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Abstract

In this paper we present a generalization of the theory of isoparametric families
of hypersurfaces in a Riemannian manifold of constant curvature, in that we consider
families of submanifolds of codimension greater than one. Our starting point is a
definition of isoparametric family of submanifolds which coincides with the classical
definition formulated by E. Cartan [1] in the case of codimension 1. That definition is
given in Section 1, where we also show that the mean curvature vector of the subman-
ifolds that belong to an isoparametric family has constant length (cf. Proposition 1.4).
In Section 2, we study the isoparametric families whose orthogonal distribution is inte-
grable. In this case we prove that each leaf of the isoparametric family has flat normal
bundle, the integral manifolds of the orthogonal distribution are totally geodesic and
that the mean curvature vector of each submanifold in the isoparametric family is par-
allel with respect to the normal connection (Proposition 2.3). In Section 3 we study the
parallel submanifolds. In this way we obtain an effective procedure to construct nor-
mal isoparametric families (i. e. whose orthogonal distributions are integrable) which,
however, is not explored in the present paper (cf. Proposition 3.5). In Section 4 we
show that the leaves of an isoparametric family of submanifolds in a Riemannian mani-
fold of constant curvature have constant principal curvatures. Finally, in Section 5, we
obtain a relation between these principal curvatures which generalizes the fundamental
formula of Cartan to higher codimensions.

the exchange of ideas.

Preliminaries.

manifold.
For a given local orthonormal frame {e4} we have the corresponding differential forms
wa, wap Which satisfy the equations:

Vey = ZMBA ®ep.
B
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In this paper all considered manifolds and mappings are of class C*°. Given
a Riemannian manifold (M™*9,(,)) of dimension n + ¢ with n, ¢ > 1, we shall follow the
convention that indices designated by small Latin letters range between 1 and n, by small
Greek letters range between n+1 and n+¢, and by big Latin letters between 1 and n+q. We
denote with V and A the covariant derivative and the Laplace operator of the Riemannian



Therefore the structure equations of that frame are:

de—i—ZwAB/\wB:O,
B

dwap + ZwAs ANwsp = (4B,
S

where the (245 are the curvature forms of the frame.

1 Isoparametric families of submanifolds

Definition 1.1 Let M"*Y be a Riemannian manifold of dimension n+q, withn, ¢ > 1, and
let U be an open submanifold of M™4. We shall call isoparametric family of n-dimensional
submanifolds any foliation of U which is locally defined as the inverse image of reqular values
of a mapping

F:WcU—=RY, F=(Fu1,---,Farg),

such that the functions
P,s = (grad F,, grad Fg), AF,,

are locally constant on any leaf.
Definition 1.2 An orthonormal frame e, ..., enyq s said to be distinguished if the vector

fields en1, ..., entq are obtained from the vector fields grad Fy i1, ..., grad Fy1q by the usual
Gram-Schmidt orthonormalization process.

Lemma 1.3 Let S be a leaf of a given isoparametric family of submanifolds and let H be the
mean curvature vector of S. Then, for any distinguished frame (e,), the functions (H,eq)
are locally constant on S.

Proof. From the definition of distinguished frame we get that:

n—+q

grad F,, = Z Gopes, a=n+1,...,n+gq,
B=n+1

where the functions g, are locally constant on S.
The above equations are equivalent to the following:

dFa=an5wg, a=n+1,...,n+q. (1)
B

On the other hand, from the fact that the functions g, are locally constant on S we get:

dqagzz:qamdﬂ,, a,f=n+1,....n+q. (2)
v



Exterior differentiation of (2) gives:

quam/\dFA,:O, a,B=n+1,...,n+q.

.From Cartan’s Lemma follows that the differential forms dq,g,, o, 3, v = n+1,...,n+q,
are linear combinations of dF,,11,...,dF,, and therefore the functions g,g, are also locally
constant on S.

On the other hand, using exterior differentiation it follows from (1) that:

qua/gAwg+qa5dw5 =0, a=n+1,...,n+q.
B
Using the structure equations we get from the above equations:
> (dgas Aws = Y qap(wpa Awa)) = 0. (3)
B A,B

.From the above relations we find, for each pair of vector fields e,, e,, with p, v > n 4 1:

dqau(ev) anV elt anﬂ w/J’N 61/ wﬂl/(eu))'

Since the matrix (gqp) is invertible and the functions dg,, (€,) —dgav(e,) are locally constant,
we have that the functions wg,(e,) — wgyu(e,) are locally constant, too. In particular, the
functions w,,(e,) are locally constant on S.

In the sequel we analyse the Laplacian of each function F,, which is given by:

AFa = ZeA(eAFa) - (VeAeA)Fa. (4)

We observe that the functions dF'(e;) vanish identically for i = 1, ..., n, and that, because
of (1) and (2), we have:

es(eska) Z Qapydys;
so that equation (4) may be rewritten:
AF, = Z GapyQys — Z(veAeA)Fa- (5)
By A
We have also that:
Z dF eAeA Z(Vez'eh 6/3’>q04/3’ + Z(Vewe"r’ 6,3>Qa,8-

B 7,8

Recall that the mean curvature vector H is given by:
1
H=- Z(Veiei,eg)eﬂ,

n
0,6



so that we obtain the expression

D dFo(Vesea) =Y qap(nH,e) + Y dapwpy(es)- (6)
A 5

By

From the definition of isoparametric family, we have that the functions AF, are locally
constant on each leaf S, and because of (5) and (6) we conclude that the functions (H, es)
also have that property. O

An immediate consequence of the above lemma is the following proposition.

Proposition 1.4 The mean curvature vector of each leaf of an isoparametric family of sub-
manifolds has constant length.

2 Normal isoparametric families

Definition 2.1 An isoparametric family of submanifolds of a Riemannian manifold is called
normal isoparametric family if the distribution defined by the normal spaces to the leaves is
integrable.

Lemma 2.2 The connection forms relative to a distinguished frame of a normal isopara-
metric family of submanifolds satisfy:

Wai(es) =0, waple;) =0, i=1,...,n, of>n+1 (1)
Proof. We start with the relations (3):

Y (dgap Aws = dap(wpa Awa)) =0,

B A
and evaluate the above expression to the pair of vector fields e;, e, in order to get

Y das(wpn(es) — wgilen)) =0,

B

and then, since the matrix (g,p) is invertible, that:
wg (i) —wgi(ey) = 0. (2)
On the other hand, the integrability of the orthogonal distribution means that:
wai(eﬂ) = wﬂi(ea)- (3)
Combining relations (2) and (3) we obtain (1). O

. From Lemma 2.2 follows immediately the following result:

!Note of the translator: It is not true that every isoparametric family of submanifolds is automatically
normal. For instance, the foliation of Euclidean space by orbits of an orthogonal representation of a com-
pact connected Lie group is always an isoparametric family of submanifolds (G. Schwarz, Smooth functions
invariant under the action of a compact Lie group, Topology 14 (1975), 63-68; see also Theorem 3 in Q.-M.
Wang, Isoparametric maps of Riemannian manifolds and their applications, Advances in Science of China,
Mathematics 2, Wiley-Interscience, New York (1986), 79-103), but it is a normal isoparametric family of
submanifolds if and only if that representation is polar (R. S. Palais and C.-L. Terng, Critical Point Theory
and Submanifold Geometry, Lect. Notes in Math. 1353, Springer-Verlag, 1988, Section 5.6).



Proposition 2.3 The integral manifolds of the orthogonal distribution of a normal isopara-
metric family of submanifolds are totally geodesic submanifolds and the normal connection
on each leaf of the isoparametric family has flat normal bundle.

3 Parallel families of submanifolds

In this section we study the local structure of isoparametric families of submanifolds in a
simply connected Riemannian manifold M™*4(c) of constant curvature c.

Lemma 3.1 Let S be a leaf in a given normal isoparametric family of submanifolds of
M"™(c). Then for each point m in S there exist a simply-connected open neighbourhood U
of m in S, an interval J of R centered at 0, and unit normal vector fields §n11, ..., &n1q
defined on U and parallel with respect to the normal connection such that the mapping

Frdx ST XU — M™(c)

defined by
f(t,a,x) = exp,(t Z oo (), a = (Ani1,---,0ntq),

is a diffeomorphism, where ST is the unit sphere in RY.
The proof of this lemma is simple and we shall omit it.

Definition 3.2 A diffeomorphism f in the conditions of Lemma 3.1 is called normal trivial-
ization of the given normal isoparametric family. Moreover, we consider the diffeomorphism

fi:U— M), fi(z)=f(taz), zel.

Lemma 3.3 For each z € U and a € S, the subspace field t — (f#).T,S is parallel along
the geodesic t — f{(z).

Proof. We shall consider separately each one of the cases ¢ =0, ¢ > 0 and ¢ < 0.

In the first case the ambient space is R"™7 and the mapping f can be written f(¢,a,z) =
T +tY, aa€s(z) where z is identified with its position vector in R"*9.

We denote the covariant differentiation of R"™? with D and write

(f)sv = v+t taDyba,

for every vector v tangent to S.

Since D,&, is still tangent to S, we have that the vector (f{).v is parallel to the tangent
space T, S and thus the lemma is proved in the Euclidean case.

In the remaining cases, without loss of generality we can restrict to the cases ¢ = 1 and
c=—1.

In the elliptic case we have that the mapping f given by

f(t,a,z) = (cost)v + (sint) Z oo

«



has values on the unit sphere S of R"*4*. For every vector v tangent to S we have

(ff)sv = (cost)v + (sint) Y aaDya,

where D denotes the covariant derivative in R"T9*!. Since the vector fields are parallel in
the normal connection of the leaf S, we get that D,&, is the sum of a vector tangent to S
and the vector (D,€,,z)z. On the other hand, since (D,&,,x) = 0, we see that (f#).v is
parallel to a vector in T,,.S.

In the case ¢ = —1 we can consider that the ambient space is H"t4 C R"T9*! defined by

H" = {z € R"""" (1,2) = -1},

where (,) denotes the Lorentz metric in R4,
In this case we have the expression:

f(t,a,z) = (cosht)x + (sinht) Z aoéo(T),

and for every tangent vector v € T,,S holds that

(f)«v = (cosht)z + (sinh ) Z aoDyén ().

Therefore we easily conclude that (f).v is parallel (in the Euclidean sense) to a tangent
vector in T,S. With that we conclude the proof of Lemma 3.3. O

In the following we state the following fact of a general character:

Lemma 3.4 If N is a totally geodesic submanifold of a Riemannian manifold M™9 and
v =(t) is a curve in N, then the subspace field t — Ty N is parallel in M™+.

We are now in the position to prove the following:

Proposition 3.5 Let f be a normal trivialization of a normal isoparametric family of sub-
manifolds in M™*9(c). Then each of the submanifolds f{(U) is contained in some leaf of the
given isoparametric family.

Proof. Let N be a maximal integral manifold of the orthogonal distribution of the isopara-
metric family. Propostion 2.3 implies that N is totally geodesic. Because of Lemmas 3.3
and 3.4, we have also that the families of subspaces T, /N and (f;).1,S are parallel along
the geodesic t — f?(z). Therefore those are orthogonal along that geodesic. By the unique-
ness of the orthogonal complement we see that the subspaces (ff).1,S are tangent to the
leaves of the isoparametric family. O



4 Submanifolds with constant principal curvatures

To begin with we state two results of technical flavor about tensor fields:

Lemma 4.1 Let A be a field of symmetric tensors of type (1,1) on a Riemannian manifold
M™. Then there exist n continuous functions A\ > Ay > ... > A, such that for each x in
M™ the set {\i(z) :i=1,2,...,n} is the set of the eigenvalues of Ay.

The proof of this lemma can be found in [4].
This result allows us to state the following:

Definition 4.2 We say that a n-dimensional submanifold S of a Riemannian manifold
M"™9 has constant principal curvatures if:

a. The normal bundle of S is flat.

b. For each normal vector field & defined on a connected open submanifold of S which is
parallel on the normal connection, the functions \; relative to the tensor field A¢ which
are given by Lemma 4.1 are constant, where AS denotes the second fundamental form

defined by .

The main goal of this section is to prove that the leaves of a normal isoparametric family
of submanifolds of M™"%(¢) have constant principal curvatures.

Definition 4.3 Let S be a submanifold of codimension ¢ > 1 in a Riemannian manifold
M™% whose normal bundle is flat. A point x in S is called a general point if there exists an
orthonormal frame {ea} of M adapted to S such that the first n vector fields diagonalize the
second fundamental forms A+t ... A®rta,

We will use the following result whose proof we omit.
Proposition 4.4 The set of general points of a submanifold is open and dense.

Definition 4.5 Given a normal trivialization of a normal isoparametric family f : J X
St x U — M™(c), we call normal frame adapted to this trivialization the set of vector
fields ep11, ..., entq defined along f as follows: each e, is the vector field which coincides at
the point f(x), xz € f§(x), with the parallel translate of &4 (x) along the geodesic t — f'(x).

Lemma 4.6 The restriction of each vector field e, to the submanifold f#(U) is a normal
vector field parallel in the normal connection of that submanifold.

Proof. The fact that the vector fields e, are orthogonal to the submanifold f#(U) follows
from Lemma 3.3. In order to show that the e, are parallel in the normal connection of
fE(U), we take an arbitrary curve in U, say p = pu(s), and consider the functions:

H(s,t) = F20(5)s Papl5:8) = (V gearep).
. From the definition of the e, we have that V 4 €q is zero and therefore the derivatives

a‘g—‘;ﬂ are also zero®. Therefore, the functions ¢, do not depend on ¢ and as these are zero

for t = 0, they are always zero. Thus the lemma is proved. ]

2N. T.: Use that the normal bundle is flat (Proposition 2.3).



Proposition 4.7 Consider a normal isoparametric family of n-dimensional submanifolds of
M"*4(c). Then every leaf has constant principal curvatures.

Proof. Let S be a leaf and f a normal trivialization defined in a neighbourhood of
a general point of S. From Lemma 3.3, if an orthonormal frame eq,...,e, of the leaf S
diagonalizes the second fundamental forms then the frame (ff).e;, ¢ = 1,...,n, diagonalizes
the second fundamental forms of f#(U).

Now we have n unit vector fields e, pairwise orthogonal, tangent to the leaves of the
isoparametric family. We will still denote them with eq, ..., e,. Finally, we complete these
fields to an orthonormal frame by making use of the vector fields defined in 4.5. We denote
with a; the differentiable functions defined on the image of f by

(1,;1:_<Aea€i,ei>’ 221,,77,, a:n+1""’n+q'

Then we have the equations w,; = afw;, and by exterior differentiation, dw,; = da{* A w; +
addw;.

We use the structure equations and the fact that the curvature forms satisfy Q245 =
cwa A wpg in order to write:

CWo N\ Wi — g waA/\wAi:daf‘/\wi—af‘E w;B \ Wg,
A B

or,
CWa N\ Wi — E Waj N\ Wji — E wM/\w,ﬂ-:daf‘/\wi—a?E wz'j/\Wj_a/;'lE Wiy N\ Wey.
J 0 J v

If we evaluate this equation on the pair e,, e;, we get:

da(e,) — a%al = e — 3" Y (c,):
Y

In particular, for p = o we get:

daf(ea) = (a§)? = ¢ = ) alway(ea).

We remark that the integral curves of e that start at the submanifold U are geodesics in
M™*4(c), so that the restriction of the functions a; to these geodesics satisfy the following
differential equations:

day

dtz =c+ (a¥)? af =al(t,x), €U

Lemma 1.3 gives the initial condition a$(0,z) = constant and, therefore, from a result
in [3] we conclude that the functions a; are locally constant. Thus we have proved that the
leaves of the isoparametric family have constant principal curvatures. 0



5 The fundamental formula

In this section we obtain a relation among the principal curvatures a; of the leaves of an
isoparametric family of submanifolds of M™*9(¢). The arguments that allow us to arrive at
that relation are strongly based on the ideas of E. Cartan ([1]).

With respect to a frame ej,...,epn, €n41,.-.,€n4q, adapted to the given isoparametric
family, and where the vector fields ey, ..., e, diagonalize the second fundamental form of
each leaf, we have:

Wai = Gjw;, 1=1,...,m; a=n+1,...,n+q, (1)

where the functions af* are constant. We introduce in the following the functions:

a

ke = (af — af)wij(er). (2)

We exterior differentiate (1) and evaluate the result on the pair of vector fields e;, e to
obtain®

(0§ — af)wij(ex) = (aff — ag)wir(e;), (3)

which shows the symmetry of the A, with respect to the lower indices. We get also, for
distinct indices ¢, j, the relation:

c+ ) ala) =) wijler)(wrile;) — wi(es)

+wik(ei)wis(e) — wik(ej)wri(e:) + (d(wiz(es))(e:) — d(wij(ei))(es))- (4)
On the other hand, we see that for any indices ¢, j, £ holds
(Agk)? = (a — af) (af — af) (wij(ex) (wri(e;) — wrj(es))) (5)
and
—(A%5)? = (af — af)(af — af )wir(ej)wrj(ei)- (6)

In order to simplify the notation, we give the following

Definition 5.1 Let « € {n+1,...,n+ q}. We say that two indices i, j € {1,...,n} are
a-essentially distinct if aff # af. We denote with J* the set of indices that are a-essentially
distinct from i. Two indices are called essentially distinct if they are [-essentially distinct
for some B.

In that terminology, if 4, j are essentially distinct then*
wij(ei) =0, wij(e;) =0. (7)

In the following we subdivide our exposition into a series of small lemmas:

3N. T.: Use also the structure equations.
N. T.: This follows from (2) and the symmetry of A,



Lemma 1 If1, j are two essentially distinct indices, then for every k holds:
wir (€5)wr;(€j) = 0. (8)
Proof. 1f> af = af, then af # af, and then wy;(e;) = 0. If aff = af, then aff # af, and
then wyi(e;) = 0. If aff # af, af # af, then wy;(e;) = 0, wy;(e;) = 0. O

Lemma 2 If1i, j are two a-essentially distinct indices and if k is an index such that aj = aff
or ay = a3, then hold:

wij(er) =0,  wik(ej)wrj(ei) = 0. (9)

Proof. We start with the relation (3) in the form:

(ak — ai)wrile;) = (ai — af)wr;(e:). (10)

If af = af, then af # af and then, from the above relation, wy;(e;) = 0. Analogously, if
ay = af we get wgi(e;) = 0, which proves the second relation (9).
In order to prove the first of the relations (9), we start with

(a5 — ai)wjiler) = (¢ — ai)wik(e;), (11)
and we observe that, if af = af, then wij(ex) = 0. Finally®, if af = af, then wj;(ex) = 0. O

Lemma 3 If1, j are two essentially distinct indices, then holds:

c+ Y ala) = D wijlenr)(wri(e;) — wijles) — winle;)wn;(e:)- (12)

keJgnJs

Proof. f" k ¢ J® then af = a®. Then, by Lemma 2, we have that the term corresponding
to the index k in the sum above is zero. The same happens if k & J7. U

. From the above follows immediately the following:

Corollary 5.4 If i, j are two essentially distinct indices such that for some B we have
JPN TP =0, then

c+ Z aja) = 0. (13)

Lemma 5.5 If 1, j are a-essentially distinct with Ji* 0 J3* # (0, then:

L= 2 (=wte=a) .

kegpngg J

5N. T.: Suppose 4, j are a-essentially distinct.
N. T.: Note that (11) equals (af — a$)wg;(es)-
"N. T.: Start with (4) and (7).

10



This lemma follows immediately from (12) and from the definition® of the Ag,.

Proposition 5.6 (Cartan’s generalized formula) For each indexi=1,...,n and each
imdexaa=n+1,...,n+q holds:

c+ ala)
> <—a27 - 7) =0. (15)
as — at
JETETENTE A0 ¢ J

Proof. Tt is enough to show that

S o e ) = 1o

JETETENTX A0 k€T NI J

In order to do that, we note that the term corresponding to the indices 7jk contributes to
the sum if and only if J* N J3* # fand k € J*N J. Also, we check that the term ikj also
appears in the sum and with opposite sign, since J* N JX # () and j € J* N J2. Il

We expect the formula (15) to play an important role in the theory of the isoparametric
families of submanifolds.
We give now an application of this formula, namely:

Proposition 5.7 Let M™ be a submanifold of R"™ with constant principal curvatures and
satisfying:

a. g >n.
b. The dimension of the first normal space at each point is n.

Then M™ is flat.

Proof. Let B, : T,M x T,M — (T,M)" the second fundamental form of M™ at the
point p. Suppose that ey, ..., e, is a basis of T,M that diagonalizes® B,. From hypothesis b.
we have that the vectors B(ei,ei),...,B(e,,e,) are linearly independent. Applying the
customary orthonormalization process to the above basis, we obtain a basis of (T,M)* such

that the eigenvalues a$, i =1,...,n,a =n+1,...,n+gq, form a triangular matrix'® of rank
n:
arlz-i-l ag-i—l .. az+1
0 alt? ... qnt?
0 0
0 0 ceeog2n

n

8N. T.: Namely, (5) and (6).

9N. T.: Such a basis exists because the normal bundle of M is flat, so Ricci’s equation implies that the
Weingarten operators at p pairwise commute.

1ON. T.: Namely, the matrix of change of coordinates.

11



Here we should remark that all the diagonal elements a}*', a3™2,..., a?" are different from

zero.
We now apply the formula (13) for the pairs of indices (1,n),(2,n),...,(n — 1,n) and
for the index 8 = 2n in order to deduce that the elements a”™, a"*2 ... a?"~! are all zero.

Then an induction argument combined in each step with formula (13) shows that the matrix
above is diagonal. From that we easily deduce that M™ has zero curvature'.
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1N, T.: This can be seen from Gauss’s equation.
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