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Abstract

Lecture 1 introduces polar representations from two different view-
points and briefly explains their classification and importance. Lecture 2
presents a generalization of polar representations. Lecture 3 introduces
the idea of reductions and describes some of the results of the papers [12,
11]. Lecture 4 is about isometric actions on spheres with an orbifold quo-
tient space and corresponds to [10]. The Appendix has some standard
background on Alexandrov spaces and some (perhaps not so standard)
background on Riemannian orbifolds.

Introduction

These are the notes for a series of talks at Ohio State University on August
27-29, 2014. The aim has been to give a gentle introduction to a new approach
to representations of compact Lie groups via metric considerations. We have
striven to be as non-technical as possible. Proofs, if any, are either sketched or
given in simpler cases. These ideas fit into the general program of understanding
how much of a representation can be recovered from the metric structure of the
orbit space. Such questions can also be considered for proper isometric actions
or even singular Riemannian foliations, but we do not discuss them here. Most
of the results herein described as well as the program outlined are the joint work
of the author with Alexander Lytchak (Cologne). We wish to thank Michael
Davis and Luis Casian for the invitation to give these talks.
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1 Lecture 1: Polar representations

1.1 Basic example

Consider G = SO(n)-conjugation of real n × n symmetric matrices, that is for
g ∈ G and A ∈ Ṽ = Sym(n,R), put

g ·A = gAg−1 = gAgt.

Then the orbits
G ·A = {g ·A | g ∈ G}

are the orthogonal conjugation classes of symmetric matrices, or orthogonal
equivalence classes of real quadratic forms. We can also talk about normal
forms, which are distinguished representatives of equivalence classes, namely,
each orbit contains a diagonal matrix, uniquely defined up to permutation of
the diagonal entries (eigenvalues). Thus we can view the orbit space

Sym(n,R)/SO(n) = R
n/Sn (1)
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where Rn ∼= Σ̃ is the subspace of diagonal matrices of Sym(n,R) and Sn denotes
the symmetric group on n letters. Note there is an splitting

R
n/Sn = R

n−1/Sn × R

since Sn acts trivially on the line R(1, . . . , 1) and leaves invariant the linear
hyperplane of Rn whose coordinates add up to zero. In fact, if we restrict the
action of G to the subspace V = Sym0(n,R) of traceless matrices then

Sym0(n,R)/SO(n) = R
n−1/Sn (2)

where R
n−1 ∼= Σ is the subspace of diagonal matrices of V .

Fig. 1a: X for n = 3 Fig. 1b: S(X) for n = 4

Let us analyze a number of nice features of this example.
• Sn is a finite group generated by reflections on Σ. In fact, it has a special

presentation so that it is a Coxeter group.
• The orbit space X = V/G (as well as the orbit space S(X) of the unit

sphere S(V )) is the quotient of Σ (resp. S(Σ)) by a finite group of isometries
and hence is a good Riemannian orbifold.

• dimΣ = n− 1 equals the cohomogeneity of the G-action on V , that is, the
codimension of the principal orbits. In fact, the principal orbits are exactly those
containing matrices with pairwise different eigenvalues. The isotropy group of a
matrix is its centralizer in G. Therefore, if A has pairwise different eigenvalues,
its isotropy group consists of diagonal matrices in SO(n) with ±1 along the
diagonal, namely, it is isomorphic to (Z2)

n−1 and hence finite. Now dimG ·A =

dimG = n(n−1)
2 and the cohomogeneity of the G-action on V is dimV −dimG ·

A =
(

n(n+1)
2 − 1

)

− n(n−1)
2 = n− 1 = dimΣ.

• Σ is normal to every orbit it meets and thus it is the normal space to
every principal orbit it meets. Indeed the natural inner product in V is given
by 〈A,B〉 = trace(AB) for A, B ∈ V . The tangent space to the orbit G · A at
A ∈ V is

TA(G ·A) = {XA−AX | X ∈ so(n)}.

Therefore, for every A, B ∈ Σ:

〈XA−AX,B〉 = trace(XAB)− trace(AXB)

= trace((XB)A)− trace(A(XB))

= 0
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where we have used that A and B commute as they are diagonal matrices.
• The equalities in (1) and (2) are isometries. In fact, there is a natural

structure of metric space on the orbit space X = V/G, simply by declaring
the distance between two points in X to be the distance in V between the
corresponding G-orbits; note that this distance is always realized by the length
of a minimizing geodesic, which is orthogonal to every G-orbit it meets. It
follows that a minimizing geodesic between two principal G-orbits can always
be chosen entirely contained in Σ. This essentially shows that the maps are
isometries on the regular sets; the extension to include the singular sets follows,
see Proposition 2.2.1 for details.

Fig. 2: A typical principal orbit meets Σ for n = 3

1.2 Generalization

We continue with the above example. Note that

so(n)⊕ V = {X | Xt = −X} ⊕ {X | Xt = X, tr(X) = 0} (3)

= sl(n,R)

and we have the bracket relations

[so(n), so(n)] ⊂ so(n)

[so(n), V ] ⊂ V

[V, V ] ⊂ so(n)

Here the first relation expresses the fact that so(n) is a Lie algebra, the second
one expresses the action of so(n) on V , and the third is a simple computa-
tion. Therefore the decomposition (3) is the ±1-eigenspace decomposition of an
involutive automorphism

σ : sl(n,R) → sl(n,R).

In fact σ(X) = −Xt. Passing to the group level, we have an automorphism
of G = SL(n,R), given by g 7→ (g−1)t, with fixed point set SO(n). The pair

4



(SL(n,R), SO(n)) is a symmetric pair, and the homogeneous space SL(n,R)/SO(n)
is the corresponding symmetric space (of non-compact type). The decomposi-
tion (3) is the Cartan decomposition, and the isotropy representation of the
symmetric space turns out to be the representation of SO(n) on V . Finally,
Σ ⊂ V is a maximal Abelian subspace of V and hence a Cartan subspace.

Remark 1.2.1. There is also a Cartan decomposition on the group level. Namely,
SL(n,R) = SO(n) · exp[Sym0(n,R)] is equivalent to the polar decomposition of
a matrix into the product of an orthogonal matrix and a positive-definite sym-
metric matrix. The isotropy group SO(n) acts on the left on SL(n,R)/SO(n)
and this action is called the isotropy action. The image of Σ under the Rie-
mannian exponential map at the basepoint is a maximal flat totally geodesic
submanifold of the symmetric space and meets all the orbits of the isotropy
action orthogonally.

Remark 1.2.2. The Cartan dual of the involutive Lie algebra g ⊕ V is the Lie
algebra obtained by taking the real form g⊕iV of the complexification g⊗C⊕V ⊗
C. Namely, so(n)⊕iSym0(n,R) yields su(n) with involution σ∗(X) = −Xt = X̄.
We obtain a symmetric space SU(n)/SO(n) of compact type. Note that a
symmetric space and its Cartan dual have equivalent isotropy representations.

In general, a symmetric pair is a pair (L,G) where L is a connected real
semisimple Lie group (with finite center) and G is open in the fixed point set
of an involutive automorphism of L [18, 41]. The symmetric pair is called of
compact type (resp. non-compact type) if all simple factors of L are compact
(resp. non-compact) Lie groups. There is a decomposition on the Lie alge-
bra level l = g ⊕ V into the ±1-eigenspaces of the involution (especially in
the case of non-compact type, it is called the associated Cartan decomposi-
tion). The homogeneous space L/G is called a symmetric space; it is equipped
with natural L-invariant Riemannian metrics (say, one whose value at the base-
point is induced by a multiple of the Killing form of L); the tangent space of
L/G at the basepoint is identified with V . The isotropy group G acts on the
tangent space of L/G at the basepoint; this action is called the isotropy rep-
resentation of the symmetric space, and is equivalent to the adjoint action of
G on V . Isotropy representations of symmetric spaces are sometimes called
s-representations. Since [V, V ] ⊂ g, any subalgebra of V must be Abelian. A
maximal Abelian subalgebra Σ of V is a called a Cartan subspace. Any two
Cartan subspaces are G-conjugate and their common dimension is called the
rank of the symmetric space. The Weyl group W of the symmetric space is the
(conjugation class) of the maximal effective subquotient of G that acts on a Car-
tan subspace Σ, namely, W = NG(Σ)/ZG(Σ) where NG(Σ) = {g ∈ G | gΣ = Σ}
and ZG(Σ) = {g ∈ G | g|Σ = id}. It turns out W is a Coxeter group acting by
orthogonal transformations on Σ. A Cartan subspace Σ meets all G-orbits in V ,
always orthogonally, and thus there is an isometric identification V/G = Σ/W.
It follows that X = V/G and S(X) = S(V )/G inherit the structure of good Rie-
mannian orbifolds. Since W contains reflections, X and S(X) have boundary
in the Alexandrov sense.

LetG be a compact Lie group. Representations ofG will be assumed faithful.
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We give two equivalent definitions of polar representations.

Definition 1.2.1. A representation ρ : G → O(V ) is called polar if there exists
a subspace Σ, called a section, that meets all G-orbits and meets them always
orthogonally.

Definition 1.2.2. A representation ρ : G → O(V ) is called polar if there exists
a representation τ : H → O(W ) of a finite group H such that V/G = W/H.

In general, a representation τ like in Definition 1.2.2, where H is not neces-
sarily finite but dimH < dimG, is called a reduction of ρ (cf. Definition 2.3.1).

Proof of equivalence between Definitions 1.2.1 and 1.2.2. We will see that
the first definition implies the second one in a broader context later (cf. Propo-
sition 2.2.1). To see the reverse implication, consider the projections

V W

V/G

πG
∨

= W/H

πH
∨

Since H is a finite group, πH is a local isometry on the regular set Wreg so
Vreg/G = Wreg/H is flat. Now we apply O’Neill’s formula for Riemannian
submersion πG : Vreg → Vreg/G to relate the sectional curvatures of tangent
2-planes on Vreg and Vreg/G:

K(X,Y ) = K(X̃, Ỹ ) + 3||∇v
X̃
Ỹ ||2

where X, Y are (smooth) vector fields on Vreg/G, X̃, Ỹ are their horizontal lifts,
and ∇v denotes the vertical component of the Euclidean covariant derivative
on V . Since both terms with sectional curvatures vanish, this formula shows
that the horizontal distribution H on Vreg, consisting of normal spaces to the
principal orbits, is integrable with totally geodesic leaves.

Let L be a leaf of H. Then L is a non-empty connected open subset of an
affine subspace Σ of V . We claim Σ is a section of ρ. In fact, Σ = TpL is the
normal space νp(Gp) for p ∈ L (since p is a regular point), so Σ meets all G-
orbits (since there is a minimizing geodesic from p to any given G-orbit, which
must be entirely contained in Σ). To see that it meets always orthogonally, let
X be a Killing field on V induced by the G-action and let γ be any horizontal
geodesic with γ(0) = p ∈ L. Then the image of γ is entirely contained in Σ
and J := X ◦ γ is a Jacobi field along γ. Since Σ is totally geodesic, also the
horizontal component Jh with respect to Σ is a Jacobi field. Now Jh vanishes
on a neighborhood of t = 0, so it vanishes identically. This shows that Xγ(t) is
orthogonal to Σ for all t. Since γ is an arbitrary horizontal geodesic and X is
an arbitrary G-Killing field, Σ is orthogonal to all orbits it meets. �

1.3 Classification

The standard examples of polar representations are the s-representations. What
about the classification? A polar representation can fail to be an s-representation
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for an unexceptionable reason, namely, it has the same orbits as an s-representation
but it is not one of them. For instance, the standard action of SU(n) on C

n

has concentric round spheres as orbits, thus it is polar. However, this is not an
s-representation; namely, it has the same orbits as the standard action of U(n)
on C

n, which is the isotropy representation of CPn = SU(n+ 1)/U(n).

Definition 1.3.1. Two representations are called orbit-equivalent if they have
the same orbits after isometric identification of their orbit spaces.

It turns out this is the worst that can happen, as the following celebrated
result shows.

Theorem 1.3.1 (Dadok 1985 [6]). Every polar representation of a connected
compact Lie group is orbit-equivalent to an s-representation.

Dadok proved this theorem by classification. So far there is no known com-
plete, purely geometric proof.

1.4 More properties

Polar representations have a number of connections with other important prop-
erties. In the following, we name a few.

Theorem 1.4.1 (Conlon 1971 [5], Di Scala-Olmos 2000 [8]). A representation
of a compact Lie group is polar if and only if it is variationally complete in the
sense of Bott and Samelson.

Variational completeness means roughly that the multiplicities of focal points
of the orbits are determined by the group action, or that all Jacobi fields giving
rise to focal points are Killing fields induced by the group action. One can also
talk about absence of conjugate points in the orbit space [23].

Theorem 1.4.2 (Bott-Samelson 1958 [2], Conlon 1971 [5]). Polar representa-
tions are taut. More precisely, let ρ : G → O(V ) be polar. Then all Morse
distance functions to orbits Lq : Gp → R, Lq(x) = 1

2 ||x − q||2 (q ∈ V ), are
Z2-perfect.

Recall that a Morse function on a compact smooth manifold is called Z2-
perfect if the Morse inequalities are equalities with respect to Z2-coefficients.
A submanifold of Euclidean space all of whose Morse distance functions Lq are
Z2-perfect is called Z2-taut [4]. A representation all of whose orbits are Z2-taut
is called Z2-taut. Polar representations are taut, but there are examples of taut
representations which are not polar [14, 15], see also Theorem 2.2.2.

Theorem 1.4.3 (Palais-Terng 1987 [30]). The orbits of a polar representa-
tion ρ : G → O(V ) yield an isoparametric foliation of S(V ) (resp. V ). Con-
versely, every homogeneous isoparametric foliation of S(V ) (resp. V , with com-
pact leaves) arises in this way.
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Recall that a submanifold of a space form is called isoparametric if the
principal curvatures along any locally defined parallel normal vector field are
constant and the normal bundle is flat. In particular, a hypersurface of the
unit sphere is isoparametric if and only if it has constant principal curvatures.
Every isoparametric submanifold can be extended to a complete one, and the
parallel submanifolds, obtained by exponentiating parallel normal vector fields,
comprise a singular Riemannian foliation whose regular leaves are isoparametric
and whose singular leaves are focal manifolds [36, 1].

Let N = Gp be a principal orbit of a polar representation ρ : G → O(V ),
where p ∈ V . Any normal vector ξ ∈ νp(Gp) =: Σ can be G-equivariantly

extended to a normal vector field ξ̂ along N , due to the fact that the slice
representation at p is trivial. The equivariance says that

gp+ ξ̂(gp) = g(p+ ξ) ∈ Gq

for all g ∈ G, where q = p+ξ, so differentiation with respect to g in the direction
of v ∈ TpN gives

(v −Aξv) +∇⊥
v ξ̂ ∈ TqGq ⊥ Σ,

where we have used the fact that Σ is a section, and Aξ denotes the shape

operator in the direction of ξ; this implies ∇⊥
v ξ̂ = 0. In other words, we have

shown that equivariant normal vector fields are parallel in the normal connec-
tion. Isoparametricity of N follows. The converse to Theorem 1.4.3 is not hard
either (cf. [30]).

Remark 1.4.1. There exist examples of inhomogeneous isoparametric subman-
ifolds in spheres (Ozeki-Takeuchi 1975 [29]; Ferus-Karcher-Münzner 1981 [9]),
but necessarily only in codimension one (Thorbergsson 1991 [37]).

The following result follows from the corresponding one for isoparametric
foliations proved by Terng in 1985 [36].

Theorem 1.4.4 (Chevalley restriction theorem for polar representations). Let
ρ : G → O(V ) be a polar representation where we assume G is connected and fix
a section Σ with associated Weyl group W. Then the restriction map R[V ]G →
R[Σ]W induces a isomorphism between the rings of invariant polynomials.

The isomorphism in this theorem can be extended to the rings of invariant
smooth functions [33], and further to basic differential forms [27] and Rieman-
nian metrics [26].

2 Lecture 2: Copolarity and reductions

2.1 More examples

(a) Consider the U(n)-action on the space V = Sym(n,C) of n × n complex
symmetric matrices given by

g ·A = gAgt
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for g ∈ U(n) and A ∈ V . The orbits are unitary equivalence classes of complex
quadratic forms, and the normal forms are real diagonal matrices, uniquely
defined up to permutation of diagonal entries. In fact we can reduce a complex
symmetric matrix to a normal form in two stages, first transforming it into
a complex diagonal matrix and then further transforming to a real diagonal
matrix:

Sym(n,C)/U(n) = C
n/Sn · U(1)n = R

n/Sn · (Z2)
n. (4)

Here U(1)n is the maximal torus of U(n) consisting of diagonal matrices. This
provides a reduction of the G-action to a finite group and shows that this
representation is polar according to Definition 1.2.2. A section is given by
the subspace Σ of real diagonal matrices. In fact this representation is the
s-representation associated to the symmetric space Sp(n)/U(n).

Fig. 3a: X for n = 2 Fig. 3b: S(X) for n = 3

(b) Next we restrict the above action on V to the subgroup SU(n). Comparing
with (4), now we can still find a complex diagonal matrix in each orbit but no
further:

Sym(n,C)/SU(n) = C
n/Sn · S(U(1)n).

Here S(U(1)n) is the maximal torus of SU(n) consisting of diagonal matrices;
the condition that the determinant is one makes it impossible to find a real
diagonal matrix in all orbits.

This representation is not polar, as can be seen for instance from the classi-
fication. Let Σ be the subspace of V consisting of complex diagonal matrices.
It is the fixed point set of the principal isotropy group S(Zn

2 ), which consists
of diagonal matrices with ±1 entries and determinant 1. Since the principal
isotropy group at a regular point always acts trivially on the normal space to
the orbit (i.e. the slice representation is trivial; this in fact characterizes regular
points), Σ in particular contains the normal space to every principal orbit it
meets; it can be shown that Σ is the minimal subspace of V with this property
(one can show that Σ equals the span of the normal spaces to principal orbits
along some broken horizontal geodesic, starting at a regular point and broken
only at regular points).

Alternatively, note that the group Sn · S(U(1)n) is not discrete; it can be
shown, and indeed it will follow from our boundary analysis in subsection 3.1,
that this is a minimal reduction of the SU(n)-action on V .

In the special case n = 2, Sym(2,C) has complex dimension 3, so it is the
complexified adjoint representation. Recall that the adjoint representation of
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SU(2) is geometrically equivalent to the standard representation of SO(3) on
R

3. It follows that

Sym(2,C)/SU(2) = R
3 ⊕ R

3/SO(3)

= R
3 ⊕ R

3/O(3)

= R
2 ⊕ R

2/O(2),

where we have used Luna-Richardson-Straume reduction in the last equality
(cf. Example 2.2.1); in fact, in this presentation, the R2⊕R

2 corresponds to the
subspace Σ above. Now for the quotient of the unit sphere we have that

S(X) = S3/O(2)

= CP 1/Z2

= S2
+(1/2)

is a 2-hemisphere of constant curvature 4.

Fig. 4: S(X) for n = 2

2.2 Copolarity

Example (b) in subsection 2.1 suggests the following definition.

Definition 2.2.1 (G-Olmos-Tojeiro 2004 [13]). Let ρ : G → O(V ) be a repre-
sentation. A generalized section of ρ is a subspace Σ of V that meets all G-orbits
and always contains the normal spaces to the principal orbits it meets.

A polar representation will have a section as a minimal generalized section,
thus of dimension equal to its cohomogeneity. For a general representation, the
whole V trivially fits into the definition of a generalized section; more inter-
estingly, the intersection of two generalized sections through a regular point is
a generalized section, too. It follows that any representation admits a unique
minimal generalized section through a given regular point. Clearly any two
minimal generalized sections are conjugate.

Definition 2.2.2 (G-Olmos-Tojeiro 2004). The copolarity of a representation
is the excess of the dimension of a minimal generalized section over the coho-
mogeneity of ρ.
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Thus the copolarity is a measure of non-polarity of a representation. One
also says the copolarity is non-trivial in case there is a non-trivial (different
from V ) generalized section.

Example 2.2.1 (Luna-Richardson-Straume reduction [21, 34]). Let ρ : G →
O(V ) be a representation. Fix a principal isotropy group H. Then the fixed
point set V H is a generalized section, the subquotient N̄ = NG(H)/ZG(H) of
G acts on V H and V/G = V H/N̄ .

It is often more interesting to apply LRS reduction after passing to the
maximal group with the same orbits. In fact this has the effect of enlarging the
principal isotropy group and shrinking its fixed point set.

Question 2.2.1. Does every minimal generalized section is obtained via LRS
reduction, after passing to the maximal group in the orbit-equivalence class?

Remark 2.2.1. For a generalized section Σ of an arbitrary representation of G,
the largest subquotient of G that acts on Σ is NG(Σ)/ZG(Σ); the latter has
trivial principal isotropy group if Σ is minimal, for otherwise we could find a
smaller generalized section by applying LRS reduction to the action on Σ. Re-
call that representations of connected groups with non-trivial principal isotropy
representations have been classified by W.-C. Hsiang and W.-Y. Hsiang [19].

Example 2.2.2. In subsection 2.1(b), the doubling representation of SO(3) on
R

3 ⊕ R
3 has R2 ⊕ R

2 as a generalized section. Since it has cohomogeneity 3, it
has (non-trivial) copolarity 4− 3 = 1.

More generally, (SU(n), Sym(n,C)) has cohomogeneity

dimSym(n,C)− dimSU(n)/S((Z2)
n) = (n2 + n)− (n2 − 1)

= n+ 1

and dimΣ = 2n so it has copolarity 2n− (n+ 1) = n− 1.

The paper that introduced copolarity contains the proof of the following
theorem.

Theorem 2.2.1 (G-Olmos-Tojeiro 2004 [13]). An irreducible representation of
copolarity 1 has cohomogeneity 3, hence it is one of

SO(2)× Spin(9) R
2 ⊗R R

16

U(2)× Sp(n) C
2 ⊗C C

2n (n ≥ 2)

SU(2)× Sp(n) S3(C2)⊗H C
2n (n ≥ 2)

The motivation to introduce generalized sections came from the study of the
geometry and topology of the orbits of the above representations. In fact:

Theorem 2.2.2 (G.-Thorbergsson 2000 [15]). A taut non-polar irreducible rep-
resentation has cohomogeneity 3.
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The following result shows that a minimal generalized section yields a rep-
resentation of smaller dimension with an underlying group of smaller dimension
and the same orbit space.

Proposition 2.2.1. Let Σ be a minimal generalized section of ρ : G → O(V )
and let N̄ = NG(Σ)/ZG(Σ). Then the inclusion Σ −֒→ V induces an isometry
Σ/N̄ → V/G.

We need:

Lemma 2.2.1. Σ ∩ Vreg is dense in Σ.

Proof. Given p ∈ Σ, let q ∈ Σ ∩ Vreg and let γ : [0, 1] → Σ be the geodesic
segment from p to q. Then γ(t) ∈ Σ ∩ Vreg for sufficiently small t > 0. �

Proof of Proposition 2.2.1. We first observe that the map ι : Σ/N = Σ/N̄ →
V/G is well defined (since N := NG(Σ) ⊂ G), continuous (since the orbit spaces
have the quotient topologies) and non-expanding (or 1-Lipschitz), namely,

d(ι(x), ι(y)) ≤ d(x, y)

for all x, y ∈ Σ/N (since every geodesic in Σ is a geodesic in V ).
Next we show that the restriction of ι to Σ ∩ Vreg is injective. Assume

ι(x) = ι(y) for some x, y ∈ Σ ∩ Vreg/N . Then x = Np, y = Nq for some
p, q ∈ Σ ∩ Vreg and q = gp for some g ∈ G. Now Σ, g−1Σ are two minimal
generalized sections through the regular point p and thus they coincide. We
deduce that g ∈ N and hence x = y.

In view of the continuity of ι and Lemma 2.2.1, to finish the proof we need
only show that ι is an isometry on Σ ∩ Vreg. In fact let x = Np, y = Nq where
p, q ∈ Σ∩Vreg. The minimal geodesic γ in V from p to Gq is entirely contained
in Σ. Let r ∈ Σ ∩ Gq be the endpoint of γ. Clearly γ minimizes the distance
from Np to Nr. Since Gr = Gq, by the argument in the previous paragraph we
have Nr = Nq. Hence d(ι(x), ι(y)) = length(γ) = d(x, y) as desired. �

Corollary 2.2.1. With the above notation:

(i) Np = Gp ∩ Σ for all p ∈ Σ.

(ii) The copolarity of ρ equals the dimension of N̄ .

(iii) Gp is transitive on the set of minimal generalized sections through p for
all p ∈ V .

(iv) Σ ∩ Vreg coincides with the set of N̄ -regular points Σreg.

Proof. (i) is equivalent to the injectivity of ι. To prove (ii), we can argue that
the cohomogeneity of a representation is the topological dimension of its orbit
space, so the proposition yields that the copolarity of ρ is dimΣ− dimΣ/N̄ =
dim N̄ , due to Remark 2.2.1. For (iii), take two minimal generalized sections
Σ, Σ′ through p. Since they meet a common principal orbit, Σ′ = gΣ for some
g ∈ G. Now p, g−1p ∈ Σ so the proposition gives n ∈ N such that np = g−1p.
Hence gnΣ = Σ′ with gnp = p, as we wished. Finally (iv) follows from the fact
that ι maps Σreg/N onto Vreg/G as those are exactly the manifold points of the
quotients Σ/N , V/G, respectively. �
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2.3 Quotient-equivalence

Proposition 2.2.1 fosters a further generalization.

Definition 2.3.1 ([12]). Two representations are called quotient-equivalent if
they have isometric orbit spaces; in addition, if one representation is such that
its underlying group has dimension smaller than the dimension of the group
underlying the other, then the former representation is said to be a reduction
of the latter.

Example 2.3.1. Any representation admits the LRS reduction to the effectivized
normalizer of the principal isotropy group (cf. Example 2.2.1).

It is interesting to find representations ρ : G → O(V ) such that dimG is
minimal in the quotient-equivalence class of ρ. In view of LRS reduction, such
a representation must have trivial principal isotropy groups, thus it satisfies
dimG+dimV/G = dimV . We see it is an equivalent problem to find represen-
tations ρ : G → O(V ) such that dimV is minimal in the quotient equivalence
class of ρ.

Definition 2.3.2. A representation of minimal dimension in a quotient-equivalence
class is called reduced. A reduced representation which is a reduction of another
representation is also called a minimal reduction of the latter.

Example 2.3.2. In subsection 1.2 we explained that a representation reduces to
a finite group action if and only if it is polar. More generally, Proposition 2.2.1
shows that if Σ is a minimal generalized section of a representation (G,V ) then
(N̄ ,Σ) is a reduction of (G,V ).

Question 2.3.1. Does a minimal reduction of a representation always come from
a minimal generalized section? (Compare with Question 2.2.1.)

The answer to Questions 2.2.1 and 2.3.1 is yes if: G is polar, by Dadok’s The-
orem 1.3.1; or G is connected, V is irreducible and (G,V ) is quotient-equivalent
to a representation of a group whose identity component is a torus [G-Lytchak
2014], see Theorem 3.3.2.

The idea behind quotient-equivalence is that the orbit space somehow de-
termines the transverse geometry of the action. Since linear orthogonal actions
are so rigid (as opposed for instance to general isometric actions), we can go
one step further and ask:

Question 2.3.2. What kind of algebraic invariants of a representation ρ : G →
O(V ) can be recovered from the metric space structure of the orbit space X =
V/G?

In the remaining of these lectures we aim to give (very) partial answers to
this questions.

Example 2.3.3 (invariance of irreducibility). The cohomogeneity of a represen-
tation ρ : G → O(V ) is the topological dimension of its orbit space X. The
invariant subspaces can also be detected from the metric distance on the orbit
space. In fact it is easy to see that a representation has a non-zero fixed vector
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if and only if diamS(X) = π; otherwise diamS(X) ≤ π
2 , and it is not hard

to see that the projections of invariant subspaces of V are exactly the closed
subsets of S(X) for which there exists another closed subset at a distance π

2 ;
hence diamS(X) < π

2 if and only if the representation is irreducible. On the
other hand, dimV cannot be read off X as non-trivial reductions exist.

Example 2.3.4. If S(X) is isometric to a finite quotient of a sphere of constant
curvature then ρ is taut (Wiesendorf 2014 [40]).

It is apparent that most representations do not admit reductions. The exis-
tence of a reduction entails the presence of interesting geometric properties and
bounds the complexity of the representations and its orbit space.

Question 2.3.3. (Existence) Which representations admit reductions? Which
representations can be minimal reductions of some representation?

Question 2.3.4. (Uniqueness) If ρi : Gi → O(Vi) for i = 1, 2 are minimal
reductions of the same representation (resp. quotient-equivalent and reduced)
is it true that ρ1(G1) and ρ2(G2) must be conjugate by an isometry V1

∼= V2?

Question 2.3.4 has a positive answer if theGi are finite groups, cf. Lemma 5.2.1.

3 Lecture 3: Basic theory of reductions

3.1 Boundary in the orbit space

The orbit space of a s-/polar representation of a connected group is obtained
as the fundamental domain of a Coxeter group acting on the Cartan sub-
space/section by linear orthogonal transformations and generated by reflections,
and hence that domain is a simplicial cone (Weyl chamber). In particular, it
has a non-empty boundary in the Alexandrov sense. More generally:

Proposition 3.1.1 ([12]). Let ρi : Gi → O(Vi) for i = 1, 2 be quotient-
equivalent representations. If V1/G

0
1 has empty boundary, then dimV1 ≤ dimV2.

In particular, if V1/G1 = V2/G2 has empty boundary then dimV1 = dimV2.

Proof. Suppose ∂(V1/G
0
1) = ∅. By transversality, we can find a horizontal

geodesic γ̃ in S(V1) of length π entirely contained in the regular set which
thus projects to a geodesic γ in S(V1)/G

0
1. Let η be the projection of γ to

S(V1)/G1 = S(V2)/G2. Since S(V1)/G
0
1 → S(V1)/G1 is a finite covering, η

is contained in the orbifold part of S(V1)/G1 and is an orbifold-geodesic, by
definition. Consider its lift to a G2-horizontal geodesic η̃ in S(V2). We may
assume γ̃ was chosen so that all of the above curves start at regular points.

γ̃ ⊂ S(V1)reg S(V2) ⊃ η̃

γ ⊂ (S(V1)/G
0
1)reg

∨

η ⊂ (S(V1)/G1))orb

∨
=(S(V2)/G2)orb

∨
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Letm be the index of γ (viz. the number of conjugate points along γ, counted
with multiplicities). Then m is also the L1-index of γ̃ (viz. the number of L1-
focal points along γ, counted with multiplicities), where L1 is the G0

1-orbit
through the initial point γ̃(0) and γ̃ is considered as an L1-geodesic. But in
the unit sphere S(V1), the L1-index of of any L1-geodesic of length π is dimL1.
Thus m = dimL1.

On the other hand, for L2 equal to the G2-orbit through η̃(0), it has been
shown in [23] that the L2-index of the geodesic η̃ is equal to the sum of the index
of the orbifold-geodesic η and a “vertical index”, a non-negative number that
counts the number of intersections of η̃ with G2-singular orbits. In particular,
it is not smaller than m, the index of the orbifold-geodesic η. Using again
that the L2-index of η̃ is given by dimL2, we get dimL2 ≥ dimL1 and hence
dimV2 ≥ dimV1.

Any boundary point of V1/G
0
1 projects to a boundary point of V1/G1 under

the finite covering V1/G
0
1 → V1/G1. The last assertion follows. �

It follows from the proposition that ρ1 can admit a non-trivial reduction
only if ∂(V1/G

0
1) 6= ∅ (only if ∂(V1/G1) 6= ∅). In fact ∂(V1/G

0
1) = ∅ implies

that G1 has finite principal isotropy groups so dimG1 +dimV1/G1 = dimV1 ≤
dimV2 ≤ dimG2 + dimV2/G2 and hence dimG1 ≤ dimG2.

3.2 Coxeter groups induced by reductions

The Weyl group of a symmetric space is a finite Coxeter group acting by linear
transformations on the Cartan subspace. More generally:

Proposition 3.2.1 ([12]). Let ρi : Gi → O(Vi) for i = 1, 2 be quotient-
equivalent representations. If G1 is connected and G2 is not, then G2/G

0
2 acts

by reflections on V2/G
0
2; in fact, its image in Iso(V2/G

0
2) is a Coxeter group.

Here a reflection on a Riemannian manifold is an isometry whose fixed point
set has a connected component of codimension one, and a reflection on an orbit
space X is an isometry whose restriction to the regular part Xreg is a reflection.

Before discussing the proof of the proposition, we state a lemma. In general,
the quotient of a simply-connected manifold by a connected compact Lie group
is simply-connected, but the orbifold part of the quotient space need not be
simply-connected as an orbifold. For instance, the standard action of SO(n)
on R

n yields a simply-connected orbit space [0,∞) which admits a double orbi-
covering R → [0,∞). On the other hand, after removal of the boundary point,
(0,∞) becomes simply-connected as an orbifold. This simple example conveys
the general situation:

Lemma 3.2.1 ([22]). Let the connected compact Lie group G act by isometries
on the simply connected complete Riemannian manifold M . Denote by X the
orbit space M/G, let Xorb be the set of orbifold points in X and set X0 =
Xorb \ ∂Xorb. Then X0 is exactly the set of non-singular G-orbits. Moreover,
X0 has trivial orbifold fundamental group.
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Proof of Proposition 3.2.1 (Sketch). Let

X := V1/G1 = V2/G2 B := Xorb

X0 := V2/G
0
2 B0 := (X0)orb

Since G1 is connected and V1 is simply-connected, the orbifold fundamental
group πorb

1 (B \ ∂B) is trivial due to Lemma 3.2.1.
It follows that Γ := πorb

1 (B) is a group generated by reflections. In fact
denote by Γrefl the (normal) subgroup generated by all reflections in Γ. Then

Γ′ := Γ/Γrefl acts on B′ := B̃/Γrefl, where B̃ denotes the universal orbi-
covering of B. No element γ of Γ′ can act as a reflection on B′, for otherwise
we could find a manifold point p of B̃ that is projected to a manifold point
of B′ but whose projection to B lies on a stratum of codimension one in B.
Then p would have to be fixed by a reflection in Γ \ Γrefl, a contradiction. For
the projection B′ → B, now the preimage of the ∂B is contained in ∂B′, so
the preimage of B \ ∂B is equal to the connected orbifold B′ \ ∂B′ and thus
B \∂B = (B′ \∂B′)/Γ′. Since πorb

1 (B \∂B) is trivial, the group Γ′ acts trivially
on B′ and hence Γ = Γrefl.

Now Γ acts by reflections on the universal orbi-covering B̃ of B, so the
quotient Γ/Γ0, where Γ0 = πorb

1 (B0), acts by reflections on B0 and also on C :=
B0 \∂B0, and this group is the image of G2/G

0
2 in Iso(V2/G

0
2). By Lemma 3.2.1

πorb
1 (B0 \∂B0) is trivial, but a reflection group acting on a Riemannian orbifold

with trivial orbifold fundamental group has a presentation as a Coxeter group.
Indeed Γ/Γ0 can be viewed as the orbifold fundamental group of C := (B0 \
∂B0)/(Γ/Γ0); looking at the canonical presentation of πorb

1 (C) in terms of strata
of codimension 1 and 2 [7], we deduce that Γ/Γ0 has a presentation as a Coxeter
group. �

3.3 Applications

Based on Propositions 3.1.1 and 3.2.1, there is the following method to find
which representations τ : H → O(W ) can be minimal reductions of some irre-
ducible representation of a connected compact Lie group (cf. Question 2.3.3).
First of all, H must act with trivial principal isotropy groups, for otherwise LRS
reduction would yield a non-trivial reduction. Second, H must act irreducibly,
by invariance of irreducibility (cf. Example 2.3.3). Now there is a dichotomy:
either H is connected and W/H has non-empty boundary by Proposition 3.1.1;
or H0 is normalized by an involution in O(V ) that acts as a reflection on W/H0

by Proposition 3.2.1. Following this program and using some classifications of
representations of low cohomogeneity, we can prove the following results.

Let ρ : G → O(V ) be non-polar and irreducible with G connected, and let
τ : H → O(W ) be a non-trivial minimal reduction of ρ.

Theorem 3.3.1 ([12]). If dimH ≤ 6, then H0 is a torus T k.

Theorem 3.3.2 ([12, 11]). If H0 acts reducibly on W , then H0 = T k and its
action on W can be identified with the action of the maximal torus of SU(k+1)
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on C
k+1; in particular, the cohomogeneity of ρ is k + 2. Moreover, such ρ can

be classified and fall into three classes:

(I) Representations of cohomogeneity 3 (listed in Theorem 2.2.1).

(II) Semisimple factors of an s-representation of Hermitian type:

SU(n) S2
C

n (n ≥ 3)
SU(n) Λ2

C
n (n = 2p ≥ 6)

SU(n)× SU(n) C
n ⊗C C

n (n ≥ 3)
E6 C

27

(III) One of two exceptions: SO(3)⊗G2 and SO(4)⊗ Spin(7).

Corollary 3.3.1. If ρ has non-trivial copolarity k ≤ 6, then it has cohomogene-
ity k + 2.

Remark 3.3.1. SO(3)⊗U(2) is a minimal reduction of U(3)⊗Sp(2), where SO(3)×
U(2) has dimension 7, so Theorem 3.3.1 is sharp.

3.4 Toy example

We illustrate the arguments used in the proofs of the above results by considering
the case dimH = 1, i.e. ρ has non-trivial copolarity 1. We will prove that ρ has
cohomogeneity 3.

In fact, H0 = S1, which we identify with the unit complex numbers, so τ |H0

decomposes into a sum Cr1 ⊕ · · · ⊕ Crn of weight spaces, where ri is a positive
integer (the order of the kernel of the action on Cri), plus a fixed subspace (in
other words, Cri is the representation H0 = S1 → U(1) = S1 given by z 7→ zri).
By invariance of irreducibility, τ is irreducible so the fixed subspace is trivial
and H/H0 acts transitively on the set of H0-isotypical components.

Indeed for z ∈ H0 and h ∈ H and i = 1, . . . , n, the image τ(h)Cri is an
H0-irreducible subspace and

τ(z)τ(h) = τ(h)τ(h−1zh)

= τ(h)(τ ◦ ϕ)(z)

where ϕ is an automorphism of H0 = S1, so we may assume ϕ(z) = z or
ϕ(z) = z̄. Therefore

τ(h)Cri = C±ri

which is equivalent to Cri as a real representation (complex conjugation of C
yields an equivalence between C−ri and Cri !). We deduce that there is only one
H0-isotypical component, and then r1 = 1 by effectiveness:

τ |H0 = C1 ⊕ · · · ⊕ C1 (ℓ summands).

This is the Hopf action. The case ℓ = 1 is polar, so ℓ > 1. Note that W/H0 is
the cone over S(W )/H0 = CP ℓ−1 and thus has no boundary. Due to Proposi-
tion 3.1.1 or invariance of irreducibility, H is disconnected and, owing to Propo-
sition 3.2.1, we can find an element of H/H0 that acts as a reflection on W/H0;
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its fixed point set yields a totally geodesic hypersurface of CP ℓ−1, but such
hypersurfaces can exist only if ℓ = 2. Hence the cohomogeneity of ρ is the
dimension of the cone over CP 1, namely, 3.

4 Lecture 4: Orbit-spaces and orbifolds

4.1 Characterization of orbifold points

Consider a proper and isometric action of a Lie group on a Riemannian manifold
M , and let X = M/G be its orbit space. The set Xreg of regular points of X
is exactly the set of points that have neighborhoods isometric to Riemannian
manifolds, whereas the slightly larger set Xorb of orbifold points of X consists of
the set of points that have neighborhoods isometric to quotients of Riemannian
manifolds by finite groups of isometries.

Theorem 4.1.1 (Lytchak-Thorbergsson 2010 [23]). A point x = Gp ∈ X is an
orbifold point if and only if the slice representation at p ∈ M is polar.

Representations all of whose slice representations are polar are called in-
finitesimally polar.

The crux of the proof of one direction in Theorem 4.1.1 is a curvature es-
timate which we now explain in a particular case. Let ρ : G → O(V ) be a
representation and denote by g the Euclidean metric in V . For v ∈ Vreg, denote
by κ̄(g)(v) the supremum over all of the sectional curvatures of Vreg/G at the
projection of v with respect to the quotient Riemannian metric induced by g.
The map

hλ : (V, g) → (V,
1

λ2
g), hλ(v) = λv

for λ > 0 is an isometry which induces an isometry between the regular parts
of the respective quotients. Therefore

κ̄(g)(v) = κ̄

(

1

λ2
g

)

(λv) = λ2κ̄(g)(λv)

or

κ̄(g)(λv) =
κ̄(g)(v)

λ2

for v ∈ Vreg and λ > 0. Since a Riemannian orbifold has locally bounded
curvature, the projection of the origin can be an orbifold point of X only
if κ̄(g)(v) = 0. Moreover if Xreg is flat then the horizontal distribution of
Vreg → Xreg is integrable and hence ρ is polar as in the argument at the end of
subsection 1.2.

4.2 Quotients of spheres which are orbifolds

Let ρ : G → O(V ) be a representation. If ρ is polar and Σ is a section with
associated Weyl groupW, then the orbit space V/G is isometric to Σ/W which is
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a good Riemannian orbifold. Conversely, we have seen in the previous subsection
that V/G can be a Riemannian orbifold only if ρ is polar.

Things become more interesting if we restrict an arbitrary representation
ρ : G → O(V ) to an isometric action on the unit sphere S(V ) (note that
the slice representations of ρ along any given line through the origin are all
equivalent, except at the origin itself). There are interesting examples of non-
polar representations for which S(V )/G is isometric to a Riemannian orbifold;
the Hopf action of S1 on C ⊕ C, with S3/S1 = CP 1, immediately comes to
mind.

Let ρ : G → O(V ) be a representation of a compact connected Lie group
G and assume that the quotient space S(X) = S(V )/G of the unit sphere is
isometric to a Riemannian orbifold. In the sequel we shall describe all such
representations [10].

By Theorem 4.1.1, all slice representations at non-zero points are polar;
equivalently, the action on S(V ) is infinitesimally polar.

The case ρ is polar. We have seen that, owing to O’Neill’s formula, this case
is characterized by S(X) being an orbifold of constant curvature 1.

The case S(X) has empty boundary. A first consequence of infinitesimal
polarity is that all singular points of S(V ) project to the boundary of S(X). In
fact for a singular point p ∈ S(V ), the slice representation at p is polar and the
corresponding Weyl chamber C has non-empty boundary; the isotropy subgroup
K of Gp, corresponding to a boundary face of C containing 0 in its closure, is
also an isotropy subgroup of G; and since K ⊂ Gp, p lies in the closure of the
stratum (of codimension one) corresponding to the orbit type (K) and hence is
a boundary point of S(X).

It follows that if S(X) has empty boundary then all isotropy groups of G
have the same dimension. Moreover they have to be all discrete — i.e. the action
must be almost free — because a non-trivial principal isotropy group yields a
non-trivial reduction (via LRS) but this is forbidden by Proposition 3.1.1.

On the other hand, a representation of a k-torus splits into the direct sum of
2-dimensional representations, so we can always find an isotropy group of rank
k − 1.

We have thus proved that if S(X) has empty boundary (and G is not tran-
sitive on S(V )) then G has rank one and its action is almost free. If G = U(1)
then ρ is a sum of complex 1-dimensional representations, each parametrized by
a positive integer (the order of the kernel) and S(X) is called a weighted com-
plex projective space. If G is covered by SU(2) then all almost free irreducible
representations are of quaternionic type, so G = SU(2) and ρ is an arbitrary
sum of irreducible representations of even complex dimension; in this case we
call S(X) a weighted quaternionic projective space.

It turns out weighted projective spaces have trivial orbifold fundamental
group, so they can be good orbifolds only if they are classical projective spaces
(in which case the action of G is free).
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The corresponding homogeneous regular foliations of spheres have been stud-
ied by Gromoll and Grove [17].

The case S(X) has dimension 2. If dimS(X) = 2 then the representation
ρ has cohomogeneity 3 on V . The non-polar repŕesentations of cohomogeneity 3
have been extensively studied by Straume [34]. He showed that any such rep-
resentation has a reduction to a representation of a one-dimensional group on
R

4. In fact, if G 6= U(1) then the reduction is either a finite extension of the
Hopf action or a two-fold extension of the action of U(1) on C ⊕ C = R

4 with
parameters (1, 2). In the latter case, S(X) is the bad orbifold given by a disc
with one singularity with angle π/2 (half a teardrop); there are three strata: the
open disk, the boundary circle minus the singular point and the singular point.

Fig. 5: A bad 2-orbifold

An example of a representation falling in this case is U(2) acting on C
2⊕R

3

where the first summand is the standard representation and the second one is
the adjoint representation on su(2). Here the singularity in the boundary is
the orbit through a point p1 ∈ S2 ⊂ R

3; the corresponding isotropy groups are
maximal tori in U(2). The boundary of the disk is the image of the arc of great
circle in S(V ) from p1 to a point p2 ∈ S3 ⊂ C

2 and then to −p1; the isotropy
groups along the boundary minus p1 are circles in U(2). The principal stratum
corresponds to the open disk and the principal isotropy group is trivial.

In all cases above in which S(X) is a good orbifold, it has constant curva-
ture 4.

The remaining cases. Suppose now ρ is not polar, S(X) has dimension
k ≥ 3 and non-empty boundary.

A Riemannian orbifold is called a Coxeter orbifold if all local groups are
Coxeter groups acting as reflection groups on the corresponding tangent spaces
(Davis [7] calls them reflectofolds).

We refer to [10] for details about the following arguments. We have S(X) is
a compact positively curved orbifold. A Soul Theorem like argument based on
strict concavity of the distance function to the boundary shows that the non-
manifold points of the orbifold S(X) all lie in the boundary of S(X). Next, using
the local structure of Coxeter chambers, one sees that this property implies that
S(X) is a Coxeter orbifold. An argument based on the Petrunin-Frankel theorem
involving intersections of closures of strata shows that a compact positively
curved Coxeter orbifold of dimension at least 3 is a good orbifold. Then S(X) is
a good orbifold, and its universal orbi-covering Y is a compact positively curved
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Riemannian manifold with an isometric reflection at a hypersurface, since S(X)
has non-empty boundary; thus Y is diffeomorphic to a sphere.

The next step is the following construction. Let K be any isotropy group of
G and let F be its fixed point set in S(V ). Then F is a totally geodesic subsphere
of S(V ), the normalizer N of K in G acts on F , the inclusion F ⊂ S(V ) induces
a totally geodesic isometric immersion of orbifolds F/N → S(V )/G, and F/N is
a good Riemannian orbifold of dimension k− 1 whose universal orbi-covering is
diffeomorphic to a sphere. Moreover, the action of N on F is non-polar because
the action of G on S(V ) is assumed non-polar, owing to a special case of a
Theorem by Hang and Wang. Thus one can proceed by induction on k. At
this juncture, we have used the interesting fact that a polar representation of
a compact connected Lie group with trivial principal isotropy groups is orbit
equivalent to the product of a number of standard representations of U(1) and
Sp(1) on C and H, respectively.

The above arguments yield that k ≤ 5, S(X) has constant curvature 4 and ρ
must be one of the following sums of two representations of cohomogeneity one
(the orbit space is also indicated; here Sk(r), Sk

+(r), S
k
++(r), S

k
+++(r) denote

the round sphere of constant curvature 1
r2

quotiented by the group Γ which is
respectively generated by 0, 1, 2, 3 commuting reflections).

Spin(9) R
16 ⊕ R

16 S3
++(

1
2 )

SU(n) C
n ⊕ C

n S3
+(

1
2 ) (n ≥ 3)

U(n) C
n ⊕ C

n S3
+(

1
2 ) (n ≥ 2)

Sp(n) H
n ⊕H

n S5
+(

1
2 ) (n ≥ 2)

Sp(n)U(1) C
2n ⊕ C

2n S4
++(

1
2 ) (n ≥ 2)

Sp(n)Sp(1) R
4n ⊕ R

4n S3
++(

1
2 ) (n ≥ 2)

T 2 × Sp(n) C
2n ⊕ C

2n S3
+++(

1
2 ) (n ≥ 2)

All quotient orbifolds described in this section have curvature ≤ 4 at some
tangent plane. Owing to Theorem 4.1.1, a non-orbifold quotient S(V )/G always
has manifold points with arbitrary large curvatures at some tangent plane.

Question 4.2.1. How large can the infimum of the sectional curvatures be in a
general quotient space S(V )/G?

Question 4.2.1 is related to the estimation of diameter of orbit spaces of
.isometric actions on unit spheres [16, 25].

4.3 Concluding remarks

It is interesting to compare the results explained in this section with the world
of inhomogeneous singular Riemannian foliations on spheres.

We have seen above that the orbit space of a non-polar isometric action
of a compact Lie group of rank at least two on a sphere can be a Rieman-
nian orbifold only if it has dimension at most 5. In a recent breakthrough, M.
Radeschi [32] has constructed examples of non-isoparametric inhomogeneous
singular Riemannian foliations on spheres, including examples whose leaf space
is isometric to a hemisphere Sk

+(
1
2 ), where k can be arbitrarily large!
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On the other hand, for the other classes of infinitesimally polar actions on
spheres, the differences are not that big. For polar foliations, it is known that
the only quotients that arise, arise as quotients of group representations [38].
Moreover, in higher codimensions essentially all polar foliations are homoge-
neous [37]. The case of G having rank one and acting almost freely corresponds
to the case of regular Riemannian foliations. All such foliations but the 7-
dimensional Hopf fibration are homogeneous ([24] and the literature therein).
We also refer to [31] for a related result.

5 Appendix

5.1 Alexandrov geometry of orbit spaces

Consider a proper and isometric action of a Lie group G on a connected complete
Riemannian manifold M . Let X = M/G be the orbit space equipped with the
quotient topology. Then there is a natural stratification on M by G-invariant
manifolds consisting of points with conjugate isotropy groups; a conjugacy class
of isotropy groups is called an orbit type. The slice representation at a point
p ∈ M is the action of the isotropy group Gp on the normal space νp(Gp) to the
orbit Gp. A point p ∈ M is called regular if the slice representation is trivial.
The set Mreg of regular points is open and dense, the corresponding orbits are
called principal orbits, and the associated isotropy groups are called principal
isotropy groups, and consist of a unique minimal conjugacy class of isotropy
groups. The complement M \Mreg consists of exceptional orbits, corresponding
to points whose slice representations have finite orbits, and the other orbits
which are called singular orbits. The cohomogeneity of the G-action on M is
by definition the codimension of the principal orbits, and equals the topological
dimension of X.

From the geometric point of view, it is more natural to consider the more
refined stratification of M by normal isotropy types, namely, conjugacy classes
of slice representations. It turns out that connected components of isotropy
strata and normal isotropy strata coincide; we will call such components simply
the strata of M , and their projections to X, the strata of X. For a point p ∈ M ,
the set of fixed vectors of Gp in the slice representation is tangent to the stratum
through p; Gp acts on its orthogonal complement in νpM with cohomogeneity
equal to the codimension in X of the stratum through x = Gp. The principal
stratum Xreg = Mreg/G is full-dimensional, open, dense and connected (in
fact, convex). The boundary ∂X of X is the closure of the union of the strata
of codimension one.

A very basic result in the theory of isometric actions, which in fact can be
used to prove many facts herein stated, is the normal slice theorem. Let p ∈ M ,
let S be the exponential image of an open ball in νp(Gp), centered at the origin,
with sufficiently small radius, and put U = G · S. Then U is a G-invariant
tubular neighborhood of the orbit Gp, which is equivariantly diffeomorphic to
the homogeneous vector bundle G ×Gp

νp(Gp). Here the homogeneous vector
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bundle G ×H V over G/H, for H a subgroup of G and V a representation of
H, has total space given by the set of equivalence classes [g, v] (g ∈ G, v ∈ V ),
where (g, v) ∼ (gh−1, hv) for all h ∈ H.

We next discuss the natural metric structure of X. The quotient metric in X
is defined by declaring the distance between two points of X to be the distance
between the corresponding G-orbits in M (the latter is well defined since the
orbits are properly embedded submanifolds). Owing to the Hopf-Rinow theorem
and the first variation formula for the length, the distance between two orbits
in M is realized by the length of a minimizing geodesic, orthogonal to all orbits
it meets (that is, horizontal). It follows from the completeness of M that this
metric in X is also complete: in fact every closed ball in X, being the projection
of a closed ball of the same radius, is compact.

Recall that the length L(γ) of a continuous path γ : [a, b] → X in a metric
space (X, d) is the supremum over

∑

i d(γ(ti), γ(ti+1)) for all partitions a =
t0 < t1 < . . . < tn = b, and γ is called rectifiable if its length is finite.

Coming back to our isometric action of G on M and induced quotient metric
on X = M/G, for a minimizing geodesic between two G-orbits in M , the length
of its projection to X cannot increase. It follows that the distance between two
points in X is realized by the length of a rectifiable curve,

d(x, y) = inf{L(γ) | γ : [a, b] → X is a rectifiable curve from x to y}.

Metric spaces with this property are called inner metric spaces or length spaces.
A geodesic in a length space is a continuous curve all of whose sufficiently

small arcs minimize the distance between their endpoints. A geodesic which
minimizes the distance between its endpoints is called a minimizing curve or
shortest path. We have seen that any two points in X can be joined by a
minimizing geodesic. The projections of horizontal geodesics in M are suitable
concatenations of geodesics in X: in fact, it follows from the slice theorem that
such a projection γ has the property that for each t, γ|[t−ǫ,t] and γ|[t,t+ǫ] are
shortest paths for sufficiently small ǫ > 0.

Let γi : [0, ǫ) → X for i = 1, 2 be two minimizing geodesics emanating from
a point x ∈ X, which are parametrized by arc-length, that is, L(γi|[0,t]) = t for
all t. One uses the (Euclidean) cosine law to define the angle between γ1 and
γ2 to be

∠(γ1, γ2) = lim
t→0+

arccos

(

1−
d(γ1(t), γ2(t))

2

2t2

)

(in our case, the limit can be shown to exist.) From the above description of
geodesics, one sees that two minimizing geodesics emanating from x, parametrized
by arc-length, with angle zero, coincide. Therefore such a geodesic defines an
initial direction at x, and the angle defines a metric on the space ΣxX of di-
rections at x. The cone over ΣxX is called the tangent cone of X at x and is
denoted by CxX or TxX. It follows from the slice theorem that the tangent
cone at a point x = Gp ∈ X is isometric to the orbit space of the slice represen-
tation at p ∈ M . We deduce that strata in X can also be characterized as the
connected components of the sets of points in X with isometric tangent cones.
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In most of our practical considerations, M is either Euclidean space or the
unit sphere. Suppose the sectional curvatures of M are bounded below by a
constant κ. Since the projection from M to X cannot increase lengths, one
sees that the curvature of X is bounded below by κ in the Alexandrov sense,
that is, for any sufficiently small triangle in X formed by three geodesics, there
exists a comparison triangle in the simply-connected complete space of constant
curvature κ with congruent sides and whose angles bound the corresponding
angles of the original triangle from below; in other words, the given triangle is
“fatter” than the comparison triangle.

A complete locally compact length space with curvature bounded below by
κ is called an Alexandrov space. We have seen that if M has curvature bounded
from below, then X is a finite dimensional Alexandrov space.

5.2 Riemannian orbifolds

For more complete treatments of orbifolds, [39, 7, 3, 20, 28] are excellent sources.
Let V be an Euclidean space and denote by S(V ) its unit sphere. If Γ, Γ′ are

two finite subgroups of O(V ) which are conjugate, then the orbit spaces V/Γ,
V/Γ′ are isometric. In fact, if Γ′ = fΓf−1 for some f ∈ O(V ), then there is an
induced isometry

V
f
> V

V/Γ

π
∨

......
f̄
> V/Γ′

π′

∨

given by f̄(Γv) = Γ′f(v).
Conversely:

Lemma 5.2.1 ([35]). If V/Γ, V/Γ′ are isometric then Γ, Γ′ are conjugate in
O(V )

Proof. We proceed by induction on n = dimV . In the initial case of n = 1,
V ∼= R and the only possibilities for Γ are {1} and {±1}, which yield R and
[0,+∞), resp., non-isometric orbit spaces, so we are done.

Assume now n ≥ 2. It is enough to work with X = S(V )/Γ, X ′ = S(V )/Γ′.
Suppose F : X → X ′ is an isometry. Let x ∈ X be such that Γ · x and
Γ′ ·F (x) are principal orbits. Choose points p ∈ π−1(x), p′ ∈ π′−1(x′) and open
neighborhoods Up, Up′ , Ux, Ux′ such that π|Up

: Up → Ux, π
′|U ′

p
: Up′ → Ux′

are isometries and F (Ux) = Ux′ . Then (π′|Up′
)−1Fπ : Up → Up′ is an isometry,

where π : S(V ) → X, π′ : S(V ) → X ′ are the projections; since S(V ) is a
sphere of constant curvature, we can (uniquely) extend it to a global isometry

F̃ : S(V ) → S(V ). Let ¯̃F : X ′′ → X ′ be the isometry induced on the level

of quotients, where Γ′′ := F̃−1Γ′F̃ and X ′′ = S(V )/Γ′′. Then π′′ = ¯̃F−1π′F̃ :
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S(V ) → X ′′. Therefore, identifying X ∼= X ′′ using the isometry ¯̃F−1F , we get
π′′|Up

= π|Up
. We will show that Γ′′ = Γ as subgroups of O(V ).

It suffices to prove that:

(a) π is completely determined by its restriction to an open neighborhood Up

of a Γ-regular point p.

(b) Γ is completely determined by π.

Since π is a local isometry on the principal stratum, it is determined along any
unit speed geodesic γ in S(V ) emanating from p, until γ reaches a non-regular
point, say q = γ(t0) for some t0 > 0. Now γ̇(t0) belongs to the unit sphere Sq of
TqS(V ). The space of directions ΣyX for y = π(q) ∈ X is isometric to Sq/Γq.
Since dimTqS(V ) = n − 1, the action of Γq on Sq is known by the induction
hypothesis. It follows that the exit direction of π ◦ γ from y is known and thus
π is determined along γ beyond t0; this proves (a). Finally, the elements of Γ
are in bijective correspondence with the points in π−1(x) via the map γ 7→ γ(p).
For each γ ∈ Γ, we have a commutative diagram:

Up

Ux

π
∨

<
π

γ(Up) = Uγ(p)

γ

>

Since γ is an isometry of S(V ), using (a) this completely determines it as an
element of O(V ). Hence (b) is proved. �

Ametric spaceX is called a Riemannian orbifold if every point x ∈ X admits
a neighborhood U isometric to a quotient M/Γ, where M is a Riemannian
manifold and Γ is a finite group of isometries. (Such an approach is non-standard
but equivalent to the usual one. It has been suggested by Lytchak [23].) The
next lemma shows that X is locally represented as a quotient in a unique way.

Lemma 5.2.2. Every isometry F : M/Γ → M ′/Γ′ is locally induced by a
locally defined isometry f : M → M ′. Namely, for every x ∈ M/Γ, there exist
connected open neighborhoods U , U ′ of x, x′ = F (x) of the form V/Γp, V

′/Γ′
p′ ,

where V , V ′ are normal neighborhoods of p ∈ π−1(x), p′ ∈ π−1(x′), resp., and
U ′ = F (U) (π : V → V/Γp, π

′ : V ′ → V ′/Γ′
p′ denote the canonical projections).

Moreover F ◦ π = π′ ◦ f for some isometry f : V → V ′ with f(p) = p′ and
Γ′
p′ = fΓpf

−1.

Proof. Let G = Γp, G
′ = Γ′

p′ . By restriction we have an isometry F : V/G →
V ′/G′ with F (x) = x′. Here V , V ′ can be taken to be metric balls of the same,
small radius, around p, p′, resp. Consider the actions of G, G′ on TpV , Tp′V ′,
resp. Then there is an isometry

TpV/G ∼= Tx(V/G) → Tx′(V ′/G′) ∼= Tp′V ′/G′,
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which we denote by dFx. By Lemma 5.2.1, there is an isometry ϕ : TpV → Tp′V ′

such that

TpV
ϕ

> Tp′V ′

TpV/G

dπp
∨

dFx

> Tp′V ′/G′

dπ′
p′

∨

is commutative. Since the Riemannian exponential maps expp : TpV → V ,
expp′ : Tp′V ′ → V ′ are G-, G′-equivariant diffeomorphisms, resp., we can define
an equivariant diffeomorphism

TpV
ϕ
> Tp′V ′

V

expp
∨

..............
f

> V ′

expp′

∨

Finally, there is an induced map

V
f

> V ′

V/G

π
∨

......
f̄
> V ′/G′

π′

∨

We claim that f̄ = F . In fact, for a geodesic γ(t) = expp tγ̇(0) in V :

f̄πγ(t) = f̄π expp tγ̇(0) (5)

= π′ expp′ tϕ(γ̇(0))

by commutativity of the last two diagrams. Now π ◦ γ is an orbifold-geodesic
of V/G. The main point here is that orbifold-geodesics in general are (correctly
chosen) concatenations of metric geodesics (locally minimizing curves). Since x
is a fixed point of G, π ◦γ is also a metric geodesic and thus it is mapped under
F to a metric geodesic emanating from x′, hence, the orbifold geodesic π ◦ γ′,
where γ̇′(0) = ϕ(γ̇(0)):

Fπγ(t) = Fπ expp tγ̇(0) = π′ expp′ tϕ(γ̇(0)). (6)

Comparison of (5) and (6) proves the claim.
It follows f : V → V ′ is a local isometry on the regular set and thus, by

continuity, an isometry everywhere. Now the groups G′, fGf−1 acting on V ′

are orbit-equivalent. If not coincident, they generate a strictly larger group
with the same (finite) orbits and thus non-trivial principal isotropy groups, a
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contradiction (since the slice representation at regular points must be trivial).
Hence G′ = fGf−1. �

Let X be a Riemannian orbifold and let x ∈ X. Locally represent X around
x as a quotient M/Γ and write x = Γp for some p ∈ M . Since the isotropy group
Γp acts by isometries on M , it can be viewed as a subgroup of the orthogonal
group O(TpM). Moreover, it follows from Lemma 5.2.2 that the congruence
class of Γp is independent of the local representation of X as a quotient. After
identification TpM ∼= R

n, we get a congruence class of subgroups of O(n), called
the local group of X at x and denoted by Isox(X). A point x ∈ X is called a
manifold point of X if Isox(X) = {1}.

Example 5.2.1. Let a Lie group G act by isometries on a Riemannian manifold.
Then the orbit space has a canonical structure of Riemannian orbifold in the
following two cases:

(a) G is discrete and the action is proper (such orbifolds are called good or
developable; non-good orbifolds are also called bad);

(b) G is compact and connected and all orbits have the same dimension.

Let X be a Riemannian orbifold and locally represent X ⊃ U ∼= M/Γ. Let
O(M) denote the orthonormal frame bundle of M . This is a principal O(n)-
bundle. The action of Γ lifts to a free action on O(M), commuting with the
action of O(n), and thus O(M)/Γ is a smooth manifold with a right O(n)-
action and quotient U . It follows again from Lemma 5.2.2 that the orthonormal
frame bundle O(X) of the orbifold X is well defined as a smooth manifold such
that O(M)/Γ canonically embeds into O(X) for each local representation, and
there is an induced projection O(X) → X. Furthermore O(n) acts on O(X)
and O(X)/O(n) = X, where for any frame f ∈ O(X) at x, there is a canonical
isomorphism O(n)f ∼= Isox(X). This construction shows that every Riemannian
orbifold can be written as the quotient of a Riemannian manifold by an almost
free isometric action of a compact Lie group (namely, O(n)). The stratification
of X by local isotropy groups coincide with the stratification by O(n)-orbit type.

An orbi-covering is a map π : X → Y between Riemannian orbifolds which is
locally represented as the natural projection M/Γ → M/Γ̃ for groups of isome-
tries Γ ⊂ Γ̃ of a Riemannian manifold M . It is a fact that every connected
orbifold X admits a universal orbi-covering X̃, unique up to equivalence, with
the property that it orbi-covers any other orbi-covering space of X. The orbifold
fundamental group of X is the group πorb

1 (X) of deck transformations of the uni-
versal orbi-covering; it acts simply transitively on the fibers of this orbi-covering.
The orbifold fundamental group is a refinement of the usual fundamental group
in the sense that an orbifold can be simply-connected in the topological sense
without being simply-connected in the orbifold sense.

Example 5.2.2. Let the cyclic group Zm act by rotations around a fixed axis on
the sphere S2. The orbit space X is a Riemannian orbifold and topologically a
2-sphere but πorb

1 (X) ∼= Zm.
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A Riemannian orbifold with a non-empty boundary in the Alexandrov sense
can be doubled. It follows that a Riemannian orbifold X has ∂X 6= ∅ if and
only if πorb

1 (X) contains a reflection.

Example 5.2.3. Let X be the quotient of S2 by the reflection across the equator.
Then πorb

1 (X) ∼= Z2.

Example 5.2.4. There is a Riemannian orbifold structure Xm,n on S2 with ex-
actly two non-manifold (conical) points whose local groups are respectively Zm

and Zn. Then πorb
1 (Xm,n) = Zd where d is the greatest common divisor of m

and n. The orbifold Xm,n is good if and only if m = n. In particular, Xm,1 for
m > 1 is called a teardrop, and the bad 2-orbifold depicted in Figure 5 is the
quotient of X2,1 by a reflection.
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