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Polar actions

Let G be a Lie group acting properly and isometrically on a
complete Riemannian manifold X.

We call the action polar if there exists a connected,
complete submanifold Σ that meets all the orbits of G in such
a way that the intersections are all orthogonal (Szenthe,
Conlon, Palais-Terng).

It is easily seen that a section Σ is totally geodesic in X.

An action admitting a section that is flat in the induced
metric is called hyperpolar.

A polar representation of a compact Lie group in an
Euclidean space is orbit equivalent to the isotropy
representation of a symmetric space (Dadok, 1985).
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Taut submanifolds of space forms

Let M be a properly embedded submanifold of a space
form V , and let F be a coefficient field.

We say that M is F -taut if the distance function
Lq(p) = d(p, q)2 is a F -perfect Morse function for every
q ∈ V that is not a focal point of M (Carter-West).

Recall that Lq is a Morse function if and only if q is not a
focal point of M , and the index of a critical point p ∈ M

of Lq is the sum of the multiplicities of the focal points
along the geodesic segment pq (Morse index thm).

If Lq is Morse, the weak Morse inequalities say that
µk(Lq|M

c) ≥ βk(M
c; F ) for all k and c > 0; Lq is called

F -perfect if these are equalities.
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Taut submanifolds
of complete Riemannian manifolds

Let M be a properly embedded submanifold of a complete
Riemannian manifold X.

We say that M is F -taut if the energy functional
Eq : M = P(X, M × q) → R is a F -perfect Morse function for
every q ∈ X that is not a focal point of M

(Terng-Thorbergsson).

Eq is a Morse function iff q is not a focal point of M , γ is a
critical point of Eq iff it is a geodesic perpendicular to M at
γ(0), and the Morse index thm holds.

Eq is bounded below and satisfies the Palais-Smale condition,
so for a Morse function Eq, µk(Eq|M

c) is finite and the weak
Morse inequalities hold; Eq is F -perfect if
µk(Eq|M

c) = βk(Mc; F ) for all k and c > 0.
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Taut actions

Let G be a Lie group acting properly and isometrically on a
complete Riemannian manifold X.

We call the action F -taut if all the orbits are F -taut
submanifolds.

Theorem (Biliotti-G., 2005) A polar action of a compact Lie
group on a compact rank one symmetric space is Z2-taut.

There are nonpolar, taut actions on Euclidean space
(G.-Thorbergsson, 2000) and on compact rank one
symmetric spaces (Biliotti-G., 2005).

A hyperpolar action of a compact Lie group on a complete
Riemannian manifold is Z2-taut (Bott-Samelson and Conlon).
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Proof of the theorem

Note: a polar action on a compact irreducible type I
symmetric space of rank greater than one is hyperpolar
(Kollross, 2005), and hence, taut by the above.

CROSS’s are Sn, RPn, CPn, HPn and CaP 2. Polar
actions on these spaces have been classified by
Podestà and Thorbergsson (1999), but we do not need
to use their classification in full.

We will only use that a polar action on
CaP 2 = F4/Spin(9) of cohomogeneity greater than
one is given by one of the following subgroups of F4:

Spin(8), S1 · Spin(7), SU(2) · SU(4), SU(3) · SU(3).
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A lifting argument

Proposition Let π : X̂ → X be a Riemannian submersion
and a principal G-bundle. Let M be a properly
embedded submanifold of X and M̂ = π−1(M). Then
M̂ is taut in X̂ iff M is taut in X.

The map

Φ : P(X, M × q) × P(G, G × 1) → P(X̂, M̂ × q̂),

given by Φ(x, g)(t) = x̂(t)g(t), where x̂(t) is the horizontal
lift of x(t) with x̂(1) = q̂, is a diffeomorphism.

P(G, G × 1) is contractible.
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The reduction principle, I

Let

G: compact, possibly disconnected Lie group

X: complete Riemanian manifold

(G, X): isometric action

H: principal isotropy subgroup

XH : fixed point set of H in X

cX: closure in X of subset of regular points of XH

N̄ = (normalizer of H in G)/H

X̄: a fixed connected component of cX

Ḡ: stabilizer of X̄ in N̄ .

Then there are homeomorphisms

cX/N̄ → X/G and X̄/Ḡ → X/G.
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The reduction principle, II

Lemma Let M be a G-orbit and q ∈ X̄ be a regular point.
Consider the energy E : P(X, M × q) → R. Then the critical
set of Eq coincides with that of its restriction to P(X̄, M̄ × q).

Lemma Let M be a G-orbit, q ∈ X̄ and c > 0. Suppose there
exists a subgroup L ⊂ H, finitely iterated Z2-extension of the
identity, such that the connected component of XL

containing q equals X̄. Then

β(P(X̄, M̄ × q)c) ≤ β(P(X, M × q)c).

Ω: finite dim approx of P(X, M × q)c

Floyd:

β(ΩL) ≤ β(ΩHn−1) ≤ . . . ≤ β(ΩH0).
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The reduction principle, III

Proposition Suppose there is a subgroup L ⊂ H, finitely
iterated Z2-extension of the identity, such that a
connected component of the XL equals X̄. If the reduced
action of Ḡ on X̄ is taut, then the action of G on X is taut.

WLOG q ∈ X̄. Let
P(X, M × q) = M,
P(X̄, M̄ × q) = M̄.

Then

β((M̄)c) ≤ β(Mc) ≤ µ(Eq|M
c) = µ(Eq|(M̄)c).
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action of Ḡ on X̄ is taut, then the action of G on X is taut.

WLOG q ∈ X̄. Let
P(X, M × q) = M,
P(X̄, M̄ × q) = M̄.

Then

β((M̄)c) ≤ β(Mc) ≤ µ(Eq|M
c) = µ(Eq|(M̄)c).

Polar actions on compact rank one symmetric spaces are taut – p.10/13



Examples, I

G = Spin(8).

Spin(8) ⊂ Spin(9) ⇒ G admits a fixed point p.

Slice repr at p is sum of two inequivalent 8-dim irreps
of Spin(8).

H ∼= G2.

Spin(8)/G2 ≈ S7 × S7 ⇒ N̄ is discrete ⇒ Ḡ discrete ⇒

dim X̄ = 2 ⇒ X̄ = Σ ∼= RP 2.

Reduced action is taut since orbits are points.

L can be constructed.

Polar actions on compact rank one symmetric spaces are taut – p.11/13
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Examples, II

G = SO(2) · Spin(7).

G admits a fixed point p.

Slice repr at p is R2 ⊗ R8.

H ∼= Z2 · SU(3).

N ∼= SO(2) × SO(2) · SU(3) ⇒ dim N̄ = 2 ⇒ dim X̄ =

4 ⇒ X̄ ∼= CP 2.

Reduced action is taut since it is (T 2,CP 2).

L can be constructed.
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Examples, III

G = SU(2) · SU(4).

Reduced action is (T 2,CP 2).

G = SU(3) · SU(3).

Reduced action is (T 2,CP 2).

Polar actions on compact rank one symmetric spaces are taut – p.13/13
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