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Spherical two-piece property (STPP)

Let M be a compact surface embedded in Sm.

• We say M has the STPP if M ∩ B is connected whenever B is
a closed ball in Sm. [Banchoff, 1970]

• This is equivalent to every Morse function of the form

Lq : M → R, Lq(x) = d(x, q)2

having exactly one local minimum.

• By replacing q by −q we see that this condition implies that
such an Lq also has exactly one local maximum.

• Since

χ = b0 − b1 + b2 = µ0 − µ1 + µ2,

this condition in fact implies that µi = bi for all i (use Z2

coefficients).
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STPP, examples

• The STPP is conformally invariant: theories in Sm, Rm are
equivalent.

• A compact surface substantially embedded in Sm with
the STPP is a round sphere or a cyclide of Dupin in S3, or
the Veronese embedding of a projective plane in S4.
[Banchoff, 1970]

• The STPP condition is also equivalent to requiring that
the induced homomorphism

H0(M ∩ B,Z2) → H0(M,Z2)

in C̆ech homology is injective for every closed ball B.
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Taut submanifolds

Let M be a compact submanifold embedded in Sm.

• We say M is taut if the induced homomorphism

Hi(M ∩ B,Z2) → Hi(M,Z2)

in C̆ech homology is injective for every closed ball B
and for all i.

• This is equivalent to every Morse function of the form

Lq : M → R, Lq(x) = d(x, q)2

satisfying µi = bi for all i (i.e. Lq is perfect). [Carter and
West, 1972]

• Tautness is equivalent to the STPP for surfaces.
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Taut 3-manifolds

The diffeomorphism classes of the compact 3-manifolds
admitting taut embeddings are [Pinkall-Thorbergsson,
1989]:

S3, RP 3, S3/{±1,±i,±j,±k}

S1 × S2, S1 × RP 2, S1 ×h S2

T 3

There is no complete geometrical classification (not even
of the possible substantial codimensions).
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Other results

• It follows from the Chern-Lashof theorem that a taut
substantial embedding of a sphere must be round and
of codimension one.

• A taut n-dimensional compact hypersurface of Sn+1

with the same homology as Sk × Sn−k has precisely two
principal curvatures at each point and the principal
curvatures are constant along the corresponding
curvature distributions. [Cecil and Ryan, 1978]
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Taut irreducible representations

The irreducible representations of compact Lie groups
other than isotropy representations of symmetric spaces all
of whose orbits are taut submanifolds are (n ≥ 2): [G. and
Thorbergsson, Crelle 2003]

SO(2) × Spin(9) (standard) ⊗R (spin)

U(2) × Sp(n) (standard) ⊗C (standard)

SU(2) × Sp(n) (standard)3 ⊗H (standard)

These are exactly the irreducible representations of
cohomogeneity 3 that do not come from symmetric
spaces.
Also: the irreducible representations of copolarity 1 (G.,
Olmos and Tojeiro, TAMS 2004).
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Taut reducible representations

Theorem (G., 2004)
A reducible representation of a compact simple Lie
group is one of the following:

SU(n) : Cn ⊕ · · · ⊕ Cn (k copies, 1 < k < n, n ≥ 3)
SO(n) : Rn ⊕ · · · ⊕ Rn (k copies, 1 < k, n ≥ 3, n 6= 4)
Sp(n) : C2n ⊕ · · · ⊕ C2n (k copies, where 1 < k, n ≥ 1)
G2 : R7 ⊕ R7

Spin(6) = SU(4): R6 ⊕ C4

Spin(7) :



































R7 ⊕ R8

R8 ⊕ R8

R8 ⊕ R8 ⊕ R8

R7 ⊕ R7 ⊕ R8

Taut representations of compact simple Lie groups – p.8/21



Taut reducible representations

Theorem (G., 2004)
A reducible representation of a compact simple Lie
group is one of the following:

SU(n) : Cn ⊕ · · · ⊕ Cn (k copies, 1 < k < n, n ≥ 3)
SO(n) : Rn ⊕ · · · ⊕ Rn (k copies, 1 < k, n ≥ 3, n 6= 4)
Sp(n) : C2n ⊕ · · · ⊕ C2n (k copies, where 1 < k, n ≥ 1)
G2 : R7 ⊕ R7

Spin(6) = SU(4): R6 ⊕ C4

Spin(7) :



































R7 ⊕ R8

R8 ⊕ R8

R8 ⊕ R8 ⊕ R8

R7 ⊕ R7 ⊕ R8

Taut representations of compact simple Lie groups – p.8/21



Taut reducible representations

Theorem (G., 2004)
A reducible representation of a compact simple Lie
group is one of the following:

SU(n) : Cn ⊕ · · · ⊕ Cn (k copies, 1 < k < n, n ≥ 3)
SO(n) : Rn ⊕ · · · ⊕ Rn (k copies, 1 < k, n ≥ 3, n 6= 4)
Sp(n) : C2n ⊕ · · · ⊕ C2n (k copies, where 1 < k, n ≥ 1)

G2 : R7 ⊕ R7

Spin(6) = SU(4): R6 ⊕ C4

Spin(7) :



































R7 ⊕ R8

R8 ⊕ R8

R8 ⊕ R8 ⊕ R8

R7 ⊕ R7 ⊕ R8

Taut representations of compact simple Lie groups – p.8/21



Taut reducible representations

Theorem (G., 2004)
A reducible representation of a compact simple Lie
group is one of the following:

SU(n) : Cn ⊕ · · · ⊕ Cn (k copies, 1 < k < n, n ≥ 3)
SO(n) : Rn ⊕ · · · ⊕ Rn (k copies, 1 < k, n ≥ 3, n 6= 4)
Sp(n) : C2n ⊕ · · · ⊕ C2n (k copies, where 1 < k, n ≥ 1)
G2 : R7 ⊕ R7

Spin(6) = SU(4): R6 ⊕ C4

Spin(7) :



































R7 ⊕ R8

R8 ⊕ R8

R8 ⊕ R8 ⊕ R8

R7 ⊕ R7 ⊕ R8

Taut representations of compact simple Lie groups – p.8/21



Taut reducible representations

Theorem (G., 2004)
A reducible representation of a compact simple Lie
group is one of the following:

SU(n) : Cn ⊕ · · · ⊕ Cn (k copies, 1 < k < n, n ≥ 3)
SO(n) : Rn ⊕ · · · ⊕ Rn (k copies, 1 < k, n ≥ 3, n 6= 4)
Sp(n) : C2n ⊕ · · · ⊕ C2n (k copies, where 1 < k, n ≥ 1)
G2 : R7 ⊕ R7

Spin(6) = SU(4): R6 ⊕ C4

Spin(7) :



































R7 ⊕ R8

R8 ⊕ R8

R8 ⊕ R8 ⊕ R8

R7 ⊕ R7 ⊕ R8

Taut representations of compact simple Lie groups – p.8/21



Taut reducible representations, cont’d

Spin(8) :



















R8
0 ⊕ R8

+

R8
0 ⊕ R8

0 ⊕ R8
+

R8
0 ⊕ R8

0 ⊕ R8
0 ⊕ R8

+

Spin(9) : R16 ⊕ R16
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Idea of proof

• Case by case analysis: for each compact simple Lie
group, we first discard a number of cases, and then
prove that the remaining cases are taut.

• Since every irreducible summand of a taut reducible
representation is taut, we need to decide which sums
are allowed.

• In fact, every irreducible summand of a taut reducible
representation is the isotropy representation of a
symmetric space.

• Each compact simple Lie group admits few such
representations (spin groups are a case apart).

• There are three important results which are used in the
classification.
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representations (spin groups are a case apart).

• There are three important results which are used in the
classification.
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Fundamental result about taut sums

Theorem (G. and Thorbergsson, 2000)
Let ρ1 and ρ2 be representations of a compact connected
Lie group G on V1 and V2, respectively. Assume that ρ1 ⊕ ρ2

is F -taut. Then the restriction of ρ2 to the isotropy group Gv1

is F -taut for every v1 ∈ V1. Furthermore, we have that

p(G(v1, v2); F ) = p(Gv1; F ) p(Gv1
v2; F ),

where p(M ; F ) denotes the Poincaré polynomial of M with
respect to the field F . In particular, Gv1

v2 is connected and
b1(G(v1, v2); F ) = b1(Gv1; F ) + b1(Gv1

v2; F ), where b1(M ; F )

denotes the first Betti number of M with respect to F .
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Applications of fundamental result

The following taut representations of compact Lie groups
can never be proper summands of a taut representation:

• A representation whose principal isotropy subgroup is
discrete and not central. (Use b0.)

• The adjoint representation of a Lie group of rank
greater than one. (Use b1.)

Arguments involving b3 are also useful.
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Inductive argument

Recall that the slice representation of a representation
ρ : G → O(V ) at a point p ∈ V is the representation induced
by the isotropy Gp on the normal space to the orbit Gp at p.

Theorem (G. and Thorbergsson 2000)
The slice representation of a taut representation at any
point is taut.

E.g: This result is used to reduce the proof of the
nontautness of SU(n) acting on Cn ⊕ · · · ⊕ Cn (n
summands) to the case n = 3.
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Reduction principle, I

Let ρ : G → O(V ) be a representation of a compact Lie
group G which is not assumed to be connected. Denote
by H a fixed principal isotropy subgroup of the G-action on
V and let V H be the subspace of V that is left pointwise
fixed by the action of H. Let N be the normalizer of H in G.
Then the group N̄ = N/H acts on V H with trivial principal
isotropy subgroup.
Theorem (Luna and Richardson)
The inclusion V H → V induces a stratification preserving
homeomorphism between orbit spaces

V H/N̄ → V/G.
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The inclusion V H → V induces a stratification preserving
homeomorphism between orbit spaces

V H/N̄ → V/G.

The relation to tautness is expressed by the following result.
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Reduction principle, II

Theorem (G. and Thorbergsson 2000)
Suppose there is a subgroup L ⊂ H which is a finitely
iterated Z2-extension of the identity and such that the fixed
point sets V L = V H . Suppose also that the reduced
representation ρ̄ : N̄0 → O(V H) is Z2-taut, where N̄0

denotes the connected component of the identity of N̄ .
Then ρ : G → O(V ) is Z2-taut.

In some cases, the reduction principle can also be used to
to prove that certain representations are not taut.
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Remarks

• Orbits of orthogonal representations are contained in
round spheres, so the set of critical points of a distance
function also occurs as the set of critical points of a
height function (tightness).

• Ozawa proved that the set of critical points of a
distance function to a taut submanifold decomposes
into critical submanifolds which are nondegenerate in
the sense of Bott; it follows that the number of critical
points of the function equals the sum of the Betti
numbers of the critical submanifolds.
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Examples, I

Spin(7) acting on R7 ⊕ R8 ⊕ R8 is not taut:

• If M is an orbit and h is a height function, the critical set
of h coincides with that of h|MH = M ∩ V H .

• MH is an orbit of the reduced representation.

• In this case: If M is principal and taut, it has the
homology of S5 × S6 × S7 by the fundamental result.

• The reduced representation is a certain representation
of SO(3) × SO(4) × SO(4) on R11.

• For certain choices of M and h, the sum of the Betti
numbers of critical set of h|MH is 12. Hence, M is not
taut.
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Examples, II

Spin(8) acting on R8

0 ⊕ R8

+ ⊕ R8

−
is not taut:

• The reduced representation is a certain representation of a
2-torus on R6 with substantial principal orbits, hence, not
taut.

• Let M be a principal orbit of the original representation. M H

is a 2-torus, and it has a piece of line of curvature C that is
not a arc of a round circle.

• M and MH have the same normal spaces along MH , and
the Weingarten operator of M with respect to a normal
vector restricts to the Weingarten operator of MH .

• The tangent directions of C are principal directions of M .
Hence, M is not taut by a result of Pinkall.
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Examples, III

The sum of k > 1 copies of the vector representation of
SO(n) on Rn is taut.

• Suppose first k ≤ n; set: {e1, . . . , en} the canonical basis
of Rn, p = (e1, . . . , ek) ∈ V .

• View V = Rn ⊕ · · · ⊕ Rn ∼= Rn ⊗ Rk.

• Let Ĝ = SO(n) × SO(k) act on V .

• Ĝp = Gp and (Ĝ, V ) is the isotropy representation of
Gk(R

n+k); hence Gp is taut.
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Examples, IV

• Suppose now k arbitrary; let q = (v1, . . . , vk) ∈ V be
nonzero.

• There exists a nonsingular k × k matrix M such that
qM = (e1, . . . , el, 0, . . . , 0) ∈ V , where 1 ≤ l ≤ n.

• As above, G(qM) = (Gq)M is taut.

• A taut submanifold in Euclidean space is tight, and
tightness is invariant under linear transformations, so Gq

is tight.

• Gq lies in a sphere, and so it is taut.
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Thank you!
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