange the equations to produce the following
(

N

∑
i=1

T2
i

)

a +

(
N

∑
i=1

Ti

)

b =
N

∑
i=1

TiPi (68)

(
N

∑
i=1

Ti

)

a + Nb =
N

∑
i=1

Pi

The coefficient ofb in the second equation follows from

N

∑
i=1

b= b
N

∑
i=1

1= bN. (69)
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Equation (68) is a linear system of equations in the unknownsa andb of the form

A11a+A12b = B1 (70)

A21a+A22b = B2.

(Note thatA21=A12. The coefficientsAi j andB j of a andb are determined from the data points(Ti ,Pi). This linear
system can be solved by elimination or by Cramer’s Rule, provided that the determinant of the system is nonzero,
i.e.,

D = A11A22−A21A12 6= 0. (71)

Notes:

1. The method of least squares is easily extended to considerhigher order polynomial fits of data. For example,
suppose that we wish to fit the data points(xi ,yi), 1≤ i ≤ N, with a quadratic, i.e.

y= f (x) = ax2+bx+c, (72)

wherea, b andc are parameters to be determined. We would then consider the following sum of squared
errors,

S(a,b,c) =
N

∑
i=1

[yi −ax2
i −bxi −c]2 (73)

and impose the condition for a critical point, i.e.

∂S
∂a

=
∂S
∂b

=
∂S
∂c

= 0. (74)

This leads to a set of three linear equations ina, b andc which then can be solved.

2. Sometimes, the relation between thexi andyi is more complicated than a linear relation, for example,

y= bxa, (75)

once again wherea andb are to be determined. This problem can be recast into a linearproblem if we take
logarithms of both sides, i.e.

logy= alogx+ logb. (76)

We now consider our data points to be

ui = logxi , vi = logyi . (77)

A plot of vi vs. ui will be roughly approximated by a straight line with slopea andv-interceptb. To determine
the best values ofa andb, we employ the method of least squares on the data(ui ,vi).
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9 Optimization under constraints

The optimization problems we have looked at so far have involved finding the maximum or minimum of a function
z= f (x,y) on its domain. We saw that atanypoint (x,y) in the domain off (x,y) where∇ f = 0, the function will
have a critical point, which may be a relative minimum, or a relative maximum or saddle point.

Suppose now that we are interested in finding the minima and maxima of f (x,y) (called theobjective function),
but only on a pre-specified set of points in its domain. Suppose also that these points are those that satisfy the
constraintg(x,y) = 0. In such a case, this optimization problem is termed aconstrained optimization problem.
This problem can be formally stated as

Minimize/maximize z= f (x,y)
subject to g(x,y) = 0

To visualize this, remember that for the unconstrained problem, finding maxima or minima ofz whenz= f (x,y)
involved finding points in the(x,y) plane where the surface defined by the functionz= f (x,y) is locally flat (i.e.
has a horizontal tangent plane). In the constrained problem, note that the constraintg(x,y) = 0 defines a curve in
thexy-plane and a surface in thexyz-space. The intersection of the surfaces defined byz= f (x,y) andg(x,y) = 0
define a curve in thexyz-space. Therefore in the constrained optimization problem, we seek the extreme (i.e.
minimum or maximum) value ofz attained by the curve resulting from the intersection of thesurfaces given by
z= f (x,y) andg(x,y) = 0. Rather than seeking the maxima/minima of the two dimensional surfacez= f (x,y),
the dimensionality of the problem is reduced by the number ofconstraints (in this case, by one) so that we seek the
maxima/minima of the one dimensional curve given by the intersection ofz= f (x,y) andg(x,y) = 0.

The following examples will illustrate this idea.

Example 11. Find

• the minimum of the function z= x2+y2 in the xy-plane

• the minimum of the function z= x2+y2 subject to the constraint x= 1.

In the first problem, illustrated in Figure 30, the minimum ofz across thexy-plane can be found by inspection to
be at(x,y) = (0,0). At this point,z= 0.

x

y

x

yz

z=x2+y2Level sets of z=x2+y2

Minimum at (x,y)=(0,0)

Figure 30: Unconstrained minimization ofz= x2+y2.

For the second problem, illustrated in Figure 31, note that by substituting the constraintx = 1 into the function
z= x2+ y2, we obtainz= 1+ y2, which is a parabola. This is the same parabola illustrated in Figure 31, right,
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which results from the intersection of the surfacesx= 1 andz= x2+y2. By inspection, this curve has a minimum
at y = 0, and therefore the minimum ofz= x2+ y2 along the constraintx = 1 occurs at(x,y) = (1,0), at which
z= 1.

x

y

x

yz

x

y

z

z=x2+y2
Level sets of z=x2+y2

x=1

x=1

z=1+y2
Minimum at (x,y)=(1,0)

'Side' view 'Front' view

Minimum at (x,y)=(1,0)

Figure 31: Minimization ofz= x2+y2 along the constraintx= 1.

Example 12. Find the shortest distance between the origin and the plane x+y+z= 1.

This can be solved in two ways. The first way is to find the lengthof the line starting at the origin, as shown in
Figure 32, perpendicular to the plane, passing through the origin. The line perpendicular to the plane is parallel to
the normal vector to the plane,n = [ 1 1 1 ]T . Since it passes through the origin, the parametric equation of
the position vectorr(t) of points in this line is

r(t) =





x(t)
y(t)
z(t)



=





1
1
1



 t

This line intersects the planex+y+z= 1 when

[
1 1 1

]T r(t) = 3t = 1⇒ t =
1
3

At t = 1
3, the position vector isr

(
1
3

)
= 1

3[ 1 1 1 ]T . The minimum distance to the plane from the origin is the
length of the vectorr(1

3), which is 1√
3
. Note that at the point of intersection of this line, the sphere of radius 1√

3
just touches the planex+y+z= 1, as shown in Figure 32.

(0,0,1)

(1,0,0)

(0,1,0)

x

z

y

(1/3,1/3,1/3)x2+y2+z2=1/3

x+y+z=1

n

Figure 32: The shortest distance from the origin to the planex+y+z= 1. The vectorn is normal to the plane.

The other method of solving this problem is to regard it as theoptimization
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Minimize h(x,y,z) =
√

x2+y2+z2

Subject to x+y+z= 1

This is equivalent to the somewhat easier-to-solve optimization

Minimize m(x,y,z) = x2+y2+z2

Subject to x+y+z= 1

Level sets of the functionw= m(x,y,z) are spheres of radiusw
1
2 , centered on the origin, as shown in Figure 33.

Therefore this minimization problem is equivalent to finding the minimum radius of the spherew= m(x,y,z) that
just touches the planex+y+z= 1, as in Figure 32.

yx

z

w=4

yx

z

yx

z

w=9
w=16

yx

z

w=1

Decreasing values of function w=x2+y2+z2

Figure 33: Decreasing values of the functionw= x2+y2+z2.

To find this sphere, we now re-write the constraint as

z= 1−x−y

and substitute this condition into the objective functionm(x,y,z) to obtain

m(x,y,1−x−y) = 2x2+2y2−2x−2y+2xy+1

which is to be minimized over thexy-plane. To do this, we solve for the critical point(s) in thexy-plane where

∇m(x,y,1−x−y) =

[
4x−2+2y
4y−2+2x

]

=

[
0
0

]

Solving these simultaneous equations, we find that the only critical point is x = y = 1
3. To ensure that this is a

minimum, it can be verified that the second derivative test yieldsA= C = 4> 0 andAC−B2 = 12> 0. On the
planex+y+z= 1, x= y= 1

3 ⇒ z= 1
3. At the point(x,y,z) = (1

3,
1
3,

1
3), w= 1

3, which corresponds to the sphere
of radius 1√

3
, which is the distance from the origin to the constraint plane, in agreement with the previous method.

Note the parallels between this optimization and that of Example 11. There, the constraintx = 1 reduced the
problem from optimizing over the two-dimensional surfacez = f (x,y) = x2 + y2 to optimizing over the one-
dimensional curve defined by

z= 1+y2

x= 1

If the optimization in this example were unconstrained, then the goal would be to minimize the functionw =
m(x,y,z) = x2+y2+z2 over the entire three-dimensional space,R

3, as illustrated in Figure 33. This would yield
a minimum at the origin (that is, the sphere with radius length zero). In the constrained case however, the con-
straint x+ y+ z= 1 reduces the dimension of the space over which we seek the minimum of m(x,y,z) to the
two-dimensional surface given bym(x,y,1−x−y) = 2x2+2y2−2x−2y+2xy+1.
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9.1 The Lagrange multiplier optimization method

For constrained optimizations, we have seen examples wherethe constraint can be re-arranged and substituted
into the objective function to be maximized or minimized. This is not always easy or straightforward. One such
example is the optimization

Maximize f (x,y) = xy
Subject to g(x,y) = x2+y2−1= 0

Instead, we turn to another method finding the critical points of the objective functionf (x,y) on the constraint.

Figure 34 shows some of the level sets off (x,y) plotted on thexy-plane, along with the constraintg(x,y) =
x2 + y2 − 1 = 0 (which is the unit circle). Visually, we can see that the maxima occur at the points where the

highest level hyperbola just touches the unit circle, atP, (x,y) =
(

1√
2
, 1√

2

)

and atR, (x,y) =
(

− 1√
2
,− 1√

2

)

. Note

also that there are two minima atQ (x,y) =
(

1√
2
,− 1√

2

)

and atS, (x,y) =
(

− 1√
2
, 1√

2

)

.

Note that atP the vectorTP is tangent to both the level curvef (x,y) = 0.5 and the constraint curveg(x,y) = 0,
as are the vectors,TQ at Q, TR at R, TS at S. Note also that the gradient vectors∇ f and∇g are also parallel at
P,Q,R,S.

x

y

f(x,y)=0.5

f(x,y)=0.25

f(x,y)=0.75

f(x,y)=0.5

f(x,y)=0.75

f(x,y)=0.25

f(x,y)= - 0.5

f(x,y)= - 0.25

f(x,y)= - 0.75

f(x,y)= - 0.5

f(x,y)= - 0.75

f(x,y)= - 0.25

P

Q
R

S

TP

TS

TR

TQ

∇g ∇f , ∇g

∇f , ∇g ∇g

∇f

∇f

Figure 34: Level curves off (x,y) = xy and the constraintx2+ y2 = 1. ArrowsTP,TQ,TR,TS represent tangent
vectors to both the level curves and the constraint curve atP,Q,R,Srespectively.

To see why this is the case, note that for the unconstrained optimization of a functionz= f (x,y), a point in the
xy-plane is a critical point ofz= f (x,y) if, along anycurver(t) =

[
x(t) y(t)

]T
passing through the point in

anydirection, is such that
dz
dt

= ∇ f · dr(t)
dt

= 0

Sincedr(t)
dt can represent a vector inanydirection, this condition requires that∇ f = 0 for the point to be a critical

one.

However in the constrained optimization case, we require that dz
dt = 0 along theconstraint direction only. In other

words, for a point on a constraint to be a critical one, we require that the directional derivative off (x,y) be zero
only along the constraint. If̂T represents a unit tangent vector to the constraint (which isa vectoralong the
constraint), then a critical point on the constraint is characterized by the condition

∇ f · T̂ = 0
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which means that the gradient∇ f is orthogonal to any vector that is tangent to the constraint. Now since the
gradient of the constraint∇g is also orthogonal to any tangent to the constraint, it must follow that∇ f and∇g are
parallel. Two parallel vectors can therefore be related by ascalingλ (which, in this case, we call theLagrange
multiplier):

∇ f = λ∇g (78)

In order to solve for the coordinates of the critical point, (78) gives two simultaneous equations:
∂ f
∂x = λ ∂g

∂x
∂ f
∂y = λ ∂g

∂y

and the constraint
g(x,y) = 0

gives a third equation. Since there are three unknowns:x,y,λ , these equations can be solved for the critical point(s)
(x,y).

For the above example therefore, the simultaneous equations to solve are then
∂ f
∂x = λ ∂g

∂x ⇒ y= 2λx
∂ f
∂y = λ ∂g

∂y = ⇒ x= 2λy
g(x,y) = 0 ⇒ x2+y2−1= 0

Solving these equations gives four stationary points (as expected from Figure 34) at which we can evaluatef (x,y):

P : λ = 1
2,x=

1√
2
,y= 1√

2
 f (x,y) = 1

2 R : λ = 1
2,x=− 1√

2
,y=− 1√

2
 f (x,y) = 1

2

Q : λ =−1
2,x=

1√
2
,y=− 1√

2
 f (x,y) =−1

2 S: λ =−1
2,x=− 1√

2
,y= 1√

2
 f (x,y) =−1

2

which, as Figure 34) shows, the maxima off (x,y) along the constraintg(x,y) = 0 occur atP andRand equal12.

Example 13. Solve the optimization

Minimize w= f (x,y,z)
Subject to g(x,y,z) = 0 and h(x,y,z) = 0

The functionw = f (x,y,z) maps points in three dimensional space onto a variablew. Each of the constraints
g(x,y,z) = 0 andh(x,y,z) = 0 defines a surface in three-dimensional space. Their intersection defines a curveC
in three-dimensional space, as shown in Figure 35. The function w= f (x,y,z) takes a value at each point on this
curve, and we wish to find the point(s) on this curve wherew is at a minimum.

At each point(x,y,z), the vector∇g is orthogonal to the tangent plane of the surfaceg(x,y,z) = 0. Similarly, the
vector∇h is orthogonal to the tangent plane of the surfaceh(x,y,z) = 0. The curveC lies along bothg(x,y,z) = 0
andh(x,y,z) = 0, and therefore∇g and∇h are both normal toC, and lie in a planeP thatC crosses orthogonally. At
the same time, the vector∇g×∇h is orthogonal both∇g and∇h (and hence orthogonal to planeP) and therefore
tangential toC.

Now a critical point ofw= f (x,y,z) is such that the directional derivative of∇ f along in a direction tangential to
C is zero. In other words

∇ f · (∇g×∇h) = 0

This means that∇ f is orthogonal toC and therefore must lie in the planeP. For this reason, we can write the
vector∇ f as a linear sum of∇g and∇h (assuming that∇g and∇h are not parallel). In other words, using the
Lagrange multipliersλ andµ , we have

∇ f = λ∇g+µ∇h

In the five unknownsx,y,z,λ ,µ we therefore have the five equations
∂ f
∂x = λ ∂g

∂x +µ ∂h
∂x

∂ f
∂y = λ ∂g

∂y +µ ∂h
∂y

∂ f
∂z = λ ∂g

∂z +µ ∂h
∂z

g(x,y,z) = 0
h(x,y,z) = 0
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Curve C

h(x,y,z)=0

g(x,y,z)=0

∇h

∇g∇g×∇h

Plane P

Figure 35: Intersection curveC of the two surfaces defined by the constraintsg(x,y,z) = 0 andh(x,y,z) = 0. A
vector tangent to the curveC and orthogonal to the planeP containing the two vectors∇g and∇h is given by
∇g×∇h.

which we can solve for the critical points(x,y,z).
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