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Basic setting

• G: Lie group (mostly compact)

• M : complete Riemannian manifold

• (G, M): isometric action
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General problems

• Given (G, M), understand the geometry and topology
of the orbits.

• Given (G, M), understand the geometrical properties of
the orbital foliation.

• Find distinguished classes of (G, M) such that its orbits
admit nice characterizations in terms of their
submanifold geometry and topology.

• Given a G-orbit in M , understand its geometry.

• Given M , classify G such that (G, M) belongs to given
class.

• Given (G, M), relate the geometry of the orbits with
algebraic invariants of the action.
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Variational completeness

In 1958, Bott and Samelson introduced the concept of
variational completeness for isometric group actions and
developed powerful Morse theoretic arguments to
compute the homology and cohomology of orbits of
variationally complete actions.

An isometric action of a compact Lie group on a
complete Riemannian manifold is variationally complete if
it produces enough Jacobi fields along geodesics to
determine the multiplicities of focal points to the orbits.
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Bott and Samelson theorems

Theorem (Bott and Samelson, AJM 1958)
Let G/K be a symmetric space. Then following actions are
variationally complete:

• The K action on G/K by left translations.

• The K × K action on G by left and right translations.

• The K action on G/K by the differential at the
basepoint (linear isotropy representation)

In the same paper, Bott and Samelson constructed an
explicit homology basis for orbits of variationally complete
actions.

Theorem (Hermann, PAMS 1960)

Let G/K, G/H be compact symmetric spaces. Then the H action on

G/K is variationally complete.
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K-transversal domains

In 1971, Conlon considered actions (G, M) with the
property that there is a connected submanifold Σ of M

that meets all G-orbits in such a way that the intersections
between Σ and the G-orbits of G are all orthogonal.

Such a submanifold is called a section and an action
admitting a section is called polar.

It is easy to see that a section Σ is totally geodesic in M .

An action admitting a section that is flat in the induced
metric is called hyperpolar.

Theorem (Conlon, JDG 1971) A hyperpolar action of a
compact Lie group on a complete Riemannian manifold is
variationally complete.
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Linear case

• Polar and hyperpolar representations are the same
thing.

• Cartan’s theory: linear isotropy representations of a
symmetric space are polar.

• Dadok (TAMS 1985) classified the polar representations.

• It follows from that classification that a polar
representation of a compact Lie group is orbit
equivalent to the isotropy representation of a
symmetric space.

• Di Scala and Olmos (PAMS 2000) proved that a
variationally complete representation of a compact
Lie group is polar.
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Case of compact symmetric spaces

• Kollross (TAMS 2002): Hermann examples and
cohomogeneity one actions are the only examples of
hyperpolar actions on compact irreducible symmetric
spaces.

• G. and Thorbergsson (JDG 2002): A variationally
complete action on a compact symmetric space is
hyperpolar.

• Case of rank greater than one: so far no example
known of nonhyperpolar, polar action.
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Chern-Lashof theorem

• For an isometric immersion f of a compact manifold M into an
Euclidean space R

n, Chern and Lashof (AJM 1957-8) introduced
the total absolute curvature τ(f) as the normalized volume of the
unit normal bundle wrt the Gauss map.

• They proved that τ(f) is bounded below by the Morse number γ(M),
which is the minimum number of critical points which any Morse
function on M can have.

• Recall that the Morse inequalities say that γ(M) ≥ β(M ;F), where
β(M ;F) is the sum of the Betti numbers wrt to the field F.

• An immersion f which attains this lower bound is said to have
minimum total absolute curvature.

• Chern and Lashof also proved that if τ(f) = 2, then M is a convex
hypersurface in an affine subspace.
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Kuiper’s reformulation

• Kuiper reformulated the theory in terms of critical point theory
(1958-60).

• He proved that the infimum of τ(f) over all f is γ(M).

• Since τ(f) ≥ γ(M) ≥ β(M ;F), a tight immersion of a compact
manifold has minimum total absolute curvature.

• For example: the standard embeddings of the projective spaces
are tight.
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m is tight if every Morse height

function hξ(x) = 〈f(x), ξ〉, x ∈ M , has the property that its number of
critical points is equal to β(M ;F). (i.e. hξ is F -perfect)

• Since τ(f) ≥ γ(M) ≥ β(M ;F), a tight immersion of a compact
manifold has minimum total absolute curvature.

• For example: the standard embeddings of the projective spaces
are tight.
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Taut submanifolds

• Banchoff (AJM 1965) studied tight submanifolds lying in
an Euclidean sphere Sm−1 ⊂ Rm.

• In this case, the critical point theory of height functions
is the same as that of distance functions
Lq(x) = |f(x) − q|2, q ∈ Rm.

• Carter and West (Proc. LMS 1972) defined an immersion
f of a compact manifold to be taut if every Morse
distance function Lq is perfect wrt some field F.

• A taut immersion is an embedding.

• A taut immersion is tight.

• A spherical tight immersion is taut.
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Examples of taut submanifolds

• Clifford tori and standard embeddings of projective
spaces.

• A taut embedding of a sphere must be spherical and
of substantial codimension one.

• Cecil and Ryan (Math. Ann. 1978): A taut hypersurface
with the integral homology of Sk × Sn−k is a cyclide of
Dupin.

• Bott and Samelson’s result can be rephrased: the orbits
of variationally complete representations (the so-called
generalized flag manifolds) are taut subamanifolds.

• Generalized flag manifolds are homogeneous
examples of isoparametric submanifolds.
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Isoparametric submanifolds

• Recall that an isoparametric submanifold of a
simply-connected space form is a submanifold whose
normal bundle is flat and such that the eigenvalues of
the Weingarten operator along a parallel normal
vector field are constant.

• Hsiang, Palais and Terng (JDG 1985) proved that
isoparametric submanifolds and their focal
submanifolds are taut.

• Palais and Terng (TAMS 1987) showed that the only
compact homogeneous isoparametric submanifolds of
Euclidean space are the principal orbits of polar
representations.
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Homogeneous submanifolds

• Most examples of taut embeddings are homogeneous
spaces.

• Thorbergsson (Duke 1988) derived topological
obstructions for the existence of taut embeddings of
homogeneous spaces.

• For instance, the Lens spaces distinct from the real
projective space cannot be tautly embedded in
Euclidean space.
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Taut irreducible representations

• G. and Thorbergsson (Crelle 2003) classified the
irreducible representations of compact Lie groups all of
whose orbits are taut submanifolds.

• Besides the linear isotropy representations of symmetric
spaces, there are three exceptional families (n ≥ 2):

SO(2) × Spin(9) (standard) ⊗R (spin)

U(2) × Sp(n) (standard) ⊗C (standard)

SU(2) × Sp(n) (standard)3 ⊗H (standard)
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Reducible taut representations

SU(n) : Cn ⊕ · · · ⊕ Cn (k copies, 1 < k < n, n ≥ 3)
SO(n) : Rn ⊕ · · · ⊕ Rn (k copies, 1 < k, n ≥ 3, n 6= 4)
Sp(n) : C2n ⊕ · · · ⊕ C2n (k copies, where 1 < k, n ≥ 1)
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G. (2004): A taut reducible representation of a compact
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Spin(8) :
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But these results are still far from the complete
classification of taut homogeneous submanifolds of
Euclidean space...
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The exceptional examples

Let us recall...
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Taut irreducible representations

• G. and Thorbergsson (Crelle 2003) classified the
irreducible representations of compact Lie groups all of
whose orbits are taut submanifolds.

• Besides the linear isotropy representations of symmetric
spaces, there are three exceptional families (n ≥ 2):

SO(2) × Spin(9) (standard) ⊗R (spin)

U(2) × Sp(n) (standard) ⊗C (standard)

SU(2) × Sp(n) (standard)3 ⊗H (standard)

• These are precisely the irreducible representations of
cohomogeneity three.
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The exceptional examples

• The principal orbits of the exceptional taut irreducible
representations fail to be isoparametric along one
direction.

• Namely, there is a line of curvature, and a parallel
normal vector field along that line such that its principal
curvatures are not constant.

• From another perspective: there is a one-dimensional
subspace of the normal space which rotates in the
direction of the tangent space when we move along a
along a normal geodesic.

• Question: is it possible to understand the geometry of
the exceptional representations and find other, similar
examples?
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Copolarity of (G, M)

• G., Olmos and Tojeiro (TAMS 2004): a minimal K-section
through a regular point of the action is the smallest
connected, complete, totally geodesic submanifold of M

through that point which intersects all the orbits and such
that, at any intersection point with a principal orbit, its
tangent space contains the normal space of that orbit with
codimension k.

• This is a good definition and uniquely specifies an integer k

which we call the copolarity of (G, M).

• The case k = 0 case precisely corresponds to the polar
actions.

• For most actions, the minimal k-action coincides with the
ambient space. In this case, k equals the dimension of a
principal orbit. We say that such isometric actions have trivial
copolarity.
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Questions:

• What are the isometric actions with
nontrivial copolarity?

• What is the meaning of the integer k?
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Results on k

• G., Olmos and Tojeiro (TAMS 2004): An irreducible
representation of (nontrivial) copolarity k = 1 is one of
the following (n ≥ 2):

SO(2) × Spin(9) (standard) ⊗R (spin)

U(2) × Sp(n) (standard) ⊗C (standard)

SU(2) × Sp(n) (standard)3 ⊗H (standard)

• An irreducible representation of a compact Lie group is
taut if and only if k = 0 or k = 1.

• The codimension of a nontrivial minimal k-section of a
nonpolar irreducible representation is at least 3.
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Geometry of k = 1

Let (G, V ) be an orthogonal representation with copolarity k = 1

and let N be a principal orbit. Then the submanifold N of V splits
extrinsically as N = N0 × N1, where N0 is either a homogeneous
isoparametric submanifold or a point, and N1 is one of the
following:

• a nonisoparametric homogeneous curve

• a focal manifold of a homogeneous irreducible
isoparametric submanifold which is obtained by focalizing a
one-dimensional distribution

• a codimension 3 nonisoparametric homogeneous
submanifold.

The main tool in the proof of this theorem is the concept of
normal holonomy of Olmos.
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Final remarks

Recall that the principal orbits of polar representations can
be characterized as being the only compact
homogeneous isoparametric submanifolds of Euclidean
space (Palais and Terng, TAMS 1987).

An open problem in the area is to similarly characterize the
principal orbits of more general orthogonal representations
in terms of their submanifold geometry and topology.

We believe that orthogonal representations of low
copolarity may serve as testing cases for this problem.
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Thank you!
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