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PREFACE

The present volume contains the more advanced parts of the
differential and integral calculus, dealing mainly with functions
of several variables. As in Volume I, I have sought to make
definitions and methods follow naturally from intuitive ideas
" and to emphasize their physical interpretations—aims which
are not at all incompatible with rigour.

I would impress on readers new to the subject, even more
than I did in the preface to Volume I, that they are not expected
to read a book hke this consecutively. Those who wish to get a
rapld grip of the most essential matters should begin - with
Chapter II, and next pass on to Chapter IV; only then should
they fill in the gaps by reading Chapter III and the appendices
to the various chapters. It is by no means necessary that they
should study Chapter I systematically in advance.

The English edition differs from the German in many details,
and contains a'good deal of additional matter. In particular,
the chapter on differential equations has been greatly extended.
Chapters on the calculus of variations and on functions of a
complex variable have been added, as well as a supplement on
real numbers. ‘

I have again to express my very cordial thanks to my German
publisher, Julius Springer, for his generous attitude in con-
genting to the publication of the English edition. I have also
to thank Blackie & Son, Ltd., and their staff, especially Miss
W. M. Deans, for co-operating with me and my assistants and
rehevmg me of a considerable amount of proof rea.dmg Finally,
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. I must express my gratitude to the friends and colleagues
who have assisted me in preparing the manuscript for the press,
reading the proofs, and collecting the examples; in the first place
to Dr. Fritz John, now of the University of Kentucky, and to
Miss Margaret Kennedy, Newnham College, Cambridge, and also
to Dr. Schonberg, Swarthmore College, Swarthmore, Pa.

R. COURANT.

New RocHELLE, NEw YORK.
March, 1936.
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. the plane we take two perpendioular

 CHAPTER 1 |
Preliminary Remarks on Analytical

Geometry and Vector Analysis
In the interpretation and application of the mathematical facts which
form the main subject of this second vélume it is often convenient to use
the simple fundamental concepts of analytical geometry and vector
snalysis. Henoe, even though many readers will already have a certain
Ikmowledge of these:subjects, it seeras advisable to summarize their elements -
in a brief introductory chapter. =This . o
chapter, howsver, need not be studied . -
before the rest, of the book is read; the
reader is advised: to refer to the facts . 7
oollested here only when he finds the .
need of them in studying the Iaterparts '~ 7
of ‘the book. - o ‘

™

1. REOTANGULAR CO-ORDINATES -
| AND VECTORS

: Toﬁxapointin«qprhmvor in space,
as is well known, we generally make uss
- of & rectangular co-ordinste system. In

A .
" lines, the z-axis and the y-axis; in space Fig, 1.—Co-ordinate axes in space
we -take three mutually :
lines, the z-axis, the y-axis, snd the z-axis. Taking the same unit of
length on each axis, we assign to each point of the plane an 2-co-ordinate
and a y-co-ordinate in the usual way, or to each point in space an
wco-ordinate, & y-co-ordinate, and a z-co-ordinate (fig. 1). Conversely,
to every set of values (z, y) or (% y, ) there oorresponds just one point
of the plane, or of space, as the case may be; a point is completely .
Using the theorem of Pythagoras we find that the disiance between two
_points (z,, ;) and (2y, ) is given by S
7= V(2 — 2 + (51— W)
1

3 . (uo12)




2 ANALYTICAL GEOMETRY AND VECTORS [Caar.

while the distance between the points with co-ordinates (x,, y;, z;) and
(%3 Yo 2,) Is )
r=Vm— 2+ U — '+ & — )
1n setting up a system of rectangular axes we must pay attention to

the orientation of the co-ordinate system.
In Vol. I, Chap. V, § 2 (p. 268) we distinguished between positive and

1 y : A\x\

2 ——
0 0 y
Fig. 2.—Right-handed system of axes Fig. 3.—Left-handed system of axes

negative senses of rotation in the plane. The rotation through 90° which
brings the positive z-axis of a plane co-ordinate system into the position of
the positive y-axis in the shortest way defines a sense of rotation. According
as this sense of rotation is positive or negative, we say that the system of
axes is right-handed or lefi-handed. (cf. figs. 2 and 3). It is impossible to
change a right-handed system into a left-handed system by a rigid motion
" confined to the plane. A similar distinction occurs with co-ordinate systems

Z

= ' Yy

Fig. 4.—Right-handed screw Fig. 5.—~Left-handed screw

in space. For if one imagines oneself standing on the zy-plane with one’s
head in the direction of the positive z-axis, it is possible to distinguish
two types of co-ordinate system by means of the apparent orientation of
the co-ordinate system in the ay-plane. If this system is right-handed the

system in space is also said to be right-handed, otherwise left-handed
- (cf. figs. 4 and 5). A right-handed system corresponds to an ordinary right-
handed screw; for if we make the xy-plane rotate about the z-axis (in the
sense prescribed by its orientation) and simultaneously give it a motion
of translation along the positive z-axis, the combined motion is obviously
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that of a right-handed screw. Similarly, a left-handed system corresponds
to a left-handed screw. No rigid motion in three dimensions can transform
a left-handed system into a right-handed system.

In what follows we shall always use right-handed systems of axes.

We may also assign an orientation to a system of three arbitrary axes
passing through one point, provided these axes do not all lie in one plane,
just as we have done here for a system of rectangular axes.

2. Directions and Vectors. Formulse for Transforming Axes.

An oriented line ! in space or in a plane, that is, a line traversed in a
definite sense, represents a direction; every oriented line that can be made
to coincide with the line ! in position
and sense by displacement parallel to y 7
itself represents the same direction. It
is customary to specify a direction rela-
tive to a co-ordinate system by drawing
an oriented half-line in the given direc- »
tion, starting from the origin of the | g

co-ordinate system, and on this half- z
line taking the point with co-ordinates Fig. 6.—The angles }:Vﬁchastraight
(¢ B, y) which is at unit distance from line makes with the axes

the origin. The numbers «, 8, y are
called the direction cosines of the direction. They are the cosines of the
three angles 8), 8,, 8; which the oriented line / makes with the positive
z-axis, y-axis, and z-axis* (cf. fig. 6); by the distance formula, they
satisfy the relation

4 B4 y=1

Tf we restrict ourselves to the xy-plane, a direction can be specified by
the angles §;, 8, which the oriented line ! having this direction and
passing through the origin forms with the positive x-axis and y-axis; or
by the direction cosines o = cos3,, § = cosd,; which satisfy the equation

o+ 2= L

A line-segment of given length and given direction we shall call a
vector; more specifically, a bound vector if the initial point is fixed in space,
and a free vector if the position of the initial point is immaterial. In the
following pages, and indeed throughout most of the book, we shall omit
the adjectives free and bound, and if nothing is said to the contrary we
shall always take the vectors to be free vectors. We denote vectors by
heavy type, e.g. @, b, ¢, x, A. Two free vectors are said to be equal if
one of them can be made to coincide with the other by displacement
parallel to itself. We sometimes call the length of a vector its absolute
value and denote it by | @ |-

* The angle which one oriented line forms with another may always be
taken as being between 0 and =, for in what follows only the cosines of such
angles will be considered.
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If from the initial and final points of a vector v we drop perpen-
diculars on an oriented line /, we obtain an oriented segment on I corre-
sponding to the vector. If the orientation of this segment is the same as
that of I, we call its length the component of v in the direction of I; if the
orientations are opposite, we call the negative
of the length of the segment the component of v
#n the direction of I. The component of v in the
direction of ! we denote by v;. If 3 is the angle
between the direction of v and that of I (cf.
fig. 7), we always have

Il<—-|1/ 1cosd’——-{ L v;=| v | cosd.

Fig. 7.—Projection of a vector A vector v of length 1 is called a unit vector.
Its component in a direction ! is equal to the
cosine of the angle between ! and ». The components of a vector v in the
directions of the three axes of a co-ordinate system are denoted by
vy, vy, vg. If we transfer the initial point of v to the origin, we see that

o= VerForF o

If o, B, v arve the direction cosines of the direction of v, then

n=|ve Bp=|vI[B vs=|v]y.

A free vector is completely determined by its components vy, vy, v3.
An equation
V= w

between two vectors is therefore equivalent to the three ordinary equations

v = Wy,
Vg == W,
vy = Wy,

There are two different reasons why the use of vectors is natural and

a+(b+c)=(a+b)+c

Fig. 8.~Commutative law of vector Fig. 9.—Associative law of vector
addition addition

advantageous. Firstly, many geometrical concepts, and a still greater
number of physical concepts, such as force, velocity, acceleration, &ec.,
immediately reveal themselves as vectors independent of the particular
co-ordinate system. Secondly, we can set up simple rules for calculating
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with vectors analogous to the rules for calculating with ordinary numbers;
by means of these many arguments can be developed in a simple way,
independently of the particular co-ordinate system chosen.

We begin by defining the sum of the two vectors @ and b. For this
purpose we displace the vector & parallel to itself until its initial point
coincides with the final point of @. Then the initial point of @ and the
final point of & determine a new vector ¢ (see fig. 8) whose initial point
is the initial point of @ and whose final point is the final point of &, We
call ¢ the sum of @ and & and write

at+ b=oc.

For this additive process the commutative law
at+ b=b+a

and the associative law
a+(b+c)=(a+ b)+c=at+ b+c

obviously hold, as a glance at figs. 8 and 9 shows.

From the definition of vector addition we at once obtain the * projec-
tion theorem *: the component of the sum of two or more vectors in a direction
1 is equal to the sum of the components of the individual vectors in that direc-
tion, that is,

(@a+ &y=a;+ b,

In particular, the components of @ + & in the directions of the co-ordinate
axes are @; + by, @y + by, ag 1 bg.

To form the sum of two vectors we accordingly have the following
gimple rule. The components of the sum are equal to the sums of the corre-
sponding components of the summands.

Every point P with co-ordinates (%, y, 2) may be determined by the
position vector from the origin to P, whose components in the directions of
the axes are just the co-ordinates of the point P. We take three unit
vectors in the directions of the three axes, e, in the z-direction, e, in the
y-direction, e, in the z-direction. If the vector v has the components
vy, ¥y Vg, then

v = nye; + v,€; + v3e;.

We call v; = v,e;, v, = v,8,, Uy = vge; the veclor components of ©.
Using the projection theorem stated above, we easily obtain the irans-
formation formule which determine (2, ¥, 2'), the co-ordinates of a given
point P with respect to the axes Ox’, Oy’, 02/, in terms of (x, y, 2), its co-
ordinates with respect to another set * of axes Oz, Oy, Oz which has the
same origin as the first set and may be obtained from it by rotation. The
three new axes form angles with the three old axes whose cosines may be

* Tt is to be noted that in accordance with the convention adopted on
p. 3 both systems of axes are to be right-handed.



6 ANALYTICAL GEOMETRY AND VECTORS [Cuar.

expressed by the following scheme, where for example vy, is the cosine of
the angle between the 2’-axis and the z-axis:

jz|yl=2

2| oy Bilma

Yie| By

7| ag| Bs| vs
From P we drop perpendiculars to the axes Oz, Oy, Oz, their feet being
Py, P,, P, (of. fig. 1, p. 1). The vector from O to P is then equal to
the sum of the vectors from O to Py, from O to P,, and from O to P;. The
direction cosines of the «’-axis relative to the axes Oz, Oy, Oz are &y, By, Y
those of the y’-axis oy, B Ys and those of the 2’-axis «g, By ys By the
projection theorem we know that 2/, which is the component of the vector

-
OP in the direction of the ’-axis, must be equal to the sum of the com-
- —> —>

ponents of OP;, OP,, OP; in the direction of the z’-axis, so that

= oz + By + 12,
for a,x is the component of # in the direction of the x’-axis, and soon.
Carrying out similar arguments for " and 2’, we obtain the transformation
Jormule

o=z + By + 12

Y=oz + By + 122

?=a + By + 1%
and conversely

x = o + oy + og?’
y = B+ By + Bs?
z =% + vy + 167

Since the components of a bound vector v in the directions of the axes
are expressed by the formule
V=% &
V=YW
V3= 2 — %,

in which (2, ¥;, 2,) are the co-ordinates of the initial point and (x,, ¥,, 2;)
the co-ordinates of the final point of v, it follows that the same trans.
formation formule hold for the components of the vector as for the
co-ordinates:

v = oyy + Br¥e + Ya¥s

vy = o0 + Botp + Yo¥s

vy = gty + Bgts + Yals

3. Scalar Multiplication of Vectors.

Following conventions like those for the addition of vectors, we now
define the product of a vector v by & number ¢: if v has the components
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v, ¥y Vg then cv is the vector with components cv,, ¢vy, ¢vy. This de-
finition agrees with that of vector addition, for v + v =2v, v+ v 4 v
= 3v, and so on. If ¢ > 0, ¢v has the same direction as v, and is of length
¢|v}; if ¢ < 0, the direction of cv is opposite to the direction of v, and its
length is (—¢)|v|. If ¢ =0, we see that cv is the zero vector with the
components 0, 0, 0.

We can also define the product of two vectors 2¢ and v, where this “ multi-
plication ™ of vectors satisfies rules of calculation which are in part similar
to those of ordinary multiplication. There are two different kinds of
vector multiplication. We begin with scalar multiplication, which is the
simpler and the more important for our purposes.

By the scalar product * uv of the vectors u and v we mean the product
of their absolute values and the cosine of the angle 8 between their directions:

uv=|u||v|cosd.

The scalar product, therefore, is simply the component of one of the
vectors in the direction of the other multiplied by the length of the second
vector.

From the projection theorem the distributive law for multiplication,

(8 4+ v)w= uw 4 vw,

follows at once, while the commutative law,

uo = vu,

is an immediate consequence of the definition.

On the other hand, there is an essential difference between the scalar
product of two vectors and the ordinary product of two numbers, for the
product can vanish although neither factor vanishes.

If the lengths of u and v are not zero, the product wv vanishes if, and
only if, the two vectors u and v are perpendicular to one another.

In order to express the scalar product in terms of the components of
the two vectors, we take both the vectors 2« and v with initial points at
the origin. We denote their vector components by 24, 26, 2, and
vy, Uy, U;respectively, so that 2= 2¢; + 2, + usand v = v, + v, 4 v,
In the equation #v = (#%, + %, + #3)(v; + v, + v3) we can expand the
product on the right in accordance with the rules of calculation which
we have just established; if we notice that the products 2¢,v,, w,v;, 24,0,,
w,v5, %30;, and %,v, vanish because the factors are perpendicular to one
another, we obtain u#v = 24,0, + #,0, + #3v;. Now the factors on the
right have the same direction, so that by definition 2,9, = u;v;, &ec.,
where u;, Uy, %5 and #;, vy, v; are the components of z¢ and v respectively.
Hence

UuY = U0y + Uy + UgVs.

This equation could have been taken as the definition of the scalar product,
and is an important rule for calculating the scalar product of two vectors

* Often called the inner product.
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given in terms of their components. In particular, if we take s and v as
unit vectors with direction cosines oy, oy, xs and By, By Bg respectively,
the scalar product is equal to the cosine of the angle between # and v,
which is accordingly given by the formula

cos 8 = o B; + By -+ 5Py

The physical meaning of the scalar product is exemplified by the fact,
proved in elementary physics, that a force £ which moves a particle of unit
mass through the directed distance v does work amounting to fv.

4. The Equations of the Straight Line and of the Plane.

Let a straight line in the xy-plane or a plane in wyz-space be given.
In order to find their equations we erect a perpendicular to the line (or

YA
n

’/
14¥4 z
/

’

Fig. 10.—The equation of a straight line

the plane) and specify a definite “ positive direction along the normal ”,
perpendicular to the line (or plane); it does not matter which of the two
possible directions is taken as positive (cf. fig. 10). The vector with unit
length and the direction of the positive normal we denote by .. The points
of the line (or plane) are characterized by the property that the position
vector x from the origin to them has a constant projection p on the direc-
tion of the normal; in other words, the scalar product of this position
vector and the normal vector s is constant. If «, B (or o, B, y) are the
direction cosines of the positive direction of the normal, that is, the com-
ponents of 2z, then
ex+ By—p=0

(or oax+Pyt+yz—p=0)

is the required equation of the line (or plane). Here p has the following
meaning: the absolute value | p | of p is the distance of the line (or plane)
from the origin. Moreover, p is positive if the line (or plane) does not
pass through the origin and s is in the direction of the perpendicular
from the origin fo the line (or plane); p is negative if the line (or plane)
does not pass through the origin and s has the opposite direction; p is
gero if the line (or plane) passes through the origin. Conversely, if «, B
(or o, B, y) are direction cosines, this equation represents a line (or plane)
at a distance p from the origin, whose normal has these direction cosines.
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The expression az + By — p (or ax + Py +- vz — p) on the left-hand
side of this so-called normal or canonical form of the equation of the
straight line (or plane) also has a geometrical meaning for any point P
(z, y) not lying on the line (or plane). Since ax + By (or az 4 By + v2) is
the projection of the position vector from O to P on the normal, we see
at once that the expression ax -+~ By — p (or ax + By + yz — p) is the
perpendicular distance of the point P from the line (or plane) and is positive
for points on one side of the line or plane (namely, that on which the normal
18 positive) and negative for points on the other side.

From the canonical form of the equation we obtain other forms of
equation for the straight line (or plane) by multiplying by an arbitrary
non-vanishing factor. Conversely, an arbitrary linear equation

Ax+ By + D=0 (or Az + By + Cz+ D= 0)

represents a straight line (or plane) provided the coefficients 4, B (or
A, B, C) are not all zero.* In the second of these equations, for example,

we may divide by 4/ A% 4+ B? + C? and put

A B
CCVETBRIC T YBrBrOo
Y= g S S—

ey Eae Aoy

In this way we obtain an equation which is seen to represent a plane at
a distance p from the origin, whose normal has the direction cosines
o, B, y. Corresponding remarks hold for the equation of the straight line.

A straight line in space may be determined by any two planes passing
through the line. For a line in space we thus obtain two linear equations

Az 4 By + Cz+ Dy =0,
A+ By + Oz + D, =0,

which are satisfied by (2, y, 2), the co-ordinates of any point on the line.
Since an infinite number of planes pass through a given line, this repre-
sentation of a line in space is not unique.

Frequently it is more convenient to represent a line analytically in
parametric form by means of a parameter £. If we consider three linear
functions of ¢,

z = ay + by,
y = a, + by,
z==ay + by,

where the b’s are not all zero, then as ¢ traverses the number axis the point
(2, ¥, z) describes a straight line. This we see at once by eliminating #
between each pair of equations, whereby we obtain two linear equations
for z, y, 2.

*IfA=RB=0(rd=B8=C=0),D must also be zero, and any point
of the plane (or of space) satisfies the equation.
2 (8912)
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The direction cosines «, B, y of the line in its parametric form are
proportional to the coefficients b;, by, bg. For these direction cosines are

)

]

T

0

Fig. 11.—Parametric representation of a straight line passing through two points

proportional (cf. fig. 11) to z; — %, ¥; — ¥, 2, — 2, the differences of the
co-ordinates of two points P;, P, with co-ordinates

Ty=a;+ by, 1= a3+ bk, 2 =az+ b4
and
Zy=ay -+ bty Yo= s+ boly, 2= a3+ bt
Hence
PP, cos 8, = x, — 2y = by(t, — ),
PyPy cos 8, = gy — y1 = bylt, — 1),
PyPp cos By = 2y — 2y = by(ty — £y),
where PP, denotes the length of the segment P,P,. Consequently

ty — &
o = pby, = pb,, = pb where p = 2===1 ).
pbi, B = pbsy v = pbs ( P P1P2>

Since the sum of the squares of the direction cosines is unity, it follows that

_ b, _ by __ by
RV e TV X EN Y Ea ¥ TV X

where the double sign of the square root corresponds to the fact that we
can choose either of the two possible senses on the line.

By means of the direction cosines we can easily bring the parametric
representation of the line into the form

x = ¥y + av,
y=1% + B
2=2 + v%,

where (%,, ¥, %) is a fixed point on the line; the new pa.rameter'r is con-
nected with the previous parameter ¢ by the equation

%o+ at = a, + bt.
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From the fact that a® -+ B2 + y2 = 1 it follows that
= (r— 2l + (¥ — %)+ (2 — %)

Hence the absolute value of 7 is the distance between (zy, ¥, %) and
(%, y,2). The sign of ~ indicates whether the direction of the line is from the
point (zp, ¥y %) to the point (z, ¥, 2), or vice versa; in the first case = is
positive, in the second negative.

From this we obtain a useful expression for (z, v, z), the co-ordinates
of a point P on the segment joining the points Py(x,, ¥4, o) and P,(zy, ¥y, 2,),
namely,

=A%+ MZTy, ¥=2NAYo+ MY, 2=NA% + M2y

where A, and ), are positive and Ay + A, = L. If © and =, denote the dis-

tances from £, of the points £ and P, respectively, we find that ag=1—"
T
T

and Ay = For if we calculate «, say, from z, = x, + o7y, and sub-

7
stitute this value, ¢ = (z; — ,)/7;, in the equation £ = x, + a7, we obtain
the expression given above.

Let a straight line be given by

@ = %4+ or,

Y=Y + BT,

z ==z 4 Y*.
We now seek to find the equation of the plane which passes through the point
(%os Yo» %0) and is perpendicular to this line. Since the direction cosines of
the normal to this plane are «, B, y, the canonical form of the required
equation is

art+By+yz—p=0,

and since the point (x,, ¥y, %,) lies on the plane
p = axy + Byo + Y.

The equation of the plane through (x, ¥, 2,) perpendicular to the line
with direction cosines «, B, v is therefore

oa(x — o) + By — %o) + Y(2 — %) = 0.

In the same way, the equation of a straight line in the xy-plane which
passes through the point (%, %,) and is perpendicular to the line with
direction cosines a, { is

a(x — o) + Bly — ¥o) = 0.

Later we shall need a formula for 3, the angle between two planes given
by the equations
wxr + By +yz2 —p =0
az+ Py+yz—p =0
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Since the angle between the planes is equal to the angle between their
normal vectors, the scalar product of these vectors is cosd, so that

cos d = ao’ + BB+ vy
In the same way, for the angle 3 between the two straight lines
x4 By—p=0anda’z+ By—p' =0

in the ay-plane we have
cos 8 = ao’+ BF’.

ExamMPLES

1. Prove that the quantities a,, &5, - . « » Ya (P. 6), defining & rotation
of axes, satisfy the relations

o0 + BaBs + Y1v2 =0, al+ B+ ni=1
o053 + BoBs + Yovs =0, o+ B+ yl=1,
o300 + Bsfr + Ys71= 0, o + B + v = L

2. If g and & are two vectors with initial point O and final points 4 and
B, then the vector with O as initial point and the point dividing AB in the
ratio 6 : 1 — 0 as final point is given by

(1 — 0)a + 6.

8. The centre of mass of the vertices of a tetrahedron PQRS may be
defined as the point dividing MS in the ratio 1:3, where M is the centre
of mass of the triangle PQR. Show that this definition is independent of
the order in which the vertices are taken and that it agrees with the general
definition of the centre of mass (Vol. I, p. 283).

4. If in the tetrahedron PQRS the centres of the edges PQ, RS, PR,
@8, PS, QR are denoted by 4, A’, B, B’, C, (" respectively, then the lines
AA’, BB, CC’ all pass through the centre of mass and bisect one another
there.

6. Let Py, ..., P, be n arbitrary particles in space, with masses
my, My, ..., m, respectively. Let G be their centre of mass and let
Prs -« -5 P denote the vectors with initial point G and final points
P, ..., P,. Prove that

mypy + Moy + oo o + myp, = 0

2. TEE AREA OF A TRIANGLE, THE VOLUME OF A TETRAHEDRON,
THE VECTOR MULTIPLICATION OF VECTORS

1. The Area of a Triangle.

In order to caleulate the area of a triangle in the xy-plane we imagine
it moved parallel to itself until one of its vertices is at the origin; let the
other two vertices be Py(%,, y;) and Py(xy, y,) (cf. fig. 12). We write down
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the equation of the line joining P, to the origin in its canonical form
—% |
x+ y=20;
Va?+ y® Vg + y? ’

hence for the distance % of the point P, from this line we have (except
perhaps for sign) the expression

I/ o 2]
Vi +y? Valr+y®
Since the length of the segment OP, is 4/2* + y,3, we find that twice the

+h

AY
. y

\

\ B

}b\

\ B
N
A ' \ 1';” X
0 - 0
Fig. 12.—To illustrate the method for Fig. 13.—Determination of the sign of the
finding the area of a triangle area of a triangle

area of the triangle, which is the product of the “base’ OP, and the
altitude &, is given (except perhaps for sign) by the expression

24 = z,y, — Ty

This expression can be either positive or negative; it changes sign if
we interchange P, and P,, We now make the following assertion. The
expression A has a positive or negative value according as the sense in which
the vertices OP,P, are traversed is the same as the sense of the rotation
associated with the co-ordinate axes, or not. Ivstead of proving the fact by
more detailed investigation of the argument given above, which is quite
feasible, we prefer to prove it by the following method. We rotate the tri-
angle OP, P, about the origin O until P, lies on the positive z-axis. (The
case in whioh O, P,, P, lie on a line, so that A = }(z,y5 — a%;) = 0, can be
omitted.) This rotation leaves the value of 4 unaltered. After the rotation
P, has the co-ordinates z," > 0, y,’ = 0, and the co-ordinates of the new
P, are z;’ and y,’. The area of the triangle is now

1
4= 3 'Yy
and therefore has the same sign as y,’. The sign of y,’, however, is the

same as the sign of the sense in which the vertices OP,Py are traversed
(cf. fig. 13). Our statement is thus proved.
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For the expression .y, — #,y,, which gives twice the area with its
proper sign, it is customary to introduce the symbolic notation

z,
Ty — ayy = |1 72,
1Y
which we call a two-rowed determinant, or determinant of the second order.

If no vertex of the triangle is at the origin of the co-ordinate system,
e.g. if the three vertices are (xy, ¥,), (%1, ¥1) (%3 ¥s), by moving the axes
parallel to themselves we obtain the formula

1

2

for the area of the triangle.

Ty — % Ty— X
Yi— Y% Y2— Y%

2. Vector Multiplication of two Vectors.

In addition to the scalar product of two vectors we have the important
concept of the wector product.* The
vector product [@d] of the vectors a@

and & is defined as follows (cf. fig. 14):
We measure off @ and & from a
[a b) point 0. Then @ and & are two sides
of a parallelogram in space. The vector
product [@d]==c is a vector whose
length is numerically equal to the area
of the parallelogram and whose direc-
tion is perpendicular to the plane of the
parallelogram, the sense of direction
being such that the rotation from a to
b and ¢ = [ab] isright-handed. (That
is, if we look at the plane from the
final point of the vector c, we see the

Fig. 14.~Vector product of two . . .
vectors & and b shortest rotation from the direction of @

to that of b as a positive rotation.) If
@ and & lie in the same straight line, we must have [@b] = 0, since the
area of the parallelogram is zero.

Rules of Calculation for the Vector Product.

(1) If @ + 0 and & == 0, then [@b] = 0 if, and only if, @ and & have the
same direction or opposite directions.
For then, and only then, the area of the parallelogram with @ and &
as sides is equal to zero,
(2) The equation
[ab] = —[ba]
holds.

* Often called the outer product; other notations in use for it are @& x &,
a b
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This follows at once from the definition of [@5].
(8) If @ and b are real numbers, then

[aa bb] = ab[ab].

For the parallelogram with sides aa and b6 has an area ab times as
great as that of the parallelogram with sides @ and & and lies in the same
plane as the latter.

(4) The distributive law holds:

[@(b + c)] = [ab] + [acl, [(&+ c)a]=[ba]+ [cal

We shall prove the first of these formule; the second follows from it
when rule (2) is applied.

We shall now give a geometrical construction for the vector pro-
duct [@b] which will demonstrate the truth of the distributive law
directly. -

Let B be the plane perpendicular to @ through the point O. We project

B B

4 b

a >
0 A
Fig. 15—To show that [ab] = [ab7

b orthogonally on E, thus obtaining & vector &’ (cf. fig. 15). Then [a5’]
= [ab], for in the first place the parallelogram with sides @ and & has the
same base and the same altitude as the parallelogram with sides @ and
&’; and in the second place the directions of [@6’] and [@8] are the same,
since @, &, &’ lie in one plane and the sense of rotation from @ to & is the
same as that from @ to 5. Since the vectors @ and & are sides of a rect-
angle, the length of [@5] = [@5] is the product |a@ || &'|. If, therefore,
we increase the length of &’ in the ratio | @ | : 1, we obtain a vector &”
which has the same length as [@d’). But [@d] = [@d] is perpen-
dicular to both @ and &, so that we obtain [a@b] = [@d’] from 6" by a
rotation through 90° about the line @. The sense of this rotation must be
positive when looked at from the final point of @. Such a rotation we shall
call a positive rotation about the vector @ as axis.

‘We can therefore form [@d] in the following way: project b orthogon-
ally on the plane E, lengthen it in the ratio | @ | : 1, and rotate it positively
through 90° about the vector a.

To prove that [a(d + c)] = [@d] 4 [ac] we proceed as follows: &
and ¢ are the sides OB, OC of a parallelogram OBDC, whose diagonal OD
is the sum & 4+ ¢. We now perform the three operations of projection,
lengthening, and rotation on the whole parallelogram OBDC instead of on
the individual vectors &, ¢, &4 ¢; we thus obtain a parallelogram
OB,D,C, whose sides OB,, OC, aro the vectors [@?] and [ac] and whose
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diagonal is the product [@(4 + ¢)]. From this the equation [@b] + [ac]
= [a(b 4 ¢)] clearly follows (cf. fig. 16).

Fig. 16.—Distributive law for the vector product of two vectors & and b

(5) Let @ and & be given by their components along the axes, a,, a,, a,
and by, by, by respectively. What is the expression for the vector product
[@d] in terms of the vector components?

We express @ by the sum of its vector components in the directions of
the axes. If e,, e, e; are the unit vectors in the directions of the axzes,
then

a=ae, + ase, + azey
and similarly
b= be, + bye, 1 bse,.
By the distributive law we obtain
[ad] = [(a1e1) (bre1)] + [(218y) (Bz€5)] + [(210,) (Bses)]
+ [(as€5) (b161)] + [(22€) (B2e,)] 4 [(asey) (Bze)]
+ [(ases)(bre1)] + [(ases) (baes)] + [(ases) (bges)),

which by rules (1) and (3) may also be written

(ab] = apb,le e;] + abje; e;s] + abifeye]
+ asbsleze;] + asbilese] + agblege,].

Now from the definition of vector product it follows that
e = [e,e5] = —[ese,], ey = [ese] = —[e1e5], 3= [e;0,] = —[e,e,)
Hence
[ab] = (azb; — asby)e; + (agh; — asbs)ey + (@b, — amh,)e,.
The components of the vector product [@d] = ¢ are therefore
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Ty g

i P

, =

ay Gy
b, ba

In physics we use the vector product of two vectors to represent a

moment. A force f acting at the final point of the position vector x bas the
moment [ fx] about the origin.

G3 o
bs by

Cg ==

3. The Volume of a Tetrahedron.

We consider a tetrahedron (cf. fig. 17) whose vertices are the origin
and three other points P, P,, P; with co-ordinates (;, ¥1, %1)s (T3, Y2s Za)s

[ %]

!
\.
\
‘.

}
0k

A

y

Fig. 17.~Determination of the volume of a tetrahedron

(%3, ¥3, 25) respectively. To express the volume of this tetrahedron in terms
of the co-ordinates of its vertices we proceed as follows. The vectors
x, = OP; and x,= OP, are sides of a triangle whose area is half the
length of the vector product [x;x,]. This vector product has the direction
of the perpendicular from P, to the plane of the triangle OPyP,; h, the
length of this perpendicular (the altitude of the tetrahedron), is therefore
given by the scalar product of the vector x; = OP, and the unit vector
in the direction of [x,x,); for 4 is equal to the component of OP; in the
direction of [x,x,]. Since the absolute value of [x,x,] is twice the area 4

of the triangle OP,P,, and since the volume V of the tetrahedron is equal
to 3A4h, we have

V = }([x;2,]%4).
Or, since the components of [x,x,] are given by

Yi %4

5 N
Ys %l

% ],

’
2 % T2 Ys
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Y1 % Z Y

V= ! {xs }.
6 Y2 2 Ty Yo

This also holds for the case in which O, P,, P, lie on a straight line; in
this case, it is true, the direction of [x,x,] is indeterminate, so that » can
no longer be regarded as the component of OP; in the direction of [x,x,],
but nevertheless 4 = 0, so that ¥V = 0, and this follows also from the above
expression for ¥, since in this case all the components of [x,x,] vanish.

Here again the volume of the tetrahedron is given with a definite sign,
as the area of the triangle was on p. 13; and we can show that the sign
is positive if the three axes OP,, OP, ,OP, taken in that order form a system
of the same type (right-handed or left-handed, as the case may be) as the
co-ordinate axes, and negative if the two systems are of opposite type.
For in the first case the angle 8 between [, x,] and x4 lies in the interval

+ ¥s 2h

+ 23
2 T

03 g, and in the second case in the interval g =< 3 = m, as follows

immediately from the definition of [ x,x,], and V is equal to
[ [25251 | | %5 ]| cosd.
The expression
Y1 &
Ya 22

2 Z-
Z5 1 1

+ ys3 + 25

L5 !I1|

2y Xy T2 Yo

occurring in our formule may be expressed more briefly by the symbol

T N %
% i’/z Zg |s
T3 Y3 23
which we call a three-rowed determinant, or determinant of the third order.
Writing out the two-rowed determinants in full, we see that
T Y A
Ty Y Ra| = TgYi¥y — TeYe?r T TeYs? — TaYs?e + TyYa?s — T2
T3 Ys 23

Just as in the case of the triangle, we find that the volume of the tetra-
hedron with vertices (%o, ¥, 29)s (%1, Y1, 21)s (%25 Ygs 23)s (%5, Yss 2g) 18
1%~ % Nh—% 2a—%
V=6 Zo— % Yo— Yo Z2— % |
Tg— Lo Ys— Yo 23— 2

ExaMPLES *

1. What is the distance of the point P(x,, ¥y, 2,) from the straight line
1 given by
z=at+b y=c+d z=e+f?

* The more difficult examples are indicated by an asterisk.
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2%, Find the shortest distance between two straight lines / and I’ in
space, given by the equations

z=al+ b r=at+ b
y=ct+d and y=ct+d
z=e+f z=¢t+ f.

3. Show that the plane through the three points (z;, ¥, 1), (T2 ¥as 22),
(g, Y3 23) is given by
n—z h—y H—=2
B—% Y-y nH—z =0
T3 — & Ys— Yy 23— 2
4. In a uniform rotation let (e, B, y) be the direction cosines of the axis

of rotation, which passes through the origin, and ® the angular velocity.
Find the velocity of the point (z, y, 2).
5. Prove Lagrange’s identity
[xyP=|x Py [~ (237
6. The area of a convex polygon with the vertices Py(2;, 3,), Py(s, %),
ooy Py, ¥,) is given by half the absolute value of
z,

Tp1 Ty

Yn1 Yn

&y Xy +
Y1 Y

Ty X3
Ys Ys

Ty
Yn Y1

+...4

3. SiMpLE THEOREMS ON DETERMINANTS OF THE SECOND
AND TamRD ORDER

1. Laws of Formation and Principal Properties.

The determinants of the second and third order occurring in the cal-
culation of the area of a triangle and the volume of a tetrahedron, together
with their generalization, the deferminant of the nth order, or n-rowed deter-
minant, are very important in that they enable formal calculations in all
branches of mathematics to be expressed in a compact form. Here we
shall develop the properties of determinants of the second and third order;
those of higher order we shall need but seldom. It may, however, be
pointed out that all the principal theorems may be generalized at once
for determinants with any number of rows. For the theory of these we
must refer the reader to books on algebra and determinants.*

By their definitions (pp. 14, 18) the determinants

b a b ¢
ad‘anddef
¢ g h k

*Cf. e.g. H. W, Turnbull, The Theory of Determinants, Matrices, and In-
variants (Blackie & Son, Ltd., 1929).
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are expressions formed in a definite way from their elements g, b, ¢, d and
a, b, ¢ d,eJf, g, h, & respectively. The horizontal lines of elements (such
a8 d, e, f in our example) are called rows and the vertical lines (such as
¢, f, &) are called columns.

We need not spend any time in discussing the formation of the two-
rowed determinant
a bl
c dj =

— be.

For the three-rowed determinant we give the * diagonal rule” which
exhibits the symmetrical way in which the determinant is formed:

\\\
\\\
A AN\

= )

We repeat the first two columns after the third and then form the
product of each triad of numbers in the diagonal lines, multiply the pro-
ducts associated with lines slanting downwards and to the right by -1,
the others by —1, and add. In this way we obtain

a b ¢

def=
g h k

aek + bfg + cdh
—ceg — afh — bdk.

We shall now prove several theorems on determinants:
(1) If the rows and columns of a determinant are inderchanged, the value
of the determinant is unaltered. That is,

ab=ac

c d b daf
a b ¢ a d g
d e fl=1|b e Al
g b k c f k

This follows immediately from the above expressions for the determinants.
(2) If two rows (or twe columns) of a determinant are interchanged, the
sign of the determinant is altered, that is, the determinant is multiplied by
-1.
In virtue of (1) this need only be proved for the columns, and it can
be verified at once by the law of formation of the determinant given above,
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(3) In section 2 (p. 18) we introduced three-rowed determinants by the
equations

2 YA

1 & 5 N T Y
z. 2| == 23 .
2 Y2 B ly, 2 szzxz_l_sws!/s
Y3 Ys Rg

Using (2), we write this in the form

:‘:‘:‘=x 2 a'_y noal, = o,
2 72 *ly, =z la, 2 zy Yol
3 Ys 23

then in the determinants on the right the elements are in the same order
as on the left. If we interchange the last two rows and then write down

the same equation, using (2), we obtain:

:1 % :l - —z Y1 & n A % %
2 b BT *lys 2 M E N 2 2 Yl
T3 Ys 2
and similarly
:1 zl :: —z Y2 %2 _ Ty 2% Ty .'/zl
2 U2 Ty = R T3 Ys
T3 Ys %

We call these three equations the expansion in terms of the elements of the
third row, the second row, and the first row respectively. By interchanging
columns and rows, which according to (1) does not alter the value of the
determinant, we obtain the expansion by columns,

z
mA kAl |noal|na
2 Y2 B = Tys 2 ®lys 2 ly, =l
T3 Ys 23
A Ty 2 Lo Lo
Xy Y2 %= —U1 75 2 + 9 4 zs“.’/a z 2|
T3 Ys 2

2
:lylzl_‘ zxz!/z_z 3’1!/1_|_z 5 %
: Y2 A= A 2lay Ys oy ol
T3 Ys 2

An immediate consequence of this is the following theorem:

(4) If all the elements of one row (or column) are multiplied by a number
¢, the value of the determinant is multiplied by p.

From (2) and (4) we deduce the following:

(5) If the elements of two rows (or two columns) are proportional, that is,
if every element of one row (or column) is the product of the corresponding
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element in the other row (or column) and the same factor p, then the de-
terminant s equal to zero.

For according to (4) we can write the factor outside the determinant.
If we then interchange the equal rows, the value of the determinant is
unchanged, but by (2) it should change sign. Hence its value is zero.

In particular, a determinant in which one row or column consists
entirely of zeros has the value zero, as also follows from the definition
of a determinant.

(6) The sum of two determinants, having the same number of rows, which
differ only in the elements of one row (or column) is equal to the determinant
which coincides with them tn the rows (or columns) common to the two de-
terminants and in the one remaining row (or column) has the sums of the
corresponding elements of the two non-identical rows (or columns).

For example:

a b ¢ a m ¢ a b4+m ¢
d e fl+|d »n fl={d e+n f|
g hk g » k g h+p k

For if we expand in terms of the rows (or columns) in question, which
in our example consist of the elements b, e, 4 and m, n, p respectively, and
add, we obtain the expression
a ¢

a f

d
(—b—m)‘g £‘+(e+n)lz Z +(—h—p)

which clearly is just the expansion of the determinant

a b+m ¢
d e+n f
g h+tp k

in terms of the column b+ m, e+ #, b+ p. This proves the state-
ment.

Similar statements hold for two-rowed determinants.

(7) If to each element of a row (or column) of a determinant we add the
same multiple of the corresponding element of another row (or column), the
value of the determinant is unchanged.

By (6) the new determinant is the sum of the original determinant and
a determinant which has two proportional rows (or columns); by (5)
this second determinant is zero.*

* The rule for expansion in terms of rows or columns may be extended to
define determinants of the fourth and higher order. Given a system of sixteen

numbers
a b ¢ d

a, by ¢, d,
ay by ¢ dy [
a, b, ¢ d,

for example, we define a determinant of the fourth order by the expression



| DETERMINANTS 23

The following examples illustrate how the above theorems are applied
to the evaluation of determinants. We have
a 00
0 e 0= aek,
0 0 &%

a8 we can prove by the diagonal rule. A deferminant in which the
elements in the so-called principal diagonal alone differ from zero is equal
to the product of these elements.

Evaluation of a determinant:

1 1-1 2 00
1 -1 1|= 1 —1 1] (second row added to the first),
-1 1 1 -1 11
2 00 11
1—-11|=2 ] 11 (expansion in terms of the first row).
-1 11
Hence 1 1-1
1 -1 1|=-—-4
-1 1 1
Another example is
1 =z 22 1 z 22 1 x x?
1 y *|l=10 y—x P— 2 |=10 y—a y>— 2|
1 z 22 1 z 22 0 z—2x 22—ad

If we now expand this in terms of the first column we obtain

y+=
1 z+4=2

y—z Y2t

z—x 2—a? =(y—x)(z— x)(z2— y).

={y—2) z—2)

2. Application to Linear Equations.
Determinants are of fundamental importance in the theory of linear
equations. In order to solve the two equations
ax -+ by = A,
cx + dy = B,
for z and y, we multiply the first equation by ¢ and the second by a. and

b, ¢ dy a, ¢ dy ay, by dy a, by cyi
a, |bs ¢ dy| —bylag 6 dy| tey|ag by da| —dy |as b 6 ;
by ¢, d, a; ¢ dy ay b, d, a, by ¢
and similarly we can introduce determinants of the fifth, sixth, . . ., nth order

in succession. It turns out that in all essential properties these agree with the
determinants of two or three rows. Determinants of more than threc rows,
however, cannot be expanded by the “ diagonal rule ”. We shall not consider
further details here.
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subtract the second from the first; then we multiply the first equation by
d and the second by b and subtract. We thus obtain

(bc — ad)y = Ac — Ba

(ad — be)r = Ad — Bb,

or b A a b a A
d|= |B Yie ¢|T|c B
If we assume that the determinant
a b
c d
is different from zero, these equations at once give the solution
4 b a A
B d ¢ B
" la 8| a b/’
¢c d ¢c d

which can be verified by substitution. If, however, the determinant
a b

vanishes, the equa,tions

c d
14 b a b a 4
=B 4 ¢c 4| |c B
would lead to a contradiction if either of the determinants | 4 and

were different from zero. If, however,

A bl _|a 4 ’
B d| |e
our formul tell us nothing about the solution.

We therefore obtain the fact, which is particularly important for our
purposes, that a system of equations of the above form, whose determinant is
different from zero, always has a unique solution.

If our system of equations is homogeneous, that is, if A = B = 0, our

calculations lead to the solution z = 0, y = 0, provided that e 3! + 0.

5 4
=0,

For three equations with three unknowns,

axr+bytcz=4
de+ ey + fz = B,
gr+ hy + k2= C,

a similar discussion leads to a similar conclusion We multiply the first

equation by ; f,; l, the second by — , the third by lb , and

hlc

add, thus obtaining
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e fl_lb ¢ b e
”{“hk dhlc+gef}

e fl__|b ¢ b e
+y{bhk °hk+hef}

e fl_ (b ¢ b eN_ 4le fl_plb e b e
+z{°hk fhk+kef}_Ahk Blhk+0ef'

But by our formule for the expansion of a determinant in terms of the
elements of a column, this equation can be written in the form

a b ¢ b b e ¢c b ¢ A b ¢
zid e fl4+yle ¢ fl+z|f e fl=|B e f|.
g bk B bk kE h k C bk
By rule (4) the coefficients of y and z vanish, so that
a b ¢ 4 b ¢
z|ld e fl=|B e fl
g bk C hk

In the same way we derive the equations

a b c a 4 ¢
yld e fl=1d B f|,
g h k g C k
a b ¢ a b A
2/d e fl[=|d e B
g & k g h C
If the determinant
a b ¢
d e f
g kK

is not zero, the last three equations give us the value of the unknowns.
Provided that this determinant is not zero, the equations can be solved
uniquely for z, y, z. If the determinant is zero, it follows that the right-
hand sides of the above equations must also be zero, and the equations
therefore cannot be solved unless 4, B, C satisfy the special conditions
which are expressed by the vanishing of every determinant on the
right.

If, in particular, the system of equations is homogeneous, so that
A= B=C=0, and if its determinant is different from zero, it again
follows that x =y = 2 = 0.

In addition to the cases above, in which the number of equations is
equal to the number of unknowns, we shall occasionally meet with
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systems of two (homogeneous) equations with three unknowns, e.g.
ax + by + ez = 0,
de+ ey + fz2=0.
If the three determinants
b ¢ ¢c a
e f f d
are not all zero, if, for example, D, &= 0, our equations can first be solved
for x and y; this gives

a b

9-D=
2T 0d e

D, = , Dy=

or
z:y:2=D,;:D,: D,

Geometrically this has the following meaning: we are given two vectors
2 and v with the components a, b, ¢ and d, e, f respectively. We seek a
vector x which is perpendicular to # and v, that is, which satisfies the

equations
ux=0, vx=20.

Thus x is in the direction of [2v].

ExXAMPLES

1. Show that the determinant
a b

Q
o
E R -

can always be reduced to the form

«a 00
0B O
0 0 vy
merely by repeated application of the following processes: (1) interchang-
ing two rows or two columns, (2) adding a multiple of one row (or column)
to another row (or column).

2. If the three determinants

by b,
6 ©C

a; @y
b b,

T Gy
G 6

» s

do not all vanish, then the necessary and sufficient condition for the
existence of a solution of the three equations

ax -t ay=4d

byx + by =-e

or + ey =f
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@ a d
is D=1b b, e|=0.
& & f
3. State the condition that the two straight lines
z=al+ b, z=ct+ dy
y=ay+ b, and y= ¢t -+ dy
z==ag + b z2=cgt+ d

either intersect or are parallel.

4*, Prove the properties (1) to (7), given on pp. 2022, for deter-
minants of the fourth order (defined on p. 22 (footnote)).

5. Prove that the volume of a tetrahedron with vertices (z,, y;, %),
(T2, Y2» 22)s (Tgr Y2 %) (T4s Ya» 24) 18 given by

% Y H 1

Ty Yy % 1

% 1l
1

T3 Ys %
Ty Ya 2%y

4. AFFINE TRANSFORMATIONS AND THE MULTIPLICATION
OF DETERMINANTS

We shall conclude these preliminary remarks by discussing the simplest
tacts relating to the so-called affine transformations; at the same time
we shall obtain an important theorem on determinants.

1. Affine Transformations of the Plane and of Space.

By a mapping or transformation of a portion of space (or of a plane)
we mean a law by which each point has assigned to it another point of
space (or point of the plane) as ¢mage point; the point itself we call the
original point, or sometimes the model (in antithesis to the image). We
obtain a physical expression of the concept of mapping by imagining that
the poriion of space (or of the plane) in question is occupied by some
deformable substance and that our transformation represents a deformation
in which every point of the substance moves from its original position
to a certain final position.

Using a rectangular system of co-ordinates, we take (, y, 2) as the co-
ordinates of the original point and (2, ¥’, #’) as those of the corresponding
image point.

The transformations which are not only the simplest and most easily
understood, but are also of fundamental importance for the general case,
are the affine transformations. An affine transformation is one in which
the co-ordinates (2, y’, 2’) (or in the plane (2, y’)) of the image point are
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expressed linearly in terms of those of the original point. Such a trans-
formation is therefore given by the three equations

¥=oar+by+ozim
y=detey+fz-+n
7 =gzt hy+ kz+ p,

or in the plane by the two equations

y=ax+by+m
!/=Bx+dy+"b,

with constant coefficients @, b, . . . These assign an image point to every
point of space (or of the plane). The question at once arises whether we
can interchange the relation of image point and original point, that is,
whether every point of space (or of the plane) has an original point corre-
sponding to it. The necessary and sufficient condition for this is that the
equations

axt+ byt ocz=a"—m

de+ey+fz=y —mn or

gr+hyt+ k=2 —p
shall be capable of being solved for the unknowns z, y, z (or z, ), no
matter what the values of 2/, ¥, z” are. By section 3 (p. 24) an affine

transformation has an inverse, and in fact a unique inverse,* provided
that its determinant

axt+by=a'—m
cx+dy=y9y —n

a b ¢ a b
A=|d e f}, or A=|o dl.
g kK

is different from zero. We shall confine our attention to affine trans-
formations of this type, and shall not discuss what happens when
A=0.

By introducing an intermediate point (z”’, ¥, 2”’) we can resolve the
general affine transformation into the transformations

ﬁ”:az—l—by"'—cz x":m-’—by

y'=drx+ey+jfz or .,
=g+ hy+ ke yr=co+dy

and
x'ixl/::__:n o =a" 4+ m
y:_y// o y,=y”+n'
zZ=2"449p

Here (z, y, 2) is mapped first on (2", y”/, 2”’) and then (x”, y”’, 2’’) is mapped
on (2, y’, 2'). Since the second transformation is merely a parallel translation
of the space (or of the plane) as a whole and is therefore quite easily under-

* That is, every image point has one and only one original point.
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stood, we may restrict ourselves to the study of the first. We shall there-
fore only consider affine transformations of the form

¥ =ax+ by + cz ,
AR A
Z=gx+ hy+ kz

with non-vanishing determinants.
The results of section 3 (p. 25) for linear equations enable us to express
the inverse transformation by the formulse

xr= a’z’+ b’y’-’- 7z — a’'z 1074
y=da + ey +f2 or z — a,:, -_I; d,";,,
2=go + Ky + k7 y ’

in which a’, b, . . . are certain expressions formed from the coefficients
a, b, . . . Because of the uniqueness of the solution, the original equations
also follow from these latter. In particular, from 2 = y = z = 0 it follows
that o’ = §’ = 2’ = 0, and conversely.

The characteristic geometrical properties of affine transformations are
stated in the following theorems.

(1) In space the image of a plane is a plane; and in the plane the image
of a straight line is a straight line.

For by section 1 (p. 9) we can write the equation of the plane (or the
line) in the form

Ax+ By+Cz+ D=0

(or Az + By + D= 0).

The numbers 4, B, C (or 4, B) are not all zero. The co-ordinates of the
image points of the plane (or of the line) satisfy the equation

A(@e + by + ¢7) + Bda + &y + [7)
+Ogr + Wy +¥2Z)+ D=0

(or A(@’x + by)+ Biex + d'y)+ D=0).

Hence the image points themselves lie on & plane (or a line), for the co-
efficients
A'=adA+ dB+ ¢gC
B =WA + B+ KO or
C¢'=cA + B+ kC

A'=ad'A+¢B
B =WA4+dB

of the co-ordinates &/, ¥, ¢’ (or #’, y’) cannot all be zero; otherwise the
equations
A4+ dB+gC=0 oA ’
, 7 V72 + ¢B = 0)
bA-I-G.B-l-—hG—O (Ol‘ b'A+d’B=0
A+ B+ KC=0

would hold, and these we may regard as equations in the unknowns 4, B, C
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(or 4, B). But we have shown above that from these equations it follows
that A =B=C=0(or A= B=0)

(2) The image of a straight line in space is a straight line.

This follows immediately from the fact that a straight line may be
regarded as the intersection of two planes; by (1) its image is also the inter-
section of two planes and is therefore a straight line.

(3) The images of two parallel planes of space (or of two parallel lines of
the plane) are parallel.

For if the images had points of intersection the originals would have
to intersect in the original points of these intersections.

(4) The images of two parallel lines in space are two parallel lines.

For as the two lines lie in a plane and do not intersect one another,
the same is true for their images, by (1) and (2). The images are therefore
parallel.

The image of a vector v is of course a vector v’ leading from the image
of the initial point of » to the image of the final point of v. Since the
components of the vector are the differences of the corresponding co-
ordinates of the initial and final points, under the most general affine
transformation they are transformed according to the equations

vy = av, + by, + cvg
vy = dv, + ev, + fo,
vy’ = gvy + hvp + kvs,

2. The Combination of Affine Transformations and the Resolution
of the General Affine Transformation.
If we map a point (z, ¥, 2) on an image point (2’, y’, ") by means of the
transformation
o' =ax+ by + cz
yY=do+ ey fz
Z=gx+ hy+ kz

and then map (a’, ¥, 2’) on a point (x”, ¥/, 2’’) by means of a second affine
transformation

= + by + 7
Y =dx' + ey + fi¥'
=g + Iy + k7,

then we readily see that (z, y, 2) and (2, ¥/, 2”’) are also related by an affine
transformation: and in fact

¥’ = ayx 4 by + ¢y
Y’ =dx+ ey + fiz
2 = gyx + hey + kyz

where the coefficients are given by the equations
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a,=aa+ bd+cg, by=ab+ be+ ch, = awe+ bf+ cik,
de=da+ed+figy ea=db+eet fih, fr=2dec+ ef+ fik,
go=00+ hd + kg, ho=gib+ Me+ kb, ky= gic + bf + k.

We say that this last transformation is the combination or resultant of the
first two. If the determinants of the first two transformations are different
from zero, their inverses can be formed; hence the compound transforma-
tion also has an inverse. The coefficients of the compound transformation
are obtained from those of the original transformation by multiplying
corresponding elements of a column of the first transformation and of a
row of the second, adding the three products thus obtained, and using this
“ product”” of column and row as the coefficient which stands in the
column with the same number as the column used and in the row with
the same number as the row used.
In the same way, combination of the transformations

* = ax + by = ay’ + by
and ,
y =cx+dy Yy =cx + dy

gives the new transformation

2" = (aya + bie)e + (ab + bydly
¥’ = (8 + do)z + (b + dydly.

By a primitive transformation we mean one in which two (or one)
of the three (or two) co-ordinates of the image are the same as the corre-
sponding co-ordinates of the original points. Physically we may think of
a primitive transformation as one in which the space (or plane) undergoes
a stretching in one direction only (the stretching of course varying from
place to place) so that all the points are simply moved along a family of
parallel lines. A primitive affine transformation in which the motion takes
place parallel to the z-axis is analytically represented by formule of the
type

¥ = az + by + oz ' =az+ by
y=y T y=u
=2z
The general affine transformation in the plane,
o’ = azx + by
y’ = ¢z + dy,

with a nmon-vanishing determinant, can be oblained by a combination of
primitive transformations.
In the proof we may assume * that a & 0. We introduce an intermediate

*Jfq = O, then b == 0, and we can return to the case ¢ & 0 by interchanging
z and y. Such an interchange, represented by the transformation X=y,
Y = a, is itself effected by the three successive primitive transformations

L=z—y, &L=6& ., X=—btm=y
m=Yv Pomg=b4tm=2’ Y= -z
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point (§, n) by the primitive transformation
E=azx+ by5 nN=1

whose determinant @ is different from zero. From £, n we obtain #/, ¥’
by a second primitive transformation

¥t y=C2g4+ %"
a a
with the determinant
ad—bc_1|a b
e

This gives the required resolution into primitive transformations,
In a similar way the affine transformation in space

¥ =ax -+ by + cz
y=dztey+fe
2 = gx -+ hy + ke,
with @ non-vanishing determinant, can be resolved into primitive transforma-
tions.
Of the three determinants

a b
d e

a ¢ b e

ld f e f

at least one must be different from zero; otherwise, as the expansion in
terms of the elements of the last row shows, we should have

a b ¢

d e fl=0.

g kb k
As in the previous case, we can then assume without loss of generality
(1) that |% ®| =0, and (2) that &+ 0. The first intermediate point

e
(&, , ¥) is given by means of the equations

E=oax - by cz
0= y
(= 2.

The determinant of this primitive transformation is a, which is not zero.
For the second transformation to &/, v/, {’ we wish to put £’ == §, {’' = {,
and also to have v’ =y’. One primitive transformation then remains. If
in the equation ' = y’ = dx -+ ey + fz we introduce the quantities &, v, {
instead of x, ¥, 2, we obtain the second primitive transformation in the
form
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=g
,_d 1la b
= a i+ ald e
v=2¢
lia b

The determinant of this transformation is ald e
formation must then be

2+

a

a ¢

dfc‘

l % 0. The third trans.

=¥
y=r1
a b ¢
l e ’ bl de f
__lo al, AR N I
Zl—_ab&—'_abn—l- a b ¢
d e d e d e

3. The Geometrical Meaning of the Determinant of Transforma-
tion, and the Multiplication Theorem.

From the considerations of the previous section we can find the
geometrical meaning of the determinant of an affine transformation and
at the same time an algebraic theorem on the multiplication of
determinants.

We consider a plane triangle with vertices (0, 0), (%1, #), (%2 ¥2), Whose
area is given (section 2, p. 14) by the formula

1

=2

Ty Ty
i Y
We shall investigate the relation between A and the area A’ of its
image obtained by means of a primitive affine transformation

2 = ax -+ by

Y=y
The vertices of the image triangle have the co-ordinates (0, O0),
(azy + bys, Y1), (@23 + bya ¥,), and therefore

A'=1 =l,"’“’1+b?l1 aiy + by,
2 Y1 Y2

xl’ le
’ ,
)

2

This determinant, however, can be transformed by the theorems of section 3
(p. 22) in the following way:

, 1 l ax, + by, ax; + by, 1|az, az, a|lz, =
A = = = — = = »
2 Y% Ys 2l 1 ¥ 2|y ¥
that is,
A’ = ad.

3 (59012)
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If we had taken the primitive transformation

=z
Y = cx+ dy,
we should have found in the same way that
A’ = dA.

We see, therefore, that a primitive affine transformation has the effect
of multiplying the area of a triangle by a constant independent of the tri-
angle.* Since the general affine transformation can be formed by com-
bining primitive transformations, the statement remains true for any
affine transformation. In the case of an affine transformation the ratio of
the area of an tmage triangle to the area of the original triangle is constant
and independent of the choice of triangle, depending only on the coefficients of
the transformation. In order to find this constant ratio we consider in
particular the triangle with vertices (0, 0), (1, 0) and (0, 1), whose area 4
is 4. Since the image of this triangle according to the transformation

¥ =ax+ by
y=cz+dy

has the vertices (0, 0), (a, ¢), (b, d) its area is
1 a b
c df

2
and we thus see that the constant ratio of area A’[A for an affine trans-
formation is the determinant of the transformation.
For transformations in space we can proceed in exactly the same way.
If we consider the tetrahedron with the vertices (0, 0, 0), (z;, ¥3, %),
(%2 Yo 22)s (3 Ys 23) and subject it to the primitive transformation

a b
=A
c d‘

N
{

2

the image tetrahedron has the vertices (0, 0, 0), (a2, 4 by; + cz;, ¥y, ),
(azy - byy + €2 Yob %), (@ + bYs + €23, Y5, 25), 80 that its volume ¥V is
1 ax, + by, + ez axy + by, + ¢z, azs + by | czg

V= H % Ya Ys

% 2 25
al Ty Ty Xy
gl Y2 Ys
%7 % 2Zg

* If no vertex of the triangle lies at the origin, the same fact holds, in virtue
of the general formula for the area given on p. 14.
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Hence V' =aV,

vhere V is the volume of the original tetrahedron. For the volume of the
image given by the primitive transformation

=z
y=dx+ey+ fz
7=z
we similarly find that
V' = eV,
and for the primitive transformation
=z
Y=y

Z=gzx+ hy+ kz
we find that
V' =LV

From this it follows that an arbitrary affine transformation has the effect
of multiplying the volume of a tetrahedron by a constant.* In order to
find this constant for the transformation

¥=azx+by+cz
y=detey+fe
=gzt by + kz

we consider the tetrahedron with the vertices (0, 0, 0), (1, 0, 0),
(0, 1, 0), (0, 0, 1), whose image has the vertices (0, O, 0), (a, d, g),
(b, e, h), (¢, f, k). For the volumes V’ and V of the image and the
original we therefore have

1@ b ¢ 1
V’=(—5 d e [l V=§3
g bk
a b ¢
hence the determinant (d e f| is the constant sought.
g bk

The sign of the determinant also has a geometrical meaning. For from
what we have seen in section 2 (p. 18) on the connexion between the sense
of rotation and the volume of the tetrahedron or area of the triangle, it
follows at once that a transformation with a positive determinant preserves
the sense of rotation, while a transformation with a megative determinant
reverses it.

*If no vertex of the tetrahedron coincides with the origin, this theorent
follows from the general formula for the volume of a tetrahedron (p. 18).
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We now consider the combination of two transformations

o = ax+ by + ¢z ¥ = ax + by + 7
y=di+ey+fz y'=d + ey + fif
Z=g9x+ hy+ kz 2 =g + Yy + k7,

' = (a0 + bd + cxg) + (@b + by + eihly + (@yg + by f + ok}
¥’ = (dya + ed + fighe + (A + e + by + (e + ef + fik)e
7' = (g + hd+ kg)x + (@b + he+ kbl + (@0 + b f+ kb

As we pass from , ¥, 2 to 2/, ¥’, 2’ the volume of a tetrahedron is multiplied
by

a
d
g

e o

c
I
k

7.

as we pass from 2/, y’, 2 to 2”7, ¥
a b ¢
d & fi
bk

and by direct change from z, y, 2 to &, ", 2z it is multiplied by

ag+bd+eg ab+betch  act bftck
dated+fig db+eetfik det+ef+ fik
go+md+ kg gb+hed b ge hf+ bk

' This gives us the following relation, known as the theorem for the
multiplication of determinants:

I, z" by

»

@ b ¢ ay by c
d e f dy € [y
o b By g b By

ayay + bydy + €ige aibe + biey + cihe a0+ by fo+ciky
dity + edy + fige  diby + €8s + frhy dit + e fo + fike
g102 + Pady + kigs  Gibe + Byep + Eiha g10 + By fo + Bk

As before, we call the elements of the determinant on the right the * pro-

a b o ay b, ¢,
.ducts ** of the rows of |d; e, f,| and the columns of |d, e; fo|; at
g1 by Ry g by Ky

the intersection of the i-th row and the k-th column of the product of
the determinants there stands the expression formed from the ¢-th row of

@ b oo ap by ¢
d, ¢ f,| and the k-th column of }d, e f;|. Since rows and
ook 9o hy Ky

columns are interchangeable, the product of the determinants can also
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be obtained by combining columns and rows, columns and columns, or
rows and rows.

For two-rowed determinants the corresponding theorem of ocourse
holds, namely
@)y + biby  arCy + bids
o8z + diby  eyep + didy

a; b,
¢ dy

a b
¢ 4
(combining rows and rows, &c.).

ExaMpPLES

1. Evaluate the following determinants:

3 4 5 111 1 11 1 z a
@ ¢ 56, @1 24, ©|2 34|, @1y
5 6 7 1309 317 1 2z 28

2. Find the relation which must exist between a, b, ¢ in order that the
system of equations
B+ dy4-bz=a
4r+ 5y +62=1"0
bx+8y+Tz=c¢
may have a solution.
3*. (a) Prove the inequality
e & ¢
D=la" ¥ ¢ | =4/(@®+ 8+ *) (a2 + b2+ ¢?) (@ + b2+ ¢2).
a// bII c/I
(6) When does the equality sign hold?

4. What conditions must be satisfied in order that the affine trans-
formation

¥=ax+ by, y=cx-+dy
may leave the distance between any two points unchanged?
5. Prove that in an affine transformation the image of a quadric
ax® +by* +c2+dry+exz+ fyz +gx+hy+ 24+ 5=0
is another quadric.
6*. Prove that the affine transformation
o =ax+ by 4+ ¢z
yY=detey +fz
=g+ hy+ ke

leaves at least one direction unaltered.
7. Give the formule for a rotation through the angle ¢ about the axis
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z:y:2=1:0:—1 such that the rotation of the plane # = z is positive
when looked at from the point (—1, 0, 1).

8. Prove that an affine transformation transtorms the centre of mass
of a system of particles into the centre of mass of the image particles.

9. If «;, . . ., Y3 denote the quantities on p. 6, defining a rotation of
axes, then

o BT
% B Ys
a Bs s

==+l




CHAPTER II

Functions of Several Variables and
their Derivatives

We have already become acquainted with functions of several
variables in Chapter X of Vol. I, and there learned enough to
appreciate their importance and usefulness. We are now about
to enter on a more thorough study of these functions, discussing
properties which were not touched upon in the previous volume
and proving theorems which there were merely made plausible.
No proof in this volume will involve previous knowledge of any
proof developed in Chapter X of Vol. I. Yet the student is
recommended to read that chapter, as the intuitive discussion
given there will assist him in forming mental images of matters
which are perhaps somewhat abstract.

As a rule a theorem which can be proved for functions of two
variables can be extended to functions of more than two variables
without any essential change in the argument. In what follows,
therefore, we shall usnally confine ourselves to functions of two
variables, and shall only discuss functions of three or more
variables when some special point is involved.

1. Tee ConcEpT oF FuncrioN IN THE CASE OF
SEVERAL VARIABLES
1. Functions and their Ranges of Definition.
Equations of the form
u==z-}y, u=2%% or u=log(l —a%— y?
assign a functional value u to a pair of values (z, y). In the

first two of these examples a value of u is assigned to every pair

of values (z, y), while in the third the correspondence has a
39
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meaning only for those pairs of values (z, y) for which the
inequality #® + y® <1 is true.

In these cases we say that u is a function of the independent
variables x and y. This expression we use in general whenever
some law assigns a value of  as dependent variable, corresponding to
each pair of values (z, ) belonging to a certain specified set. Simi-
larly, we say that u is a function of the n variables 2, @y, ..., @,
if for every set of values (z;, Z,, . . . , ,,) belonging to a certain
specified set there exists a corresponding value of u.

Thus, for example, the volume u = zyz of a rectangular parallelepipec
is a function of the lengths of the three sides z, y, z; the magnetic de-
clination is a function of the latitude, the longitude, and the time; the
sum z; 4 %, + ... + %, is a function of the n terms z,, x,, ..., z,.

In the case of functions of two variables we represent the pair
of values (z, y) by a point in a two-dimensional rectangular co-
ordinate system with the co-ordinates = and y, and we occasionally
call this point the argument point of the function. In the case of
the functions ¥ = = + y and » = 2%? this argument point can
range over the whole of the xy-plane, and we say that these
functions are defined in the whole xy-plane. In the case of the
function % = log(1 — 22 — y?), the point must remain within the
circle a2 + ¢2 << 1, and the function is defined only for points
inside this circle.

¥
0 —X (o] o
Fig. 1.—A simply-connected region Fig. 2.~A triply-connected region

As in the case of functions of a single variable, the arguments
in the case of functions of several variables may be either * dis-
continuous ” or ‘ continuous ”’. Thus the average population per
state of the United States depends on the number of states and
on the number of inhabitants, both of which are integers. On
the other hand, lengths, weights, &c., are examples of continuous
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variables. In the future we shall deal almost exclusively with
pairs of continuously variable arguments; the point (x, y) will
be allowed to vary in a definite “region” (or ““domain ) of
the zy-plane, corresponding to the “interval” in the case of
functions of one variable. This region may consist of the whole
zy-plane; or it may consist of a portion of the plaune bounded by
a single closed curve C which does not intersect itself (a * simply-
connected region ”’; cf. fig. 1); or it may be bounded by several
closed curves. In the last case it is said to be a * multiply-
connected region ”, the number of the boundary curves giving
the so-called “ connectivity ; fig. 2, for example, shows a
triply-connected region.

7 4
dl--
G
Pl - 774 |
] |
I {
! '
| ] z
0—2 ] 0
Fig. 3.—A rectangular region Fig. 4—A circular region

The boundary curves, and in fact every curve considered in
this volume, will be assumed to be sectionally smooth.* That is,
we assume once and for all that every such curve consists of a
finite number of arcs, each one of which has a continuously-
turning tangent a$ each of its points up to and including the end
points. Such curves, therefore, can at most have a finite number
of corners or cusps.

The most important types of region, which recur over and
over again in the study of functions of several variables, are (1)
the rectangular region (fig. 3), defined by inequalities of the form

alz<bh
c=y=d,

in which each of the independent variables is restricted to a
definite interval, and the argument point varies in a rectangle;

* Ger. stiickweise glatt,
3 (r912)
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and (2) the circular region (fig. 4), defined by an inequality of the
form
@E—af+(y—B=r?

in which the argument point varies in a circle with radius r
and centre (a, B).

A point P which belongs to a region R is said to be an interior
point of R if we can find a circle with its centre at P lying entirely
within R. If P is an interior point of R, we also say that R is
a neighbourhood of P. Thus any neighbourhood of P will contain
a sufficiently small circle with P as centre.

We may briefly remark that corresponding statements hold
in the case of functions of more than two independent variables,
e.g. of three variables z, , z. In this case the argument point
varies in a three-dimensional region instead of in a plane region.
In particular, this region may be a rectangular region, defined
by inequalities of the form

aZc=b cSysd exz=f,
or a spherical region, defined by an inequality of the form
@—aP+y— B+ (=

In conclusion, we shall mention a finer distinction, which, while scarcely
essential for the purposes of this book, is nevertheless of importance in
more advanced study. We sometimes have to consider regions which do
not contain their boundary points, that is, the points of the curves bound-
ing them. Such regions are called open regions (cf. the Appendix to this
chapter, p. 98). Thus, for example, the region #? 4 y* < 1 is bounded by
the circle 22 -+ y2 = 1, which does not belong to the region; the region
is therefore open. If, on the other hand, the boundary points do belong
to the region, as will be the case in most of the examples which we shall
discuss, we say that the region is closed.

When we are dealing with more than three independent
variables, say z, ¥, z, w, our intuition fails to provide a geometrical
interpretation of the set of independent variables. Still, we
shall occasionally make use of geometrical terminology, speaking
of a system of n numbers as a point in n-dimensional space.
By rectangular regions and spherical regions in such a space we
naturally mean systems of points whose co-ordinates satisfy
inequalities of the form

%éwéaz» b]_éyébz, =250, d1§'MJ§d2, e
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or @—al+@y—BP+@E—9yP+w—02+...=1

respectively.

We can now give precise expression to our definition of the
concept of function in the following words. If R is a region in
which the independent variables X, y, . . . may vary, and if a definite
value u is assigned to each point (x,y, . . .) of this region according
to some law, then u = £(x,y, . ..) is said fo be a function of the
continuous independent variables x, y, . . . .

It is to be noted that, just as in the case of functions of one
variable, a functional correspondence associates a unique value of
u with the system of independent variables , y,.... Thus if the
functional value is assigned by an analytical expression which

is multiple-valued, such as arc tan g, this expression does not
determine the function completely. On the contrary, we have still
to specify which of the several possible values of the expression
is to be used; in the case mentioned, we have still to state that we

are to take the value of arc tan‘:—i which lies between —g and

+ ;I, or the value between 0 and 7, or we must make some other

similar specification. In such a case we say that the expression
defines several different single-valued branches of the function
(cf. Vol. I, p. 17). If we wish to consider all these branches at
once, without giving any one of them preference, we may regard
them as together forming a multiple-valued function. In this
book, however, we shall make use of this idea in Chap. VIII only.

2. The Simplest Types of Functions.

Just as in the case of functions of one variable, the simplest functions
are the rational integral functions or polynomials. The most general
polynomial of the first degree (linear function) is of the form

u=ax+ by + ¢
where a, b, and ¢ are constants. The gencral polynomial of the second
degree has the form
u=aa?+ bry +cy®+dr+ey+ L.

The general polynomial of any degree is a sum of terms of the form a,,, x™y",
where the constants a,,, are arbitrary.
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Rational fractional functions are quotients of polynomials; to this class
belongs e.g. the linear fractional function
w Btbyto
a'z+ by ¢

By extraction of roots we pass from the rational functions to certain
algebraic functions,* e.g.

U =

-y, Ye+y?
x+y+\/xs+wy'

In the construction of more complicated functions of several variables
we almost always fall back on the well-known functions of one variable,}

e.g.
u = sin(» arc cosy) or u = log,y.

3. Geometrical Representation of Functions.

In Chapter X of Vol. I we discussed the two principal methods for
representing a function of two independent variables, namely (1) by
means of the surface u = f(z, y) in zyu-space, described by the point with
co-ordinates (x, y, ) a8 (z, y) ranges over the region of definition of the
function u, and (2) by means of the curves (contour lines) in the xy-plane
along which « has a definite fixed value k. We shall not repeat this dis-
cussion here. If the student is not already perfectly familiar with these
methods of geometrical representation, he would be well advised to turn
to the previous volume and read the discussion given there (p. 460 ef seq.).

2. CoNTINUITY
1. Definition.

The reader who is acquainted with the theory of functions of
a single variable and has seen what an important part is played
in it by the concept of continuity will naturally expect that a
corresponding concept will figure prominently in the theory of
functions of more than one variable. Moreover, he will know in
advance that the statement that the function v = f(z, y) is
continuous at the point (z, ) will mean, roughly speaking, that
for all points (£, n) near (X, y) the value of the function (£, )
will differ but little from f(x, y). This idea we shall express more
precisely as follows.

The function f(x, y), defined in the region R, is continuous at
the point (£, m) of R, provided that for every positive number e it is
possible to find a positive number 3 = 8(¢) (in general depending on

* For an accurate definition of the term ‘ algebraic function ” see p. 119.
+ Cf. also the section on compound functions (p. 69).
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€ and tending to O with €) such that for all points* of the region
whose distance from (&, n) is less than 3 (that is, for which

@— &2+ (y— )P =89,
lf(a% ?/) _f(g, 7]) I é €.

Or, in other words, the relation

is to hold for all pairs of values (k, k) such that A% + k? < 3% and
the point (¢ + &,  + %) belongs to the region R.

If a function is continuous at every point of a region R, we
say that it is continuous in R.

In the definition of continuity we can replace the distance
condition A2 - k? < 82 by the following equivalent condition:

To every € >0 there shall correspond two positive numbers
8, and 8, such that

whenever | h | < 8, and [ k| < 8,.

The two conditions are equivalent. For if the original con-
dition is fulfilled, so is the second
if we take 8, = 8, = 8/4/2; and
conversely, if the second con-
dition is fulfilled, so is the first
if for 8 we take the smaller of the
two numbers §, and 3,.

The following facts are almost
obvious:

The sum, difference, and pro-
duct of continuous funciions are © -
also continuous. The quotient of Fig. s.—Boundary point
continuous functions is continuous
except where the denominator vanishes. Continuous functions of
continuous functions are themselves continuous (cf. section 5, No. 1,
p. 70). In particular, all polynomials are continuous, and all
rational fractional functions are also continuous except where the
denominator vanishes.t

* Fig. 5 illustrates the case where (£, 7) lies on the boundary of R.
+ Another obvious fact, which, however, is worth stating, is as follows:
if a function f(x, y) & continuous in a region R and is different from zero at an
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A function of several variables may have discontinuities of a much
more complicated type than a function of a single variable. For example,
discontinuities may occur along whole arcs of curves, as in the case of the
function u = y/x, which is discontinuous along the whole line z = 0.
Moreover, a function f(x, y) may be continuous in z for each fixed value
of y and continuous in y for each fixed value of # and yet be a discontinuous

2zy

J(0, 0)=10. If we take any fixed non-zero value of y, this function
is obviously continuous as a function of z, as the denominator cannot
vanish. If y =0, we have f(z, 0)= 0, which is a continuous func-
tion of x. Similarly, f(z, y) is continuous in y for each fixed value of
. But at every point on the line y = z, except the point x =y =0,
we have f(x, y) =1; and there are points of this line arbitrarily close
to the origin. Hence the function is discontinuous at the point
z=y=0.

Other examples of discontinuous functions will be found in Vol. I
(p. 464).

function of z and y. This is exemplified by the function f(z, y) =

2. The Concept of Limit in the Case of Several Variables.

The concept of the limit of a function of two variables is
closely related to the concept of continuity. Let us suppose that
the function f(z, y) is defined in a region R, and that (£, ) is a
point either within B or on its boundary. Then the statement
that the limit of f(z, y) as = tends to £ and y tends to » is I is
to be understood as having the following meaning: for every
€> 0 there is a & > 0 such that

If(a%?/)""ll <e
for all points (x, y) in R for which the inequality
O<(@x— &P+ (y—nP=8
holds. It is to be noted that, just as in the case of functions of
one variable, the point (z, y) is required to be distinet from the
point (£, 7).
We symbolize the existence of the limit { by writing

lim /(@ §) =1, 0x /(@ §) L85 &, 9) > (&, 7).

e
tnterior point P of the region, it is possible to mark off about P a neighbourhood,
say a circle, belonging entirely to R, in which {(x, y) 18 nowhere equal to zero.
For if the value of the function at P is a, we can mark off about P a circle so

small that the value of the function in the circle differs from @ by less than
a/2 and therefore is certainly not zero.
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For emphasis this is sometimes read “the double limit as z
tends to £ and y tends to 5 of f(z, y)is 1 ”.

Using the language of limits, we can say that a function
f(=, y) is continuous at a point (£, ») if, and only if,

ﬁ_ljle f@, y) = f(& )

y—>1

We can see the matter in a new light if we consider sequences
of points. We shall say that a sequence of points (2, ), (%5, ¥a),
vev s (Tns Yn) - - - tends to a limit point (£, 7) if the distance
V{(®a— €2+ (yn—n)?} tends to 0 as n increases. We can then
show at once (cf. Vol. I, p. 47) that if f(z, y) =l as (2, y) > (£, ),
then lim f(z,, y,) = l for every sequence of points (2,, ¥,) in R

7n—>00
which tends to (£, 7). The converse is also true; if lim f(z,, y,)

n—>o0
exists and is equal to I for every sequence (z,, ¥) of points in B

tending to (£, u), then the double limit of f(z, y) as « — £ and
y — 7 exists and is equal to I. 'We omit the proof of this.

In our definition of limit we have allowed the point (z, y) to
vary in the region R. If we so desire, however, we can impose
restrictions on the point (z, ). For example, we may require it
to lie in a sub-region R’ of R, or on a curve C, or in a set of points
Min R. In this case we say that f(2, y) tends to ! as (z, y) tends
to (£, ) in R’ (or on C, orin M). It is of course understood that
R’ (or C, or M) must contain points arbitrarily close to (£, 5) in
order that the definition may be applicable.

Our definition of continuity then implies the two following
requirements: (1) as (x, y) tends to (£, n) in R the function
f(x, y) must possess a limit I; and (2) this limit | must coincide
with the value of the function at the point (&, 7).

Tt is obvious that we could define continuity of a function,
not only in a region R but also, for example, along a curve C,
in the same way.

3. The Order to which a Function Vanishes.*

If the function f(z, y) is continuous at the point (£, %), the
difference f(z, y) — f(£, ) tends to zero as z tends to ¢ and y
tends to . By introducing the new variables A= 2 — ¢ and

* This sub-section may be omitted on a first reading.
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k= y — n we can express this as follows: the function (%, k)
= f(¢ + h, n + k) — f(¢, n) of the variables /# and % tends to 0
as k and k tend to 0.

We shall frequently meet with functions such as (&, k)
which tend to zero * as & and % do. As in the case of one in-
dependent variable, for many purposes it is useful to describe
the behaviour of ¢(k, k) as h— 0 and % — 0 more precisely
by distinguishing between different * orders of vanishing > or
“ orders of magnitude ” of ¢(k, k). For this purpose we base
our comparisons on the distance

p=VEB+EB=VE— &+ @y—P

of the point with co-ordinates z= ¢ 4+ % and y = 5+ k from
the point with co-ordinates £ and 7, and make the following
statement:

4 function $(h, k) vanishes as p — 0 to the same order as
p = Vh?+ k3 or, more precisely, to at least the same order as p,
provided that there is a constant C, independent of h and k,
such that the inequality

\M‘so
;

holds for all sufficiently small values of p; or, more precisely, when
there is a 8 > 0 such that the inequality holds for all values

of & and % such that 0 << VA?* + k% < 8. Further, we say that
$(h, %) vanishes to a higher order 1 than p if the quotient 282 %)
P

tends to 0 as p 0. This is sometimes expressed by the sym-
bolical notation I ¢(k, k) = o(p).

* In the older literature the expressions * ¢(h, k) becomes infinitely small
as h and k do ” or “ &(h, k) is infinitesimal  are also found. These statements
have a perfectly definite meaning if we regard them simply as another way of
saying ““ ¢(h, k) tends to 0 as h and k do”. We nevertheless prefer to avoid
the misleading expression * infinitely small ” entirely.

+ In order to avoid confusion, we would expressly point out that a higher
order of vanishing for p — 0 implies smaller values in the neighbourhood of
p = 0; for example, p? vanishes to a higher order than p, and p? is smaller
than p, when p is nearly zero.

1 The letter o is of course chosen because it is the first letter of the word
order. If we wish to express the statement that ¢(k, k) vanishes to at least the
same order as p, but not necessarily to a higher order, we use the letter O instead
of o, writing ¢(h, k) = O(p). In this book, however, we shall not use this
symbol.
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Let us now consider a few examples, Since

| 5] | £
vwrm =t = v =t

the components & and k of the distance p in the directions of the z- and
y-axes vanish to at least the same order as the distance itself. The same
is true for a linear homogeneous function ah - bk with constants a and b,

or for the function p sinl. For fixed values of « greater than 1 the power
o of the distance vanishes to a higher order than ¢; symbolically,
¢*=o(p) for @ > 1. Similarly, a homogeneous quadratic polynomial
ah? 4 bhk - ck? in the variables % and k vanishes to a higher order than

pas p—>0:
ah? 4 brk + ck? = o(p)

More generally, the following definition is used. If the
comparison function w(k, k) is defined for all non-zero values
of (k, k) in a sufficiently small circle about the origin, and
is not equal to zero, then ¢(h, k) vanishes to at least the same
order as w(h, k) as p — 0 if for some suitably chosen constant O
the relation :

#0, 1)) <
w(h, k)|

holds; and similarly, ¢(k, k) vanishes to a higher order than w(h, k),

or ¢(k, k) = o(w(h, k), if f—%ﬁ% — 0 when p — 0.

For example, the homogeneous polynomial ah? 4 bhk +- ck? is at least
of the same order as p?, since

| aht + bhk + k| < (o |+ 3151+ | c]) (B + 1.

1
Also p = o( — ), since lim (p log g) = 0 (Vol. I, p. 195
° |loge| p—>0

ExAMPLES

1. Discuss the behaviour of the functions

(a) o — 390‘!/2,
() «* — 6a%y® + ¢
in the neighbourhood of the origin.

2, How many constants does the general form of a polynomial P(z, y)
of degree n contain?
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3. Prove that the expression
a® + bay® + ca®y + dy
vanishes at z =y = 0 to at least the same order as % = (22 + )%
4. Find the condition that the polynomial
P = qa? | 2bay + cy?
is of exactly the same order as p? in the neighbourhood of 2 =0, y =0

P p?
(ie. both — and -5 are bounded).
I P

5. Are the following functions continuous at z = y = 0?

vy 2 4 2oy + o a® + 3y + o
(a)xz_'_y’. () _xz_'_T. (c) $2+4xy+y2'
__l=—yl - gle=sl
@) — 5 preapr (e) e~ F~mip, v
2 2
Azl @z @ g e —LEED

Vit g+ |2

6. Find a 3(c) (p. 44) for those functions of Ex. 5 which are continuous,

3. Taue DERIVATIVES OF A FUNCTION

1. Definition. Geometrical Representation.

If in a function of several variables we assign definite numeri-
cal values to all but one of the variables and allow only that one

F K
F A
/i

~cons V I

|||/V m\/'y
X

Fig. 6 Fig. 7
Sections of u = f(x, ¥)

variable, say z, to vary, the function becomes a function of one
variable. We consider a function u = f(z, y) of the two variables
z and y and assign to y a definite fixed value y = y,=c¢. The
function u = f(z, y,) of the single variable z which is thus
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formed may be represented geometrically by letting the plane
y =y, cut the surface u=f(x, y) (cf. figs. 6 and 7). The
curve of intersection thus formed in the plane is represented by
the equation u = f(x, y,). If we differentiate this function in
the usual way at the point © = z, (we assume that the derivative
exists), we obtain the partial derivative of f(x, y) with respect to x
at the point (z, ¥,). According to the usual definition of the
derivative, this is the limit * ‘

lim flzo+ h, ?/o})l — f(x, 3/0).

h—>0

Geometrically this partial derivative denotes the tangent of the angle
between a parallel to the z-axis and the tangent line to the ourve
u = f(, y,). It is therefore the slope of the surface u = Kx, y) ¢n the direc-
tion of the x-axis.

To represent these partial derivatives several different nota-
tions are used, of which we mention the following:

f(@o+ B, yo)h— S(@o Yo) _ £u@or Yo) = %al@o Yo)- -

lim
h—>0

If we wish to emphasize that the partial derivative is the limit
of a difference quotient, we denote it by

¥y @

o O

Here we use a special round letter 9, instead of the ordinary
used in the differentiation of functions of one variable, in order
to show that we are dealing with a function of several variables
and differentiating with respect to one of them.

Tt is sometimes convenient to use Cauchy’s symbol D, men-
tioned on p. 90 of Vol. I, and write

of
= el
but we shall seldom use this symbol.
' In exactly the same way we define the partial derivative of

* Tf (2,, ¥,) i & point on the boundary of the region of definition, we make
the restriction that in the passage to the limit the point (x + %, y,) must always
remain in the region.



52 FUNCTIONS OF SEVERAL VARIABLES [Cuar.

Sf(z, y) with respect to y at the point (zy, y,) by the relation
h-mf(f"o: Yo + k) — f(@o, o)
k

k>0

= f (%o '!/o) =D vf (2o, ?/o)

This represents the slope of the curve of intersection of the surface
% = f(z, y) with the plane z = x, perpendicular to the z-axis.

Let us now think of the point (x,, y,), hitherto considered
fixed, as variable, and accordingly omit the suffixes 0. In other
words, we think of the differentiation as carried out at any point
(x, y) of the region of definition of f(z, ). Then the two deriva-
tives are themselves functions of z and ¥,

of (=, y) ¥z 9)
oz

oy

For example, the function u = 2% 4 y® has the partial derivatives
u, = 2z (in differentiation with respect to x the term y* is regarded as a
constant and so has the derivative 0) and u, = 2y. The partial derivatives
of u = 2%y are u, = 3% and u, = 2%

(@, )] =fm(w’ y) = and u,(z, y) = fu( s y)

We similarly make the following definition for any number n
of independent, variables,

of (Ty, Tay - « - » Tu) hmf(w1+h:vz,...,wn)—f(acl,wz,...,wn)
0y k—>0 h

=le(x1’ Tas e+ o Tp) = Dz,f(xl’ Tgs o v vy Tp),

it being assumed that the limit exists.

Of course we can also form kigher partial derivatives of f(z, y)
by again differentiating the partial derivatives of the * first
order 7, fu(z, y) and f,(x, ), with respect to one of the variables,
and repeating this process. We indicate the order of differentia-
tion by the order of the suffixes or by the order of the symbols
oz and Oy in the ““denominator ”, from right to left,* and use
the following symbols for the second derivatives:

oz ( 6«:2 '_f w0 = D,

— D2

* In Continental usage, on the other hand, 3%‘ ( %_J;) is written

Y
oz
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9 [of . 8‘7_ o
@(ﬁ —W—fn—‘pwf’

2 /9 02
5& a{;) = 5_—?';=fw= D2, f.

We likewise denote the third partial derivatives by

9 (@21 _®f_
52 \5i3) = 55 = feuw

0 (?f[)_ﬁf__
5y \52) = ayoat = Juem

2 ()= 2L

oz \ozdy ox?dy
and in general the n-th derivatives by

2 (T

ox \oz~t) — oan 7™

9 [on-if onf
oy \ow1) = Byaars = for &0

In practice the performance of partial differentiations involves
nothing that the student has not met with already. For according
to the definition all the independent variables are to be kept
constant except the one with respect to which we are differentiat-
ing. We therefore have merely to regard the other variables as
constants and carry out the differentiation according to the rules
by which we differentiate functions of a single independent
variable. The student may nevertheless find it helpful to study
the examples of partial differentiation given in Chapter X of
Vol. I (p. 469 et seq.).

Just as in the case of one independent variable, the possession
of derivatives is a special property of a function, not enjoyed
even by all continuous functions.* All the same, this property
is possessed by all functions of practical importance, except
perhaps at isolated exceptional points.

* For an explanation of the term * differentiable ”, which implies more
than that the partial derivatives with respect to x and y exist, see p. 60

el seq.
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2.\ Continuity and the Existence of Partial Derivatives with
respect to x and y.

In the case of functions of a single variable, we know that
the existence of the derivative of a function at a point implies
the continuity of the function at that point (cf. Vol. I, p. 97).
In contrast with this, the possession of partial derivatives does
not imply the continuity of a function of two variables: e.g. the

2y

PN
everywhere, and yet we have already seen (p. 46) that it is discon-
tinuous at the origin. Geometrically speaking, the existence of
partial derivatives restricts the behaviour of the function in the
directions of the z- and y-axes only, and not in other directions.
Nevertheless the possession of bounded partial derivatives does
imply continuity, as is stated by the following theorem:

If a function {(x, y) has partial derivatives f, and £, everywhere
n a region R, and these derivatives everywhere satisfy the in-
equalities

function u (z, y) = , with u (0, 0) = 0, has partial derivatives

|fola, 9) | < M, |filz, 9)| <M,

where M s independent of x and y, then £(x,y) is continuous
everywhere in R.

To prove this we consider two points with co-ordinates (z, ¥)
and (x4 h, y+ k) respectively, both lying in the region R.
We further assume that the two line-segments joining these
points to the point (x4 A, y) both lie entirely in R; this is
certainly true if (z, y) is a point interior to K and the point
(z + &, y + k) lies sufficiently close to (z, y). We then have

fa@+hy+ k) —fl@y)={fe+hby+k)—fle+hy)}

The two terms in the first bracket on the right differ only in y,
those in the second bracket only in #. We can therefore trans-
form both the brackets on the right-hand side by means of the
ordinary mean value theorem of the differential calculus (Vol. I,
p. 103), regarding the first bracket as a function of y alone
and the second as a function of z alone. We thus obtain the
relation

fle+h y+ k) — fla, y) = K@+ b, y+ 6,k) + hfo(z 105, 9),
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where 8, and 6, are two numbers between 0 and 1. In other words,
the denva,tlve thh respect to y is to be formed for a point of the
vertical line joining (x—l—-h y) to (z-+h, y+k), and the deriva-
tive with respect to x is to be formed for a point of the horizontal
line joining (x, y) and (#+ &, y). Since by hypothesis both
derivatives are less in absolute value than M, it follows that

[f@+hy+ B —f@y|<=M]r|+ k]

For sufficiently small values of # and % the right-hand side is
itself arbitrarily small, and the continuity of f(, y) is proved.

3. Change of the Order of Differentiation.

In the examples of partial differentiation given in Vol. I it
will be found that f,, = f.,; in other words, it makes no difference
whether we differentiate first with respect to « and then with
respect to y, or first with respect to y and then with respect
to z. This observation depends on the following important
theorem:

If the “ mized” portial derivatives fr, and fy of a function
f(x, y) are continuous in a region R, then the equation

f ve = f 2y
holds throughout the interior of that region; that is, the order of
differentiation with respect to x and to y is vmmaterial.

The proof, like that of the previous sub-section, is based on
the mean value theorem of the differential calculus. We consider
the four points (z, ¥), (z -+ &, ), (x, y + k), and (x4 &, y 4 k),
where A= 0 and k3 0. If (z, y) is an interior point of the
region R, and % and k are small enough, all four of these points
belong to B. We now form the expression

Ad=fl@e+hy+k—~fl@+hy—flzy+E+fy).
By introducing the function
$la) = fl@, y + k) — f(=, y)

of the variable « and regarding the variable y merely as a * para-
meter *’, we can write this expression in the form

4= ¢+ k) — ¢().
Transforming the right-hand side by means of the ordinary
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mean value theorem of the differential calculus, we obtain
A = hd'(z -+ 6h),

where 0 lies between 0 and 1. From the definition of ¢(x), how-
ever, we have

¢'(2) = fula, y + ) — fulw, y);

and since we have assumed that the *mixed ” second partial
derivative f,, does exist, we can again apply the mean value
theorem and find that

A = hhf oz + Oh, y + O'F),

where 6 and 6’ denote two numbers between 0 and 1.
In exactly the same way we can start with the function

) =Sfl@+ hy)—f9)
and represent 4 by means of the equation
A=y + k) — ).
We thus arrive at the equation
A= hkfo(x+ Oih, y+ 6,'F), where 0<<6,<1and0<6,’ <1,

and if we equate the two expressions for 4 we obtain the equation
Jua(z + OR, Y+ Ok) = fo(z + 6,h, y + 6,'%).

If here we let % and & tend simultaneously to 0 and recall that
the derivatives f,,(z, y) and f,.(z, y) are continuous at the point
(=, ¥), we immediately obtain

fﬂ.’t(x! 3/) = fzv(ms :l/),

which was to be proved.*

* For more refined investigations it is often useful to know that the theorem
on the reversibility of the order of differentiation can be proved with weaker
hypotheses. It is, in fact, sufficient to assume that, in addition to the first
partial derivatives f, and fy» only one mized partial derivative, say {1y exists,
and that this derivative is conlinuous at the poini in question. To prove this, we
return to the above equation

4 =f(z+h:.1/ + k) —f(x + h:y) _f(mvy-" k) +f(x’y)’

divide by hk, and then let k alone tend to 0. Then the right-hand side has a
limit, and therefore the left-hand side also has a limit, and

im A - S E b y) — Syl ),
h—>0 h
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The theorem on the reversibility of the order of differentiation
has far-reaching consequences. In particular, we see that the
number of distinet derivatives of the second order and of higher
orders of functions of several variables is decidedly smaller than
we might at first have expected. If we assume that all the
derivatives which we are about to form are continuous functions
of the independent variables in the region under consideration, and
if we apply our theorem to the functions f,(z, ), fu(z, ¥), fes(Z, ¥),
&o., instead of to the function f(z, y), we arrive at the equations

fmzv = fmyz = fvzz’

Jevww = fuev = fover
Joavs = Sover = Fovve = Fooor = Foave = Fovem
and in general we have the following result:
In the repeated differentiation of a function of two independent
variables the order of the differentiations may be changed at wnll, pro-
vided only that the derivatives tn question are continuous functions.®

Further, it was proved above with the sole assumption that f,,, exists that
A )7
Wk = fyol® + Oh, y + O'F).

In virtue of the assumed continuity of f,,, we find that for arbitrary € > 0
and for all sufficiently small values of % and %

Jua® Y) — € < fylz + b,y + 0F) < fuel® ) + &
whence it follows that

fmc(‘% Y)—e¢ §fﬂ(x +h y;)' — fy(x, ) gfm;(xv y) + «

. + hs _ >
or \ P_)mofy(x .’/’2 fy(x Y) _ fw:(z’ o)

that is, f w(x’ .’/) - f n(z, y)'

*It is of fundamental interest to show by means of an example
that in the absence of the assumption of the continuity of the second
derivative f,, or f,, the theorem need not be true, and that on the contrary

2 — 42
Joy can differ from f,,,. This is exemplified by the function f(z, y) = 2y a%+_z”
(0, 0) = 0, for which all the partial derivatives of second order exist, but are
not continuous. We find that

f(zyy)_f(osy)___ 3 x’_y'=
z z—>0 " x® + y*

Jylz, 0) = limo‘f——(w’ y) ;f(x’ 9. lim =z * -y z,
y

0, y) = lim -,
JoL0, ) tim ¥

—
and consequently

Jua(0, 0) = —1 and f,,(0,0) = +1,
These two expressions are different, which by the above theorem can only be
due to the discontinuity of f,, at the origin,
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With our assumptions about continuity a function of two
variables has three partial derivatives of the second order,

Jowr fowr Fums
four partial derivatives of the third order,
Jozws Somvs Sovs Fovw
and in general (n + 1) partial derivatives of the n-th order,

fa?': fat"—lw faf'—"w e ’fmw—ls fv"'

It is obvious that similar statements also hold for functions
of more than two independent variables. For we can apply our
proof equally well to the interchange of differentiations with
respect to « and z or with respect to y and z, &c., for each in-
terchange of two successive differentiations involves only two
independent variables at a time.

ExAMYLES

1. How many n-th derivatives has a function of three variables?

2. Prove that the function
1
s Ly o v 0y Tp) =
f(it\ Ly, n) (‘”12 + xzz +oF xnz)(n—am

satisfies the equation

fa;lzl +fa:2a:2 +... +f‘”n“’n =0.

3. Calculate
2| + z b c
= d e+z f
ox?
9 h k4 =z

4. Prove that

fH(=) fo(®) ff(2)
7'(W) 9./(y) 95'(y)

fi(x)  folx) Sa(x)
a(¥) 9:¥) gsy)

oz 0y o ’ ’ ’
W @) e b W) W@ b
8. Considering
a b ¢
D=|d e f
g h k
as a function of the nine variables a, b, . . ., k, prove that

(@) aD,+ bDy -+ cD, = D,
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D, D, D,
-Dd De Df
D, D, Dy

(o)
= D%

4. Tag Torar DiFFERENTIAL OF A FUNCTION AND ITS
GEOMETRICAL MEANING

1. The Concept of Differentiability.

In the case of functions of one variable the existence of a
derivative is intimately connected with the possibility of approxi-
mating to the function n= f(£) in the neighbourhood of the
point = by means of a linear function 5 = ¢(§). This linear func-
tion is defined by the equation

$(€) = f(@) + (£ — o) "(@).

(Geometrically (£ and 7 being current co-ordinates), this represents
the tangent to the curve » = f(€) at the point P with the co-
ordinates ¢ = and 7 = f(%); analytically, its characteristic
feature is that it differs from the function f(£) in the neighbour-
hood of P by a quantity o(k) of higher order than the abscissa
h= ¢ — z (cf. p. 48). Hence

F(&) — ¢(€) = f(§) — f(@) — (£ — 2)f (=) = o(h)
or, otherwise,
f@ - k) — f(z) — &f'(x) = o(h) = b,

where € denotes a quantity which tends to zero as & does. The
term Af'(z), the “linear part” of the increment of f(x) corre-
sponding to an increment of % in the independent variable, we
have already (Vol. I, p. 107) called the differential of the function
f(z) and have denoted it by

dy = df (@) = hy' = hf'(z)

(or also by dy = y'dx, since for the function y = & the differential
bas the value dy=dr=1 X h). We can now say that this
differential is a function of the two independent wvariables
z and %, and we need not restrict the variable  in any way.
Of course this concept of differential is as a rule only used when
h is small, so that the differential Af(z) forms an approximation
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to the difference f(x + ) — f(z) which is accurate enough for
the particular purpose. ,

Conversely, instead of beginning with the notion of the deri-
vative, we could have laid the emphasis on the requirement that
it should be possible to approximate to the function n=f(£) in
the neighbourhood of the point P by a linear function such that
the difference between the function and the linear approximation
function vanishes to & higher order than the increment % of the
independent variable. In other words, we should require that
for the function f(¢) at the point &=z there should exist a
quantity 4, depending on @ but not on A, such that

f@+ k) — f@)= Ak + o(h) = Ah+ eh,

where € tends to O with 4. This condition is equivalent to
the requirement that f(x) shall be differentiable at the point z;
the quantity 4 must then be taken as the derivative f’(z) at the
point z. We see this immediately if we rewrite our condition in

the form
feth—f@_ , . .,
3

and then let h tend to 0. Differentiability of a function with
respect to a variable and the possibility of approximating to a
function by means of a linear function in this way are therefore
equivalent properties.

If we notice that 4 4 e = a(z, %) is a function of % which
tends to A(z) as h— 0, we arrive at the equivalent definition:
S(z) is said to be differentiable at the point = if fl@+ h)— f(=)
= ha(z, k), where the quantity a(z, 4) is continuous, as a function
of h, at h=0.

These ideas can be extended in a perfectly natural way to
functions of two and more variables.

We say that the function w = f(z, y) is differentiable at the
point (2, y) if it can be approximated to in the neighbourhood of
this point by a linear function, that is, if it can be represented
in the form

J@+hy+ k) =f(z, y)+ 4k + Bk + ek + ek,

where 4 and B are independent of the variables % and % and
where ¢ and ¢, tend to 0 as & and k do. In other words, the
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difference between the function f(z -+ A, y + k) at the point
(+ h, y-+ k) and the function f(z, y)+ 4h - Bk which is
linear in % and % must be of the order of magnitude* o(p), that is,
must vanish as p->0 to a higher order than the distance
p = +/(h? + %2) of the point (z + &, y + k) from the point (z, y).

If such an approximate representation is possible, it follows
at once that the function f(, y) can be partially differentiated
with respect to = and to y at the point (2, y) and that

fo=Aand f,= B.
For if we put %= 0 and divide by % we obtain the relation
S+ b, y}i—f(m, Y+ e

Since ¢, tends to zero with &, as we pass to the limit % — 0 the
left-hand side has a limit, and that limit is 4. Similarly, we
obtain the equation f,(z, y) = B.

Conversely, we shall prove that a function %= f(z, y) is
differentiable in the sense just defined, that is, it can be approxi-
mated to by a linear function, if it possesses confinuous deriva-
tives of the first order at the point in question. In fact, we can
write the increment

Au=f@+h y+ k) —f(@y)
of the function in the form
Au={f@+h y+ k) —f@y+D}+{fl@y+ 8 —flz 9}
As before (p. 54), the two brackets can be expressed in the form
Au=hfyo+ Ok, y+ B) + Hfya, y + 041,

using the ordinary mean value theorem of the differential
calculus. Since by hypothesis the partial derivatives f, and f,
are continuous at the point (z, y), we can write

Sz + 6,h, y 4 k) = fulz, y) + &

* The equivalence of these two definitions follows from the following remark:
the inequality |eh + k| < |e|V(A® + k?) always holds, where ¢ = | ¢ |
+ | €3 | and tends to 0 as ¢, and e, do. Hence the second definition of differenti-
ability follows from the first. Again, since |ev/(h? + k?)| = | e| (| A| + ktL)’
if the second condition is fulfilled the difference between the function and the
linear approximation is of the form de(| k| + | k|), where —1 <0< + 1,
whence it follows that the requirements of the first definition are also fulfilled.
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and fv(w’ ¥+ 027‘7) =fu(x: Y)+ &,

where the numbers ¢, and ¢, tend to zero as % and % do. We thus
obtain
Au = hf (x, y) +- kf (x, YY)+ b+ &k
= M=, y) + Kz, y) + olv/ 12 + &),

and this equation is the expression of the above statement.*
We shall occasionally refer to a function with continuous first
partial derivatives as a continuously differentiable function. If
in addition all the second-order partial derivatives are continuous,
we say that the function is twice continuously differentiable,
and so on.

As in the case of functions of one variable, the definition of
differentiability can be replaced by the following equivalent
definition: the function f(z, y) is said to be differentiable at the
point (z, y) if

where a and 8 depend on % and % as well as on z and y, and are
continuous as functions of A and % for A= 0, k= 0.

No further discussion is required to show how these considera-
tions can be extended to functions of three and more variables.

2. Differentiation in a Given Direction.

An important property of differentiable functions is that they
not only possess partial derivatives with respect to = and ¥, or,
as we also say, in the x- and y-directions, but they also have
partial derivatives in any other direction. By the derivative in
the direction o we mean the following:

We let the point (x + %, y + k) approach the point (z, y) in
such a way that it is always on the straight line through (z, ¥)
which makes the constant angle a with the positive z-axis. In
other words, 2 and % do not tend to 0 independently of one
another, but satisfy the relations

h= pcosa and k= psina,
where p is the distance 4/(%% 4 %?) of the point (x + %, y + k)

* 1f we assume the existence only, and not the continuity, of the derivatives
fr and f,,, the function is not necessarily differentiable (cf. p. 65 ef seq.).
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from the point (z, %) and tends to 0 as & and k do. If as usual
we then form the difference f(x + b, y + k) — f(%, y) and divide
by p, we call the limit of the fraction

D(a)f(x, y) = lim fl@+ pcosa, y+ psina) — f(z, y)
p—>0 P

the derivative of the function f(z, y) at the point (2, y) in the
direction a, provided that the limit exists. In particular, when
=0 we have k=0 and A= p, and we obtain the partial
derivative with respect to @; when a = m/2 we have k= 0 and
k= p, and we obtain the partial derivative with respect to y.
If the function f(=, y) is differentiable, we have

f@+hy+ k) —f@y) =+, + <
= p(fycosa - f,sina 4 ¢).

As p tends to 0, so does ¢, and for the derivative in the direction
o we obtain the expression

Dy, f(z, y)= fzcosa + fysina;

it 13 therefore a linear function of the derivatives £, and £, in the
x- and y-directions, with the coefficients cosa and sina. This resul
always holds good, provided that the derivatives f, and f, exist
and are continuous at the point in question.

Thus for the radius vector r = /(2% + %?) from the origin to the point
(z, y) we have the partial derivatives

z Yy y .
P, = V) = - = e nd y, = T = — =
E-Er et T

where 0 denotes the angle which the radius vector makes with the »-axis,

Consequently, in the direction o the function 7 has the derivative

Dyyyr =1, cosa + 7, sina = cosf cosa + sin 0 sine = cos(0 — a);
in particular, in the direction of the radius vector itself this derivative has
the value 1, while in the direction perpendicular to the radius vector it
has the value 0. .

In the direction of the radius vector the function z has the derivative
Digy(x) = cosd and the functiony has the derivative Dg)(y) = sin6; in the
direction perpendicular to the radius vector they have the derivatives
Dy njzyx = —2in® and Digm2)¥ = cos 8 respectively.

The derivative of a function f(z, y) in the direction of the
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radius vector is in general denoted by M Thus we have
the convenient relation or

0 0 . 0

— = 0 — el
5 cos P + sin 8 5

where any differentiable function can be written after the symbols
0 9 9
or ox’ 3y

It is also worth noting that we obtain the derivative of the
function f(v, y) in the direction a if, instead of allowing the
point @ with co-ordinates (z + &, y 4 k) to approach the point
P with co-ordinates (z, y) along a straight line with the direction
a, we let @ approach P along an arbitrary curve whose tangent
at P has the direction . For then if the line PQ has the direction
B, we can write b= pcosf, k= psin B, and in the formul® used
in the above proof we have to replace a by B. But since by
hypothesis 8 tends to a as p — 0, we obtain the same expression
for D, f(=, ).

In the same way, a differentiable function f(z, y, 2) of three
independent variables can be differentiated in a given direction.
We suppose that the direction is specified by the cosines of the
three angles which it forms with the co-ordinate axes. If we
call these three angles a, B, y, and if we consider two points
(@, y, 2) and (x4 &, y + k, 24 1), where

k= pcosa,
k= pcosp,
l= p cosy,

then just as above we obtain the expression
Jecosa + f, cos B+ f, cosy
for the derivative in the direction given by the angles (a, B, ).

3. Geometrieal Interpretation. The Tangent Plane.

For a function u = f(z, y) all these matters can easily be
llustrated geometrically. We recall that the partial derivative
with respect to z is the slope of the tangent to the curve in which
the surface is intersected by a plane perpendicular to the zy-plane
and parallel to the zu-plane. In the same way, the derivative in
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the direction o gives the slope of the tangent to the curve in which
the surface is intersected by a plane perpendicular to the zy-plane
and making the angle a with the z-axis. The formula D, f(z, y)
= f,co8a -+ f,sina now enables us to calculate the slopes of
the tangents to all such curves, that is, of all tangents to
the surface at a given point, from the slopes of two such
tangents. i

We approximated to the differentiable function { = f(¢, »)
in the neighbourhood of the point (=, y) by the linear function

fl&, ) =Ff@ y)+ (€ — D fs+ 01— 9fe -

where £ and 7 are the current co-ordinates. Geometrically this
linear function represents a plane, which by analogy with the
tangent line to a curve we shall call the tangent plane to the sur-
face. The difference between this linear function and the function
J(&, 1) tends to zero as £ —z=~% and n— y=Fk do, and in
fact vanishes to a higher order than /(72 + k2). By the defi-
nition of the tangent to a plane curve, however, this states
that the intersection of the tangent plane with any plane per-
pendicular to the zy-plane is the tangent to the corresponding
curve of intersection. We thus see that all these tangent lines to
the surface at the point (x, y, u) lie in one plane, the tangent
plane.

This property is the geometrical expression of the differen-
tiability of the function at the point (z, y, v = f(z, ). I
(&, m, {) are current co-ordinates, the equation of the tangent
plane at the point (2, ¥, u = f(z, y)) is

{—u=({—a)fe+ (n—yfs

As has already been shown on p. 61, the function is differen-
tiable at a given point provided that the partial derivatives are
continuous there. In contrast with the case where there is only
one independent variable, the mere existence of the partial de-
rivatives f, and f, is not sufficient to ensure the differentiability
of the function. If the derivatives are not continuous at the
point in question, the tangent plane to the surface at this point
may fail to exist, or, analytically speaking, the difference between
f@ - h, y+ k) and the function f(z, y) + Af=, y) + kf.(=, y)
which is linear in & and & may fail to vanish to a higher order
than 4/(h* + &2).

4

(2912)
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This is clearly shown by a simple example. We write

fl, yy=0 if =0 or y=0,
Jx, y)=|z| f z—y=0 or ¢4+ y=0.

Between these lines we define the function in such a way that it is repre-
sented geometrically by planes. The surface u = f(x, y) therefore consists
of eight triangular pieces of planes, meeting in roof-like edges above the
lines =10, y= 0, y =« and y = —=. This surface obviously has no
tangent plane at the origin, although the derivatives f,(0, 0) and f,(0, 0)
both exist and have the value 0. The derivatives are not continuous at
the origin, however; in fact, as we readily see, they do not even exist on
the edges.*

4, The Total Difterential of a Function,

As in the case ot functions of one variable, it is often con-
venient to have a special name and symbol for the linear part
of the increment of a differentiable function u = f(z, y). We
call this linear part the differential of the function, and write

— T W P |
du = df (z, y)-—a&h—]—éyk—— dew+8ydy'

The differential, sometimes called the total differential, is a
function of four independent variables, namely the co-ordinates
« and y of the point under consideration and the increments A

* Another example of a similar type is givea by the fanction

“=f($»!/)=‘v';—;y—r——?/—, it 3""!/2#0,

u=0 if z=0,y=0.
If we introduce polar co-ordinates this becomes

u=%sin20.

The first derivatives with respect to # and to y exist everywhere in the neighbour-
hood of the origin and have the value 0 at the origin itself. These derivatives,
however, are not continuous at the origin, for

B 1 e ¥
Y = Y (Va:’ ¢ VER A y’*)’) a2

If we approach the origin along the z-axis, 4, tends to 0, while if we approach
along the y-axis, u, tends to 1. This function is not differentiable at the origin;
at that point no tangent plane to the surface u = f(x, y) exists. For the
equations f.(0, 0) = f,(0, 0) = O show that the tangent plane would have to
coincide with the plane # = 0. But at the points of the line § = 7/4 we have
sin20 = 1 and u = r/2; thus the distance u of the point of the surface from
the point of the plane does not, as must be the case with a tangent plane,
vanish to a higher order than r.
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and k, which are the differentials of the independent variables
or independent differentials. We need scarcely emphasize once
more that this has nothing to do with the vague concept of
“ infinitely small quantities ”. It simply means that du approxi-
mates to Au = f(z + A, y + k) — f(x, y), the increment of the
function, with an error which is an arbitrarily small frac-
tion of +/(h%- k?) (itself arbitrarily small), provided that %
and k are sufficiently small quantities. Incidentally, we thus
collect the expressions for the different partial derivatives in one
formula. For example, from the total differential we obtain the
partial derivative g‘—i by putting dy = 0 and dz = 1.

We again emphasize that to speak of the total differential of
a function f(z, y) has no meaning unless the function is differen-
tiable in the sense defined above (for which the continuity, but
not the mere existence, of the two partial derivatives suffices).

If the function f(z, y) also possesses continuous partial de-
rivatives of higher order, we can form the differential of the
differential df (2, y), that is, we can multiply its partial deriva-
tives with respect to « and y by 2= dz and k= dy respectively
and then add these products. In this differentiation we must
regard A and k as constants, corresponding to the fact that the
differential df = if, -+ kf, is a function of the four independent
variables z, y, h, and k. We thus obtain the second differential *
of the function,

&f — d(df) = <afh+af >h+ (f +§§kk

= a2
afd 2-{—2 af d:l:dy—l—afdy
ox?
Similarly, we can form the higher differentials
&f = d(dzf)_.afdz“—l—3 af dzd 2+gy{ i,

* We shall later see (p. 80 ef seq.) that the differentials of higher order intro-
duced formally here correspond exactly to the terms of the corresponding order
in the increment of the function.
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dif — af dot+ 4 dosdy+6. % drap

0239y 02 0y*
of of
d dy?,
+ 4o dady® + - 5 Y
and, as we can easﬂy show by induction, in general
nf — da® n—1 .
arf = +<)a“d dan-idy + .

onf
n—1 ZJ d n,
¥ (n — 1) drdyn1 dody" + oy 4

The last expression can be expressed symbolically by the equation
(n)
af=(Lao+ L ag)" = (fudo+ fragy
oz oy

where the expression on the right is first to be expanded formally
by the binomial theorem, and then the expressions

orf of 0 f

- d ” n—1 .

5o " Gty W s 5

are to be substibuted for the products and powers of the quan-
tities f,dx and f, dy.

For calculations with differentials the rule
d(fg) =fdg + gdf

holds good; this follows immediately from the rule for the
differentiation of a product.

In conclusion, we remark that the discussion in this sub-
section can immediately be extended to functions of more than
two independent variables.

5. Application to the Calculus of Errors.

The practical advantage of having the differential df = kf, 41 kf, as a
convenient approximation to the increment of the function f(x, y), Au —
flx+ h, y+ k) —f(x, y), as we pass from (2, y) to (z + k, y+ k), is exhibited
particularly well in the so-called “ calculus of errors” (cf. Vol. I, p. 349).
Suppose, for example, that we wish to find the possible error in the deter-
mination of the density of a solid body by the method of displacement.
If m is the weight of the body in air and m its weight in water, by Archi-
medes’ principle the loss of weight (m — m) is the weight of the water
displaced. If we are using the c.g.s. system of units, the weight of the
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water displaced is numerically equal to its volume, and hence to the
volume of the solid. The density s is thus given in terms of the inde-
pendent variables 7 and # by the formula s = m/(m — m). The error
in the measurement of the density s caused by an error dm in the measure-
ment of m and an error dm in the measurement of m is given approxmately
by the total differential

ds
da—_d "~ dm.
m+ m.

By the quotient rule the partial derivatives are

08 m o8 m

- e ™ T mewp

hence the differential is
ds = —mdm + mdn
(m — m)?

Thus the error in s is greatest if, say, dm is negative and dm is positive;
that is, if instead of m we measure too small an amount m - dm and
instead of m too large an amount m 4 dm. For example, if a piece of brass
weighs about 100 gm. in air, with a possible error of 5 mg., and in water
weighs about 88 gm., with a possible error of 8 mg., the density is given
by our formula to within an error of about

88.5.10% 4 100.8.103

A~ 9.10-3,
122

or about one per cent.

5. Fonorions oF Funcrions (Compounp FUNCTIONS) AND THE
InTRODUCTION OF NEW INDEPENDENT VARIABLES

1. General Remarks. The Chain Rule.

It often happens that the function u of the independent
variables z, y is stated in the form of a compound function

U’:f(f’ 77>"-)

where the arguments £, 7, ... of the function f are themselves
functions of z and y:

E=dy), n=9x9),....
We then say that
u=f(§’ /O ‘)=f(¢($7 .1/), l/l((l), ?/): .- )= F(x: ?I)

is given as a compound function of z and y.
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For example, the function
w=eVsin(z + y) = F(z, y)
may be written as & compound function by means of the relations
u=esinn=Ff(En); E=m =24y
Similarly, the function
u = log (2* 4 y*) . arc sin\/l_—_——:?z——y’= F(z, y)
can be expressed in the form

u = 'qarcsin2=f(5, "1);

E=VI—a— ¢ n=Ilog( + 1)

In order to make this concept more precise, we adopt the
following assumption to begin with: the functions &= ¢(z, y),
7= (z, y), . . . are defined in a certain region R of the inde-
pendent variables «, y. As the argument point (z, y) varies
within this region, the point with the co-ordinates (£, 7, ...)
always lies in a certain region S of £7. . .-space, in which the
function = f(£, 7, ...) is defined. The compound function

u=f($(=, y), Yz, y),...)=Flz,y)
is then defined in the region R.

In many cases detailed examination of the regions R and 8 will be
quite unnecessary, e.g. in the first example given above, in which the
argument point (z, y) can traverse the whole of the xy-plane and the
function u = ef sinv is defined throughout the £x-plane. On the other
hand, the second example shows the need for considering the regions R
and § in the definition of compound functions. For the functions

E=4/1—a2— ¢ and n=log(at+ Y

are defined only in the region R consisting of the points 0 < 22 + ¢ < 1,
that is, the region consisting of the circle with unit radius and centre the
origin, the centre being removed. Within this region | £ | < 1, while y
can have all negative values and the value 0. For the region 8 of points
(8, m) defined by these relations the function v arc sin£ is defined.

A continuous function of continuous functions is itself con-
tinuous. More precisely:

If the function u= (£, m, .. .) is continuous in the region S,
and the functions £ = $(x, y), 7= (X, y), ... are continuous
in the region R, then the compound function u = F(x, y) is con-
tinuous in R.
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The proof follows immediately from the definition of con-
tinuity. Let (g, y,) be a point of R, and let £, 7, . . . be the
corresponding values of £, », ... . Then for any positive e the

difference
f(f: /I -) —f(f()) 7]0, .o ')
is numerically less than e, provided only that the inequalities
| €— & <8, |n— ] <5,...

are all satisfied, where 3 is a sufficiently small positive number.
But by the continuity of ¢(z, ), (x, ), . . . these last inequalities
are all satisfied if

fe—z| <y, |y—90l <
where y is a sufficiently small positive quantity. This establishes
the continuity of the compound function.
Further, we shall prove that a differentiable function of
differentiable functions is itself differentiable. This statement is
formulated more precisely in the following theorem, which at the

same time gives the rule for the differentiation of compound
functions, or so-called chain rule:

If £=4(x, y), n={x, y), ... are differentiable functions
of x and y in the region R, and (¢, v, ...) is a differentiable
function of £, m, . . . in the region S, then the compound function

u =f(¢($, ¥ Pz, y),...)= Fz, )

18 also a differentiable function of x and y, and its partial deriva-
tives are given by the formulw
Fc=f§¢z +f,,'/’ac+ ce ey
szff?sv"“‘f,,'/’v'!" ceey

um=u§f¢+u1'1]w-{-. e ey
Uy = Uy + u,m, +

or, briefly, by

Thus in order to form the partial derivative with respect to =
we must first differentiate the compound function with respect
to all the functions £, %, . . . which depend on z, multiply each
of these derivatives by the derivative of the corresponding
function with respect to z, and then add all the products thus
formed. This is the generalization of the chain rule for
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functions' of one variable discussed in Vol. I, Chapter III
(p. 153). - ‘

Our statement can be written in a particularly simple and.
suggestive form if we use the notation of differentials,
namely ,

du = u dx + u,dy = w,dé +u,dn+ ...
= uy(€.do + £,dy) + (142 + 7, dY) + ..
= (e + U+ - - Vo (el + umy + - - )y,

This equation means that the linear part of the increment of the
compound function # = f(¢, 7, . . .) = F(x, y) can be found by
first writing down this linear part as if £, », . . . were the inde-
pendent variables and subsequently replacing d¢, dy, . .. by the
linear parts of the increments of the functions £= &z, y),
n = (z,¥),. . .. This fact exhibits the convenience and flexibility
of the differential notation.

In order to prove our statement we have merely to make use
of the assumption that the functions concerned are differentiable.
From this it follows that if we denote the increments of the
independent variables z and y by Az and Ay, the quantities £, 7,...
change by the amounts

Aé = ¢ Az + Ay + Az + y Ay,
Ay = Az + P, Ay + €Az + v, Ay,

where the numbers €, €, . . . , ¥1, V2, - - - tend to 0 as Az and Ay
do, or as 4/(Az? + Ay?) does. Moreover, if the quantities £, 17, . - .
undergo changes A¢, Ay, ..., the function w= f(§, 7, . ..) is
subject to an increment of the form

Au=fAE + [+ ...+ SAE+ 8An + ...,

where the quantities 8, 8, . . . tend to 0 as A, Ay, .. . do, or
as v/(A€ + An? 4 .. .) does (and may be taken as exactly zero
when the corresponding increments A€, An vanish).

If in the last expression we take the increments AE, An, ..
as those due to a change of Az in the value of = and a change of
Ay in the value of y, as given above, we obtain

A= (fibe + fibe+ . - )
+ (fibu+ fiby + - - VDY + €Az + yAy.
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Here the quantities € and y have the values

e=figtfiea+ ...+ i+ 8+ b F g8 +...,
7=Jcs‘)’1+ﬂ,72+7--+¢u31+‘/'182+ Y181+ ved + . ...

On the right we have a sum of products, each of which contains
at least one of the quantities ), €, . . . , Y4, ¥g, - - - 5 83, 8, « - . &
From this we see that e and y also tend to 0 as Az and Ay do.
By the results of the preceding section, however, this expresses
the statement asserted in our theorem.

It is obvious that this result is quite independent of the
number of ilidependent variables z, y, . . . , and remains valid e.g.
if the quantities &, %, ... depend on only one independent
variable @, so that the quantity » is a compound function of the
single independent variable . ‘

If we wish to calculate the higher partial derivatives, we have
only to differentiate the right-hand sides of our equations with
respect to = and y, treating f;, f,, . .. as compound functions.
Confining ourselves for the sake of simplicity to the case of three
functions &, n, and ¢, we thus obtain

uwfc:f&efa:z + fm)nzz +f§;‘£wz + 2f§1,£m77=c + 2fq§"la:§x + 2ffg§m§z
+ f;‘fm +./;,7)=cz +f{§zz:

Ugy =f eéf £y +f ey +f ggga:gv +f 571(5:::")1: +¢£ Mz) +f rp{(’?zcu + "Ivcw)
+ff§(§:c§y '+‘ fucz) +ff§:w +f;,77fw +fs’£=v‘!l’

uw=f$§fv2 +fm,’7u2 +f§g 2+ zfsnfv"?v + 2.1(;,(%{1: + 2f£§§ugu
+f5§w +fn"7w +fg§w-

2. Examples.*

1. Let us consider the function
w = ¢ in'v + Taydinzsing +y?
We put
E = a?sin?y, n= 2aysinzsiny, {=y?

and obtain

£, = 2zsin?y, v, = 2ysinzsiny | 2zy coswsiny, {,=0;

£, = 2a4%siny cosy, %, = 2xsinzsiny - 2zy sinz cosy, C, = 2y;

Up = Uy = U= ef+n+¢,

* We would emphasize that the following differentiations can also be carried

out directly, without using the chain rule. .
4 (8912)



74 FUNCTIONS OF SEVERAL VARIABLES [Cuar.

Hence .
Uy == ¢ WY + Beyslazeiny + 4% (1 gin2y L y sinx siny + 2y cosz siny)
and

u, = 2+ o’y + By sinzsiny + o (42 5iny cosy -+ x sinx siny

, =
+ ay sinz cosy 4 y).
2. In the case of the function

u = sin(2? + »?)

we put £ = 2?® + 32, and obtain

u, = 2z cos(2® + y?), wu, = 2ycos(a® + y?),

Upy = —4a®sin(2? + y?) + 2 cos(2® + ¥?), u,, = —4xy sin(2?® + ¢?),
Uy, = —4y? sin(2® + 42} + 2 cos(a? - 7).

3. In the case of the function

w = arc tan(z? + xy + y?),

E = zz’ n=xy, C = yz
" — 20+ y

I+ @@+ Y

w, =+
It @+t

the substitution

leads to

3. Change of the Independent Variables.

A particularly important application of the facts developed
on pp. 69-74 occurs in the process of changing the independent
variables. For example, let w= f(&, ) be a function of the two
independent variables £, 7, which we interpret as rectangular
co-ordinates in the &y-plane. If we introduce new rectangular
co-ordinates z, ¥ in that plane (cf. p. 6) by the transformation

=0z By, == o,{+ agm,
n=ax+ By, y= P+ By

the function u = f(£, 7) is transformed into a new function of =

and ¢,
u=f(¢ 1) = F(z,y),

and this new function is formed from f(£, n) by a process of com-
pounding such as was described on p. 69. We then say that
new independent variables z and y have been introduced into the
relation » = f(&, ) between the independent variables ¢ and 7
and the dependent variable u.
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The rules of differentiation given on p. 71 at once yield

Uy = ué'a’I + unaZ!
Uy = ufBl _l_ uv,B2?

where the symbols u,, %, denote the partial derivatives of the
function F(z, y), and the symbols u; u, denote the partial
derivatives of the function f(¢, ).

Thus the partial derivatives of any function are transformed
according to the same law as the independent variables when
the co-ordinate axes are rotated. This is true for rotation of the
axes in space also.

Another important type of change of the independent variables
is the change from rectangular co-ordinates (z, y) to polar
co-ordinates (r, ) which are connected with the rectangular
co-ordinates by the equations

z=rcosf, r=+/(>+ 9%,

y=rsginf, 0= arccos = are sin — "2

Y
V(@ +— % V(@ + vy
On introducing the polar co-ordinates we have
u = f(z, y) = f(r cos §, r sin6) = F(r, 0),
and the quantity » appears as a compound function of the inde-
pendent variables r and 6. Hence by the chain rule we obtain

smH

T Yy __
Uy = Uy Uglp = U, =~ ” uo_ = Uy

z cos @
Uy = Uy + U0y = u,~ —l—ue;—z-—u,sm()—}—u,_-r_

These yield the equation

1
uzz_l'uz ur2+—uo3

which is frequently of use. By the chain rule the higher
derivatives are given by

sin26 cosfsind sin24
Ugg = Upy COS% 0 - Ugg —5— — 2ty - + u ——
7 r

cos 0 sin 8

+ 2u, e
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. cos 6 sin @ cos2f — sin?8
Ugy == Uyy == Uypy €080 8ING — wy, U
r
sin2f — cos?0 sin 6 cos 8
+ u, — Uy s
r2 r
. cos?f cos @ sind cos?d
Uyy == Uy, 8020 + up, 2 + 2u,, +
7 r r
cos 0 sin §
— 2uy———r.
7'2

This leads us to the following formula, giving the expression
appearing in the well-known ““ Laplace’s” or “ potential ” equa-

tion Au= 0 in terms of polar co-ordinates:
1 1 _1( o/ 0 %u

Of the formule

z .
u, = uz;-l— u,%: Uy €088 -+ u, sind,

Uy = —Upl + U&= —u,r 8inb + u,r cosb,

which express the rules for the differentiation of a function f(x, y)
with respect to r and 0, the first is the expression for the
derivative of f(z, y) in the direction of the radius vector » which
we previously met with on p. 64.

In general, whenever we are given a series of relations defining
a compound function,

u=f(&n ...
E=9d@y), n=9¢@7y),...

we may regard it as an introduction of new independent variables
@, y instead of £, m, ... . Corresponding sets of values of the
independent variables assign the same value to %, whether it is
regarded as a function of £, 4, ... or of z, y.

In all cases involving the differentiation of compound functions

u=f({mn,...)

the following point must carefully be noted. We must distin-
guish clearly between the dependent variable 4 and the funec-
tion f(£, 9, .. .) which connects » with the independent variables
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€,7,... . The symbols of differentiation u,, u,, . . . have no mean-
ing until the functional connexion between % and the indepen-
dent variables is specified. When dealing with compound functions

= f(¢, », . ..)= F(z, y), therefore, we really should not write
Uy, U, OT Uy, t,, but should instead write f;, f, or ¥, F, respec-
tively. Yet for the sake of brevity the simpler symbols u;, «,
U, U, aTe often used when there is no risk that confusion will arise.

The following example will serve to show that the result of differentiating
a quantity depends on the nature of the functional connexion between
it and the independent variables, that is, it depends on which of the
independent variables are kept fixed during the differentiation. With the
“identical ” transformation &=, =y the function »= 2§} 4
becomes u = 2r + y, and we have u, = 2, u,= 1. I, however, we
introduce the new independent variables £ = x (as before) and £+ n =1,
we find that = x + v, so that u, = 1, u,, = 1. That is, differentiation
with respect to the same independent variable x gives different results in
the two different cases.

ExampLES
1. Prove that the tangent plane to the quadric
a4+ byt 4 c2=1
at the point (z, y,, z,) is
azxzy + byy, + o2z = 1.

2. If u = u{x, y) is the equation of a cone, then

—_—y 2=
Upglhyy — Ugy =

3. Prove that if a function f(z) is continuous and has a continuous
derivative, then the derivative of the function
fx) = 1
g(@) = (fm) 2 1
flz) 2 1
vanishes for a certain value between z, and x,.
4. Let f(z, y, 2) be a function depending only on r = Vv (z? 4 y® -+ 22),
i.e. let f(x, 4, 2) = g(r).
(a) Calculate f,, + fyy, + fo

(b) Prove that if f,, + f,, + f,; = 0, it follows that f-- - —|— b (where
a and b are constants).

5. If f(zy @5 ..., %) = g(r) = g(V(2y® + 22 + ... + 2,2)), calculate

fa:,a;, + fm.m. +...4+ f:c,,m,
(cf. Ex. 2, p. 58).
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6*. Find the expression for f,, + f,4 + f,, in three-dimensional polar
co-ordinates, i.e. transform to the variables r, 0, ¢ defined by
x=rsgin0 cosg
y=rsinOsing
z = rcos0.
Compare with example 4(a).
7. Prove that the expression
f xx + f vy
is unchanged by rotation of the co-ordinate system.
8. Prove that with the linear transformation

z=af + Bn
y=vE&+ 3,

foal®s ¥)s fool®s ¥, fyy(@, y) are respectively transformed by the same law
as the coefficients @, b, ¢ of the polynomial

ax?® 4 2bxy + cy?.

6. Tae MEAN VALUE THEOREM AND TavLor’s THEOREM FOR
FuNCTIONS OF SEVERAL VARIABLES

1. Statement of the Problem. Preliminary Remarks.

We have already seen in Vol. I (Chapter VI, p. 320 e seq.)
how a function of a single variable can be approximated to in the
neighbourhood of a given point with an accuracy of order higher
than the n-th, by means of a polynomial of degree n, the Taylor
series, provided that the function possesses derivatives up to the
(n -+ 1)-th order. The approximation by means of the linear
part of the function, as given by the differential, is only the first
step towards this closer approximation. In the case of functions
of several variables, e.g. of two independent variables, we may
also seek for an approximate representation in the neighbourhood
of a given point by means of a polynomial of degree n. In other
words, we wish to approximate to f(z -+ k, y + k) by means of
a “ Taylor expansion ” in terms of the differences % and .

By a very simple device this problem can be reduced to what
we already know from the theory of functions of one variable.
Instead of considering the function f(z + h, ¥ + %), we introduce
yet another variable ¢ and regard the expression

FO)=fle+ M, y+ kt)
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as a function of ¢, keeping =, y, A, and k fixed for the moment.
As t varies between O and 1, the point with co-ordinates
(x4 ht, y+ kt) traverses the line-segment joining (z, y) and
(- &, y+ k).

We begin by calculating the derivatives of F(¢). If we assume
that all the derivatives of the function f(z, y) which we are about
to write down are continuous in a region entirely containing
the line-segment, the chain rule (section 5, p. 71) at once gives

F,(t) = hfm + kfm
F”(t) = hzfxz + 2hkfxv + szw:

and, in general, we find by mathematical induction that the n-th
derivative is given by the expression

PO t) = Ifont- (;‘) WY f sy +- (;’) B2 k2 apt . . oK,

which, as on p. 68, can be written symbolically in the form
FOt) = (hfu + k).

In this last formula the bracket on the right is to be expanded by
the binomial theorem and then the powers and products of the

guantities o and g‘[ are to be replaced by the corresponding n-th
y .

ox
derivatives ggl, az—fj{%y »+ .. In all these derivatives the argu-

ments & + ht and y + Xt are to be written in place of # and y.

2. The Mean Value Theorem.

In forming our polynomial of approximation we start from
a mean value theorem analogous to that which we already know
for functions of one variable. This theorem gives a relation
between the difference f(x + &, y + k) — f(x, y) and the partial
derivatives f, and f,. We expressly assume that these derivatives
are continuous. On applying the ordinary mean value theorem
to the function F(t) we obtain

F(t) — F(0)

= F'(0
t (@),
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where 0 is a number between 0 and 1, and from this it follows that

fle+ht,y+ k)—flzy) = Ifo(x + ORt, y + ORt)
: t
+ b+ 6Ht, y + OF)

If we put £ = 1 in this, we obtain the required mean value theorem
for functions of two variables in the form

f@+ b, y+ k) —f(x, y)= hf(z+ 6k, y+ 0k) -+ kf (x-+- Ok, y+ 6F)
= hf (&, 0)+ Kf(€; m)-

That is, the difference between the values of the function at the
points (x + h, y + k) and (x, y) s equal to the differential at an
intermediate point (£, n) on the line-segment joining the two pounis.
It is worth noting that the same value of 8 occurs in both
Jfo and f,.

The following fact, the proof of which we leave to the reader,
is a simple consequence of the mean value theorem. A function
Jf(x, y) whose partial derivatives f,, and f, exist and have the
value 0 at every point of a region is a constant.

3. Taylor's Theorem for Several Independent Variables.

If we apply Taylor’s formula with Lagrange’s form of the
remainder (cf. Vol. I, Chapter VI, p. 324) to the function F(t)
and finally put ¢ = 1, we obtain Taylor’s theorem for functions of
two independent variables,

f@+ b, y+ k)= f(=, y) + {#f: (2, y) + K.z, y)}
o W@, 9) - W (@ 9) + B 9} -

2 (Wt )+ ()W 04 Refte 9
+ Rm
where R, symbo].izes the remainder term

—— —{Mfo(x+ Ok, y+ OF)+ kfy(z+ Ok, y+ Ok)}n+D,
o<o<l.

B +1)'

The homogeneous polynomials of degree 1, 2, ..., n, n+1,
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into which the increment f(z 4 &, y + k) — f(x, y) 18 thus split
up, apart from the factors

r1 11
rar " el a+ 1Y

are respectively the first, second, . . . , n-th differentials

df = hf » T+ kf v
d2f = (hf e kf 1/)(2) = hzfmz + Qhkf oy T szw:

dof = (hf + Kf,) = B*fon +<’1’> B iy« e - K om

of f(z, y) at the point (2, y) and the (n+ 1)-th differential
d»+if at an intermediate point on the line-segment joining (z, y)
and (z+ k, y+ k). Hence Taylor’s theorem can be written

more compactly as

fothy+ B =fE 0+ H@ D+ 5 H @D+
1 N
+,T!d”f(xay)+Rm o

where

Rom Y gntif@ Ohy+ Ok, 0<O<L

R |
In general the remainder R, vanishes to a higher order than the
term d°f just before it; that is, as h— 0 and k- 0 we have

R,= o{V(# + 1)"}.

In the case of Taylor’s theorem for functions of one variable
the passage (n—> ) to infinite Taylor series played an im-
portant part, leading us to the expansions of many functions in
power series. With functions of several variables such a process
is in general too complicated. Here to an even greater degree
than in the case of functions of one variable we lay the stress
rather on the fact that by means of Taylor’s theorem the incre-
ment f@+ k, y+ k) — f(z, y) of a function is split up into
increments df, d%f, . . . of different orders. ,

ExampLBS

1. Find the polynomial of the second degree which best approximates
to the function sinz siny in the neighbourbood of the origin.
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2, If f(x, y) is a continuous function with continuous first and second
derivatives, then
-y —p
fual0, 0) = Tim 3 7 — 2 (h ) + (0, 0)

h=>+0 k2

3. Prove that the function e~**+2* can be expanded in a series of the
form
E _7‘@ y"
n=0 !

which converges for all values of z and y and that

(a) H,(z) is a polynomial of degree n (so-called Hermite polynomials).

(0) H'(x) = 2nH ,_ ().

(¢c) Hy4y — 22H, + 2nH,_, = 0.

(d)H",, — 22H’, + 2nH, = 0.

4. Find the Taylor series for the following functions and indicate their
range of validity:

1

l—z—y

(@)

3 (b) ety

7. Tae ArprLicaTioN oF VEcTOR METHODS

Many facts and relationships in the differential and integral
calculus of several independent variables take a decidedly
clearer and simpler form if we apply the ideas and notation of
vector analysis. We shall accordingly conclude this chapter with
some discussion of the matter.

1. Vector Fields and Families of Vectors.

The step which connects vector analysis with the subjects
just discussed is as follows. Instead of considering a single
vector or a finite number of vectors, as in Chapter I (p. 3), we
investigate a vector manifold depending on one or more con-
tinuously varying parameters.

If, for example, we consider a solid body occupying a portion
of space and in a state of motion, then at a given instant each
point of the solid will have a definite velocity, represented by a
vector 2¢. We say that these vectors form a vector field in the
region in question. The three components of the field vector
then appear as three functions

ul(zl’ zZ’ $3), u2($1? w2) ws)? us(x]} ﬁz, xa)
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of the three co-ordinates of position, which we here denote by
(4, %o, ) instead of (z, ¥, 2).
A case of a velocity field is represented in fig. 8, which shows

///// \\\\
HHHH/ "’”HH
\\‘x: g

Fig. 8.—The velocity field in a rotation

the velocity field of a solid body rotating about an axis with
constant angular velocity.

The forces acting on the points of a moving solid body likewise
form a vector field. As an example of a force field we consider
the attractive force per unit mass exerted by a heavy particle,
according to Newton’s law of gravitation. By Newton’s law
all the vectors of this field of force are directed towards the
attracting particle, and their lengths are inversely proportional
to the square of the distance from the particle.

If we pass to a new rectangular co-ordinate system by rotation
of axes, all the vectors of the field will have new components with
respect to the new system of axes. If the two co-ordinate systems
are connected by equations of the form (Chapter I, section 1, p. 6)

£ = %y + B2+ 7%
&y = ag@y + Boe + Va3
&3 = 3% + Bty + vs%s
T = o515:1 -+ ‘1252 + asfa
‘ x,= P16, + Boba + Bsés
| x3=y,& + vebs + Yséa

or
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respectively, then the relations between the components u;, uy, %,
with respect to the z-system and the components w,(§;, &, &),
woly, Lo, &3), we(éy, &s, &;) with Tespect to the new ¢-system are
given by the equations of transformation

wy = ayuy + Bytty + 1t

Wy = agtly + Bothy -+ Valls

w3 = agty + Batis + yaUs
and

U = 0wy + ayw, + azwg

ty = Bywy -+ Bawy+ Bawy

Ug = yyw; -+ Yawy + Ysws

respectively. (Cf. Chap. I, p. 6.) The components w,, w,, w,
in the new system thus arise from the introduction of the new
variables and the simultaneous transformation of the functions
representing the components in the old system.

When in physical applications each point of a portion of space
has assigned to it a definite value of a function w = f(z,, %,, %),
such ag the density at the point, and we wish to emphasize that
the property is not a component of a vector, but on the contrary
is a property which retains the same value although the co-
ordinate system is altered, we say that the function is a scalar
function or scalar; or, if we wish to emphasize the association
between the values of the function and the points of the portion
of space, we speak of a scalar field. Thus for every vector field 2
the quantity | # |2 = u,2 + 4,2 + u,? is a scalar; for it represents
the square of the length of the vector and therefore retains the
same value independently of the co-ordinate system to which
the components of the vector are referred.

In the examples above the vector field z is given us to begin
with, and its components with respect to any system of rect-
angular co-ordinates are therefore determined. If, conversely,
in a definite co-ordinate system, say an z-system, there are given
three functions w,(x;, @, ), Up(&y, Ty, Ts), Us(Ty, Ty, Ty), these three
functions define a vector field with respect to that system, the
components of the field being given by the three functions. To
obtain the expressions for the components w,, w,, w; in any
other system we have only to apply the equations of transfor-
mation deduced above.
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In addition to vector fields, we also consider manifolds of
vectors called families of vectors, which do not correspond to each
point of a region in space, but are functions of a parameter /. We
express this by writing 2 = #(t). If we think of # as a position
vector measured from the origin of co-ordinates in w,uyus-space,
then as ¢ varies the final point of this vector describes a curve
in space given by three parametric equations,

uy = P(t), uy=p(t), us=x()-

Vectors which depend on a parameter ¢ in this way can be
differentiated with respect to £. By the derivative of a vector
%(t) we mean the vector #’'(t) which is obtained by the passage
to the limit
lim wu(t -+ h) — ulf)

h

h—>0
and which accordingly has the components

/__dul r__duz I__d_uj
ul—'at_', uz_Tdi‘: %—dt.

We see at once that the fundamental rules of differentiation
hold for vectors. Firstly, it is obvious that if
w=1u -+ v
then +
w=u + v.

Further, the product rule applied to the scalar product
of two vectors 2 and v, 2V = v, + Uy + ugvy (cf. p. 7),
gives .

d(—z;ti)= uv + #'v.

In the same way we obtain the rule

(2v] _ (.0 '
d‘m‘—[“v]+[“v]

for the vector product.



86 FUNCTIONS OF SEVERAL VARIABLES [CHar.

2. Application to the Theory of Curves in Space. Resolution of a
Motion into Tangential and Normal Components.

We shall now make some simple applications of these ideas.
If x(t) is a position vector in z,7,z5-space which depends on a
parameter ¢, and therefore defines a curve in space, the vector
x'(t) will be in the direction of the tangent to the curve at the
point corresponding to ¢. For the vector x(t-- k) — x(¢) is in the
direction of the line-segment joining the points (f) and (£ + %)

(cf. fig. 9); therefore so is the vector x_(t_—}—_h}z——_a@, which differs

from it only in the factor 1/h. As % —0 the direction of

this chord approaches the direc-

(t+hl. tion of the tangent. If instead of

t we introduce as parameter the

length of the arc of the curve meas-

ured from a definite starting-point,

and denote differentiation with

respect to s by mieans of a dot, we
can prove that

B2+ B+ dp? =1

this may also be written in the form

Fig. 9.—~Differentiation of the position XX =2x2= 1.
vector of a curve

The proof follows exactly the same
lines as the corresponding proof for plane curves (cf. Vol. I,
Chap. V, p. 280). The vector & is therefore of unit length. If
we again differentiate both sides of the equation %2 = 1 with
respect to s, we obtain

xxX=0.

This equation states that the vector £ with components ,(s),
&y(8), d3(s) is perpendicular fo the tangent. This vector we call the
curvature vector or principal normal vector, and its absolute value,
that is, its length

b= = /(@2 + &+ &)

o=

we call the curvature of the curve at the corresponding point.
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The reciprocal p= 1/k of the curvature we call the radius of .
curvature, as before. The point obtained by measuring from the

point on the curve a length p in the direction of the principal

normal vector is called the centre of curvature.

We shall show that this definition of the curvature agrees
with that given in Vol. I, Chap. V (pp. 280-3). For X is a vector
of unit length. If we think of the vectors (s + A) and 2(s) as
measured from a fixed origin, then the difference %(s + &) — 2(s)
will be represented, as in fig. 9, by the vector joining the final
points of the vectors %(s) and %(s - 4). If a is the angle between
the vectors 2(s) and (s + h), the length of the vector joining
their final points is 2 sin a/2, since (s) and %(s + k) are both of
unit length. Hence if we divide the length of this vector by a
and let b — 0, the quotient tends to the limit 1. Consequently

a

lim % — lim % V {(@y(s + B) — 3()2 + (Bls + k) — as))?
h—>0 h—0
+ (@3(s + B) — :1';3(8))2}.

Here the limit on the right is exactly /(&% &? + &?).
But ofh is the ratio of the angle between the directions of
the tangents at two points of the curve and the length of arc
between those points, and the limit of that ratio is what we have
previously defined as the curvature of the curve.

The curvature vector plays an important part in mechanics.
We suppose that a particle of unit mass moves along a curve
x(t), where ¢ is the time. The velocity of the motion is then
given both in magnitude and in direction by the vector x'(t),
where the dash denotes differentiation with respect to ¢. Similarly,
the acceleration is given by the vector x”(¢). By the chain rule
we have

x’—a’:(-i—s
dat

(where the dot denotes differentiation with respect to s), and also

v o0 . fds 2
x —xﬁz—kx(%).

In view of what we already know about the lengths of & and
#, this equation expresses the following facts:
The * acceleration vector ” of the motion is the sum of two
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vectors. One of these is directed along the tangent to the curve,
and its length is equal to :%:, that is, to the acceleration of the
point in its path (the tangential acceleration). The other is directed
towards the centre of curvature, and its length is equal to the
square of the velocity multiplied by the curvature (the normal
acceleration).

3. The Gradient of a Scalar.

We now return to the consideration of vector fields and shall
give a brief discussion of certain concepts which frequently arise
in connexion with them.

Let u = f(z;, ®, @) be any function defined in a region of
*,%gxg-space; that is, according to the terminology previously
adopted, u is a scalar quantity. We may now regard the three
partial derivatives

% =f:»'1! Uy =fx,’ Ug =fx,

in the z-system as forming the three components of a vector .
If we now pass to a new system of rectangular co-ordinates, the
£-system, by rotation of axes, the new components of the vector
#% are given according to the formul® of p. 6 by the equations

wy = ayth + By + yyUy

wy = gty + Bt + YUy

wg = agy + Bauy + ygtis.
On the other hand, if we introduce the rectangular co-ordinates
&1, £a, £; a8 new independent variables in the function f(y, z,, z3),
the chain rule gives

fﬁ =fx;a'1 +fx,ﬂl +fx,71
f$,=fx,a'2 +fx,ﬂ2 +fx,‘y2
f& =fx,a3 +fx,ﬁs +fx.73'

Hence
wy =f£,’ Wy =f£,: wg =f£,:

and we thus see that in the new co-ordinate system also the
components of the vector 2 are given by the partial derivatives
of the function f with respect to the three co-ordinates. Thus
to every function f in three-dimensional space there corresponds
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a definite vector, whose components in any rectangular co-
ordinate system are given by the three partial derivatives with
respect to the co-ordinates. We call this vector the gradient of
the function, and denote it by

2 = grad f.

For a function of three variables the gradient is an analogue
of the derivative for functions of one variable.

In order to form a graphical idea of the meaning of the
gradient, we shall form the derivative of the function in the
direction (a,, ag, a3), Where a,, a,, ag are the three angles which
this direction makes with the axes, so that cos®a, - cos?a,
-+ cos?ay = 1. For this derivative we have already obtained the
expression

Df = f,, cosay + f,, 008 a3 + fo, COS ag

If we think of a vector e of unit length in the direction (a;, a,, ay),
this vector will have components e, = cos a,, é;= €08 ay, €3= C0S as.
Thus for the derivative of the function in the direction (a;, ay, a3)
we obtain the expression

DYf = e grad f,

the scalar product of the gradient and the unit vector in the
direction (a, ay, ag), i.e. the projection of the gradient on that
vector (cf. Chap. I, p. 7).

It is this fact that accounts for the importance of the concept
of gradient. If, for example, we wish to find the direction in
which the value of the function increases or decreases most
rapidly, we must choose the direction in which the above expres-
sion has the greatest or least value. This clearly occurs when
the direction of e is the same as that of the gradient or is exactly
opposite to it. ' ‘

Thus the direction of the gradient is the direction in which the
function increases most rapidly, while the direction opposite to that
of the gradient is that in which the function decreases most rapidly;
the magnitude of the gradient gives the rate of increase or decrease.

We shall return to the geometrical interpretation of the
gradient in Chapter ITI (p. 124). We can, however, immedi-
ately give an intuitive idea of the direction of the gradient. If
in the first instance we confine ourselves to vectors in two dimen-
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sions, we have to consider the gradient of a function f(z, y). We
shall suppose that this function is represented by its contour
lines (or level lines)

f@y)=c

in the zy-plane. Then the derivative of the function f(z, y) in the
direction (cf. p. 62) of these level lines is obviously zero. For if
P and @ are two points on the same level line, the equation
f(P) — f(@) = 0 holds (the meaning of the symbols is obvious),
and the equation will still hold if we divide both sides by A, the
distance between P and @, and then let  tend to 0. The projec-
tion of the gradient in the direction of the tangent to the level
line is therefore zero, and hence at every point the gradient is
perpendicular to the level line through that point. An exactly
analogous statement holds for the gradient in three dimensions.
If we represent the function f(z;, @,, #3) by its level surfaces

f(xl’ Ty, Xg) = ¢,

the gradient has the component zero in every direction tangent
to a level surface, and is therefore perpendicular to the level
surface.

In applications we frequently meet with vector fields which
represent the gradient of a scalar function. The gravitational
field of force may be taken as an example.

If we denote the co-ordinates of the attracting particle by (£, £,, E,),

those of the attracted particle by (2, #,, #;), and their masses by m and
M, the components of the force of attraction are given by the expressions

C E.»l — %
'\/{(El — )2+ (Ep— 2t 4 (Ey— x5)%5

c € — 1z,
'\/{(‘Zl — %)+ (& — xp)2 + (&5 — z)P

v & —

C .
’\/{(51 — )2+ (Eg — x,)* + (E5 — x5) P
Here C is a constant with the value ymM, where v is the * gravitational

constant . (The factors

ELLi—m

VG 2P (5 — 2 + (B — zgy Yo

are the cosines of the angles which the line through the two points makes
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with the axes.) By differentiation we see at once that these components
are the derivatives of the function

c
'\/{(51 — )P+ (B —m) + (S — )%}

with respect to the co-ordinates z;, %,, #; respectively. The force vector
apart from a constant factor is therefore the gradient of the function

1 1

r VE — )+ (B — %)l + (B — #3)%}

If a field of force is obtained from a scalar function by forming

the gradient, this scalsr function is often called the potential
function of the field. We shall consider this concept from a

more general point of view in the study of work and energy
(Chapter V, p. 350, and Chapter VI, pp. 415, 468-81).

4. The Divergence and Curl of a Vector Field.

By differentiation we have assigned to every function or
scalar a vector field, the gradient. Similarly, by differentiation
we can assign to every vector field a certain scalar, known as the
divergence of the vector field. Given a specific co-ordinate system,
the z-system, we define the divergence of the vector s as the
function

div ¢ = % -+ % -+ a_u_s,
or, Oz, Omy
i.e. the sum of the partial derivatives of the three components
with respect to the corresponding co-ordinates. Suppose now
that we change the co-ordinate system to the §-system. If the
divergence is really to be a scalar function associated with the
vector field and independent of the particular co-ordinate system,
we must have
0w, , Owy , Owy
e T Y
08,  0& 06
where w,, wy, wg are the components of 2 in the &-system. In
fact, the truth of the equation
5o om | om 3% T 9 9%

can be verified immediately by applying the chain rule and the
transformation formule of p. 84.

div =
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Here we content ourselves with the formal definition of the
divergence; its physico-geometrical interpretation will be dis-
cussed later (Chapter V, section 5, p. 388).

We shall adopt the same procedure for the so-called curl *
of a vector field. The curl is itself a vector

r=ocurlz
whose components 7y, 7,, 7, are defined by the equations

rlz%—%, 2—_—.%——%’ rs=a_/u2—%_
0 Oz,

‘ 0z, 0z, 0z Ozy

In order to show that our definition actually gives a vector
independent of the particular co-ordinate system, we could verify
by direct differentiation that the quantities

_ 0w, _ B,  fw, O, dw, By

ATk, T T
which define the curl in terms of the new co-ordinates, are con-
nected with the quantities r,, 7,, 73 by the equations of transfor-
mation for vector components. Here, however, we shall omit
these computations, since in Chapter VI, section 6 (p. 396) we
shall give a physical interpretation of the curl which clearly
brings out its vectorial character.

The three concepts of gradient, divergence, and curl can all
be related to one another if we use a symbolic vector with the

9 9 0

compénents %1, %2, a_x;
nablat and is denoted by the symbol V. The gradient of a scalar
field f(w, @5, @3), grad f, is the product Vf of the scalar quantity
S and the symbolic vector V, that is, it is a vector with the com-
ponents of of of

oz’ Ow,’ Omy

This symbolic vector is often called

The curl of a vector field u(z,, @,, 23), curl z, is the vector product
[V2] of the vector 2z¢ and the symbolic vector V; finally, the
divergence is the scalar product
div 2¢ — Vu:%-}.%—]-%
O, 0z, 04
* Often called rotation (with the abbreviation rot).
1 After a Hebrew stringed instrument of similar shape,
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In conclusion we mention a few relations which constantly
recur. The curl of a gradient is zero; in symbols

curl grad f= 0.

As we easily see, this relation follows from the reversibility of
the order of differentiation. '
The divergence of a curl is zero; in symbols

div curl 22 = 0.

This also follows directly from the reversibility of the order of
differentiation.

The divergence of a gradient is an extremely important expres-
sion frequently occurring in analysis, notably in the well-known
“ Laplace’s ” or * potential equation ”. It is the sum of the
three “ principal * second-order partial derivatives of a function;

in symbols

. 02 ®f | 0
divgradf = o= 2L+ Lt L,

where Af is written as an abbreviation for the expression on the
right.* The symbol
o2 o2 o2
Ao T e
is called the Laplacian operator.

Tinally, we may mention that the terminology of vector
analysis is often used in connexion with more than three inde-
pendent variables; thus a system of # functions of » independent
variables is sometimes called a vector field in n-dimensional
space. The concepts of scalar multiplication and of the gradient
then retain their meanings, but in other respects the state of
affairs is more complicated than in the case of three dimensions.

ExavpLES

1. Find the equation of the so-called osculating plane of a curve
2 = f(£), y = g¢(t), z = h(t) at the point f,, i.e. the limit of the planes passing
through three points of the curve as these points approach the point with
parameter #,.

2. Show that the curvature vector and the tangent vector both lie in
the osculating plane.

* The notation VZf is also used.
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3*. Let x = x(s) be an arbitrary curve in space, such that the vector
x(s) is three times continuously differentiable (s is the length of arc).
Find the centre of the sphere of closest contact with the curve at the
point s.

4. If C is a continnously differentiable closed curve and 4 a point
not on C, there is a point B on C which has a shorter distance from 4
than any other point on C. Prove that the line 4B is normal to the
curve.

6. If x = x(s) i3 a curve on a sphere of unit radius, the equation

E(E — 3 = ([AF1E
holds.
6. If x = x(t) is any parametric representation of a curve, then the

d*x
vector yr with initial point « lies in the osculating plane at =.

7. The limit of the ratio of the angle between the osculating planes
at two neighbouring points of a curve and the length of arc between
these two points, i.e. the derivative of the unit normal vector with
respect to the arc (s), is called the forsion of the curve., Let §(s), Eu(s)
denote the unit vectors along the tangent and the curvature vector of the
curve x(s); by Ex(s) we mean the unit vector orthogonal to §; and E,
(the so-called binormal vector), which is given by [,§,]. Prove Frenet’s
formulae

gl = Ez/P:
€= —E& /o + &/,
'Ea = _Ez/"-'s

where 1/p = k is the curvature and 1/v the torsion of x(s).

8. Using the vectors §,, §,, &; of Ex. 7 as co-ordinate vectors, find
expressions for (a) the vector x, (b) the vector from the point z to the
centre of the sphere of closest contact at x. :

9. Show that a curve of zero torsion is a plane curve.

10*. Prove that if z = u(z, y) represents the surface formed by the
tangents of an arbitrary curve, then (a) every osculating plane of the curve
is a tangent plane to the surface; (b) u(z, y) satisfies the equation

Uty — Ugy® = 0.
11. Prove that
curl curl # = grad div 2 — Az
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Appendix to Chapter II

1. TaE PRINCIPLE OF THE POINT OF ACOUMULATION IN SEVERAL
DIMENSIONS AND ITS APPLICATIONS

If we wish to refine the concepts of the theory of functions
of several variables and to establish it on a firm basis, without
reference to intuition, we proceed in exactly the same way as in
the case of functions of one variable. It is sufficient to discuss
these matters in the case of two variables only, since the methods
are essentially the same for functions of more than two inde-
pendent variables.

1. The Principle of the Point of Accumulation.

We again base our discussion on Bolzano and Weierstrass’s
principle of the point of accumulation. A pair of numbers (z, y)
will be called a point P in space of two dimensions, and may be
represented in the usual way by means of a point with the rect-
angular co-ordinates # and y in an zy-plane. We now consider
a bounded infinite set of such points P(z, y); that is, the set
is to contain an infinite number of points, and all the points are
to lie in a bounded part of the plane, so that |z | < Cand |y | < C,
where C is a constant. The principle of the point of accumulation
can then be stated as follows: every bounded infinite set of points
has at least one point of accumulation. That is, there exists a point
Q with co-ordinates (¢, n) such that an infinite number of points
of the given set lie in every neighbourhood of the point @, say
in every region

lo— ¢] <8, |y—n]<?

where 8 is any positive number. Or, in other words, out of the
infinite set of points we can choose a sequence Py, Py, Ps, . . . in such
a way that these poinis approach a limit point Q.

~ This principle of the point of accumulation is just as intuitively
clear for several dimensions as it is for one dimension. It can be
proved analytically by the method used in the corresponding
proof in Vol. I (p. 58), merely by substituting rectangular regions
for the intervals used there. An easier proof can be constructed,
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however, by using the principle of the point of accumulation
for one dimension. To do this we notice that by hypothesis every
point P(z, y) of the set has an abscissa z for which the inequality
| 2| < Cholds. Either there is an x = x, which is the abscissa
of an infinite number of points P (which therefore lie vertically
above one another) or else each = belongs only to a finite number
of points P. In the first case, we fix upon x, and consider the
infinite number of values of y such that (z, y) belongs to our
set. These values of y have a point of accumulation 7, by the
principle of the point of accumulation for one dimension. Hence
we can find a sequence of values of y, say y;, ¥,, . - . , such that
Ya —> 7o, from which it follows that the points (z, ¥,) of the seb
tend to the limit point (24, 7,), which is thus a point of accumu-
lation of the set. In the second case, there must be an infinite
number of distinct values of # which are the absciss® of points
of the set, and we can choose a sequence z,, %,, ... of these
abscisse tending to a unique limit £ For each =, let P,(z,, ¥,)
be a point of the set with abscissa #,. The numbers y, are an
infinite bounded set of numbers; hence we can choose a sub-
sequence Y,, Yn, - . - tending to a limit . The corresponding
sub-sequence of abscisse 2, , 2, , ... still tends to the limit £ hence
the points P, , P,, . .. tend to the limit point (£, 5). In either
case, therefore, we can find a sequence of points of the seb tending
to a limit point, and the theorem is proved.

A first and 1mportant consequence of the principle of the
point of accumulation is Canchy’s convergence test, which can be
expressed as follows: v . '

4 sequence of points Py, Py, Py, . . . with the co-ordinates (45 y,),
(X2, ¥2), (X, ¥3)s - - - tends to a limit point if, and only if, for every
€ > 0 there is a suffic N = N(¢) such that the distance between
the points P, and P, V(x, — Xp)? + (Yo — Yu)?> 6 less than
e whenever both n and m are greater than N.

2. Some Concepts of the Théory of Sefs of Points.

The general concept of a limit point is fundamental in many
of the more refined investigations of the foundations of analysis
based on the theory of sets of points. Although these matters
are not essential for most of the purposes of this book, we shall
mention some of them here for the sake of completeness.

A bounded set of points, consisting of an infinite number of
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points, is said to be closed if it contains all its limit points; that
is, limit points of sequences of points of the set are again points
of the set. For example, all the points lying on a closed curve
or surface form a closed set. For functions defined in closed sets
we can state the two following fundamental theorems:

A function which is continuous in a bounded closed set of
points assumes a greatest and a least value in that set.

A function which is continuous in a bounded closed set is
uniformly continuous in that set.

The proofs of these theorems are so like the corresponding
proofs for functions of one variable that we shall omit them.

The least upper bound of the distance between the points Py
and P, for all pairs of points P;, P,, where both points belong to a
set, is called the diameter of that set. If the set is closed, this
upper bound will actually be assumed for a pair of points of the
set. The student will be able to prove this easily, remembering
that the distance between two points is a continuous function
of the co-ordinates of the points.

By using the theorem that a continuous function on a bounded
closed set does assume its least value, we can readily establish
the following fact: if a point P does not belong to a closed set M,
a positive least distance from P to M exists; that is, a point @ of
M exists such that no point of M has a smaller distance from P
than @ has. This enables us to show that the closed regions
defined in section 1 (p. 41) are actually closed sets according
to the definition here. For let C be a closed curve, and let R be
the closed region consisting of all points interior to C or on C;
we have to show that all the limit points of R belong to B. We
assume the contrary, i.e. that there is & point P not belonging to
R which is a limit point of B. Then, in particular, P does not lie
on C; hence by the theorem above it has a positive least distance
from C (C being a closed set). We can therefore describe a circle
about P as centre, so small that no point of C lies in the circle;
we have only to make the radius of the circle less than the
least distance from P to C. The point P is outside C, since
otherwise it would belong to R; and since every point in the
small circle can be joined to P by a line-segment which does
not cross the curve C, every point of the circle lies outside C,
and so no point of the circle belongs to R. But we assumed that

P is a limit point of R, which requires that the circle should
5 {(8912)
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contain an infinite number of points of R. Hence the assumption
that there is a limit point of R which does not itself belong to R
leads to a contradiction, and our asservion is proved. The extension
to closed regions R bounded by several closed curves is obvious.

A useful property of closed sets is contained in the theorem
on shrinking sequences of closed sets: ‘

If the sets My, My, My, . . . are all closed, and each set is con-
tained in the preceding one, then there s a point (¢, n) which belongs
to all the sets.

In each of the sets M, let us choose a point P,. The sequence
P, must either contain an infinite number of repetitions of some
one point, or else an infinite number of distinet points. If
one point P is repeated an infinite number of times, then it
belongs to all the sets; for if M, is any one of the sets, P belongs
to a set M, , where n, >n, and M, is contained in M,. If
there are an infinite number of distinct points P,, then by the
principle of the point of accumulation they possess a point of
accumulation (£, ). This point belongs to each M,. For when-
ever m > n the point P, belongs to M, since it is a point of
M, which is contained in M,. Hence (&, n) is a limit point of
points P,, of M, and since M, is closed, (£, %) is a point of M.
Thus in either case there exists a point common to all the sets
M,, and the theorem is proved.*

A set is said to be open if for every point of the set we can find
a circle about the point as centre which belongs completely to
the set. An open set is connected if every pair of points 4 and B
of the set can be joined by a broken (polygonal) line which
lies entirely in the set.

The word “domain” is often used with the restricted
meaning of a connected open set. As examples we have the
interior of a closed curve, or the interior of a circle with the
points of a radius removed. The points of accumulation of
a domain which do not themselves belong to the domain are
called the boundary points. The boundary B of a domain D is a
closed set. Here we shall sketch the proof of this statement.

* The assumption that the sets M, are closed is essential, as the following
example shows. Let M, be the set 0 < z < %’ Each set is contained in the
preceding, but no point belongs to all the sets. For if z = 0 the point belongs
to no set, while if > 0 it belongs to no set M, for which i <z
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A point P which is a limit point of B does not belong to D,
for every point of D lies in a circle composed only of points of
D and hence devoid of points of B. It is also a limit point of D,
for arbitrarily close to P we can find a point @ of B, and arbi-
trarily close to @ we can find points of D. Hence P belongs
to B.

If to a domain D we add its boundary points B, we obtain a
closed set. For every limit point of the combined set is either
a limit point of B and belongs to B, or is a limit point of D
and belongs either to D or to B. Such sets are called closed
regions, and are particularly useful for our purposes.

Finally, we define a neighbourhood of a point P as any open
set containing P. If we denote the co-ordinates of P by (&, ),
the two simplest examples of neighbourhoods of P are the circular
neighbourhood, consisting of all points (z, y) such that

@— P+ @H—n2 <
and the square neighbourhood, consisting of all points (z, ) such

that
|z— ¢é]| <8 and |y—n|<s.

3. The Heine-Borel Covering Theorem.

A further consequence of the principle of the point of accumu-
lation, which 1s useful in many proofs and refined investigations,
is the Heine-Borel covering theorem, which runs as follows:

If corresponding to every point of a bounded closed set M a
neighbourhood of the point, say a square or a circle, is assigned,
it is possible to choose a finite number of these neighbourhoods in
such a way that they completely cover M. The last statement of
course means that every point of M belongs to at least one of
the finite number of selected neighbourhoods.

By an indirect method the proof can be derived almost im-
mediately from the theorem on shrinking closed sets. We suppose
that the theorem is false. The set M, being bounded, lies in a
square Q. This square we subdivide into four equal squares.
For at least one of these four squares, the part of M lying in or
on the boundary of that square cannot be covered by a finite
number of the neighbourhoods; for if each of the four parts of
M could be covered in this way, M itself would be covered.
This part of M we call M;, and we see at once that M, is closed.
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We now subdivide the square containing M,; into four equal
squares. By the same argument, the part M, of M, lying in or on
the boundary of one of these squares cannot be covered by a
finite number of the neighbourhoods. Continuing the process,
we obtain a sequence of closed sets M,, M,, M, ..., each en-
closed in the preceding; each of these is contained in a square
whose side tends to zero, and none of them can be covered by a
finite number of the neighbourhoods. By the theorem on shrink-
ing sequences of closed sets we know that there is a point (£, 7)
which belongs to all these sets, and hence a fortiori belongs
to M. To the point (£, ) there accordingly corresponds one of
the npeighbourhoods, containing a small square about (¢, 7).
But since each M, contains (£, ) and is itself contained in a
square whose side tends to 0 as 1/n does, each M, after a certain
n is completely contained in the small square about (£, %), and
is therefore covered by one neighbourhood of the set. The assump-
tion that the theorem is false has therefore led to a contradiction,
and the theorem is proved.

ExaMpLES

1. A convex region R may be defined as a bounded and closed region
with the property that if 4, B are any two points belonging to R, all
points of the segment AB belong to R. Prove the following state-
ments:

(e)* ¥ A is a point not belonging to R, there is a straight line
passing through 4 which has no point in common with R.

(b)* Through every point P on the boundary of R there is a straight
line I (a so-called “line of support ™) such that all points of R lie on one
and the same side of ! or on ! itself.

(c) If a point A lies on the same side of every line of support as the
points of R, then 4 is also a point of R.

(d) The centre of mass of R is a point of R.

(e) A closed curve forms the boundary of a convex region, provided
that it has not more than two points in common with any straight line.

(f)* A closed curve forms the boundary of a convex region, provided
that its curvature is everywhere positive. (It is assumed that if the
whole curve is traversed the tangent makes one complete revolution.)

2. (a) If S is an arbitrary closed and bounded set, there is one * least
convex envelope” E of S, i.e. a set which
(1) contains all points of 8,
(2) is contained in all convex sets containing 8,
(3) is convex. .
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(b) E may also be described in the following way:

A point P is in E if, and only if, for every straight line which leaves
all points of § on one and the same side, P is also on this side.

(c) The centre of mass of § is a point of B.

2. Tae ConNceEPT oF Limit ror FuNcTIONS OF
SEVERAL VARIABLES

We shall find it useful to refine our conceptions of the various
limiting processes connected with several variables and to consider
them from a single point of view. Here we again restrict our-
selves to the typical case of two variables.

1. Double Sequences and their Limits,

In the case of one variable we began with the study of se-
quences of numbers a,, where the suffix # could be any integer.
Here double sequences have a corresponding importance. These
are sets of numbers a,,, with two suffixes, where the suffixes m
and n run through the sequence of all the integers independently
of one another, so that we have e.g. the numbers

Oy15 Oy, Agy, Chgs B, Agyy Bygy Bogs + o o o

Examples of such sequences are the sets of numbers
1 1 n

"t T T A

We now make the following statement:
The double sequence a,, converges as n — o and m — ® to
a limit, or more precisely a “double limit”, | if the absolute
difference | ap, — L| is less than an arbitrarily small pre-assigned
positwe number ¢ whenever n and m are both sufficiently large, that
15, whenever they are both larger than a certain number N depend-
ing only on . We then write
lim a,, = 1.

n—>w
m-—>®

Thus, for example,

im — 1 —o
n—>aon+m

»—> 0
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and Iim?ri_'_—znz:im(—lé—l—l):o.

n—>x MN n—>w \N m

m—> % m—>®x
Following Cauchy, we can determine, without referring to the
limit, whether the sequence converges or not, by using the
following criterion:

The sequence a,, converges if, and only if, for every ¢ >0
a number N = N(e) exists such that | a,,, — 8, | < € whenever
the four suffizes n, m, n’, m’ are all greater than N.

Many problems in analysis involving several variables depend
on the resolution of these double limiting processes into two
successive ordinary limiting processes. In other words, instead
of allowing » and m to increase simultaneously beyond all bounds,
we first attempt to keep one of the suffixes, say m, fixed, and let
n alone tend to . The limit thus found (if it exists) will in
general depend on m; let us say that it has the value [,. We
now let m tend to oo . The question now arises whether, and
if so when, the limit of ,, is identical with the original double
limit, and also the question whether we obtain the same result,
no matter which variable we first allow to increase; that is,
whether we could have first formed the limit lim a,, = A, and

m—>
then the limit lim A, and still have obtained the same result

n—>w

We shall begin by gaining a general idea of the position from a

few examples. In the case of the double sequence a,,, = , When
n+m
m is fixed we obviously obtain the result lim @,,, = [, = 0, and therefore
n—o
lim Z,, = 0; the same result is obtained if we perform the passages to the

m—>w .
limit in the reverse order. TFor the sequence

a,
= T m

however, we obtain
lim a,y, =1, =1
>

and consequently
lim 7, = 13
Mo

while on performing the passages to the limit in the reverse order we first
obtain
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lim a,, = 2, =0

»—>
and then

lim A, = 0.

n—>0
In this case, then, the result of the successive limiting processes is not
independent of their order:

lim (lim a,,,) + lim (im a,,,).
M—r O BP0 R—30 M—0
In addition, if we let » and m increase beyond all bounds simultaneously,

we find that the double limit fails to exist.*
Another example is given by the sequence

sinn
B = —=
Here the double limit lim a,,, exists and has the value 0, since the nu-

n—>wo

ma>
merator of the fraction can neverexceed 1 in absolute value, while the denomi-
nator increases beyond all bounds. We obtain the same limit if we first Iet m
tend to «; we find that im a,,,= A,=0, so that im A,=0. If, how-
m @

—_ n—>wo
ever, we wish to perform the passages to the limit in the reverseorder, keeping
m fixed and letting n increase beyond all bounds, we encounter the difficulty

that lim sinn does not exist. Hence the resolution of the double limiting
n—y o

process into two ordinary limiting processes cannot be carried out in both

ways.

The position can be summarized by means of two theorems.
The first of these is as follows:
If the double limit lim a,,, =l exists, and the simple limit

n—rwo

m—> o
lim @, = 1, exists for every value of m, then the limit lim I,
n—y>w —> 0

also exists, and lim l,, = I. Again, if the double limit exis”{;s and
m—> w0
has the value /, and the limit lim a,,, = A, exists for every value

m—>0
of m, then lim A, also exists and has the value I. In symbols:

n—>w

l=lim a,, = lim (lim a,,) = lim (lim a,,);
n—> 0 m—> w0 n—>x0 n—> 0 m—>
m—>w

* For if such a limit existed it would necessarily have the value 0, since
we can make a,,., arbitrarily close to 0 by choosing % large enough and choosing
m = n On the other hand, a,,, = § whenever # = m, no matter how large
n is. These two facts contradict the assumption that the double limit exists.
But even when lim (lim a,,) = lim (lim a,,) the double limit lim a,,,, may

m—p>® B30 n—30 M—pw© n—>o

1 m—>o
i i is sho h 1 =
fmlboemst,a.sxsshwnbyteexa.mpea"m @ T}
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the double limit can be resolved into simple limiting processes
and this resolution is independent of the order of the simple
limiting processes.
The proof follows almost at once from the definition of the
double limit. In virtue of the existence of lim a,, = I, for every
n—>®o
m—> o
positive ¢ there is an N = N(¢) such that the relation | @,, — I|<e
holds whenever % and m are both larger than N. If we now
keep m fixed and let # increase beyond all bounds, we find
that | lim @um — | =|l,—!| < e This inequality holds for
n—>w

any positive e provided only that m is larger than N(e); in
other words, it is equivalent to the statement lim (lim a,,) =I.

m—>®0 n—>0 ..
The other part of the theorem can be proved in a similar

way.

The second theorem is in some respects a converse of the
first. It gives a sufficient condition for the equivalence of a
repeated limiting process and a double limit. This theorem
is based on the concept of uniform convergence, which we define
as follows:

The sequence a.,,, converges as n —  to the limit | uniformly
in m, provided that the limit Lim a,, = 1, exists for every m and in

n-—>w
addition for every positive e it is possible to find an N = N(e),
depending on € but not on m, such that |1, — a,, | < € whenever
n>N.

le. th _ n _1 1
For example, the sequence @, = —————— = — — converges

1 mnt+m) m nitm
uniformly to the limit J,, = —, as we see immediately from the estimate
m

1 1
< -3
n4+m n

1
a’nm_;L =

we have only to put N = 1 On the other hand, the condition for uniform
e

convergence does not hold in the case of the sequence a,,,, = T For
m+n
fixed values of m the equation lim @,,, = l,, = 0 is always true; but the

. n—>aw
convergence is not uniform. For if any particular value, say 1/100, is

assigned to e, then no matter how large a value of n we choose there are
always values of m for which |a,, — l,,| = @, exceeds e. We have
only to take m = 2n to obtain a,, = §, which is a value differing from
the limit 0 by more than 1/100.
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We now have the following theorem:
If the limit lim a,, = 1, exists uniformly with respect to m,

and if further the Gimi¢ lim = L exsists, then, the double limit im s,

m—>w n—>00
exists and has the value I: m>®
lim (lim a,,)=lm a,,.
m—> 0 n—> 0 7> 0
m—> o

We can then reverse the order of the passages to the limit, provided
that lim a,,, = A, exists.

m—>

By making use of the inequality
lanm""llgla»m_lml +llm—l'

the proof can be carried out just as for the previous theorem,
and we accordingly leave it to the reader.

2. Double Limits in the Case of Continuous Variables.

In many cases limiting processes occur in which certain suffixes,
e.g. n, are integers and increase beyond all bounds, while at the
same time one or more continuous variables z, ¥, . . . , tend to
limiting values £, 7, .... Other processes involve continuous
variables only and not suffixes. Our previous discussions apply
to such cases without essential modification. We point out in the
first instance that the concept of the limit of a sequence of func-
tions f,(x) or f,(z, y) a8 » — o can be classified as one of these
limiting processes. We have already seen (Vol. I, Chap. VIII,
p. 393—the definition and proofs can be applied unaltered to
functions of several variables) that if the convergence of the
sequence f,(z) is uniform the limit function f(x) is continuous,
provided that the functions f,(x) are continuous. This continuity
gives the equations

f (’f)=,,ﬁ_’f£f (@)= h.lfg (ﬁ_ﬂ Julz))= 1_i>n}nf..(f)= _11:2 (Pfef"(z»’

which express the reversibility of the order of the passages to the
limit n — o0 and z — £.

Further examples of the part played by the question of the reversibility
of the order of passages to the limit have already occurred, e.g. in the
theorem on the order of partial differentiation, and we shall meet with

5 (8912)
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other examples later. Here we mention only the case of the function

at—y?
f(,y) x,_*_y

For fixed non-zero values of y we obtain the limit lim f(z, y) = —1, while
for fixed non-zero values of x we have lim [z ) i _—>|-01 Thus

lim (lim f(z, y)) * hm (llmf(x, )

y—>0 23>0

and the order of the passages to the limit is not immaterial. This is of
course connected with the discontinuity of the function at the origin.

In conclusion we remark that for continuous variables the
resolution of a double limit into successive ordinary limiting pro-
cesses and the reversibility of the order of the passages to the limat
are controlled by theorems which correspond exactly to those estab-
lished on p. 103 for double sequences.

3. Dini’s Theorem on the Uniform Convergence of Monotonic
Sequences of Functions.

In many refined analytical investigations it is useful to be
able to apply a certain general theorem on uniform convergence,
which we shall state and prove here. We already know (Vol. I,
p- 387 el seq.) that a sequence of functions may converge to a
continuous limit function, even though the convergence is not
uniform. In an important special case, however, we can conclude
from the continuity of the limit that the convergence is uniform.
This is the case in which the sequence of functions is monotonic,
that is, when for all fixed values of 2 the value of the function
fa() either increases steadily or decreases steadily as n increases.
Without loss of generality we may assume that the values increase,
or do not decrease, monotonically; we can then state the follow-
ing theorem:

If in the closed region R the sequence of continuous functions
f,(x, y) converges to the continuous limit function i(x, y), and if
at each point (x, y) of the region the inequality

f,,+1($, .1/) 2fn(w’ .1/)

holds, then the convergence is uniform in R.
The proof is indirect, and is a typical example of the use
of the principle of the point of accumulation. If the convergence
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is not uniform, a positive number a will exist such that for arbi-
trarily large values of n—say for all the values of n belonging
to the infinite set #,, #,, . ..—the value of the function at a
point P, in the region, f,(P,), differs from f(P,) by more than o.
If we let » run through the sequence of values n,, n,, ... , the
points P, , P, ... will have at least one point of accumulation
@; and since R is closed, @ will belong to R. Now for every point
P in R and every whole number p we have

f(P)=f.P)+ R,(P),

where f,(P) and the “ remainder ” R (P) are continuous functions
of the point P. In addition,

R, (P) = R.(P),

whenever n > p, as we assumed that the sequence increases
monotonically. In particular, for n > u the inequality

B(Pn) Z By(Pr) = a

will hold. If we consider the sub-sequence p,,P,,P,,..
of the sequence which tends to the limit point @, on account of
the contmulty of R, for fixed values of u we also have R,(Q)= a.
Since in this hmltmg process the suffix n increases beyond all
bounds, we may take the index p as large as we please, for the
above inequality holds whenever n > pu, and in the sequence of
points P, tending to @ there are an infinite number of values
of the suffix n, hence an infinite number of values of n greater
than p. But the relation R, (@) = o for all values of u contradicts
the fact that B, (¢) tends to 0 as p increases. Thus the assump-
tion that the convergence is non-uniform leads to contradiction,
and the theorem is proved.

ExamrLES
1. State whether the following limits exist:

(d) lim (log"")2 " (IOg m)’
n—w (logn)® + (logm)?
m—>w©

® Bm tann -+ tanm

.,
2n—>o 1 — tann tanm
m—> o

(¢) lim t 3 cos .
.—>mm“y=1 m
”»—I»®
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2. Prove that a function f(x, y) is continuous, if

(a) when y is fixed f is a continuous function in #;

(b) when = is fixed f is uniformly continuous in y, in the sense that
for every ¢ there is a 8, independent of z and y, such that

| f@ ) —flz, gy =«

lyy —y| =8

when

3. Prove that f(x, y) is continuous at # = 0, y = 0, if the function
DL, @) = f(t cone, tsing) is
(2) a continuous function of ¢ when ¢ is fixed;

(b) uniformly continuous in ¢ when ¢ is fixed, so that for every ¢ there
is a 3, independent of ¢ and ¢, such that

|0, @) — Ot @) | =S¢
oy — ol =8

4. Prove that the complementary set of a closed set § (i.e. the set of
all points not in §) is an open set.

when

3. HoMmoGgENEOUS FUNCTIONS

We finally touch on one other special point, the theory of
homogeneous functions. The simplest homogeneous functions
occurring in analysis and its applications are the homogeneous
polynomials in several variables. We say that a function of the
form az -+ by is a homogeneous function of the first degree in
z and y, that a function of the form ax® 4 bzy + cy® is & homo-
geneous function of the second degree, and in general that a
polynomial in x and y (or in a greater number of variables) is a
homogeneous function of degree h if in each term the sum of the
indices of the independent variables is equal to h, that is, if the
terms (apart from constant coefficients) are of the form =,
oy, oh%2 _ yb These homogeneous polynomials have the
property that the equation

f(tm’ ty) = ﬂ:f(x’ Y)

holds for every value of {. We now say in general that a
Sunction f(x, y, ...) 18 homogeneous of degree h if it saiisfies
the equation

Sz, ty, . ..)=t(,y,. .)
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Examples of homogeneous functions which are no¢ polynomials are
tan (”) (h=0),
Z,
2 sin” 4 gV F ynog’%l’, = 2).
Y

Another example is the cosine of the angle between two vectors with the
respective components 2, y, z and u, v, w:

ru -+ yv 4+ 2w
VE+ P +2 Vid+ o+ wb
The length of the vector with components z, ¥, 2,
| VETE T

is an example of a function which.is positively homogeneous and of the
first degree; that is, the equation defining homogeneous functions does
not hold for this function unless ¢ is positive or zero.

(h=0).

Homogeneous functions which are also differentiable satisfy
the characteristic Euler’s relation

ottt ot = W@ 0. .

To prove this we differentiate both sides of the equation
fltz, ty, ...)=1(x, y, ...) with respect to &; this is per-
missible, since the equation is an identity int. Applying the
chain rule to the function on the left, we obtain

zfaltx, ty, .. Y+ yflte, ty, .. Y+ .. .= Y (z, y,...).

If we substitute £ = 1 in this, the statement follows.

Conversely, it is easy to show that not only is the validity of
Euler’s relation merely a consequence of the homogeneity of the
function f(z, y, . . .), but also the homogeneity of the function
is a consequence of Euler’s relation, so that Euler’s relation is
a necessary and sufficient condition for the homogeneity of the
Junction. The fact that a function is homogeneous of degree A
can also be expressed by saying that the value of the function

divided by #* depends only on the ratios y/z, zfz, . . .. It is
therefore sufficient to show that it follows from the Euler
relation that if new variables £ =2, = g, {= Z, ... are

introduced, the function
%f(%.’%z’- . o) = %f(ga 7)53 ;fr . -)=g(§7 s C,-- -)
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no longer depends on the variable £, i.e. that the equation g, = 0
is an identity. In order to prove this we use the chain rule:

de= et afet ) 5= el
=(xfm+ﬂfv+-)a“;,}““_a%.ﬂ

The expression on the right vanishes in virtue of Euler’s relation,
and our statement is proved.

This last statement can also be proved in a more elegant but
less direct way. We wish to show that from Euler’s relation it
follows that the function

gy =tz y, ...)—flz, ty,...)

has the value O for all values of t. It is obvious that g(1)=0.
Again,

g't) = WY (z,y,...)— afltw, ty, ...) — yf (tx, ty, ...} — o0 s

On applying Euler’s relation to the arguments ¢z, ty, ... we
find that

afulte, ty, .. )+ yfultz by, .. )+ .. =
and thus g(t) satisfies the differential equation

oA

Slex, ty, .. ),

7O=90) %

If we write g(t) = y(t)t* we obtain g'(t) = ég(t) -+ 7' (£), so that
y(t) satisfies the differential equation ¢

th'y’(t) =0,

which has the unique solution y = const. = ¢. Since for ¢ =1
it is obvious that y(f) = 0, the constant ¢ is 0, and so g(t) = 0
for all values of ¢, as was to be proved.

ExXAMPLES

1. Prove that if f(z, y, 2, ...) is a homogeneous function of degree h,
any k-th derivative of f is a homogeneous function of degree & — k.

2. Prove that for a homogeneous function f of the first degree
Pfos + Pfoy T g+ 20yfpg +...=0.



CHAPTER III

Developments and Applications of the
Differential Calculus

1. ImpricIT FUNCTIONS

1. General Remarks.

In analytical geometry it frequently happens that the equation
of a curve is given, not in the form y = f(z), but in the form
F(z, y)=10. Accordingly, a straight line may be represented
by the equation ax - by + ¢ = 0, or an ellipse by the equation
a?/a® + y?/b> = 1. To obtain the equation of the curve in the
form y = f(x) we must “solve ” the equation F(z, y) = 0 for y.

Again, in Vol. I we considered the problem of finding the
inverse function of a function y = f(z), in other words, the
problem of solving the equation F(z, y) = y — f(z) = 0 for the
variable x. These examples suggest the importance of studying
the notion of solving an equation F(z, y) =0 for z or for .
We shall now proceed to this investigation, and in section 3
(p. 153) we shall extend the results to functions of several variables.

In the simplest cases, such as the equations mentioned above,
the solution can readily be found in terms of elementary func-
tions. In other cases the solution can be approximated to as
closely as we desire. For many purposes, however, it is preferable
not to work with the solved form of the equation or with these
approximations, but instead to draw conclusions about the
solution by studying the function F(x, y) itself, in which neither
of the variables z, y is given preference over the other.

The idea that every function F(z, y) yields a function y = f()
or = ¢(y) given implicitly by means of the equation F(z, y)=0
is erroneous. On the contrary, it is easy to give examples of

functions F(z, y) which, when equated to zero, permit of no
m
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solution in terms of functions of one variable. Thus, for example,
the equation 22 + y® = 0 is satisfied by the single pair of values
z =0, y = 0 only, while the equation 2* + 3% 4 1 = 0 is satis-
fied by no (real) values at all. It is therefore necessary to in-
vestigate the matter more closely in order to find out whether
an equation F(z, y) = O defines a function y = f(x), and what
are the properties of this function.

2. Geometrical Interpretation.*

In order to clarify the situation we think of the function
u=F(z, y) as represented by a surface in three-dimensional
space. The solutions of the
equation F(z, y) = 0 are the
same as the simultaneous
solutions of the two equa-
tions ¥ = F(z, y) and u= 0.
Geometrically, our problem
is to find whether curves
y = fla) o == $(y) exist in
which the surface u = F(z, y)
intersects the zy-plane. (How
Jar such a curve of inter-
section may extend does not
concern us here.)

A first possibility is that

Fig. 1~The surface u = xy the surface and the plane

may have no point in com-

mon. For example, the paraboloid u= F(z,y) =22+ 42+ 1
lies entirely above the zy-plane. In such a case there is
obviously no curve of intersection. We therefore need only
congider cases in which there is a point (z, y,) at which
F(zy, yo) = 0; the values z,, y, are called an * initial solution .

If an initial solution exists, two possibilities remain. Either
the tangent plane at the point (%,, ¥,) is horizontal or it is not.
If it is, we can readily show by means of examples that the
solution y = f(x) or = ¢(y) may fail to exist. For example,
the paraboloid « = 2? 4 2 has the initial solution # = 0, y = 0,
but has no other point in the zy-plane. Again, the surface
w=ay has the initial solution =10, y=0, and in fact

* Cf. also Vol. I, Chap. X, section 5 (pp. 481-6).
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intersects the ay-plane along the lines =0 and y=10 (cf.
figs. 1, 2). But in no neighbourhood of the origin can we represent
the whole intersection by a function y = f(z) or by a function
# = ¢(y). On the other hand, it is quite possible for the equation
F(z, y) = 0 to have a solution, even when the tangent plane at
the initial solution is horizontal, as, for example, in the case
(y — z)* = 0. In the (exceptional) case of a horizontal tangent
plane, therefore, no definite general statement can be made.
The remaining possibility is that at the initial solution the
tangent plane is not horizontal. Then intuition tells us, roughly
speaking, that the surface ¥ = F(z, y) cannot bend fast enough

Fig. 2.—~Contour lines of u = xy

to avoid cutting the xy-plane near (o, ¥,) in a single well-defined
curve of intersection, and that a portion of the curve near the
initial solution can be represented by the equation y = f(z) or
&= ¢(y). The statement that the tangent plane is not horizontal
is the same as the statement that F.(z,, y,) and F(zy, y,) are
not both zero. This is the case which we shall discuss analytically
in the next sub-section.

3. The Theorem of Implicit Functions.

The general theorem which states sufficient conditions for the
existence of implicit functions and at the same time gives a rule
for differentiating them is as follows:
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If ¥(x, y) has continuous derivatives By and Fy, and if at the
point (g, yo) within its region of definition the equation F(xq, yo)=0
18 satisfied, while Fy(x,, y,) is not zero, then we can mark off about
the point (xg, yo) a rectangle %, < X < X,, y; < y < y, such that
Jor every x in the interval x, < x < x, the equation F(x, y)=20
determines exactly one value y = £(x) lying in the interval y, < y
=7s This function satisfies the equation y,= f(x,), and for
every X in the interval the equation

F(z,f@) =0

18 satisfeed. The function £(x) s continuous and differentiable,
and its derivative and differential are given by the equations

b ey — T = df(g)—= — Te
y=f(z)= 7, and dy= df(z) = F’dw
respectively.

We shall assume for the present that the first part of the
theorem, relating to the existence and continuity of the implicitly-
defined function, is already proved, and shall confine ourselves to
proving the differentiability of the function and the differentiation
formule; the proof of the existence and continuity of the solution
we shall postpone to sub-section 6 (p. 119).

If we could differentiate the terms of the equation F(z, f(z))=0
by the chain rule, the above equation would follow at once.*
Since, however, the differentiability of f(z) must first be proved,
we must consider the matter in somewhat greater detail.

As the derivatives F, and F, have been assumed continuous,
the function F(z, y) is differentiable. We can therefore write

F(z+h, y+ k)= F(z, y)+hF (e, Y)+ kF [z, y)+ ek &k,

where ¢; and e, are two quantities which tend to zero as % and %
do or as p = ++/(h? 4 k?) does. We now confine our attention to
pairs of values (7, y) and (x4 k&, y 4 k) for which both z and
#+ h lie in the interval ; < 2 < &, and for which y = f(z) and
Y+ k=/f(x+ k). For such pairs of values we have F(z, y) = 0
and F(z + h, y + k) = 0, so that the preceding equation reduces

bo 0= hF, + kFy + b + k.
We assume that f(z) has been proved continuous. Hence as A
* Cf. Vol. I, p. 483.
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tends to 0, so does %, and with them ¢; and ¢; also tend to 0. If
we divide by hF, (which by hypothesis is not zero), the last

equation gives
E F €
14 2Y0 4 T2 &1,
()it res,

and on performing the passage to the limit 2 — 0 we have

.k, F,
hh—]fo h T F, 0.
But
E_f@+h)—f@),
h h ?

this proves the differentiability of f(z) and gives the required rule
for differentiation,

y=ltim fEEN @y, b Fa

h—>0 h—>oh F,
We can also write this rule in the form
F,+ F,y=0

or
dF = F,dz + F,dy = 0.

This last equation states that in virtue of the equation F(z, y) = 0
the differentials dz and dy cannot be chosen independently of
one another.

An implicit function can usually be differentiated more easily
by using this rule than by first writing down the explicit form of the
function. The rule can be used whenever the explicit representation
of the function is theoretically possible according to the theorem
of implicit functions, even in cases where the practical solution
in terms of the ordinary functions (rational functions, trigono-
metric functions, &ec.) is extremely complicated or impossible.

Suppose that the second order partial derivatives of F(z, y)
il
F,
right-hand side is a compound function of z, we can differentiate
according to the chain rule and then substitute for y’ its value

F, .

7 This gives

exist and are continuous. In the equation y' = — whose
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y' = — Fual 2 = 20 I, B, + B, F
F

as the formula for the second derivative of y = f ().

In the same way we can obtain the higher derivatives of
f(z) by repeated differentiation.

4. Examples.
1. For the function y = f(x) obtained from the equation of the circle
Fa, )=+ —1=0

we obtain the derivative

This can easily be verified directly. If we solve for y, the equation
of the circle gives either the function y = v/(1 — 22) or the function
¥ = — V(1 — 2?), representing the upper and lower semicircles respec-
tively. In the first case differentiation gives

, x
== a0
»\/(l — a?)
and in the second case
, x
Y= s
»\/(l — 22)
Thus in both cases y = — 2.
Y

2. In the case of the lemniscate (Vol. 1, p. 72)
Fla,y)= (2 + 4*)* — 24%2* — ) = 0

it is not easy to solve for y. For z = 0, y = 0 we obtain F =0, F, =0,
F, = 0. Here our theorem fails, as might be expected from the fact that
two different branches of the lemniscate pass through the origin. For all
points of the curve for which y = 0, however, our rule applies, and the
derivative of the function y = f(z) is given by

F,  4dx(2® 4 9®) — 40’z

F, 4y (@ + 9°) + 4a%y
We can obtain important information about the curve from this equation,
without bringing in the explicit expression for y. For example, maxima
or minima may occur where y’ = 0, that is, for = 0 or for a2 + y2 = a®.

From the equation of the lemniscate, y = 0 when z = 0; but at the origin
there is no extreme value (cf. fig. 26, Vol. I, p. 72). The two equations

therefore give the four points (ig V3, :I:g a8 the maxima and minima.
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3. In the case of the folium of Descartes
F(z, y) = 2+ y* — Bazy =0
(cf. fig. 8), the explicit solution would be exceedingly inconvenient. At the
y
Vs

Fig. 3.—Folium of Descartes

origin, where the curve intersects itself, our rule again fails, since at that
point F = Fy= F, = 0. For all points at which y* + ax we have
, F, 2% — ay

y = — 2 =

F,

Y y: — ax

Accordingly, there is a zero of the derivative when 2% — ay = 0, or, if we
use the equation of the curve, when

z=av/2, y=ay/4

. The Theorem of Implicit Functions for more than Two Inde-
pendent Variables.

The general theorem of implicit functions can be extended to
the case of several independent variables as follows:

L F(x,y,- - ., z, u) be a continuous function of the independent
variables X, y, ..., 2, U, and let @ possess continuous partial
derwvatives F, B, . . ., ¥, F,. For the system of values Xo, y¢, - - -
%y, U, corresponding to an interior point of the region of definition
of F, let F(xy, Yo, - - - » Zgy Ug) = 0 and

F o (To, Yor - - - 5 295 Ug) =F 0.

Then we can mark off an interval v, < u = u, about v, and a
region R contatning (X, Yo, - - - » Zo) Wn its interior such that for
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every (X, 5, ..., z) i R the equation F(z, y, ..., z, u)=201s
satisfied by exactly one value of u in the interval v, < u < .
For this value of u, which we denote by uw=1(x, y, ..., z), the
equation
Fla,y,....,2,f(@ 4 ...,2)=0
holds identically in R; in addition,
U =S (g, Yo - + - » 2g)-

The function f is a continuous function of the independent variables

X, Y, ..., 2, and possesses continuous partial derivatives given by
the equations

F z T F uf = 09

F,+ F wfy =0,

F,+ F wfz = 0.

For the proof of the existence and continuity of f(z, 9, . . . , 2)
we refer the reader to the next sub-section (p. 121). The formul®
of differentiation follow from those for the case of one independent
variable, since we can e.g. let , . . . , 2 remain constant and thus
find the formula for f,.

If we wish, we can combine our differentiation formul® in
the single equation

F.dz+ F,dy+ ...+ F,dz -+ F,du=0.
In words:

If i a function F(x, y, ..., z, u) the variables are not inde-
pendent of one another, but are subject to the condition F = 0,
then the linear parts of the increments of these variables are likewise
not independent of one another, but are connected by the condition
dF = 0, that 1s, by the linear equation

Fode+ Fdy+ ...+ F,de+ F,du=0,

If we here replace du by the expression u,dz + w,dy+- . . .
+ u,dz and then equate the coefficient of each of the mutually
independent differentials dz, dy, . . . , dz to zero, we again obtain
the above differentiation formule.

Incidentally, the concept of implicit functions enables us
to give a gencral definition of the concept of an algebraic function.
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~ We say that u = f(z, y, . . .) is an algebraic function of the inde-
pendent variables z, y, . . . if % can be defined implicitly by an
equation F(z, y, ..., u)= 0, where F is a polynomial in the
arguments z, ¥, ... , w; briefly, if u “satisfies an algebraic
equation ”. All functions which do not satisfy an algebraic
equation are called transcendental.

As an example of our differentiation formule we consider the equation
of the sphere,
2+t ut—1=0.

For the partial derivatives we obtain
Y

Up=— =, t,=—7,
z w Y u

and by further differentiation

1 x 22 4 ud
[} =—_+;2um=— @ .
._z —_——
uﬂ._;’y_ ‘u_'g,
Y, __y+a
Y=L T A e

6. Proof of the Existence and Continuity of the Implicit Funections.

Although in many special cases the existence and continuity
of implicit functions follows from the fact that the equation
F(z, y) = 0 can actually be solved in terms of the usual functions
by means of some special device, yet it is still necessary to give
a general analytical proof of the existence theorem stated above.

As a first step we mark out a rectangle 2, Sz <25, 4, Sy=1y,
in which the equation F(z, y) = 0 determines a unique function
y = f(z). We shall make no attempt to find the largest rectangle
of this type; we only wish to show that such a rectangle exists.

Since F(z, y) is continuous and F,(zy, ¥,) &= 0, we can find
a rectangle R, with the point P(x,, y,) as centre, so small that in
the whole of R the function F, remains different from zero and
thus is always of the same sign. Without loss of generality we
can assume that this sign is positive, so that F, is positive every-
where in R; otherwise, we should merely have to replace the
function F by —F, which leaves the equation ¥F(z, y) = 0 un-
altered. Since F, > 0 on every line-segment & = const. parallel
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to the y-axis and lying in R, the function F(z, ), considered as a
function of y alone, is monotonic increasing. But F(zg, yo) = 0;
hence if 4 is a point of R with co-ordinates zy and ¥, (y; < ¥,)
on the vertical line through P (cf. fig. 4), the value of the
function at 4, F(z,, y,), is negative, while at the point B with co-
ordinates z, and y, (y; > y,) the value of the function, F(z,, ¥,),
is positive. Owing to the con-

di tinuity of F(z, y), it follows
that F(z, y) has negative values

Y2 |- == R along a certain horizontal line-
Yol-v--r, segment y = y, through 4 and
7w lying in R, and has positive
» 2% Sn values along a line-segment

0 R . z Y= Y, through B and lying in
o ;8_ f’ E. We can therefore mark off

an interval z, < 2z < =, about
. %o 8o small that for values of z in that interval the function
F(z, y) remains negative along the horizontal through 4 and
positive along the horizontal through B. In other words,
for » < » < %, the inequalities F(z, 4;) < 0 and F(z, y,) > 0
hold.

We now suppose that = is fixed at any value in the interval
T; = % = %, and let y increase from y, to y,. The point (z, y)
then remains in the rectangle

BETST PSYSYs

which we assume to be completely within R. Since F,(z, 9)>0,
the value of the function F(z, y) increases monotonically and
continuously from a negative to a positive value, and can never
have the same value for two points with the same abscissa.
Hence for each value of # in the interval », < z < x, there is a
uniquely determined * value of y for which the equation F(g, y) = 0
is satisfied. This value of y is thus a function of #; we have
accordingly proved the existence and the uniqueness of the
solution of the equation F(x, y) = 0. At the same time the part
played by the condition F, == 0 has been clearly brought out.

* If the restriction y; < y < y, is omitted, this will not necessarily remain
true. For example, let ¥ be 22 + y2 — 1 and let #, = 0, y, = 1. Then for
—3% = x =< § there is just one solution, y = f(), in the interval ¢ <y =<2 but
if y is unrestricted, there are two solutions,y = v(1 — %) and y = — v/ (1 — z?).
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If this condition were not fulfilled, the values of the function at A
and at B might not have opposite signs, so that F(z, y) need not
pass through zero on vertical line-segments. Or, if the signs
at A and at B were different, the derivative ¥, could change
sign, so that for a fixed value of z the function F(z, y) would
not increase monotonically with y and might assume the value
zero more than once, thus destroying the uniqueness of the
solution.

This proof merely tells us that the function y = f(z) exists.
Tt is a typical case of a pure “ existence theorem ”, in which the
practical possibility of calculating the solution does not come
under consideration at all.*

The continuity of the function f(z) follows almost at once from
the above considerations. Let R(z,/ <z <), 1) S Y= %)
be a rectangle lying entirely within the rectangle z; = = ,,
%, S y =y, found above. For this smaller rectangle we can
carry out exactly the same process as before in order to obtain
a solution y = f(2) of the equation F(z, y) = 0. In the larger
rectangle, however, this solution was uniquely determined; hence
the newly-found function f(z) is the same as the old one. If we
now wish e.g. to prove the continuity of the function f(z) at the
point & = z,, we must show that for any small positive number €
| f(@) — f(zo) | < e, provided only that & lies sufficiently near the
point z,. For this purpose we put

W =yo+e and y' =yo—e

and for these values y," and y,’ we determine the corresponding
z-interval @, <z < x,. Then by the above construction, for
each z in this interval the corresponding f(z) lies between the
bounds y," and y,’, and therefore differs from y, by less than .
This expresses the continuity of f(z) at the point z,. Since we
can apply the above argument to any point @ in the interval
7 < ¢ < ,, we have proved that the function is continuous at
each point of this interval.

The proof of the general theorem for F, y,..., 2 u),
a function with a greater number of independent variables,
follows exactly the same lines as the proof just completed,
and offers no further difficulties.

* The sacrifice of the statement of such practical methods in a general proof
is sometimes an essential step towards the simplification of proofs.
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ExaMPLES

1. Prove that the following equations have unique solutions for y near
the points indicated:
(@) 2 + 2y + y? = (2, 1).
(b) zcosxy =0 1, =/2).
(¢) 2y + logzy=1 (L 1).
@a+y+ay=3 (1,1)
2. Find the first derivatives of the solutions in Ex. 1.
3. Find the second derivatives of the solutions in Ex. 1.
4. Find the maximum and minimum values of the function y = f(=)
defined by the equation 22 + ay 4 y2 = 27.

5. Show that the equation z -+ y + z= sinzyz can be solved for z
near (0, 0, 0). Find the partial derivatives of the solution.

2. CurvEs AND Surraces 1N ImpriciT ForMm

1. Plane Curves in Implicit Form.

We have previously expressed plane curves in the form
y = f(z), which is unsymmetrical, giving the preference to one
of the co-ordinates. The tangent and the normal to the curve
are found to be given by the equations

m—y)—({—a)f'@)=0
—yf@+(—2)=0

respectively, where £ and 7 are the current co-ordinates of the
tangent and the normal, and # and y are the co-ordinates of
the point of the curve. We have also found an expression for
the curvature, and criteria for points of inflection (Vol. I,
Chap. V). We shall now obtain the corresponding formule
for curves which are represented implicitly by equations of the
type F(z, y)=0. We do this under the assumption that at
the point in question F, and F, are not both zero, so that
F2+F2=0.

If we suppose that F, == 0, say, we can substitute for y’ in
the equation of the tangent at the point (z, y) of the curve its
value —F,/F,, and at once obtain the equation of the tangent
in the form

and

(f_w)Fz"'_(n——y)Fy:O.
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Similarly, for the normal we have
(f—x)Fv_("l‘—y)Fac:O'

Without going out of our way to use the explicit form of the
equation of the curve, we can also obtain the equation of the
tangent directly in the following way. If a and b are any two
constants, the equation

a(§ —a)+ bln—y)=0

with current co-ordinates £ and 7 represents a straight line
passing through the point P(z, y). If now P is any point of the
curve, i.e. if F(z, y) = 0, we wish to find the line through P with
the property that if P; is a point of the curve with co-ordinates
#;, ==z h and y, =y + k, the distance from the line to Py
tends to zero to a higher order than p = 4/(k* 4 %*). In virtue
of the differentiability of the function F' we can write

F@+ b, y-+ k)= F(z, y) + hFz+ kF, + €p,

where p tends to 0 as ¢ does. Since the two points P and P,
both lie on the curve, this equation reduces to kF, + kF, = —ep.
As we have assumed that F,2 -+ F 2 == 0, we can write this last
in the form

F F
3 d k L =
by iy Y ) R
where ¢ = — € __ also tends to zero as p does. If we
T VI I P
write @ = Fy b= _—jl—— the left-hand

VT e v A )

side of this equation may be regarded as the expression obtained
when we substitute the co-ordinates of the point (x, = x4 &,
y, =y + k) for £ and 7 in the canonical form of the equation
of the line, a(¢ — ) + b(n — y)=0. This is the distance of
the point P; from the line. Thus the distance of P, from the
line is numerically equal to | p |, which vanishes as p does to
a higher order than p. The equation

F, F,
VFS+ FP) VFEL+ FP)

Ffé—a)+ F(n—y)=0

(§—2)+ m—y=0

or
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is the same as the equation of the tangent found in the preceding
paragraph. We can therefore regard the tangent at P as that
line * whose distance from neighbouring points Py of the curve
vanishes to a higher order than the distance PP,.

The direction cosines of the normal to the curve are given by
the two equations

I . F,
RV EELFY T FAL T

which represent the components of a unit vector in the direction
of the normal; that is, of a vector with length 1 in the direction
of the normal at the point P(z, y) of the curve.

The direction cosines of the tangent at the point P(z, y) are
given by

COS,B = J.L_' sin = ——_.__‘Fw*__
VF:+ Fp2) VIFE+ F 2y

More generally, if instead of the curve F(z, y) = 0 we
consider the curve
Fz,y)=c,

where ¢ is any constant, everything in the above discussion
remains unchanged. We have only to replace the function
F(x, y) by F(z, y) — ¢, which has the same derivatives as
the original function. Thus for these curves the equation
of the tangent and the normal have exactly the same forms
as above.

The class of all the curves which we obtain when we allow
¢ to range through all the values in an interval is called a famaly
of curves. The plane vector with components F, and F,, which
is the gradient of the function F(z, y), is at each point of the plane
perpendicular to the curve of the family passing through that point,
as we have already seen on p. 90. This again yields the equation
of the tangent. For the vector with components (¢ — z) and
(» — y) in the direction of the tangent must be perpendicular to
the gradient, so that the scalar product

(—2)F,+ (n—y)F,
must vanish.

* The reader will find it easy to prove for himself that two such lines can-
uot exist, so that our condition determines the tangent uniquely.
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While we have taken the positive sign for the square root
occurring in the above formule, we could equally well have
taken the negative root. This arbitrariness corresponds to the
fact that we can call the direction towards either side of the
curve the positive direction at will. We shall continue to choose
the positive square root and thereby fix a definite direction of the
normal. It is, however, to be observed that if we replace the
function F(x, y) by —F(, y) this direction is reversed, although
the geometrical nature of the curve is unaffected. (As regards
the sign of the normal, cf. Chap. V, section 2 (pp. 363-4)).

We have already seen (Vol. I, p. 159) that for a curve ex-
plicitly represented in the form y = f(z) the condition f"'(x) = 0
is a necessary condition for the occurrence of a point of inflection.
If we replace this expression by its equivalent,

" F,,F2:—2F, F,F,+ F,F}?
f(m)=_ & v ‘;yaw ¥ vy E’

we obtain the equation
F, F2—2F F.F,+F, F2=0

as & necessary condition for the occurrence of a point of inflec-
tion. In this condition there is no longer any preference given
to either of the two variables «, y. It has a completely sym-
metrical character and no longer depends on the assumption
that F, == 0.

If we substitute for ¥’ and y’’ in the formula for the curvature
found previously (Vol. I, p. 281)

”n

b=__ 9
VA + 9
we obtain the formula
mesz’— 2FawFa:Fv+ Fmez

i KN X

which is likewise perfectly symmetrical.* For the co-ordinates
(& 7) of the centre of curvature we obtain the expressions

.
VEI+TF

* For the sign of the curvature cf. Vol. I, p. 282,

§=z+p
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F
=y £ ,
KRR OV/i oy
where
1
P= i

If the two curves F(z, y) = 0 and G(z, y) = O intersect one
another at the point with co-ordinates z, y, the angle between
the curves is defined as the angle w formed by their tangents (or
normals) at the point of intersection. If we recall the ex-
pressions given above for the direction cosines of the normals
and the formula for the scalar product (Chap. I, section 1,
p. 8), we obtain the expression

F.G,+ F,G,
VEE+ FA)v(@F + Gf)

for the cosine of this angle. Since we have taken the positive
square roots here, the cosine is uniquely determined; this corre-
sponds to the fact that we have thereby chosen definite directions
for the normals and have thus determined the angle between
them uniquely.

By putting w = #/2 in the last formula we obtain the
condition for orthogonality, i.e. that the curves intersect at right
angles,

COSw =

F.G,+ F,G,= 0.

Ii the curves are to fouch one another, the ratio of the dif-
ferentials, dy : dz, must be the same for the two curves. That

is, the condition
dy:de=—F,: F,=—@,: G,

must be fulfilled. This may also be written in the form
F.G,— F,G,= 0.
As an example we consider the parabolas
- Py _
y*—2p (x + é) =0

(cf. fig. 9, p. 1387), all of which have the origin as focus (*confocal
parabolas). If p, > 0 and p, < 0, the two parabolas

F=yz—-2pl(w+1:;)=0 and G=y"—2pz(z+%z)=0
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intersect one another, and at the intersection they are at right angles to
one another, for

P — p,G
FoG,+ Fy@, = dpypy + 42 = 472 P17 g,
P2— D
since
F=G=0, p,—p =+ 0.

As a second example we consider the ellipse

The equation of the tangent at the point (, y) is

E—a) 2+ m—9) ;=0
or
d Y =

as we know from analytical geometry.
We find that the curvature is

ke atht
(aly? + vizt)™
If a > b, this has its greatest value a/b? at the vertices y = 0, x = ta.
Tts least value b/a® occurs at the other vertices x = 0, y = +-b.

2. Singular Points of Curves.

We now add a few remarks on the singular points of a curve.
Here we shall content ourselves with giving a number of typical
examples; for a more thorough investigation we refer the reader
to the appendix to this chapter (p. 209).

In the formule obtained above the expression F,2- F2
frequently occurs in the denominator. Accordingly we may
expect something unusual to happen when this quantity vanishes,
i.e. when F,= 0 and F,= 0 at a point of the curve. This is
especially brought out by the fact that at such a point the ex-
pression y’ = —F,/F, for the slope of the tangent to the curve
loses its meaning.

“We say that a point of a curve is a regular point if in the neigh-
bourhood of this point either the co-ordinate y can be represented
as a continuously differentiable function of @, or else 2 can be
represented as a continuously differentiable function of y. In
either case the curve has a tangent, and in the neighbourhood of
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the point in question the curve differs but little from that
tangent. All other points of a curve are called singular points
(or singularities).

From the theory of implicit functions we know that a point
of the curve F(z, y) = 0 is regular if at that point F, == 0, since
we can then solve the equation so as to obtain a unique dif-
ferentiable solution y = f(x). Similarly, the point is regular if
F, 0. The singular points of the curve are accordingly to be
sought for among those points of the curve at which the equations

F,=0, F,—0

are satisfied in addition to the equation of the curve.

An important type of singularity is a multiple point, that is,
a point through which two or more branches of the curve pass.
For example, the origin is a multiple point of the lemniscate

(@® + )% — 2a2(2® — ¢2) = 0.

In the neighbourhood of such a point it is impossible to express
the equation of the curve uniquely in the form y=f(z) or
T = ¢(y)- ‘

The truth of the rela-
ty % tions F,= 0 and F,=0
is a necessary, but by no
means a sufficient, condi-
tion for a multiple point;
0 z on the contrary, quite a
-different type of singularity
may occur, such as a cusp.

As an example we consider
the curve

F—at=0

{cf. fig. 5), which has a cusp at the origin. At that point both the first
partial derivatives of F vanish.

Fig. 5.—The surface y* — x* = ¢

Moreover, cases may occur in which ¥, and F, both vanish,
and yet there is no striking peculiarity of the curve at the point,
the curve being regular there.

This is exemplified by the curve

P —t=0
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or, in explicit form,
Y= a:"’.

From the equations (—2)*® = 2?, y’ = $x'® we see at once that the curve
is symmetrical with respect to the y-axis and touches the z-axis at the
origin, like a parabola. Yet the origin is a somewhat special point on the
curve, since the second derivative is infinite there. The curvature is there-
fore infinite, while the direction of the tangent exhibits no peculiarity.
Another example is the curve (y — z)* = 0, which is a straight line and
therefore regular throughout, even though F, = 0 and F, = 0 for every
point of the line.

" As a result of this discussion we see that in the investigation
and discussion of singular points of a curve it is not enough to
verify that the two equations F,=0 and F, = 0 are satisfied;
on the contrary, each case must be studied specially (cf. Appendix,
section 2, p. 209).

3. Implicit Representation of Surfaces.

Hitherto we have usually represented a function z = f(z, y)
(here we write z instead of the symbol u employed above) by
means of a surface in ayz-space. If, however, we are originally
given not the function, but a surface in space, the preference
which this form of expression gives to the co-ordinate z may prove
inconvenient, just as in the case of the expression of plane curves
in the form y = f(z). It is more natural and more general to
represent surfaces in space by equations of the form F(z, y,z) = 0
or F(z, y, z)= const., e.g. to represent the sphere by the equation
22+ 424 22— 2= 0, and not by 2= - 4/(r? — 22 — y?). The
form z — f(z, y) = 0 can then be treated as a special case.

In order to establish the equation of the tangent plane to
the surface F(z, 4, z) = 0 at the point (z, y, z), we first make the
assumption * that at that point F,2 4 F, 2+ F.2 = 0; ie. that
at least one of the partial derivatives, say F,, is not zero. Then
from the equation of the surface we can determine z = f(z, y)
explicitly as a function of # and y. If in the equation of the
tangent plane

z—z‘: (f'—x)zm—l_ ("l'—y)zv
we . substitute for the derivatives 2z, and 2z, their values
* The vanishing of this expression indicates the possibility that certain singu;

larities may occur; this, however, we shall not discuss.
6 (£9012)



130 DEVELOPMENTS AND APPLICATIONS [CHar.

2y = —F,/F, and z,= —F,[F, we obtain the equation of the
tangent plane in the form

(6 —a)F e+ (n—y)F,+ ({—2)F, =0,

where £, %, { are current co-ordinates.

As in the case of the tangent to a plane curve, we can derive
this equation directly from the implicit representation of the
surface, by setting ourselves the problem of finding a plane
through the point (z, y, 2) of the surface with the property that
the distance from the plane to the point (z+ &, y+ k, 2+ 1)
of the surface vanishes as p = 4/(A? + k2 + I2) does, to a higher
order than p.

Elementary theorems of analytical geometry (cf. Chap. I,
section 1, p. 9) show that the direction cosines of the normal to
the surface, that is, of the normal to the tangent plane, are given
by the expressions

F, F

ARV AR RS 5 AN ) SRS KRS )
,
YT VEETFEAEE

In taking the positive square root in the denominator we
have assigned a definite sense of direction to the normal
(cf. p. 125).

If two surfaces F(x, y, 2) = 0 and G(z, ¥, z) = O intersect one
another at a point, the angle w between the surfaces is defined as
the angle between their tangent planes, or, what is the same
thing, the angle between their normals. This is given by

F.G,+ F,G, + F,G,
V(F2+F 24 B2 /(G G2+ G2
In particular, the condition for perpendicuiarity (orthogonality) is
If‘an—l—F,,G,,—{—F,G,: 0.

CoOs w —

Instead of the single surface F(z, y, z) = 0 we may consider
the whole family of surfaces F(x, y, z) = ¢, where ¢ is a constant
different for each surface of the family. Here we assume that
through each point of space, or at least through every point of a
certain region of space, there passes one and only one surface
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of the family; or, as we say, that the family covers the region
simply. The individual surfaces are then called the level surfaces
of the function F(z, y, 2). In Chap. II, section 7 (p. 88) we con-
sidered the gradient of this function, that is, the vector with
the components F,, F,, F,. We see that these components have
the same ratios as the direction cosines of the normal; hence
we conclude that the gradient at the point with the co-ordinates
(z, y, 2) is perpendicular to the level surface passing through that
pount. (If we accept this fact as already proved in Chap. II,
section 7 (p. 90), we at once have a new and simple method for
deriving the equation of the tangent plane, just like that given
above (p. 124) for the equation of the tangent line.)

As an example we consider the sphere
2ty 2—-1r2=0,
At the point (z, y, z) the tangent plane is
E—2)2+ (-9 2+ ({—22=0

&t+w+z—r=0

The direction cosines of the normal are proportional to «, y, 2z; that is, the
normal coincides with the radius vector drawn from the origin to the point
(z, y, 2).

For the most general ellipsoid with the co-ordinate axes as principal
axes,

PR R |

the equation of the tangent plane is

z y i =
5&3+1‘b—3+ CEE—]'_O'

ExamMpLES

1. Find the tangent plane
(a) of the surface

B+ 2yr— T2+ 3y+1=0
at the point (1, 1, 1);
(b) of the surface
(B yrtat— et Toy 4 Sc+ 28— z= 14
at the point (1, 1, 1);
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{¢) of the surface
gin*z + cos(y + 2) = 3

) T ®
t the poi (—, =, 0).
at the point &3
2. Calculate the curvature of the curve
sinz + cosy =1
at the origin, |
3%, Find the curvature at the origin of each of the two branches of the
curve
ylaz + by) = cx® + ex®y + fry* + gy.
4. Find the curvature of a curve which is given in polar co-ordinates
by the equation f(r, 6) = 0.
5. Prove that the three surfaces of the family of surfaces
YVeu, @+ VP D=0 V@@ +D— /(@ + D) =w

z
which pass through a single point are orthogonal to one another.

6. The points 4 and B move uniformly with the same velocity, 4
starting from the origin and moving along the z-axis, B starting from
the point (@, 0, 0) and moving parallel to the y-axis. Find the surface
enveloped by the straight lines joining them.

7. Prove that the intersections of the curve
(x+y—a)+ 27axy =0

with the line 2 4+ y = a are inflections of the curve.
8. Discuss the singular points of the following curves:
(a) F(z, y) = az® + by® — cxy = ;
®) Flz,y)= (" — 22 — a* = G;
() Fa.y)= 1+ eFy—z=10
(d) Flz, y) = 42 — 7) — * = 0;
& Fl.y)=(y — 22! — 2= 0.

9. Let (2, y) be a double point of the curve F(z, ) = 0. Calculate the
angle ¢ between the two tangents at (, y), assuming that not all the

second derivatives of F vanish at (x, y).
Find the angle between the tangents at the double point (a) of the
lemniscate, (b) of the folium of Descartes (of. p. 116).

10. Determine a and b so that the conics

402 + 42y + 2 — 100 — 10y + 11 =0
+be—1—02—aby—2+1—0)=0

cut one another orthogonally at the point (1, 1) and have the same curva-
ture at this point.
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11. ¥f F(z, y, z) = 1 is the equation of a surface, F being a homo-
geneous function of degree b, then the tangent plane at the point (x, ¥, 2)
is given by

EFy + By + LF, = b

12. Let K’ and K* be two circles having two points 4 and B in com-
mon. I a circle K is orthogonal to K’ and K”, then it is also orthogonal
to every circle passing through 4 and B.

13. Let z be defined as a function of z and y by the equation
2t + ¢ + 28 — Buyz = 0.

Express 2, and 2, as functions of 2, y, 2.

3. SystEMs oF FuNcTioNs, TRANSFORMATIONS, AND MAPPINGS

1. General Remarks.

The results we have obtained for implicit functions now enable
us to consider systems of functions, that is, to discuss several
functions simultaneously. In this section we shall consider the
particularly important case of systems where the number of
functions is the same as the number of independent variables.
We begin by investigating the meaning of such systems in the
case of two independent variables. If the two functions

£=¢(x, y) and 7n=(z,Yy)

are both differentiable in a region R of the zy-plane, we can inter-
pret this system of functions in two different ways. The first
interpretation (the second will be given in sub-section 2, p. 138)
is by means of a mapping or transformation. To the point P with
co-ordinates (z, y) in the wy-plane there corresponds the image
point IT with the co-ordinates (£, 1) in the £x-plane.

An example of such a mapping is the affine mapping or trans-

formation ¢ —az+ by
n=cz+dy

of Chapter I (p. 28), where a, b, ¢, d are constants. ;
Frequently (z, y) and (£, ) are interpreted as points of one
and the same plane. In this case we speak of a mapping of the
xy-plane on itself, or a transformation of the xy-plane into uself.*
* It is also possible to interpret a single function ¢ = f(z) of a single vari-
able as a mapping, if we think of a point with co-ordinate z on an 2-axis as

being brought by means of the function into correspondence with a point ¢
[Continued overleaf.
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The fundamental problem connected with a mapping is that
of its inversion; that is, the question whether and how  and y
can in virtue of the equations £ = ¢(z, y) and 5 = ¥z, y) be
regarded as functions of £ and 7, and how these inverse functions
are to be differentiated.

If when the point (x, y) ranges over the region R its image
point (£, n) ranges over a region B of the &x-plane, we call B
the image region of R. If two different points of R always correspond
to two different points of B, then for each point of B we can always
find a single point of B of which it is the image. Thus to each point
of B we can assign the point of R of which it is the image.
(This point of R is sometimes called the ““ model ”, as opposed
to the ““image .) That is, we can invert the mapping uniquely,
or determine  and y uniquely as functions

z=g(§ ), y=Mn¢ )

of £ and 7, which are defined in B. We then say that the original
mapping can be uniquely inverted, or has a unigue inverse, or is
a one-lo-one* mapping, and we call x=g(£, 7), y=h(é, 1)
the transformation ¢nverse to the original transformation or
mapping.

If in this mapping the point P with co-ordinates (z, y) de-
scribes a curve in the region R, its image point will likewise
describe a curve in the region B, which is called the image curve
of the first. For example, the curve x = ¢, which is parallel to
the y-axis, corresponds to a curve in the ¢x-plane which is given
in parametric form by the equations

§= '75(0: ?/); n= l/’(07 ()

where y is the parameter. Again, to the curve y = k there corre-
sponds the curve

¢= ¢((D, k), n= ‘/’(x’ k)’

If to ¢ and % we assign sequences of neighbouring values ¢, c,,
Cay . .. and ky, ko, ks, ..., then the rectangular “ co-ordinate

on a ¢-axis. By this point-to-point correspondence the whole or a part of the
z-axis is mapped on the whole or a part of the £-axis. A uniform “ scale ” of
equidistant 2-values on the z.axis will in general be expanded or contracted
into a non-uniform scale of ¢-values on the £-axis. The £-scale may be regarded
as a representation of the function ¢ = f(z). Such a point of view is frequently
found useful in applications (e.g. in nomography).

* Often written (1, 1).
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pet” consisting of the lines = const. and y = const. (e:g.
the network of lines on ordinary graph paper) usually gives rise
to a corresponding curvilinear met of curves in the ¢x-plane

? ynk,
Y=k
. yﬂl y-k_y
1(3 T=Cy
k; X=Cz
ky x=C
[ 3 0 s
Ct C2 [ g
Fig. 6 Fig. 7

Nets of curves # = const. and ¥ = const. in the xy-plane and the £7-plane

(figs. 6, 7). The two families of curves composing this net of
curves can be written in implicit form. If we represent the inverse
mapping by the equations

z=g(¢& ), y=Hh¢ )
the equations of the curves are simply
g(&;m)=c and k(& n)=Fk
respectively.

In the same way, the two families of lines £ = y and 7= «
in the £7n-plane correspond to the two families of curves

d@y) =y Uz y) =«
in the zy-plane.

As an example we consider inversion, or the mapping by reciprocal
radii or reflection in the unit circle. This transformation is given by the
equations

- % =Y

22+ 4 y?
To the point P with co-ordinates (z, y) there corresponds the point TT
with co-ordinates (£, ) lying on the same line OP and satisfying the

or OIl = OLP’ so that the radius vector to P

. 1
equation &2 2=

q € 4 o P
is the reciprocal of the radius vector to II. Points inside the unit circle
are mapped on points outside the circle and vice versa.

From the relation &2 4 72 = = ! . We find that the inverse tranafor-
mation 18 Ty
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a= o, y= 0
A £+ 7t
which &3 agatn inversion.
For the region R we may take the whole xy-plane with the exception
of the origin, and for the region B we may take the whole £x-plane with
the exception of the origin. The lines £ = ¢ and = k in the &x-plane

correspond to the circles 2*+ 4" — 1z =0 and z’+y’-—%y=0 in
C

the zy-plane respectively; at the origin these circles touch the y-axis
and the z-axis respectively. In the same way, the rectilinear co-ordinate
net in the zy-plane corresponds to the two families of circles touching the
&-axis and the 7-axis respectively at the origin.

Fig. 8.—~Orthogonal families of rectangular hyperbolas

As a further example we consider the mapping
E=a— 9 n=2mxy.

The curves £ = const. give rise in the zy-plane to the rectangular hyper-
bolas 2® — y* = const., whose asymptotes are the lines x = y and = —y;
the lines v = const. also correspond to a family of rectangular hyperbolas,
having the co-ordinate axes as asymptotes. The hyperbolas of each family
cut those of the other family at right angles (cf. fig. 8). The lines parallel
to the axes in the zy-plane correspond to two families of parabolas in the
E+-plane, the parabolas 7? = 4c*(c? — &) corresponding to the lines z = ¢
and the parabolas %% = 4¢%c? + &) corresponding to the lines y=c.
All these parabolas have the origin as focus and the E-axis as axis (a
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family of confocal and coaxial parabolas; cf. fig. 9). For systems of
confocal ellipses and hyperbolas of. Ex. 5, p. 158.

Fig. 9~—Orthogonal families of confocal parabolas

One-to-one transformations have an important interpretation
and application in the representation of deformations or motions
of continuously-distributed substances, such as fluids. If we think
of such a substance as spread out at a given time over a region
R and then deformed by a motion, the substance originally
spread over R will in general cover a region B different from
R. Each particle of the substance can be distinguished at the
beginning of the motion by its co-ordinates (z, y) in R, and at the
end of the motion by its co-ordinates (£, %) in B. The one-to-one
character of the transformation obtained by bringing (z, ) into
correspondence with (£, 7) is simply the mathematical expression
of the physically obvious fact that the separate particles must
remain recognizable after the motion, i.e. that separate particles
remain separate.

2. Introduction of New Curvilinear Co-ordinates.

Closely connected with the first interpretation (as a mapping)
which we can give to a system of equations ¢ = $(z, y), n = ¥(z, y)
is the second interpretation, as a transformation of co-ordinates in
the plane. If the functions ¢ and y happen not to be linear, this

6

(2912)
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is no longer an “affine ” transformation, but a transformation
to general curvilinear co-ordinates. :

We again assume that when (z, y) ranges over a region R of
the ay-plane the corresponding point (¢, ) ranges over a region
B of the £y-plane, and also that for each point of B the corre-
sponding (x, y) in B can be uniquely determined; in other words,
that the transformation is one-to-one. The inverse transforma-
tion we again denote by z = g(£, 7), y = k(£, 7).

By the co-ordinates of a point P in a region R we can mean
any number-pair which serves to specify the position of the point
P in R uniquely. Rectangular co-ordinates are the simplest case
of co-ordinates which extend over the whole plane. Another:
typical case is the system of polar co-ordinates in the xy-plane,
introduced by the equations

E=r=+/(+19,
7 = 0 = arc tan (y/x) (0= 6 <2n).

When we are given a system of functions £= ¢(z, y),
n = (z, y) as above, we can in general assign to each point P
(z, y) the corresponding values (£, %) as new co-ordinates. For
each pair of values (£, n) belonging to the region B uniquely
determines the pair (z, y), and thus uniquely determines the
position of the point P in R; this entitles us to call £,  the co-
ordinates of the point P. The “ co-ordinate lines ” &= const.
and 7 = const. are then represented in the zy-plane by two
families of curves, which are defined implicitly by the equations
&(z, y) = const. and Y(z, y) = const. respectively. These co-
ordinate curves cover the region R with a co-ordinate net (usually
curved), for which reason the co-ordinates (§, %) are also called
curvilinear co-ordinates in R.

We shall once again point out how closely these two inter-
pretations of our system of equations are interrelated. The
curves in the &n-plane which in the mapping correspond to
straight lines parallel to the axes in the zy-plane can be directly
regarded as the co-ordinate curves for the curvilinear co-ordinates
z=g(& 7), y= k&, n) in the £x-plane; conversely, the co-
ordinate curves of the curvilinear co-ordinate system ¢ = ¢(z, y),
n = (z, y) in the zy-plane in the mapping are the images of the
straight lines parallel to the axes in the £z-plane. Even in the
interpretation of (£, ) as curvilinear co-ordinates in the xy-plane
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we must consider a £7-plane and a region B of that plane in which
the point with the co-ordinates (£, ) can vary, if we wish to keep
the situation clear. The difference is mainly in the point of view.*
If we are chiefly interested in the region R of the xy-plane, we
regard £, 7 simply as a new means of locating points in the
region R, the region B of the £x-plane being then merely sub-
sidiary; while if we are equally interested in the two regions
R and B in the zy-plane and the £xy-plane respectively, it is
preferable to regard the system of equations as specifying a cor-
respondence between the two regions, that is, a mapping of one
on the other. It is, however, always desirable to keep the two
interpretations, mapping and transformation of co-ordinates,
both in mind at the same time.

If, for example, we introduce polar co-ordinates (r, 6) and interpret r
and O as rectangular co-ordinates in an r0-plane, the circles r = const.
and the lines 6 = const. are mapped on straight lines parallel to the axes
in the r6-plane. If the region R of the zy-plane is the circle 2% 4 32 < 1,
the point (r, 6) of the r0-plane will range over a rectangle 0 < r < 1,
0 < 6 < 2x, where corresponding points of the sides § = 0 and 6 = 2=
are associated with one and the same point of R and the whole side ¥ = 0
is the image of the origin 2 = 0, y = 0.

Another example of a curvilinear co-ordinate system is the system of
parabolic co-ordinates. We arrive at these by considering the family of
confocal parabolas in the zy-plane (cf. also p. 126 and fig. 9)

ren(es?)

all of which have the origin as focus and the =z-axis as axis.
Through each point of the plane there pass two parabolas of the family,
one corresponding to a positive parameter value p == £ and the other to
a negative parameter value p = 7. We obtain these two values by solving
for p the quadratic equation which results when in the equation
y2=2p(x -} p/2) we substitute the values of x and y corresponding to the
point; this gives

E=—z+1(#+9) 1=—2—1/(+.

These two quantities may be introduced as curvilinear co-ordinates in the
zy-plane, the confocal parabolas then becoming the co-ordinate curves,
These are indicated in fig. 9, if we imagine the symbols (%, y) and (£, )
interchanged. ‘

* There is, however, a real difference, in that the equations always define
8 mapping, no matter how many points (z, ) correspond to one point (£, ),
while they define a transformation of co-ordinates only when the correspondence
is one-to-ome.
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In introducing parabolic co-ordinates (£, n) we must bear in mind that
the one pair of values (&, ) corresponds to the fwo points (z, y) and (x, —y)
which are the two intersections of the corresponding parabolas. Hence
in order to obtain a one-to-one correspondence between the pair (x, y) and
the. pair (&, v) we must restriot ourselves to the half-plane y = 0, say.
Then every region R in this half-plane is in a one-to-one correspondence
with a region B of the £x-plane, and the rectangular co-ordinates (£, )
of each point in this region B are exactly the same as the parabolic co-
ordinates of the corresponding point in the region R.

3. Extension to More than Two Independent Variables.

In the case of three or more independent variables the state
of affairs is analogous. Thus a system of three continuously-
differentiable functions

§= =, 4, 2), n= ¥z, y,2), (= x(@, y, 2),

defined in a region R of zyz-space, may be regarded as the mapping
of the region R on a region B of {n{-space. If we assume that
this mapping of R on B is one-to-one, so that for each image
point (£, n, {) of B the co-ordinates (, y, 2) of the corresponding
point (“ model ”’ point) in B can be uniquely calculated by means
of functions

T= !](f: 7, C), y= }I’(f’ L g)’ z= l(f, 7 Z)’

then (¢, n, {) may also be regarded as general co-ordinates of
the point P in the region R. The surfaces £ = const., n = const.,
{ = const., or, in other symbols,

$(, 9, 2) = const., (s, y, 7) = const., x(a, y,2) = const.

then form a system of three families of surfaces which cover
the region B and may be called curvilinear co-ordinate sur-
faces.

Just as in the case of two independent variables, we can in-
terpret one-to-one transformations in three dimensions as de-
formations of a substance spread continuously throughout a
region of space.

A very important case of transformation of co-ordinates is
given by polar co-ordinates in space. These specify the position
of a point P in space by three numbers: (1) the distance
r=4/(2% + 92+ z?) from the origin, (2) the geographical longi-
tude ¢, that is, the angle between the zz-plane and the plane
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determined by P and the z-axis, and (3) the polar distance 6,
that is, the angle between
the radius vector OP and
the positive z-axis. As we
see from fig. 10, the three
polar co-ordinates r, ¢, & are
related to the rectangular
co-ordinates by the equations
of transformation

z

z = rcos¢sinf,
y = rsingsinh,
z2=1rcos0,

Fig. 10.~Three-di ional polar co-ordi

from which we obtain the inverse relations

= /(2?4 4% + ),
$=arccos — 2 — arcsin —-—y——,
V(2 + 4% V(e® + o)
0 = arc cos z_ = are sin V(@ + )

—— = gT JREEL S50, MR L S,
V(@ + y* + 2 V(@ + y* + 2f)
For polar co-ordinates in the plane the origin is an exceptional

e i N
N 2 19%

the angle is indeterminate

there. In the same way, for
polar co-ordinates in space the
whole of the z-axis is an ex-
ception, since the longitude ¢
is indeterminate there. At the
origin itself the polar distance
0 is also indeterminate.

The co-ordinate surfaces
for three-dimensional polar co-
ordinates are as follows: (1) for Fis. 11 e e fares for thres-
constant values of 7, the con-
centric spheres about the origin; (2) for constant values of &,
the family of half-planes through the z-axis; (3) for constant
values of 6, the circular cones with the z-axis as axis and the
origin as vertex (fig. 11).
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Another co-ordinate system which is often used is the system
of cylindrical co-ordinates. These are obtained by introducing
polar co-ordinates p, ¢ in the xy-plane and retaining z as the
third co-ordinate. Then the formuls of transformation from
rectangular co-ordinates to cylindrical co-ordinates are

x= pcose,
y= psing,
2=z

and the inverse transformation is
p= @@+ ),
¢ = arc cos ____x__z =arosin —— I,
V(@ + 4?) V(@2 + )
2=z .

The co-ordinate surfaces p = const. are the vertical circular
cylinders which intersect the zy-plane in concentric circles with
the origin as centre; the surfaces ¢ = const. are the half-planes
through the z-axis, and the surfaces z= const. are the planes
parallel to the zy-plane.

4. Differentiation Formulse for the Inverse Functions.

In many cases of practical importance it is possible to solve
the given system of equations directly, as in the above examples,
and thus to recognize that the inverse functions are continuous
and possess continuous derivatives. For the time being, there-
fore, let us assume the existence and differentiability of the
inverse functions. Then without actually solving the equations
explicitly we can calculate the derivatives of the inverse functions
in the following way. We substitute the inverse functions
z=g(& 7)), y=M¢ 7) in the given equations &= §(z, y),
n= (=, y). On the right we obtain the compound functions
B(g(€, ), ME, 1)) and P(g(§; 1), ME, 7)) of £ and v; but these
must be equal to £ and 7 respectively. We now differentiate
each of the equations

£= ¢(g(& m) ME 7)),
n==P(g(£, 1), W& )

with respect to £ and to %, regarding £ and % as independent
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variables.* If on the right we apply the chain rule for the dif-
ferentiation of compound functions, we obtain the system of
equations

1= 95@98 + ?Svhs’ 0= 45:1:91, + ¢vh,,,
0= lﬁmg; + S[Jyhg:, 1= ‘pm.%, + ¢th

Solving these equations, we obtain

9 —éy’ g"__‘liv’ h£=_%’ h,,=%:

or
£ 2 ¢
$=%, m;,=—-D!’ y$=_%: !l,,—l;,

ie. the partial derivatives of the inverse functions z = g(§, %)
and y = h(§, n) with respect to £ and ), expressed in terms of
the derivatives of the original functions ¢(z, y) and (z, y) with
tespect to # and y. For brevity we have here written

0§ 0o
ox oy
on On
ox Oy
This expression D, which we assume is not zero at the point in
question, is called the Jacobian or functional determinant of the
functions £ = ¢(z, y) and 7 = i(x, y) with respect to the variables
zand y.

In the above, as occasionally elsewhere, we have used the
shorter notation &(z, y) instead of the more detailed notation
¢ = ¢(x, y), which distinguishes between the quantity ¢ and
its functional expression ¢(x, y). We shall often use similar
abbreviations in the future when there is no risk of confusion.

D= faﬂlv - fv"]z =

For polar co-ordinates in the plane expressed in terms of rectangular
eo-ordinates,
y

E=r=4/(@*+ 9% and n=6=a,rctan;,

* These equations hold for all values of ¢ and % under consideration; as
we say, they hold identically, in contrast to equations between variables which
are satisfied only for some of the values of these variables. Such identical
equations or identilies, when differentiated with respect to any of the variables
gc%urring in them, again yield identities, as follows immediately from the

efinition.
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for example, the partial derivatives are

- % T L,__ Yy _¥
FV@EEY) P et
- ¥ _ Y o__z _=
e=—arp= e YmareTa

Hence the Jacobian has the value

and the partial derivatives of the inverse functions (rectangular co-
ordinates expressed in terms of polar co-ordinates) are

z Y
$'=;, Ty = —Y, yr=;s Yo = 2,

as we could have found more easily by direct dlfferentmtlon of the inverse
formulze & = 7 c0s0, y = rsin6.

The Jacobian ocours so frequently that a special symbol is
often used for it:
_ &)

T Az y)

The appropriateness of this abbreviation will soon be obvious.
From the formulee

ze= Z’_‘V’ == fv

y£=_5’ yr,=5

for the derivatives of the inverse functions we find that the
Jacobian of the functions = x({, n) and y = y(§ ) with
respect to ¢ and 7 18 given by the expression

oz y) _ _ _ ey —€ma__ 1 _ - a(f’_")_)
e, m) Y= —p=1- Az, y)

That is, the Jacobian of the inverse system of functions is the recip- |
rocal of the Jacobian of the original system.

In the same way we can also express the second derivatives {
of the inverse functions in terms of the first and second derivatives \
of the given functions. We have only to differentiate the linear ‘
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equations given above with respect to & and to n by means of
the chain rule. (We assume, of course, that the given function
possesses continuous derivatives of the second order.) We then
obtain linear equations from which the required derivatives can
readily be calculated.

For example, to calculate the derivatives

we differentiate the two equations
1= &opt+ &Y
0= .2+ My Ys
once again with respect to £ and by the chain rule obtain
0= £ou®® + 26m ¥+ En¥ + EoTee + Eulie
0 = 0e@® + 2oy TeY; + Nuw¥s® + MaTet + WYee

If we solve this system of linear equations, regarding the quantities
y; and y,; as unknowns (the determinant of the gystem is again D,
and therefore, by hypothesis, not zero) and then replace z; and y,
by the values already known for them, a brief calculation gives

Ty = — _1> Eoee® — 26mu ey + énund €y
D? 7’@9:"772 — 20y My + ")w"]m2 Ny
and
Y= _1_ Eoaty? — 26aumamy + £nuna® £a ‘.
D3 (zamy® — 20y May + Ty Ms® Ta

The third and higher derivatives can be obtained in the same
way, by repeated differentiation of the linear system of equations;
at each stage we obtain a system of linear equations with the
(non-vanishing) determinant D.

5. Resolution and Combination of Mappings and Transformations.

In Chapter I we saw that every affine transformation can be
analysed into simple or, as we say, primitive transformations, the
first of which deforms the plane in one direction only and the
gsecond deforms the already deformed plane again in another
direction. In each of these transformations there is really only
one new variable introduced.
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We can now do exactly the same thing for transformations
in general.

We begin with some remarks on the combination of trans-
formations. If the transformation

&€= d(=, ¥ n=3y)

_ gives a one-to-one mapping of the point (z, y), which ranges over
a region R, on the point (£, 7) of the region B in the £x-plane,
and if the equations

u= ®(¢, 77): v= \F(f, )

give a one-to-one mapping of the region B on a region R’ in the
uv-plane, then a one-to-one mapping of R on R’ simultaneously
occurs. This mapping we naturally call the resultant mapping ox
resultant transformation, and say that it is obtained by combining
the two given mappings. The resultant transformation is given
by the equations

U= (D(¢(w’ ), 'nb(x: y)): v= lP‘(‘?S(w: y), Y(z, y));

from the definition it follows at once that this mapping is one-to-
one.
By the rules for differentiating compound functions we obtain

0

5 = Dedet O,

ou

53‘/ - (D£¢ﬂ + (Dn‘l'w

0

o =Yede + ¥,
o

a—?} = ‘Ff‘/’v + an‘/‘w

On comparing this with the law for the multiplication of deter-
minants (cf. p. 36) we find * that the Jacobian of » and v with
respect to z and y is

ouov ouodv

e — e = (0¥, — O Y — .

o ay 3y o ( S\Fn " f) (¢3¢’1l ‘lsv‘l’z)

* The same result can of course be obtained by straightforward muliipli-
cation.
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In words:

The Jacobian of the resultant transformation is equal to the
product of the Jacobians of the individual transformations.

In symbols:
d(u, v) __ 0(u, v) 9(¢, )
oz, y) &) o= y)

This equation brings out the appropriateness of our symbol for
the Jacobian. When transformations are combined, the Jacobians
behave in the same way as the derivatives behave when functions of
one variable are combined. The Jacobian of the resultant transfor-
mation differs from zero, provided the same is true for the in-
dividual (or component) transformations.

If, in particular, the second transformation

U= (D(f, 77): U-—'—-T(f, 77)
is the inverse of the first,
¢= ¢(w’ .'/), n= !ﬁ((l), y)’

and if both transformations are differentiable, the resultant
transformation will simply be the identical transformation, that
is, u=x, v=1y. The Jacobian of this last transformation is
obviously 1, so that we again obtain the relation of p. 144,

ot 1) Ao y) _
3z, y) A& )

From this, incidentally, it follows that neither of the two Jacobians
can vanish.

Before we take up the question of the resolution of an
arbitrary transformation into primitive transformations, we
shall consider the following primitive transformation:

E=¢=xy), 1=y

We assume that the Jacobian D= ¢, of this transformation
differs from zero throughout the region R, i.e. we assume that
¢, >0, say, in the region. The transformation deforms the
region R into a region B; and we may imagine that the effect
of the transformation is to move each point in the direction of
the z-axis, since the ordinate is unchanged. After deformation
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the point (¢, y) has a new abscissa which depends on both =
and y. The condition ¢,>>0 means that when y is fixed
¢ varies monotonically with . This ensures the one-to-one
correspondence of the points on a line y = const. before and

¥ RN 1
\ )
y P . Q y P 2
0 0
o z: z "r gz §

Fig. 12.—Transformation in which the sense of rotation is preserved

after the transformation; in fact, two points P(z,, y) and Q(z,, ¥)
with the same ordinate ¥ and w, > z, are transformed into two
points P’ and @' which again have the same ordinate and whose
abscissee satisfy the inequality & > &; (cf. fig. 12). This fact also

y \'I'!h
1
Q. P
y 2 y
0 ‘ 0 _
F ) X2 x 2 3 g

Fig. 13.—Transformation in which the sense of rotation is reversed

shows that after the transformation the sense of rotation is the
same as that in the xy-plane.

- If ¢, were negative, the two points P and @ would corre-
spond to points with the same ordinate and with abscisse &
and &,, but this time we should have & > £, (cf. fig. 13). The sense
of rotation would therefore be reversed, as we have already seen
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in Chapter I (p. 35) for the simple case of affine transforma-
tions. _ Y
If the primitive transformation

§=d@y), 1=y ;

is continuously differentiable, and its Jacobian ¢, differs from
zero at a point P(Xy, ¥o), then in a neighbourhood of P the trans-
formation has a unique inverse, and this inverse is also a primitive
transformation of the same type. In virtue of the hypothesis
$s == 0 We can apply the theorem on implicit functions given in
section 1, No. 3 (p. 114), and thus find that in a neighbourhood
of (¢, yo) the equation &= $(z, y) determines the quantity =
uniquely as a continuously differentiable function & = g(é y) of
£ and y.* The two formulse

z=g(£, 1), ?f'—"— 17

therefore give us the inverse transformation, whose determinant
i8 ge= 1/¢y 0. : .

_. Tf we now think of the region B in the £x-plane as itself
mapped on a region R in the uv-plane by means of a primitive
transformation

u=§, v% T(f, "])i

where we assume that ¥, is positive, the state of affairs is just as
above, except that the deformation takes place in the direction
of the other co-ordinate. This transformation likewise preserves
the sense of rotation (or reverses it if the relation ¥, < 0 holds
- instead of ¥, > 0). L

By combining the two primitive transformations we obtain
the transformation : o '

u= ¢, y),
= ‘F(‘ﬁ(ws ?/), .’/) = Sb(z’ y)’

and from the theorem on Jacobians we see that

b b)_
a(x’ y) ¢w ”

* Here we use the fact that a function with two continuous derivatives is
differentiable. ‘ e i
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We now assert that an arbitrary one-to-one continuously
differentiable transformation

U= ¢($, y), v= Iﬁ(ﬁ, 3/)

of the region R in the xy-plane on a region R’ in the uv-plane
can be resolved in the neighbourhood of any point interior to R
into continuously differentiable primitive transformations, pro-
vided that throughout the whole region R the Jacobian

) _
a( , y) ¢a—‘¢ﬂ ¢V¢l

differs from zero.

From the non-vanishing of the Jacobian it follows that at
no point can we have both ¢,=0 and ¢,=0. We consider a
point with co-ordinates (zy, y,) and assume that at that point
¢ =+ 0. Then by the main theorem of section 1, No. 5 (p. 117)
we can mark offintervals 2, S 2 S 2, Y S YS Yo Y S U S Uy
about x4, y,, and uy = u(wy, y,) respectively, in such a way that
within these bounds the equation u = ¢z, y) can be solved
uniquely for z and defines z = g(u, y) as a continuously differen-
tiable function of # and y. If we substitute this expression in
v = ii(z, y), we obtain v= (g(%, ¥), y) = V(u, y). Hence in
any neighbourhood of the point (x, y,) we may regard the given
transformation as composed of the two primitive transformations

f=¢(9?s.’/), n=y
u=¢§ ov="Y(¢ 7).

Similarly, in a neighbourhood of a point (z,, ¥,) at which
¢, == 0 we can resolve the given transformation into two primi-
tive transformations of the form

(=u, "I=¢(z,?/)
u=1, o="y) (= ‘/’{m’ ylu, (E)})

This pair of transformations is not exactly identical in form with
the pairs considered above, each of which leaves one of the co-
ordinate directions unaltered. It can easily be brought into
that form, however, by interchanging the letters » and v (this
interchange is itself the resultant of three very simple primitive
transformations (cf. the footnote on p. 31)). For the purposes of

and
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the present chapter, however, it is more convenient not to carry
out this resolution; instead, we write the last set of equations in
the form

f=u, 7]=¢($, )}
u= —‘F1(§9 "I), V= M
U="7, V= —u.

These last represent two primitive transformations, each affecting
one co-ordinate direction only, and also a rotation of the axes
in the wo-plane through an angle of 90°. The rotation is 80 easy
to deal with that it need not be split up into primitive trans-
formations.

It is not to be expected that we can resolve a transformation
into primitive transformations in one and the same way through-
out the whole region. Since, however, one of the two types of
resolution can be carried out for every interior point of R, every
closed region interior to R can be subdivided into a finite number
of sub-regions* in such a way that in each sub-region one of the
resolutions is possible.

From the possibility of this resolution into primitive trans-
formations we can draw an interesting conclusion. We have seen
that in the case of a primitive transformation the sense of rotation
is reversed or preserved according as the Jacobian is negative or
positive. From this it follows that n the case of general trans-
formations the sense of rotation is reversed or preserved according
as the sign of the Jacobian is negative or positive. For if the sign
of the Jacobian is positive, when the resolution into primitive
transformations is carried out the Jacobians of the primitive
transformations will either be both positive or both negative. (The
rotation of the u- and v-axes through 90°, required in some cases,
has 11 for its Jacobian and leaves the sense of rotation un-
changed, and accordingly does not affect the discussion at all.) In
the first case it is obvious that the sense of rotation is preserved;
in the second case this follows from the fact that two reversals
of the sense bring us back to the original sense. If the Jacobian
is negative, however, one, and only one, of the primitive trans-
formations will have a negative Jacobian and will therefore
reverse the sense, while the other will not affect it.

* This follows from the covering theorem (cf. p. 99).
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6. General Theorem on the Inversion of Transformations and
Systems of Implicit Functions.

The possibility of inverting a transformation depends on the
following general theorem:

If in the neighbourhood of a point (x4, y,) the functions $(x, y)
and Y(x, y) are continuously differentiable,* and uy= $(xy, Yo),
Vo= ¥(Xq, Yo), and if in addition the Jacobian D = ¢ab, — b b,
s nol zero at (X4, y,), then in a neighbourhood of the point
(%o, ¥o) the system of equations u = ¢(x, y), v= (%, y) has a
unique tnverse; that is, there is a uniquely determined pair of
functions = g(u, v), y = h(u, v) such that z,= g(u,, v,) and
Yo = h(ug, vo) and also the equations

%= ¢(g(u’ v), h(u, v)) and v= ‘/’(g(u’ ), h(u" v))

hold in some neighbourhood of the point (ug, v,)-

In the neighbourhood of (uq, V) the so-called tnverse functions
X = g(u, v), y = h(u, v) possess continuous dertvatives which are
given by the expressions

@_ 1% G 10
v D¥ w Doy
y__lw w_ lou

The proof follows from the discussions in No. b (p. 149). For
in a sufficiently small neighbourhood of the point (z,, ¥,) We can
resolve the transformation u=¢(z, y), v=1)(x, y) into continu-
ously differentiable primitive transformations, possibly with a rota-
tion of the u- and v-axes through 90° in addition. Each of these
has a unique inverse, which is itself a continuously differentiable
transformation. The combination of these inverse transformations
at once gives us the transformation which is the inverse of the given
one. This, being a combination of continuously differentiable trans-
formations, is itself continuously differentiable. It then follows
from No. 4 (p. 143) that the differentiation formuls hold as stated.

This inversion theorem is a special case of a more general
theorem which may be regarded as an extension of the theorem
of implicit functions to systems of functions. The theorem of

* 1.e. are continuous and possess continuous derivatives.
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implicit functions (section 1, p. 117) applies to the solution of one
equation for one of the variables. The general theorem is as
follows:

Ifdx, 7,0, v, ..., W and $(x,y, 0, v, ..., W) are con-
tinuously differentiable functions of X, y, u, v, ... , W, and the
equations

dx, y, u,v,...,w)=0 and Yz, 9y, 4,0, ...,w)=0

are satisfied by a certain set of values Xq, Yo, Ug, Vos + - - » Wo» and
if in addition the Jacobian of ¢ and Y with respect to X and y differs
from zero at that point (that is, D = ¢ap, — dyb, == 0), then in
the neighbourhood of that point the equations ¢ =0 and =0
can be solved in one, and only one, way for x and y, and this solution
gives x and y as continuously differentiable functions of u, v, . . ., W.

The proof of this theorem is similar to that of the inversion
theorem above. From the assumption that D == 0 we can conclude
without loss of generality that at the point in question ¢, == 0.
Then by the main theorem of section 1 (p. 117), if we restrict
@, Y, %, ...,wto sufficiently small intervals about Zg, %o, %o
Vg, - - . » W, Tespectively, the equation ¢(z, ¥, %, v, . . . , w) can be
solved in exactly one way for = as a function of the other variables,
and this solution = = g(y, u, v, . . . , ) is a continuously differ-
entiable function of its arguments, and has the partial derivative
gy = —¢y]/be If we substitute this function z = g(y, %, v, . . ., W)
in (@, y, 4, v, . . . , w), We obtain a function Y(z, y, %, v, . . . , W)
=¥y, % v, ..., w), and ‘

¥, = —'/‘wé!"' ‘/’y= 2
£ 4 ¢C

Hence in virtue of the assumption that D == 0 we see that the
derivative ¥, is not zero. Thus if we restrict y, w, v, . . . , w to
intervals about g, %y, ¥y, - - - , Wy (Which we take to be smaller
than the intervals to which they were previously restricted), we
can solve the equation ¥ = 0 in exactly one way for y as a
function of w, v, ..., w, and this solution is continuously dif-
ferentiable. Substituting this expression for y in the equation
=gy, u, v, ..., w) now gives = as a function of u, v, ..., w,
and this solution is continuously differentiable and unique,
subject to the restriction of z, y, 4, v, . . . , w to sufficiently small
intervals about zg, y, g, vy . . . , W, Tespectively.
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7. Non-independent Funections.

It is worth mentioning that if the Jacobian D vanishes at a
point (xg, ¥,), no general statement can be made about the
possibility of solving the equations in the neighbourhood of
that point. Even if the inverse functions do happen to exist,
however, they cannot be differentiable, for then the product

o(¢, 1) 9=, y) would vanish, while by p. 147 it must be equal
o(x, y) (&, )
to 1.

For example, the equations

u=2a" o=y
can be solved uniquely, the solutions being
T = '\s/'"" y=0,

although the Jacobian vanishes at the origin; but the function »\s/ u is not
differentiable at the origin.
On the other hand, the equations

u=22—9y% o= 22y

cannot be solved uniquely in the neighbourhood of the origin, since the
two points (z, y) and (—=z, —y) of the zy-plane both correspond to the
same point of the uv-plane.

If, however, the Jacobian vanishes identically, that is, not
merely at the single point (z, y), but at every point in a whole
neighbourhood of the point (z, y), then the transformation is of
the type called degenerate. In this case we say that the functions
u= ¢, y) and v= (z, y) are dependent. We first consider
the special, almost trivial, case in which the equations ¢,= 0
and ¢, = 0 hold everywhere, so that the function ¢(z, y) is a
constant.

We then see that while the point (z, &) ranges over a whole
region its image (u, v) always remains on the line % = const.
That is, our region is mapped only on a line, instead of on a
region, so that there is no possibility here of speaking of a one-
to-one mapping of two two-dimensional regions on one another.
A similar situation arises in the general case in which at least
one of the derivatives ¢, or ¢, does not vanish, but the Jacobian
D is still zero. We suppose that at a point (x,, ¥o) of the region
under consideration we have ¢, ==0. It is then possible to
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resolve our transformation into two primitive transformations
E=d(z, y), n=y and u= ¢ v=y({ 7) just as in No. 5
(p. 150), for there we made use only of the assumption ¢, == 0.
In virtue of the equation D= ¢, = 0, however, 3, must
be identically zero in the region where ¢,==0; that is, the
quantity = v does not depend on 7 at all, and v is a function
of £ = u alone. Qur result is therefore as follows:

If the Jacobian of the transformation vanishes identically, a
region of the xy-plane is mapped by the transformation on a curve
in the uv-plane instead of on a region, since in a certain interval
of values of u only one value of v corresponds to each value
of u. Thus if the Jacobian vanishes identically the functions are
not independent, i.e. a relation

F(¢,4)=0

exists which 1s satisfied for all systems of values (x, y) in the above-
mentioned region. For if F(u, v) = 0 is the equation of the curve
in the wv-plane on which the region of the zy-plane is mapped,
then for all points of this region the equation

F(d(z, y), (=, y)) =0

is satisfied, i.e. this equation is an identity in  and y.

The exceptional case discussed separately at the begmmng
is obwously included in this general statement. The curve in
question is then just the curve u = const., which is a parallel to
the v-axis.

An example of a degenerate transformation is

E=z+y, n=(=+y*

According to this transformation all the points of the 2y-plane are mapped
on the points of the parabola » = £2 in the &x-plane. An inversion of the
transformation is out of the question, for all the points of the line z 4 y
= const. are mapped on a single point (£, 1). As we can easily verify, the
value of the Jacobian is zero. The relation between the functions £ and 7,
in accordance with the general theorem, is given by the equation
FE 9)=88—n=0

8. Concluding Remarks.

The generalization of the theory for three or more independent
variables offers no particular difficulties. The chief difference
is that instead of the two-rowed determinant D we have deter-
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minants with three or more rows. In the case of transformations
with three independent variables,
E=d¢(@ 4,2, 1= 4,2, {=xzy 2),
=gt 0, y=hé&n L), 2=UE 0, ),

the Jacobian is given by the equation

964: ‘l’az Xz
_&En )
D= (=, v, 2) =|d ¥y xul

¢ . Xz
In the same way, for transformations
E‘ = ¢i(x1: $2, o0y mﬂ) N
1=1,2,..
Ty = gi(gl, 52: ceey fn)

with n independent variables the Jacobian is
o o W,
ox,’ Oy’

a(§15 §2s ceey fn) __ %’ % a¢ﬂ

o(zy, xz,...,w,,)_ 0z,” Omy’ 7 Omy|

04y gy 0dn

oo, 5 '

ey

For more than two independent variables it is still true that
when transformations are combined the Jacobians are multiplied
together. In symbols,

a(fl’ 52: ) Eﬂ) . a("]1: Moy ooy "7n) — a(fl: 52’ ceey fn).
a("ll! Mgy « o5 Mn) a(zl’ Ty o vy Tp) a(zp Dyy - o vy Tp)

In particular, the Jacobian of the inverse transformation is the
reciprocal of the Jacobian of the original transformation.

The theorems on the resolution and combination of trans-
formations, on the inversion of a transformation, and on the
dependence of transformations remain valid for three and more
independent variables. The proofs are similar to those for the
case # = 2; to avoid unnecessary repetition we shall omit them
here.

In the preceding section we have seen that the behaviour of
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a general transformation in many ways resembles that of an
affine transformation, and that the Jacobian plays the same part
as the determinant does in the case of affine transformations.
The following remark makes this even clearer. Since the functions
¢ = ¢(z, y) and 9 = (=, y) are differentiable in the neighbour-
hood of (z,, y,), we can express them in the form

§ — £0= (& — %) $ul@0; Yo) + ¥ — Yo) $o(@0> Yo)
+ e Vi@ — x4+ (¥ — 9o)%
N — 1= (& — o) Yo(@0, Yo) + ¥ — Y0) P4(T0 Yo)
+3V(@— 2o + (y — 90)%
where ¢ and § tend to zero with +/{(z — o)®+ (¥ — ¥o)*}-
This shows that for sufficiently small values of | z — zy| and
| ¥ — yo | the transformation may be regarded, to a first approxi-

mation, as affine, since it can be represented approximately by
the affine transformation

§= £+ (@ — 20)Zos Yo) + (¥ — Yo)Pu(To> Yo)s
N =19+ (& — 2o)puT, Yo) + (¥ — Yo)¥s(To> Yo)s

whose determinant is the Jacobian of the original transformation.

ExaMPLES
1. If f(x)isacontinuously differentiable function, then the transformation
u=f(x), v=—y <+ zf(z)

has a single inverse in every region of the zy-plane in which f(x) = 0.
The inverse transformation has the form

z = g(u), y = —v + ug(u).

2. A transformation is said to be “conformal” (see p. 166) if the
angle between any two curves is preserved.
(a) Prove that the inversion

£ y

T
EEE Y R

is a conformal transformation.

(b) Prove that the inverse of any circle is another circle or a straight
line.

(c) Find the Jacobian of the inversion.

3. Prove that in a curvilinear triangle which is formed by three circles
passing through one point O, the sum of the angles is .
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4. A transformation of the plane
u= o, ¥) v = Y, y)
is conformal if the functions ¢ and ¢ satisfy the identities

P = Yys Py == — e
5. The equation

22 iy
— = (@ > b)
determines two values of #, depending on z and y:
L= Az, y),
= w2, y).

(a) Prove that the curves ¢, = const. and ¢, = const. are ellipses and
hyperbolas all having the same foci (confocal conics).

(b) Prove that the curves ¢, = const. and #, = const. are orthogonal.

(¢) t, and ¢, may be used as curvilinear co-ordinates (so-called *“focal”
co-ordinates). Express  and y in terms of these co-ordinates.

iy, &) .

(d) Express the Jacobian %72)) in terms of  and y.

(¢) Find the condition that two curves, which are represented para-
metrically in the system of focal co-ordinates by the equations

h=f(0), .= f(3) and &= g,(u), &3 = ga()s

are orthogonal to one another.
6. (a) Prove that the equation in ¢

22 ¥ 22
a—t+b—t+c—t_1 @>b>¢)

has three distinct real roots &, &, f3, which lie respectively in the intervals
—wct<ct, c<t<h bt <a,

provided that the point (x, y, 2) does not lie on a co-ordinate plane.

(b) Prove that the three surfaces ¢, = const., #, = const., {; = const.
passing through an arbitrary point are orthogonal to one another.

(¢) Express z, y, z in terms of the “ focal co-ordinates ™ ¢;, #,, #;.

7. Prove that the transformation of the xy-plane given by the equations

x
t=1(e+ aip) =2l-555)
(a) is conformal;
(b) transforms straight lines through the origin and circles with the
origin as centre in the zy-plane into confocal conics ¢ = const. given by
Ei -,12

H-__%-Ft—-_%:l.
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8. Inversion in three dimensions is defined by the formul
S S S JU R
TErgre ) Prgte T 2+
Prove that

(a) the angle between any two surfaces is unchanged;
(b) spheres are transformed either into spheres or into planes.

9. Prove that if all the normals of a surface z = u(z, y) meet the
z-axis, then the surface is a surface of revolution.

4, APPLICATIONS

1. Applications to the Theory of Surfaces.

In the study of surfaces, as in that of curves, paramefric
representation is frequently to be preferred to other types of
representation. Here we need two parameters instead of one;
we denote them by u and ». A parametric representation may be
expressed in the form

z=¢(u, v), y=7w, ), 2= x(u,0),

where ¢, i, and x are given functions of the parameters  and v
and the point (u, v) ranges over a given region R in the uo-plane.
The corresponding point with the three rectangular co-ordinates
(%, 9, z) then ranges over a configuration in zyz-space. In general
this configuration is a surface, which can be represented in the
form z = f(x, y), say. For we can seek to solve two of our three
equations for w and v in terms of the two corresponding rect-
angular co-ordinates. If we substitute the expressions thus found
for u and v in the third equation, we obtain an unsymmetrical
representation of the surface, z = f(z, y), say.* Hence in order
to ensure that the equations really do represent a surface, we
have only to assume that the three Jacobians

s b0 $u Po Xu Xeo
Yu /8 Xu Xo du bo

do not all vanish at once; in a single formula, that
(Putbo — Sotbu)® + (Puxo — Poxu)® + (XuPo — Xobu)? > 0.

Then in some neighbourhood of each point in space represented

b b

* This is actually a special case of the parametric form, as we see by putting
z=uandy = v,
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by our three equations it is certainly possible to express one of
the three co-ordinates uniquely in terms of the other two.

A simple example of parametric representation is the representation of
the spherical surface #® 4 y? 4 22 = #2 of radius r by the equations

& = rcosu siny, y=rsinusiny, 2= rcosv
O=u<2n 0=v=rn)

where v = 0 is the polar distance and u = ¢ is the geographical longitude
of the point on the sphere (cf. p. 141).

This example exhibits one of the advantages of parametric representa-
tion. The three co-ordinates are given explicitly as functions of % and v,
and these functions are single-valued. If v runs from =/2 to = we obtain
the lower hemisphere, i.e. z = — /(1% — 22 — ¢2), while values of v from
0 to /2 give the upper hemisphere. Thus with the parametric representa-
tion it is not necessary, as it is with the representation z =+ v/ (? — 22 — 3?2),
to consider two  single-valued branches ™ of the function in order to
obtain the whole sphere.

We obtain another parametric representation of the sphere by means of
stereographic projection. In order to project the sphere 22+ y2 4 22— r2=0

Fig. 14~—Stereographic projection of the sphere

stereographically from the ““north pole™ (0, 0, r) on the * equatorial
plane ” z = 0, we join each point of the surface to the north pole N by
a straight line and call the intersection of this line with the equatorial
plane the stereographic tmage of the corresponding point of the sphere
(fig. 14). We thus obtain a one-to-one correspondence between the points
of the sphere and the points of the plane, except for the north pole N.
Using elementary geometry, we readily find that this correspondence is
expressed by the formulse

o __wh @ty
e prap g S A Jrp g S Y B S

where (u, v) are the rectangular co-ordinates of the image-point in the plane.
These equations may be regarded as a parametric representation of the
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sphere, the parameters u and v being rectangular co-ordinates in the
uv-plane.
As a further example we give parametric representations of the surfaces
P I
— —e——=1 and —— = — — =1
2TE 2 1 and . .

which are called the hyperboloid of one sheet and the hyperboloid of two

Fig. 15.—Hyperboloid of one sheet Fig. 16—Hyperboloid of two sheets

sheets respectively (cf. figs. 156 and 16). The hyperboloid of one sheet is
represented by :

e? + e ?
x = acosu = @ cosu coshuv,
. e+ e? . 0=u<22n
y = bsinu = b sinu coshv,
2 —o<v<+ ®
ev — v .
z=c = ¢ sinhwv;

the hyperboloid of two sheets by

eV | e?
z=a 2 = g coshy,
eV — ¢? A 05 u<2n
y = bcosu = b cosu sinhv, -
2 —o<o<4 ®
ei}_e—ﬂ
2= csinu = ¢ sinu sinho.

2

In general, we may regard the parametric representation of

a surface as the mapping of the region R of the uv-plane on the
7 (E912)
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corresponding surface, where, as always, the word mapping is
understood to mean a point-to-point correspondence. To each
point of the region R of the uv-plane there corresponds one point
of the surface, and in general the converse is also true.*

In the same way, a curve u = u(t), v = v(t) in the uv-plane
corresponds in virtue of the equations & = $(u(t), v(2)) = x(t), . . .
to a curve on the surface (cf. p. 85). In particular, in the
representation of the sphere by means of polar co-ordinates
the meridians are represented by the equation % = const. and
the parallels of latitude by == const. This net of curves
thus corresponds to the system of parallels to the axes in
the wv-plane.

The representation of a curve on a given surface is one of the
most important methods for thorough investigation of the proper-
ties of the surface. Here we shall give only the expression for s,
the length of arc of such a curve. As we mentioned in Chap. II,
section 7 (p. 86), we have

& -+ ()

so that in virtue of the equations
dx

'_'——wﬂ + v '!

dt
we obtain

sttt

where for the sake of compactness we have introduced the
Gaussian fundamental quantities of the surface,

ox 0z
E =

G+ G+ G
_Ox0x  Oyoy , 0z 02
“@%+auav+auav

=G+ G+ @)

* This, of course, is not always the case. For example, in the representa-
tion of the sphere by polar co-ordinates (p. 160) the poles of the sphere corre-
spond to the whole line-segments v = 0 and v = x respectively.
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These are independent of the particular choice of the curve on
the surface, and depend only on the surface itself and its para-
metric representation. The above expressions for the derivative
of the length of arc with respect to the parameter are usually
expressed symbolically by omitting the reference to the parameter
¢t and saying that the ““ line element * ds on the surface is given
by the * quadratic differential form

ds® = Edu? -+ 2F dudv + Gdva.

For the direction cosines of the normal to a surface given
in the form ®(z, y, z) = 0 we have already obtained (p. 130)
the expressions

cosa = D, cos B = D,
YRR R VoI T o T o8
o,
Y VO O T 08

To obtain these direction cosines in the case of parametric re-
presentation, we suppose that the surface given by the equations
z= d(u, v), y=fu, v), 2= x(u, v) is written in the form
®(x, y, 2) = 0. The equation

(D(‘ﬁ(u: v), ¥(u, v), x(u, v))=0

is then an identity in % and », and by differentiation we
obtain

q)a:¢u + q)v‘pu + (I)qu =0,
(D¢¢v + q)v';bv + q)sz= 0.

From these it follows at once that (cf. Chap. I, section 3, p. 26)

D, = p(thuxo — Xubo); @y = P(XuPo — PuXo)s
©, = p(putpy — Pudo);

where p is a suitably chosen multiplier. From the definition of
E, F, G we find by direct expansion that

(Puxto — xutbo)® + (Xutbo — Puxo)® + (uths — Yudho)® = EG — F2,
and combining this with the preceding equation, we have
D2+ B2 + 0,2 = pHEG — F?)
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Thus we finally obtain the formule for the direction cosines of
the normal to the surface in the form

o= Squv - Xu‘pu . Xu¢v - ¢uX§;
cse=Ee—my “F=JEa= my
_ babo— Yt
cosy = JEG— Py

The equations u = g(t), v = k(f), as we have seen, represent
a curve on the surface. The direction cosines of the tangent to
this curve are given according to the chain rule by the expressions

cos:;;:fi_m_d_z@_ zu + o0
ds dt ds  +/(Bu®+ 2Fu'v’ + Gv'?)
= yuts' + g’ _ 2 + 20
BB TR TG T Aoy

Here for brevity we have put %t—) =/, o%it) =¢". If we now

consider a second curve on the surface, given by the equations
u = ¢,(t), v = h,(t), whose tangent has the direction cosines cos a;,
cos By, cosy,, and if we use the abbreviations

dt) _ . () _
=a B0

b4

then the cosine of the angle between the two curves is given by the
cosine of the angle between their tangents, that is, by
COSw == cOSa CO8a, - cos B cos B, 4 cosy cosy,
Euw' + F(uw' + w'9) + G’
\/ (Bu? + 2Fus + G®) o/(Bw'® + 2Fu'v’ + Gv'%y

where all the quantities on the right are to be given the values
which they have at the point of intersection of the two curves.

In particular, we may consider those curves on the surface
which are given by equations % = const. or v = const. If in our
perametric representation we substitute a definite fixed value
for u, we obtain a three-dimensional or twisted curve lying on
the surface and having v as parameter; and a corresponding
statement holds good if we substitute a tixed value for v and
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allow u to vary. These curves ¥ = const. and v — const. are the
parametric curves on the surface. The net of parametric curves
corresponds to the net of par-
allels to the axes in the uv-plane
(fig. 17).

The mapping of one plane
region on another may be re-
garded as a special case of
parametric representation. For
if the third of our functions
x(u, v) vanishes for all values of
u and v under consideration, then
as the point (u, v) ranges over its
given region the point (z, y, 2)
will range over a region in the x
zy-plane. Hence our equations F® 7~ Farametric curves u = const,
merely represent the mapping of
a region of the uv-plane on a region of the zy-plane; or if we
prefer to think in terms of transformations of co-ordinates, the
equations define a system of curvilinear co-ordinates in the wo-
region, and the inverse functions (if they exist) define a curvi-
linear uv-system of co-ordinates in the plane zy-region. In terms
of the curvilinear co-ordinates (u, v) the line element in the
xy-plane is simply

ds® = Edu? + 2F dudv 4 Gdv?,

oz \2 ox\2
E— a—u) + %),

_0zdz | 0OyOdy
Coudv | oud

__ [ox\? oy\?

As a further example of the representation of a surface in parametric
form we consider the anchor ring or torus. This is obtained by rotating a
circle about a line which lies in the plane of the circle and does not intersect
it (cf. fig. 18). If we take this axis of rotation as the z-axis and choose the
y-axis in such a way that it passes through the centre of the circle, whose
y-co-ordinate we denote by a, and if the radius of the circle is r < | a|,
we obtain in the first instance

=0, y—a=rcosd, z=rsinb (0 <0< 2r)

where
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as a parametric representation of the circle in the yz-plane. Now letting
the circle rotate about the z-axis, we find that for each point of the circle
«? 4+ y* remains constant, that is,
ﬁz 22 4+ 32 = (@ + rcos 8)2. Thus if
the angle of rotation about the
z-axis is denoted by ¢ we have

x = (a + 7 cos8)sing,
y = (a+ rcosB)coso,

\ 0=¢<2r
a, r .
o ~e z= rsind 0=<0<2n
7 7 . .
N as a parametric representation of
N the anchor ring in terms of the
> parameters O and @. In this re-
e presentation the anchor ring ap-
Fig. 18—Generation of an anchor ring by ~ PaT® as the image of a square of
the rotation of a circle side 2= in the O-plane, where any

pair of boundary points lying on
the same line § == const. or ¢ = const. corresponds to only one point
on the surface, and the four corners of the square all correspond to the
same point.
For the line element on the anchor ring we have

ds® = r2d0% + (a + r cos0)2do2.

2. Conformal Representation in General.

A transformation
E= 95(7"’ y)’ n= ¢(z’ y)

is called a conformal transformation if any two curves are trans-
formed by it into two others which make the same angle with
each other as the original ones do.

Theorem.—A necessary and sufficient condition that our (con-
tinuously differentiable) transformation should be conformal is
that the Cauchy-Riemann equations

$s— Py =0, ¢, + 9, =0

¢x+¢‘v=0: qﬁ,,—l/l,,::O

hold. In the first case the direction of the angles is preserved,
in the second case the direction is reversed.*
Proof —We assume that the transformation is conformal.

or

* This last statement follows directly from the statements on p. 151 con-
cerning the sign of the Jacobian ¢, ¥y — ¢ s
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Then the two orthogonal curves £ = const., 7 = const. in the
£n-plane must correspond to orthogonal curves ¢(x, y) = const.
and i(z, y) = const. in the zy-plane.

Hence from the formula for the angle between two curves
(p. 126) it follows immediately that

¢x¢’m + ‘#v‘l’y = 0.

In the same way, the curves corresponding to £ + n = const.
and ¢ — 7 = const. must be orthogonal. This gives

(‘l’x + ‘/’c)(‘l’z - ‘l'.'c) + (¢ﬂ + x/l,,)(gb, - ':bv) =0,
and therefore
¢a:2 + ¢,,2 = ‘pmz + ‘ﬁﬂz'

The first of our equations can be written in the form

$s= A'/’w by = — My,

where A denotes a constant of proportionality. Introducing this
in the second equation, we immediately get A2 = 1, so that one
or other of our two systems of Cauchy-Riemann equations holds.

That the equations are a sufficient condition is confirmed by
the following remark:

If two curves in the wy-plane are given by equations
F(z, y) = 0, G(z, y) = 0 and if according to our transformation
F(z, y) = ®(¢, 7), Gz, y) = T'(§, 1), then by using the Cauchy-
Riemann equations we readily obtain

F2+ F 2= (D2 + ©.2)(¢." + ¢,%),
Gzz + Gy2 = (P£2 + F-qz)(¢x2 -+ 95112);
F:cG'x + Fva = (‘Dfpf + (ann)(¢zz -+ ¢u2);
therefore
F.G,.+ F.G, _ oI+ orI,
VIFE+ PGP+ 6 V(2 + O 0/(T2+ 1Y
That is, the curves F =0, G =0 and their images ® = 0,
I = 0 make the same angle with each other.

ExaMPLES

1. (a) Prove that the stereographic projection of the unit sphere on
the plane is conformal.

(b) Prove that circles on the sphere are transformed either into circles
or into straight lines in the plane.
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(¢} Prove that in stereographic projection reflection of the spherical
surface in the equatorial plane corresponds to an inversion in the uv-plane.

(d) Find the expression for the line element on the sphere in terms of
the parameters u, v

2. Calculate the line element
(a) on the sphere

« = cosu s8inv, y = ginu sinvy, 2 = cosv;
(b) on the hyperboloid
& = coswu coshv, y = sinu coshv, z = sinhy;
(¢) on a surface of revolution given by
r= v(2? + ) = f(),

using the cylindrical co-ordinates z and 6 = arc tan < y as co-ordinates on
the surface;

(d)* on the quadric £,= const. of the family of confocal quadrics given by

x? y? 22
a-—t+b—t c—1i

’

using ¢, and ¢, as co-ordinates on the quadric (cf. Ex. 6, p. 1568).
3. Prove that if a new system of curvilinear co-ordinates r, 8 is intro-
duced on a surface with parameters #, v by means of the equations

u = u(r, 8), v = 1)(7‘, s),
then

PG — F* = (BG — F’){a(u’ ”’}
a(r, s)

where B’ , F’, @ denote the fundamental quantities taken with respect to
r, 8 and B, F, @ those taken with respect to «, v

4. Let ¢t be a tangent to a surface S at the point P, and consider the
sections of 8 made by all planes containing ¢, Prove that the centres of
curvature of the different sections lie on a circle.

5. If ¢ is a tangent to the surface S at the point P, we call the curvature
of the normal plane section through ¢ (i.e. the section through ¢ and the
normal) at that point the ‘ curvature (%) of 8 in the direction £”. For
every tangent at P we take the vector with the direction of ¢, initial point P,

and length -J—k Prove that the final points of these vectors lie on a conic.

6*. A curve is given as the intersection of the two surfaces
24y 22=1
az® + by? 4 cz* = 0.
Find the equations of
(a) the tangent,
{b) the osculating plane, at any point of the curve,
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5. FamrLies oF CuUrves, FamiLiEs OF SURFACES, AND
THEIR ENVELOPES

1. General Remarks.

‘On various occasions we have already considered curves or
surfaces not as individual configurations, but as members of a
family of curves or surfaces, such as f(z, y) = ¢, where to each
value of ¢ there corresponds a different curve of the family.

For example, the lines parallel to the y-axis in the xy-plane, that is, the
lines # = ¢, form a family of curves. The same is true for the family of
concentric circles 22 4 42 = ¢? about the origin; to each value of ¢ there
corresponds a circle of the family, namely the circle with radius ¢. Similarly,
the rectangular hyperbolas xy = ¢ form a family of curves, sketched in fig. 2,
P- 113. The particular value ¢ = 0 corresponds to the degenerate hyperbola
consisting of the two co-ordinate axes. Another example of a family of
curves is the set of all the normals to a given curve. If the curve is given
in terms of the parameter ¢ by the equations £ = ¢(t), n = {(t), we obtain
the equation of the family of normals in the form

(= — o) ') + (y — V() ¥ (t) =0,
where ¢ is used instead of ¢ to denote the parameter of the family.

The general concept of a family of curves can be expressed
analytically in the following way. Let

Sz, y,¢)

be a continuously differentiable function of the two independent
variables = and y and of the parameter c, this parameter varying
in a given interval. (Thus the parameter is really a third indepen-
dent variable, which is lettered differently simply because it plays
a different part.) Then if the equation

f@, y,¢0)=0

for each value of the parameter ¢ represents a curve, the aggregate
of the curves obtained as ¢ describes its interval is called a family
of curves depending on the parameter c.

The curves of such a family may also be represented in para-
metric form by means of a parameter ¢ of the curve, in the form

T = ¢(ta c): y= l/l(t’ ),

where ¢ is again the parameter of the family. If we assign ¢ a
7¢ (r012)
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fixed value, these equations represent a curve with the parameter ¢.
For example, the equations

x = ccost, y= csin?

represent the family of concentric circles mentioned above; again, the
equations

represent the family of rectangular hyperbolas mentioned above, except
for the degenerate hyperbola consisting of the co-ordinate axes.

Occasionally we are led to consider families of curves which
depend not on one parameter but on several parameters. For
example, the aggregate of all circles (x — a)2 4 (y — b)2= ¢?
in the plane is a family of curves depending on the three para-
meters a, b, e. If nothing is said to the contrary, we shall always
understand a family of curves to be a ““ one-parameter ” family,
depending on a single parameter. The other cases we shall dis-
tinguish by speaking of two-parameter, three-parameter, or multi-
parameter families of curves.

Similar statements of course hold for families of surfaces in
space. If we are given a continuously differentiable function
f(z, y, 2, ¢), and if for each value of the parameter ¢ in a certain
definite interval the equation

flz, y,2,¢)=0

represents a surface in the space with rectangular co-ordinates
Z, Y, #, then the aggregate of the surfaces obtained by letting ¢
describe its interval is called a family of surfaces, or, more precisely,
a one-parameter family of surfaces with the parameter c. For
example, the spheres 2?1+ 42+ 22 = ¢ about the origin form
such a family. As with curves, we can also consider families of
surfaces depending on several parameters.

Thus the planes defined by the equation
ox+by+VIi—aF—bz4-1=0

form a two-parameter family, depending on the parameters a and b, if
the parameters a and b range over the region a? 4 52 < 1. This family of
surfaces consists of the class of all planes which are at unit distance from
the origin.*

* Sometimes a one-parametric family of surfaces is referred to as ! surfaces,
a two-parametric family as «? surfaces, and so on.
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2. Envelopes of One-Parameter Families of Curves.

If a family of straight lines is identical with the aggregate of
the tangents to a plane curve E-—as e.g. the family of normals of
a curve C is identical with the family of tangents to the evolute
E of C (cf. Vol. I, p. 308)—we shall say that the curve E is the
envelope of the family of lines. In the same way we shall say that
the family of circles with radius 1 and centre on the z-axis, that
is, the family of circles with the equation (z — ¢+ 42— 1= 0,
has the pair of lines y = 1 and y = —1, which touch each of

Yk

COYTVE
<\&¥¥Xw

Fig. 19.—Family of circles with envelope

y=+1

y=~1

the circles, as its envelope (fig. 19). In these cases we can obtain
the point of contact of the envelope and the curve of the family
by finding the intersection of two curves of the family with
parameter values ¢ and ¢ - & and then letting % tend to zero.
We may express this briefly by saying that the envelope is the
locus of the intersections of neighbouring curves.

With other families of curves it may again happen that a
curve F exists which at each of its points touches some one of the
curves of the family, the particular curve depending of course
on the point of £ in question. We then call E the envelope of
the family of curves. The question now arises of finding the
envelope E of a given family of curves f(z, y, ¢) = 0. We first
make a few plausible remarks, in which we assume that an
envelope E does exist and that it can be obtained, as in the
above cases, as the locus of the intersections of neighbouring
curves.* We then obtain the point of contact of the curve

* Since this last assumption will be shown by examples to be too restrictive,
we shall shortly replace these plausibilities by a more complete discussion.
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f(@, y, ¢) = 0 with the curve E in the following way. In addition
to this curve we consider a neighbouring curve f(z, y, ¢ + k) = 0,
find the intersection of these two curves, and then let % tend to
zero. The point of intersection must then approach the point
of contact sought. At the point of intersection the equation

f(w’?/’o‘i‘h)_f(x:y:c):()
3

is true as well as the equations f(z, y, ¢ + k) = O and f(z, ¥, ¢) =0
In the first equation we perform the passage to the limit 2 — 0.
Since we have assumed the existence of the partial derivative f,
this gives the two equations

f@y,0=0, fir,y,0)=0

for the point of contact of the curve f(z, y, ¢)= 0 with the
envelope. If we can determine z and y as functions of ¢ by means
of these equations, we obtain the parametric representation of a
curve with the parameter ¢, and this curve is the envelope. By
elimination of the parameter ¢ it can also be represented in the
form g(z, 4¥) = 0. This equation is called the *“ discriminant > of
the family, and the curve given by the equation g(z, y) = 0 is
called the “ diseriminant curve .

We are thus led to the following rule: 4n order to obtain the
envelope of a family of curves {(x, y, ¢) = 0, we consider the two
equations £(x, y, ¢)= 0 and {(x, y, ¢) = 0 simultaneously and
attempt to express X and y as functions of ¢ by means of them or to
eliminate the quantity c between them.

We shall now replace the above heuristic considerations by a
more complete and more general discussion, based on the definition
of the envelope as the curve of contact. At the same time we shall
learn under what conditions our rule actually does give the
envelope, and what other possibilities present themselves.

We assume to begin with that ¥ is an envelope which can be
represented in terms of the parameter ¢ by two continuously
differentiable functions

z=2(c), y=y(c),

dz\?2 dy\? . . .
where 7 -+ % == 0, and which at the point with para-

meter ¢ touches the curve of the family with the same value of the
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parameter c. In the first place, the equation flx, y, ¢)=0 is
satisfied at the point of contact. If in this equation we substitute
the expressions #(c) and y(c) for = and y, it remains valid for all
values of ¢ in the interval. On differentiating with respect to ¢
we at once obtain

dx dy .
fz% +fv% +fc’_ 0‘

Now the condition of tangency is
dx dy
Ja 7 + fu ]

for the quantities dz/dc and dy/dc are proportional to the direction
cosines of the tangent to E and the quantities f, and f, are pro-
portional to the direction cosines of the normal to the curve
f(@, y, ¢) = 0 of the family, and these directions must be at right
angles to one another. It follows that the envelope satisfies the
equation f, = 0, and we thus see that the rule given above is a
necessary condition for the envelope.

In order to find out how far this condition is also sufficient,
we assume that a curve E represented by two continuously dif-
ferentiable functions z = w(c) and y = y(c) satisfies the two
equations f(z, y, ¢) = 0 and f,(z, y, ¢) = 0. In the first equation
we again substitute z(c) and y(c) for « and y; this equation then
becomes an identity in ¢. If we differentiate with respect to ¢
and remember that f, = 0, we at once obtain the relation

dx dy
fﬁ%_l_fﬂd;—_' 0’

which therefore holds for all points of E. If the two expressions
f:2 + f.% and (dz/dc)? + (dy/dc)? both differ from zero at a point
of E, so that at that point both the curve £ and the curve of the
family have well-defined tangents, this equation states that the
envelope and the curve of the family touch one another. With
these additional assumptions our rule is a sufficient condition for
the envelope as well as a necessary one. If, however, f, and f,
both vanish, the curve of the family may have a singular point
(cf. section 2, p. 128), and we can draw no conclusions about
the contact of the curves.

Thus after we have found the discriminant curve it is still
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necessary to make a further investigation in each case, in order
to discover whether it is really an envelope or to what extent
it fails to be one.

In conclusion we state the condition for the discriminant
curve of a family of curves given in- parametric form

z =t c), y=4,e¢)
with the curve parameter ¢. This is

ﬁbt‘//c - qsc‘,l’t =0.

We can readily obtain it e.g. if we pass from the parametric
representation of the family to the original expression by elimina-
tion of ¢.

3. Examples.

L (x—c+ y2=1. As we have seen on p. 171, this equation re-
presents the family of circles of unit radius whose centres lie on the z-axis
(fig. 19). Geometrically we see at once that the envelope must consist of
the two lines y = 1 and y = —1. We can verify this by means of our
rule; for the two equations (x — ¢)2+ y*=1 and —2(x — ¢) = 0 im-
mediately give us the envelope in the form y* = 1.

N

! L
Cs Cs i

Fig. zo.—Family of parabolas with envelope

2. The family of circles of unit radius passing through the origin,
whose centres, therefore, must lie on the circle of unit radius about the
origin, is given by the equation

(x — cosc)? + (y — sine)2 =1

or
2% + y® — 2z cosec — 2y sinc = 0.

The derivative with respect to ¢ equated to zero gives z sine— y cosc =0,
These two equations are satisfied by the values 2= 0 and y= 0.
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H, however, 22+ y? % 0, it readily follows from our equations that
sine = y/2, cosc = z/2, so that on eliminating ¢ we obtain 2® + 2 = 4.
Thus for the envelope our rule gives us the circle of radius 2 about the
origin, as is anticipated by geometrical intuition; but it also gives us the
isolated point z =0, y = 0.

3. The family of parabolas (z — c)? — 2y = 0 (cf. fig. 20) also has an
envelope, which both by intuition and by our rule is found to be the z-axis.

4. We next consider the family of circles (x — 2¢)2+ y2 —c¢2=0

Fig. 21.—~The family (x — 2¢)* + y* — ¢* = 0

(of. fig. 21). Differentiation with respect to ¢ gives 2x — 3¢ = 0, and by
substitution we find that the equation of the envelope is

—xz-
y’_gv

that is, the envelope consists of the two lines y = ‘_/lg zandy = — v_l3 .

The origin is an exception, in that contact does not occur there.

5. Another example is the family of straight lines on which unit length
is intercepted by the z- and y-axes. If = ¢ is the angle indicated in
fig. 22, these lines are given by the equation

LT A
cosa sina
The condition for the envelope is

sin e coso
x —

= =0
cos?a sina y ’
which, in conjunction with the equation of the lines, gives the envelope in

parametric form,
= cos®a, y= sinda.
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y

0 a

Fig. 22.—Arec of the astroid as envelope of straight lines

x

From these we obtain the further equation
2y =1,

This curve is called the astroid (cf. Vol. 1, Chap. V, Ex. 6, p. 267). It
consists (figs. 23, 24) of four symmetrical branches meeting in four cusps.

J y
1
¥]
/ =7 Q i
[0]
\ X
b1
Fig. 23.—Astroid Fig. 24.—Astroid as envelope of ellipses

6. The astroid 2%° + ™ = 1 also appears as the envelope of the
family of ellipses
e ¥
¢ (1—¢)

whose semi-axes ¢ and (1 — c¢) have the constant sum 1 (fig. 24).
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7. The family of curves (z — ¢)? — y® = 0 shows that in certain cir-
cumstances our process may fail to give an envelope. Here the rule gives

¥

» 2

[of] Cz 0 G Cs Cs
Fig. 25.—The family (x — c)* — y* = 0

the z-axis. But, as fig. 25 shows, this is not an envelope; it is the locus
of the cusps of the curves of the family.

8. In the case of the family
(@—cP—y*=0

we again find that the discriminant curve is the z-axis (of. fig. 26). This

Y\

Wi
iR

Fig. 26.—The family (x — ¢)* — y* =0

is again the ousp-locus; but it touches each of the ourves, and in this
sense must be regarded as the envelope.

9. Another example, in which the discriminant curve econsists of the
envelope plus the locus of the double points, is given by the family of

strophoids [+ (g — o (@ — 2) +2=0
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(cf. fig. 27). Al the curves of the family are similar to each other and
arise from one another by translation parallel to the y-axis. By differen-
tiation we obtain f, = —2(y — ¢)(z — 2) =0,

y so that we must have either z = 2 or y = c.
: The line « = 2 does not enter into the matter,

G5 - . however, for no finite value of y corresponds
: to = 2. We therefore have y = ¢, so that
' the discriminant curve is ¥z — 2) + z= 0.

Cs . This curve consists of the two straight lines
' z=0and #=1. As we see from fig. 27,
: only z= 0 is the envelope; the line z =1

G 1 " passes through the double points of the curves.

c ;

Cz -

7 7 z %

[
|

G :

Fig. 27.—Family of strophoids Fig. 28,—Family of cubical parabolas

10. The envelope need not be the locus of the points of intersection
of neighbouring curves; this is shown by the family of identical parallel
cubical parabolas ¥y — (z — ¢)®* = 0. No two of these curves intersect
each other. The rule gives the equation f, = 3(z — ¢)2 = 0, so that the
2-axis y = 0 is the discriminant curve. Since all the curves of the family
are touched by it, it is also the envelope (fig. 28).

11. The notion of the envelope enables us to give a new definition for
the evolute of a curve C (cf. Vol. I, pp. 283, 307 et seq.). Let C be given
by z = ¢(t), y = {(f). We then define the evolute & of C as the envelope
of the normals of C. As the normals of C are given by

{z — 2B} ’(t) + {y — $OW ) =0,
the envelope is found by differentiating this equation with respect to :
0= {2z — o(O)}e"(®) + {y — UOW"() — 9"%(t) — ¢(2).

From this equation and the preceding one we obtain the parametric re-
presentation of the envelope,

92 + ¢ o {’p ,
(pll?l . ¢II¢I V(¢/2 + ¢Ia)
2+ ¢ ?’p
Vo' — @Y L Vie?+ ¢%
(e i

- q)/ICP' — (P//q‘/

z = o(t) — {'(1)

y = $(t) + ¢’¢¢)

where
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denotes the radius of curvature (cf. Vol. I, p. 281). These equations are
identical with those given in Vol I, p. 283 for the evolute.

12. Let a curve C be given by & = ¢(t), ¥ = {(¢). We form the envelope
E of the circles having their centres on C and passing through the origin O.
Since the circles are given by

2* + y* — 229(t) — 299(t) = 0,

the equation of  is
z9'(t) + y¢’(t) = 0.

Hence if P is the point (p(t), $(f)) and Q(z, y) the corresponding point
of E, then OQ is perpendicular to the tangent to C at P. Since by definition
PQ = PO, PO and PQ make equal angles with the tangent to C at P.

If we imagine O to be a luminous point and C a reflecting curve, then
QP is the reflected ray corresponding to OP. The envelope of the reflected
rays is called the caustic of C with respect to O. The caustic 13 the evolute
of B. TFor the reflected ray PQ is normal to E, since a circle with centre
P touches F at @, and the envelope of the normals of £ is its evolute, as
we saw in the preceding example.

For example, let C be a circle passing through O. Then E is the path
described by the point O’ of a circle ¢’ congruent to C which rolls on ¢
and starts with O and O’ coincident. For during the motion O and O’
always occupy symmetrical positions with respect to the common tangent
of the two circles, Thus Z will be a special epicycloid, in fact, a cardioid
(cf. Vol. I, p. 267, Ex. 2 and 3). As the evolute of an epicycloid is a similar
epicycloid (cf. Vol. I, p. 311, Ex. 1), the caustic of C with respect to O is in
this case a cardioid.

4. Envelopes of Families of Surfaces.

The remarks made about the envelopes of families of curves
apply with but lLittle alteration to families of surfaces also. If
in the first instance we consider a one-parameter family of surfaces
f(z, y, 2, c)=01in a definite interval of parameter values ¢, we ghall
say that a surface E is the envelope of the family if it touches
each surface of the family along a whole curve, and if further
these curves of contact form a one-parameter family of curves on
E which completely cover .

An example is given by the family of all spheres of unit radius with
centres on the z-axis. We see intuitively that the envelope is the cylinder
22 4 2 — 1 = 0 with unit radius and axis along the z-axis; the family
of curves of contact is simply the family of circles parallel to the xy-plane,
with unit radius and centre on the z-axis.*

* The envelopes of spheres of constant radius whose centres lie along curves
are called tube-surfaces.
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As in sub-section 2 (p. 172), if we. assume that the envelope
does exist we can find it by the following heuristic method. We
first consider the surfaces f(z, y, 2, ¢) = 0 and f(x, ¥, 2, ¢+ A)=0
corresponding to two different parameter values ¢ and ¢+ &.
These two equations determine the curve of intersection of the
two surfaces (we expressly assume that such a curve of inter-
section exists). In addition to the two equations above, this
curve also satisfies the third equation

f(f'?,.%z’0+k)—f($,y:2,0)_0
7 = U.

If we let h tend to zero, the curve of intersection will approach a
definite limiting position, and this limit curve is determined by
the two equations

f(x, Y, 2, c) =0, fc(xs Y 2, O) = 0.

This curve is often referred to in a non-rigorous but intuitive
way as the intersection of * neighbouring ” surfaces of the
family. It is still a function of the parameter ¢, so that all the
curves of intersection for the different values of ¢ form a one-
parameter family of curves in space. If we eliminate the quantity
¢ from the two equations above we obtain an equation, which
is called the “ discriminant . As in sub-section 2 (p. 172), we
can show that the envelope must satisfy this discriminant
equation.

Just as in the case of plane curves, we may readily convince
ourselves that a plane touching the discriminant surface also
touches the corresponding surface of the family, provided that
S22+ fit+ f2=+0. Hence the discriminant surface again gives
the envelopes of the family and the loci of the singularities of
the surfaces of the family.

As a first example we consider the family of spheres
Byt E—or—1=0
mentioned above. To find the envelope we have the additional equation
—2(z —¢c)=0.

For fixed values of ¢ these two equations obviously represent the circle
of unit radius parallel to the xy-plane at the height 2 = ¢. If we eliminate
the parameter ¢ between the two equations, we obtain the equation of the
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envelope in the form 2? 4 y2 — 1 = 0, which is the equation of the
right circular cylinder with unit radius and the z-axis as axis.

While for families of curves the formation of the envelope
has a meaning only for one-parameter families, in the case of
families of surfaces it is also possible to find envelopes of two-
parameter families f(z, y, 2, ¢;, ¢,)=0. If, for example, we consider
the family of all spheres with unit radius and centre on the
zy-plane, represented by the equation

@E—af+@y—a?+—1=0,

intuition at once tells us that the two planes z=1 and z= —1
touch a surface of the family at every point. In general we shall
say that a surface E is the envelope of a two-parameter family
of surfaces if at every point P of E the surface E touches a surface
of the family in such a way that as P ranges over E the parameter
values ¢;, ¢, corresponding to the surface touching E at P range
over a region of the ¢,c,-plane, and in addition different points
(¢, €5) correspond to different points P of E. A surface of the
family then touches the envelope in a pomt and not, as before,
along a whole curve.

With assumptions similar to those made in the case of plane
curves, we find that the point of contact of a surface of the family
with the envelope, if it exists, must satisfy the equations

f@yzc,6)=0, f(29206,¢)=0 f(29572¢c,¢c)=0.

From these three equations we can in general find the
point of contact of each separate surface by assigning the corre-
sponding values to the parameters. If, conversely, we eliminate
the parameters ¢, and c,, we obtain an equation which the en-
velope must satisfy.

For example, the family of spheres with unit radius and centre on the
zy-plane is given by the equation

f(x’y9z9cl962)= (x—c)l+ (y— Cp)f 4 2% — 1=20
with the two parameters ¢; and ¢,. The rule for forming the envelope
gives the two equations

foo=—2z—¢,)=0 and f,, = —2(y—¢c)=0.
Thus for the discriminant equation we have 22 — 1 == 0, and in fact the

two planes z=1 and z= —1 are envelopes, as we have already seen
intuitively.
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ExAMPLES

1. Let z = u(x, y) be the equation of a tube-surface, i.e. the envelope
of a family of spheres of unit radius with their centres on some curve
y = f(z) in the zy-plane. Prove that

ut(u, + w2+ 1)= 1.

2. (a) Find the envelope of the two-parameter family of planes for

which
OP + OQ + OR = const. = 1,

where P, @, R denote the points of intersection of the planes with the
co-ordinate axes and O the origin.
(b) Find the envelope of the planes for which

OP?  O@Q* + OR® = 1.

3. Let C be an arbitrary curve in the plane, and consider the circles
of radius p whose centres lie on C. Prove that the envelope of these circles
is formed by the two curves parallel to C at the distance p (cf. the
definition of parallel curves, Vol. I, p. 291).

4*, A family of straight lines in space may be given as the intersection
of two planes depending on a parameter &

a(tye + bty + e(t)ze = 1
dt)z + e(tly + f(t)e = 1.

Prove that if these straight lines are tangents to some curve, i.e. possess
an envelope, then
a—d b—e c—f
a v ¢ (=0,
dl el fl
5*. A family of planes is given by
zcost + ysint + 2=,

where ¢ is a parameter.

(a) Find the equation of the envelope of the planes in cylindrical co-
ordinates (7, 2, 0).

(b) Prove that the envelope consists of the tangents to a certain
curve.

6. If a body is always thrown from the same initial position with the
same initial velocity but at different angles, its trajectories form a family
of parabolas (it is assumed that the motion always takes place in the same
vertical plane). Prove that the envelope of these parabolas is another
parabola.

7*. Find the envelope of the family of spheres which touch the three
spheres
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8¢ @— P+ A=
By 22+ (y— 3P +2=4%
Sp a2+ y*+ (c— 32)2= %
8. If a plane curve C is given by z = f(t), y = g(?), its “ polar re-
ciprocal ” €’ is defined as the envelope of the family of straight lines
Ef@) + mg(t) = 1,
where (£, 7)) are current co-ordinates.
(a) Prove that C is the polar reciprocal of ¢” also.
(b) Find the polar reciprocal of the circle

(g—af+(y—0P=1
(¢) Find the polar reciprocal of the ellipse

22 9P
atE=t

. 6. Maximma aND MiniMa

1. Necessary Conditions.

The theory of maxima and minima for functions of several
variables, like that for functions of a single variable, forms one
of the most important applications of differentiation.

We shall begin by considering a function u = f(z, y) of two
independent variables z, y, which we shall represent by a surface
in zyu-space. We say that this surface has a maximum with the
co-ordinates (z,, y,) if all the other values of « in a neighbour-
hood of that point (all round the point) are less than w(x,, y,).
Geometrically, such a maximum corresponds to a * hill-top *’ on
the surface. In the same way, we shall call the point (z,, ¥,) a
minimum if all other values of the function in a certain neigh-
bourhood of Py(z,, y,) are greater than u,= u(zy, y,). Just as
with functions of one variable, these concepts always refer only
to a sufficiently small neighbourhood ef the point in question.
Considered as a whole, the surface may very well have points
which are higher than the hill-tops. Analytically, we formulate
our definition as follows, so that it applies to functions of more
than two independent variables:

A function u = (x, y, . ..) has a mavimum (or a minimum)
at the point (Xg, Yo - - ) 3 at every point in a neighbourhood of
(Ze» Yoo - - -) the function assumes a smaller value (or a larger
value) than at the pont itself.
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If in the neighbourhood of (2, ¥, . . .) the function assumes
values which are not greater than the value of the function at the
point (but may be equal to it), we say that the function has an
improper maximum at the point. We define an smproper minimum
in a similar way.

We again emphasize that this definition refers to s suitably chosen
neighbourhood of the point, extending in all directions about the point.
Thus in a closed region the value of a maximum may very well lie below
the greatest value assumed by the function in the region.* If the greatest
value is reached at s point P, of the boundary, it need not be a maxi-
mum in the sense defined above, as-we have already seen for functions of
one variable. For if the function is defined in the closed region only, we
cannot find a complete neighbourhood of P, in which the function is
defined; and if, on the other hand, the closed region is contained in & larger
region in which the function is defined, then in this larger region the
function may not have s maximum at Py, as the following example shows.
The function = —a — y is defined over the whole zy-plane, but we
consider it only in the square 0 <z < 1,0 < y < 1. In this closed region
it reaches its greatest value 0 at the origin. This greatest value, however,
is not & maximum. For if we consider a neighbourhood all round the
origin, we find that the function assumes values greater than zero. If,
however, we know that the greatest or least value of a function is
assumed at a single point interior to the region, that point must necessarily
be & maximum or & minimum in the sense defined above.

We shall first give necessary conditions for the occurrence of
an extreme value. (Asin the case of functions of one variable, we
use the terms } extreme value, extreme point when we do not wish
to distinguish between maxima and minima.) That is, we find
conditions which must be satisfied at a point (z,, ¥q, - . .) if there
is to be an extreme value at that point. The equations

fc(mo: Yos %05 - - ) =0,
Jl@o, Yo, 20, - - ) = 0,
fz(xoy Yo %¢5 - - ) =0,

are necessary conditions for the occurrence of a maximum or mini-
mum of a differentiable function u = f(x, y, z, . . .) at the point P,
with co-ordinates (xg, Yo, Zgs - - -)-

* We already know (cf. p. 97) that a continuous function always assumes
a greatest and a least value in a closed region.

1 On the other hand, as will be seen later (p. 186), the terms stationary wlue,
stationary point include points which are neither maxima nor minima.
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In fact, these conditions follow at once from the known
conditions for functions of one independent variable. If we
consider the variables ¢, 2, . . . as fixed at the values y,, 2o, - - -
and regard the function in the neighbourhood of Py as a function
of the single variable z, this function of  must have an extreme
value at the point = z,, and by our previous results we must
bave fi (%o, Yos 2g, - - -) = 0.

Geometrically, the vanishing of the partial derivatives in the case of

functions of two independent variables means that at the point (24, ¥o)
the tangent plane to the surface w = f(z, y) is parallel to the xy-plane.

For many purposes it is more convenient to combine the
conditions in one equation. This equation is

df(mo: Yo: %05 - - ') =fm(x0: Yo %o - - )dm _I-fﬂ(xoi Yo %oy -+ )dy
+ fulTo, Yo 2gs - - )2+ .. .= 0.

In words: at an extreme point the differential (inear part of the
increment) of the function must vanish, no matter what values
we assign to the differentials da, dy, dz, ... of the independent
variables z, y, z, . . . . Conversely, if the above equation is satis-
fied for arbitrary values of dz, dy, . . . it follows that at the given
point f,=f,=...=0. We have only to take all but one of
the (mutually independent) variables equal to zero.
In the equations

fac(x()a Yo» %95 - - ) = O:

fv(xO’ ﬁ‘/o, z0> .. -) = 03

Jel@os Yo 205 -+ -) =0,
there are as many unknowns z,, y,, %, - - - as there are equations.
As a rule, therefore, we can calculate the position of the extreme

points by means of them. But a point obtained in this way need
not by any means be an extreme point.

We consider e.g. the function 4 = xy. Our two equations at once give
=20, y= 0. In the neighbourhood of the point x = 0, y = 0, however,
the function assumes both positive and negative values, according to the
quadrant. The function therefore has not an extreme value there. The
geometrical representation of the surface w = wxy, which is a hyperbolic
paraboloid, shows that the origin is a saddle point (cf. fig. 1, p. 112).

It is useful to have a simple expression for a point at which
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the above equations are satisfied, irrespective of whether the
function has an extreme point or not. We accordingly say that
if there is a point (g, ¥y, 2, - . .) a6 Which f, = 0, f, = 0, f, = 0,
..., or at which

df = fodz + fydy + fodz -+ ...=0,

the function has a stationary value at that (stationary) point
(cf. footnote, p. 184).

Every point interior to a closed region at which a differentiable
function assumes its greatest or its least value is a stationary
point.

To decide whether and when our system of equations really
gives an extreme value, we must make further investigations.
In many cases, however, the state of affairs is clear from the
outset, in particular, if we know that the greatest or least value
of the function must be assumed at an interior point P of the
region and find that our equations determine only a single
stationary system &=y, ¥ = ¥, . .. . This system of values
must then determine the point P, which is necessarily a stationary
point. If such considerations do not apply, however, we must
investigate the matter more closely; this we postpone to the
appendix to this chapter (p. 204). Meanwhile we shall illustrate
the foregoing results by means of some examples.

2. Examples.

1. For the function w = 2? + y® the partial derivatives vanish only
at the origin, so that this point alone can be an extreme point. The function
actually has a minimum, for at all points (z, y) different from (0, 0) the
function w = 2? + y® must be positive, being a sum of squares.

2. The function
u=vV(0l—a®—yg?), (F+y*<]1)

has the partial derivatives
x Yy

B T A T T Vi—a—gy

and these vanish only at the origin. Here we have a maximum, for at all
other points (z, y) in the neighbourhood of the origin the quantity
1 — 2® — y? under the square root is less than it is at the origin.

3. We wish to construct the triangle for which the product of the sines
of the three angles is greatest; that is, we wish to find the maximum of
the function

f(z, y) = sinz siny sin(z + y)
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in the region 0 S 2<%, 0 <y <m 0 <z + y == Since fis positive
in the interior of this region, its greatest value is positive. On the boundary
of the region, where the equality sign holds in at least one of the in-
equalities defining the region, we have f(z, y) = 0, so that the greatest
value must lie in the interior.

If we equate the derivatives to zero, we obtain the two equations

cosz siny sin(z + y) -+ sinz siny cos(x + y) = 0,
sinz cosy sin(z + y) + sinz siny cos(x + y) = 0.

Since 0 <z <m 0<y<m 0 <2z+y < m, these give tanz = tany,
or z = y. If we substitute this value in the first equation, we obtain the
relation sin3x = 0; hence x = T—;, Y= g is the only stationary point, and
the required triangle is equilateral.

4. Three points P,, P,, Pg, with co-ordinates (zy, 3,), (%2, ¥,), and (g, ¥3)
respectively, are the vertices of an acute-angled triangle. We wish to
find a fourth point P with co-ordinates (%, y) such that the sum of its
distances from P,, P,, and P; is the
least possible. This sum of distances
is a continuous function of # and y,
and at some point P inside a large
circle enclosing the triangle it has a
least value. This point P cannot lie
at a vertex of the triangle, for then
the foot of the perpendicular from one
of the other two vertices on to the Fig. 20— Three vectors with equal
opposite side would give a smaller sum magnitudes and sum zero
of distances. Again, P cannot lie on
the circumference of the circle, if this is sufficiently far away from the
triangle. With the distances

ri=v(e—z) + (y — v
we now form the function
fl@y)=r+rtr

which is differentiable everywhere except at P,, P,, and P;. We know
that at the point P the partial derivatives with respect to x and y must
vanish, Thus by differentiating f we obtain the conditions

z—x1+z—x2+x-—xs_0
- ’

1 T2 73

y—y1+y-y2+y_?[a=0

41 T2 T3
for P. According to these equations the three plane vectors z¢;, 2¢,, 2,
with components
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T—2 yYy—uy T—Z, Y— Y T—x3 Y—Ys
"1"1’ g " oy’ rg Ty

respectively, have the vector sum 0. Also, these vectors are each of unit
length. When combined geometrically, then, they form an equilateral
triangle; that is, each vector is brought into the direction of the next by
a rotation through %= (fig. 29). Since these three vectors have the same
directions as the three vectors from P,, P,, P, to P, it follows that each of
the three sides of the triangle must subtend the same angle 27 at the
point P,

3. Maxima and Minima with Subsidiary Conditions.

The problem of determining the maxima and minima of
functions of several variables frequently presents itself in a
form differing from that treated above. If e.g. we wish to find the
point of a given surface ¢(z, y, z) = 0 which is at the least distance
from the origin, then we have to determine the minimum of the
function

f(:l), Y, 2) = '\/(x2 + y2 + 2%),

where the quantities z, y, 2, however, are no longer three in-
dependent variables, but are connected by the equation of the
surface ¢(z, y, z) = 0 as a subsidiary condition. Such ““ maxima
and minima with subsidiary conditions * do not, indeed, represent
a fundamentally new problem. Thus in our example we need only
solve for one of the variables, say 2, in terms of the other two,
and then substitute this expression in the formula for the distance
V(@ + y? + 2%), to reduce the problem to that of determining
the stationary values of a function of the two variables z, .

It is, however, more convenient, and also more elegant, to
express the conditions for a stationary value in a symmetrical
form, in which no preference is given to any ome of the
variables.

As a very simple case, which is nevertheless typical, we con-
sider the following problem: to find the stationary values of a
function £(x, y) when the two variables X, y are not mubually inde-
pendent, but are connected by a subsidiary condition

95({1:, y)=0.

In order to give geometrical plausibility to the analytical treat-
ment, we assume first that the subsidiary condition is represented,
as in fig. 30, by a curve in the xy-plane without singularities and
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that in addition the family of curves f(z, y) = ¢ = const. covers
a portion of the plane, as in the figure. The problem is then
as follows: among the curves of the family which intersect
the curve ¢ = 0, to find that one for which the constant ¢ is the

//—\
/—\

/ ﬂc

=0

Fig. 30.—Extreme value of f with subsidiary condition ¢ = 0

greatest possible or the least possible. As we describe the
curve ¢ = 0 we cross the curves f(x, ¥) = ¢, and in general ¢
changes monotonically; at the point where the sense in which
we run through the c-scale is reversed we may expect an ex-
treme value. From fig. 30 we see that this occurs for the curve
of the family which touches the curve ¢ = 0. The co-ordinates
of the point of contact will be the required values = ¢, y =7
corresponding to the extreme value of f(z, ). If the two curves
f = const. and ¢ = 0 touch, they have the same tangent. Thus
ab the point & = £, y = 5 the proportional relation

Joify=da:dy

holds; or, if we introduce the constant of proportionality A, the
two equations

f z+ A?Sm =0

Jo+ Ay =0

are satisfied. These, with the equation
¢z, y) =0,

serve to determine the co-ordinates (£, ) of the point of contact
and also the constant of proportionality A.
This argument may fail, e.g. when the curve ¢ =0 has a
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singular point, say a cusp as in fig. 31, at the point (¢, 5) at
which it meets a curve f= ¢ with the greatest or least possible c.
In this case, however, we have both

¢m(§s 7) =0 and ¢,(¢§ 9)=0.

In any case we are led intuitively to the following rule, which
we shall prove in the next sub-section:

//-—\
fe

Q
3
S

Fig. 31.—Extreme value at a singular point of ¢ = 0

In order that an extreme value of the function f(x, y) may occur
at the pownt x = £,y = v, with the subsidiary condition $(x, y) = 0,
the point (&, 1) being such that the two equations

$o(€;m) =0 and (& ) =0

are not both satisfied, it 1s necessary that there should be a constant
of proportionality such that the two equations

fol€m) + Ado(€, ) =0 and fu(§, ) + Adu(€, 7)) =0
are satisfied, together with the equation

#(§, m)=0.

This rule is known as Lagrange’s method of undetermined
multipliers, and the factor A is known as Lagrange’s multiplier.

We observe that for the determination of the quantities £, 7,
and A this rule gives as many equations as there are unknowns.
We have therefore replaced the problem of finding the positions
of the extreme values (£, n) by a problem in which there is an
additional unknown A, but in which we have the advantage of
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complete symmetry. Lagrange’s rule is usually expressed as
follows:

To find the extreme values of the function f(x, y) subject to the
subsidiary condition ¢(x, y) = 0, we add to £(x, y) the product of
&(x, y) and an unknown factor X independent of x and y, and write
down the known necessary conditions,

fz"l_ ’\¢z=0’ v+ Ad, =0,

for an extreme value of F = f + A¢. In conjunction with the sub-
sidiary condition ¢ == O these serve to determine the co-ordinates
of the extreme value and the constant of proportionality A.

Before proceeding to prove the rule of undetermined multipliers
rigorously we shall illustrate its use by means of a simple example. We
wish to find the extreme values of the function

U=y
on the circle with unit radius and centre the origin, that is, with the sub-

sidiary condition
@4 yt—1=0.

According to our rule, by differentiating zy - A(2? -} y? — 1) with respect
to x and to y we find that at the stationary points the two equations
y+2x=0
z+22ay=0

have to be satisfied. In addition we have the subsidiary condition
2?4+ y2—1=0.

On solving we obtain the four points

E=134/2, n=142
=—3v2 =—3v2

E=3v2 n=—%2,

E=—3v2  1=3v2

The first two of these give a maximum value = 4, the second two a mini-
mum value z = —%, of the function » = zy. That the first two do really
give the greatest value and the second two the least value of the function
can be seen as follows: on the circumference the function must assume a
greatest and a least value (cf. p. 97), and since the circumference has no
boundary point, these points of greatest and least value must be stationary
points for the function.
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4. Proof of the Method of Undetermined Multipliers in the
Simplest Case.

As we should expect, we arrive at an analytical proof of the
method of undetermined multipliers by reducing it to the known
case of “free” extreme values. We assume that at the extreme
point the two partial derivatives ¢,(¢, 5) and é,(&, n) do not
both vanish; to be specific, we assume that é,(€ 1) == 0. Then
by section 1, No. 3 (p. 114), in a neighbourhood of this point
the equation ¢(x, y) = 0 determines y uniquely as a continuously
differentiable function of @, y = g(x). If we substitute this ex-
Ppression in f(z, y), the function

S, g(x))

must have a free extreme value at the point z = ¢. For this the
equation

f@)=fotfig@)=0

must hold at = ¢. In addition, the implicitly defined fune-
tion y = g(x) satisfies the relation ¢, + ¢,9'(x) = 0 identically.
If we multiply this equation by A= —f,/¢, and add it to
Sz + fu9'(@) = 0, then we obtain

and by the definition of A the equation
Jv+ }‘¢’ﬂ =0

holds. This establishes the method of undetermined multi-
pliers.

This proof brings out the importance of the assumption that the deri-
vatives ¢, and ¢, do not both vanish.at the point (£, x). If both these

derivatives vanish the rule breaks down, as is shown analytically by the
following example. We wish to make the function

flo, y)= a4+ o?
a minimum, subject to the condition
dz,y)=(z— 1P —y*=0.

By fig. 32, the shortest distance from the origin to the curve (x — 1> — y2= 0
is obviously given by the line joining the origin to the cusp § of the curve
(we can easily prove that the circle with unit radius and centre the origin has
no other point in common with the curve). The co-ordinates of 8, that is,
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z= 1 and y = 0, satisfy the equations ¢(z, y) = 0 and f, + Mp, = 0, no
matter what value is assigned to A, but

Jot My=204+3Nz— 1)2=2% 0.

We can state the proof of the J
method of undetermined mul-
tipliers in a slightly different
way, which is particularly con-
venient for generalization. We
have seen that the vanishing of
the differential of a function at a
given point is a necessary con-
dition for the occurrence of an
extreme value of the function at
that point. For the present
problem we can also make the
following statement:

In order that the function
f(z, y) may have an extreme value Fig. 32.—The surface (x — 1)* — 32 =0
at the point (£, m), subject to the
subsidiary condition $(x, y) = 0, it s necessary that the differential
df shall vanish at that point, it being assumed that the differentials
dx and dy are not independent of one another, but are chosen in
accordance with the equation

d¢=¢zdm+ ¢ﬂdy=0

deduced from ¢ = 0. Thus at the point (£, ) the differentials
de and dy must satisfy the equation

df=fa:(£r "l)dx +fu(§: ﬂ)dy= 0

whenever they satisfy the equation dp = 0. If we multiply the
first of these equations by a number A, undetermined in the first
instance, and add it to the second, we obtain

(fm+ Aq‘m)dx'f‘ (fv+ A¢,,)dy= 0.
If we determine A so that
f v + A¢y = 0,

as is possible in virtue of the assumption that ¢, 5= 0, it neces-
8 (2912)

o
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sarily follows that (f, + Ad;)dz =0, and since the differential
dz can be chosen arbitrarily, e.g. equal to 1, we have

Jo+ Ad,= 0.

5. Generalization of the Method of Undetermined Multipliers.

We can extend the method of undetermined multipliers to
a greater number of variables and also to a greater number of
subsidiary conditions. We shall consider a special case which
includes every essential feature. We seek the extreme values of
the function w=f@ 4,2 0,
when the four variables », y, 2, t satisfy the two subsidiary
conditions

&z, y,2,t) =0, P, 9,2t =0.

We assume that at the point (£, %, {, 7) the function takes a
value which is an extreme value when compared with the values
at all neighbouring points satisfying the subsidiary conditions.
We assume further that in the neighbourhood of the point
P(¢, 9, £, 7) two of the variables, say 2 and ¢, can be represented
as functions of the other two, z and ¥, by means of the equations

Mz, 4, 2t)=0 and ¢z, y,21)=0.
In fact, to ensure that such solutions z = g(z, y) and ¢ = k(z, y)
can be found, we assume that at the point P the Jacobian

o(é, ) _ —
'a(z, t) - ¢s‘/‘t ¢t¢l

is not zero (cf. p. 153). If we now substitute the functions
z=g(x, y) and ¢= h(z, y)

in the function u = f(z, ¥, 2, {), then f(z, y, 2, f) becomes a function
of the two independent variables z and y, and this function
must have a free extreme value at the point z = £, y = u; thatis,
its two partial derivatives must vanish at that point. The two
equations

0z ot
fm+fz %‘l'ft %— 0’

0z ot
ﬂ+ﬁ@+ﬂ@—0
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must therefore hold. In order to calculate from the subsidiary
0z 0z Ot o

z’ oy 9 Oy
could write down the two pairs of equations

oz o
¢z+¢.a—z+¢,a—x—o,

conditions the four derivatives occurring here, we

'/'a + 'l’z + ‘/’t a
and
¢y + ¢. + ¢:
‘/’v + (ﬁz + ‘ﬁt a
and solve them for the unknowns B_z ., —af, which is possible

Apd), %

because the Jacobian does not vanish. The problem weuld
o(z, t)

then be solved.

Instead, we prefer to retain formal symmetry and clarity by
proceeding as follows. We determine two numbers A and u in
such a way that the two equations

fl+ A¢n+”‘¢s=0,
ft+ A¢t+l‘“/’t=0

are satisfied at the point where the extreme value occurs. The.
determination of these  multipliers” A and p is possible, since

A, ¥) ;
multiply the equations oz 1)

¢m+¢z +¢t '_O and ¢’¢+‘l’z +¢t

is not zero. If we

by A and p respectively and add them to the equa.tion
Jot f P -I- f t5

we have

Fot Mt ibe+ at Mt ) 2 4 (it M+ ) & =0,
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Hence by the definition of A and p

Jo+ Ady + pif = 0.
Similarly, if we multiply the equations

0z ot
¢ﬂ+ ¢sé‘7/+ qsta?/_o
and

¥+ 'l’z + ‘/’t
by A and p respectively and add them to the equation
f v + f s + f t

we obtain the further equa.tlon
Sy + Ay + pify = 0.

We thus arrive at the following result:
If the point (£, m, L, 7) is an extreme point of (X, y, z, t) subject
to the subsidiary conditions
bz, 9,2,)=0,
(/1(‘6: !l, 2, t) == O,

and if at that point aa(zb ‘/;) 1s not zero, then two numbers A and p
exist such that at the pm"m (&, m, L, 7) the equations

fa: + )“ﬁm -+ I*“ﬁw =0,

Jo+ 2y + pihy = 0,

fz + )kﬁ, + }"‘/’z =0,

Je+ Ade + pp = 0,

and also the subsidiary conditions, are satisfied.

These last conditions are perfectly symmetrical. Every trace
of emphasis on the two variables z and y has disappeared from
them, and we should equally well have obtained them if, instead
o(¢ */')
oz, ¢

one of the Jacoblans

of assuming that == 0, we had merely assumed that any

g, ) o, ) (¢, ¥)
A y), 3@, z)’ N 3(z, ) did not




I11] MAXIMA AND MINIMA 197

vanish, so that in the neighbourhood of the point in question
a certain pair of the quantities z, y, 2, ¢ (although possibly not
z and t) could be expressed in terms of the other pair. For
this symmetry of our equations we have of course paid the
price; in addition to the unknowns &, 4, {, 7 we now have A
and p also. Thus instead of four unknowns we now have six,
determined by the six equations above.

Here too we could have carried out the proof somewhat
more elegantly by using the differential notation. In this notation,
the necessary condition for the occurrence of an extreme value at
the point P is the equation

df = 0,

where the differentials dz and d¢ are to be expressed in terms of
dz and dy. These differentials are connected by the relations

d¢ = ¢zdx + ¢ydy + ¢zdz + ¢tdt =0,
& = Poda + P, dy + $odz + Pydt = 0,
obtained by differentiating the subsidiary conditions. If we

assume that the two-rowed determinants occurring here do not
all vanish at the point (£, %, {, 7), e.g. if we assume that the

expression aéé’ lt/;) is not zero, then we can determine two numbers
A and p which satisfy the two equations

fs + A?Sz + .U"/Jz =0,

Ji+ A+ pihe = 0.
If we multiply the equation d¢ = 0 by A and the equation dif = 0
by 1 and add them to the equation df = 0, then by the last two
equations we obtain

d(f+ A(ﬁ + l“‘/’) = (fw‘l‘ Aqsac + I“ﬁa:)dw'l‘ (fv+ A‘ﬁu'l' I"'/’y)dy'

Since here dz and dy are independent differentials (that is,
arbitrary numbers), it follows that the numbers A and p also
satisfy the equations

fo+ 2y + pihy =0,
and we are once again led to the method of undetermined
multipliers.
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In exactly the same way we can state and prove the method
of undetermined multipliers for an arbitrary number of variables
and an arbitrary number of subsidiary conditions. The general
rule is as follows:

If in a function

u=flx,, %y, ..., T,)

the n variables x|, X,, ... , X, are not all independent, but are
connected by the m subsidiary conditions (n < n)

¢1(w1, xz, ey xﬂ) - 0,
bol®y, Ty, .., 2,) =0,

¢m($17 Loy o v z,) =0,
then we introduce m multipliers A, Ay ..., A, and equate the
derivatives of the function

F=f+ M1+ o+ ... + At

with respect o Xy, Xy, . . . , X,, when Ay, Ay, ..., A, are constant,
to zero. The equations
oF oF

871=0’ ces Z%::,=O

thus obtained, together with the m subsidiary conditions
¢]=O: e ¢m=03

represent a system of m -+ n equations for the m + n unknown
quantities X, X5, . . o, Xy, Ay, .+ . ., Ay These equations must be
satisfied at every extreme value of f, unless at that ewtreme value
every one of the Jacobians of the m functions ¢y, ¢, . . . , b, with
respect to m of the variables xy, . . . , X, has the value zero.

In connexion with the method of undetermined multipliers
we have still to make the following important remark. The rule
gives us an elegant formal method for determining the points
where extreme values occur, but it merely gives us a necessary
condition. The further question arises whether and when the
points which we find by means of the multiplier method do
actually give us a maximum or a minimum of the function.
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Into this question we shall not enter; its discussion would lead
us much too far afield. As in the case of free extreme values,
when we apply the method of undetermined multipliers we usually
know beforehand that an extreme value does exist. If, then,
the method determines the point P uniquely and the exceptional
cagse (all the Jacobians zero) does not occur anywhere in the
region under discussion, we can be sure that we have really
found the point where the extreme value occurs.

6. Examples.

1. As a first example we attempt to find the maximum of the function
f(x, y, 2) = 22y*%?® subject to the subsidiary condition 2 + g2 } 22 = ¢2.
On the spherical surface 22 + y? 4 2% = ¢2 the function must assume a
greatest value, and since the spherical surface has no boundary points
this greatest value must be a maximum in the sense defined above.
According to the rule we form the expression

F=a¥pa 4 A+ g2 + 2 — o),
and by differentiation obtain
2zy?? + 202 = 0,

222y + 20y = O,
2222 + 22z = 0.

The solutions with = 0, y = 0, or 2= 0 can be excluded, for at these
points the function f takes on its least value, zero. The other solutions
of the equation are 2 = y? = 22, A = —a*. Using the subsidiary condition,
we obtain the values

¢

I S
=ty Y=Ep T ER

for the required co-ordinates.

At all these points the function assumes the same value ¢8/27, which
is accordingly the required maximum value. Hence any triad of numbers
satisfies the relation

3 2 c_s = —xz_ +__yg+_z:-
Valyt? < 3= 3 H
that is, the geometric mean of three positive numbers 23, y2, 2% is never
greater than their arithmetic mean.

In faot, it is true that for any arbitrary number of positive numbers
the geometric mean never exceeds the arithmetic mean. The proof is
similar to that just given.*

2. As a second example we shall seek to find the triangle (with sides

* For another proof, see Vol. I, Ex. 19, p. 167.
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¥, y, z) with given perimeter 2s, and the greatest possible area. By a well-
known formula the square of the area is given by
Sz, 4, 2) = s(s — x)(s — y)(s — 2).
We have therefore to find the maximum of this function subject to the
subsidiary condition
p=z+y+2z—2=0,

where z, y, z are restricted by the inequalities
220, y=0, 220, 24+ y=2 z+2z=y, y+z=2.

On the boundary of this closed region, i.e. whenever one of these in-
equalities becomes an equation, we always have f = 0. Consequently the
greatest value of f occurs in the interior and is a maximum. We form
the function

F(z,y,2) = 8(s — o) (s — 9)(8 — 2} + Mz + y + 2 — 23),
and by differentiation obtain the three conditions
—8(s—y)(s—2)+Ar=0, —s(s—2a)(s—2)+2r=0,
—s(s—2)(s—y)+ 1r=0.
By solving each of these for A and equating the three resulting expressions

we obtain =y =z = 2s/3; that is, the solution is an equilateral
triangle.

3. We shall now prove the following theorem: the inequality
u < 1 u® 4+ 1 B
« B

holds for every u =0, v=0 and every o >0, B >0 for which

1,1
3 + 8= 1.

The inequality is certainly valid if either » or v vanishes. We may
therefore restrict ourselves to values of % and v such that wv & 0. If the
inequality holds for a pair of numbers u, v, it also holds for all numbers
utlle, pfl/B, where ¢ is an arbitrary positive number. We need therefore
consider only values of u, » for which v = 1. Hence we have to show
that the inequality

1u"‘+1115g1
o g

holds for all positive numbers u, v such that uv = 1.
To do this we solve the problem of finding the minimum of lu" + % o
«

subject to the subsidiary condition wv = 1. This minimum obviously
exists and occurs at a point (%, v) where # =0, v==0. A multiplier —2 for
which the equations

wl—dv=0 oFl—2u=0
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hold therefore exists. On multiplication by « and v respectively these at
once yield u*= 2, vA= 1%  Taken with uv= 1, these imply that

u=v=1.mmmmmmvmmdﬂmmmmm1w+%wmmmmm
o
:_c+ g = 1. That is, the statement that

lent 1z

o e

when uv = 1 is proved.
If in the inequality uv < 1 u* + %v" just proved we replace  and v by
3

%= n_u,__ and v= Y
(S ug)tie (S vp)le
fm=1 fml

respectively, where %;, %ey « + « Uy, ¥;, Vg « - - Uy, 8Te arbitrary non-negative
numbers and at least one u and at least one v is not zero, and if we then
sum the inequalities thus obtained for i =1, ..., n, we obtain Hdlder's
inequality
n ”n ”
S uw; < (Tup)la(Z v p)U8,
$m=l =] $=1

This holds for any 2z numbers «,, v; where u; = 0,v; 2 0(t = 1,2,...,2),
not all the «’s and not all the ¢’s are zero, and the indices «, B are such

thata>0,8>0, 1411
o B

4. Finally, we seek to find the point on the closed surface
o2y, 2) =0

which is at the least distance from the fixed point (£, %, {). H the
distance is a minimum its square is also a minimum; we accordingly
consider the function

Fla, y,2) = (z—EP - (y — 0)? + (2~ CP + Ao(z, ¥, 2).
Differentiation gives the conditions
2z — E)+ Az =0, 20y— M)+ rp, =0, 2(z— L)+ Ap, =0,

or, in another form,
t—8_y~—n_2—3
Pz Py Py

These equations state that the fixed point (£, , {) lies on the normal to

the surface at the point of extreme distance (2, y, z). Therefore in order

to travel along the shortest path from a point to a (differentiable) surface,

we must travel in a direction normal to the surface. Of course further
8e (&012)
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discussion is required to decide whether we have found a maximum or a
minimum or neither. (Consider, e.g., a point within a spherical surface.
The points of extreme distance lie at the ends of the diameter through
the point; the distance to one of these points is a minimum, to the other
a maximum.)

EXAMPLES

1. Find the greatest and least distances of a point on the ellipse

2 y2

R

from the straight line z4- y — 4= 0.

2. The sum of the lengths of the twelve edges of a rectangular block is
a; the sum of the areas of the six faces is a?/25. Calculate the lengths of
the edges when the excess of the volume of the block over that of a cube
whose edge is equal to the least edge of the block is greatest.

8. Determine the maxima and minima of the function

(aa® + byP)e—o?-v? 0 <ax<b).

=1

4. Show that the maximum value of the expression

aa® + 2bzy - cy?
ex? + 2fzy + gy?

is equal to the greater of the roots of the equation in A
(ac — b%) — Mag — 2bf + ec) + A(eg — f*) = 0.

(ea —f2>0)

5. Calculate the maximum values of the following expressions:
2?2 -+ 6y + 3y? ®) xt 4 223y
o —ay+yt’ Aty

6. Determine the stationary points of the function

fiz, 9) = g (sinz — 7)

(@)

and state their nature.
7*. Find the values of a and b for the ellipse
2 4

@

1

of least ares containing the circle
(z— 1P+ 9t =1
in its interior.
8. Find the quadrilateral with given edges a, b, ¢, d which includes the
greatest area.
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9. Which point of the sphere 22 4 42 4 22 = 1 is at the greatest dis-
tance from the point (1, 2, 3)?

10. Let P,P,P,P, be a convex quadrilateral. Find the point O for
which the sum of the distances from P,, P,, P;, P, is a minimum.
11. Find the point (z, y, 2) of the ellipsoid
a2 oy 2P
—_— = _ = 1
a? + b2 + ¢
for which
(@ 4+ B+C,
(b) V(24 B4 0

is a minimum, where 4, B, C denote the intercepts which the tangent
plane at (z, y, 2) (x > 0, y > 0, 2 > 0) makes on the co-ordinate axes.
12. Find the rectangular parallelepiped of greatest volume inscribed
in the ellipsoid
a2 22
atuata=l

13. Find the rectangle of greatest perimeter inscribed in the ellipse
2
atp=l
14. Find the point of the ellipse
b2t — bxy + by* =4
for which the tangent is at the greatest distance from the origin,
15*%. Prove that the length I of the greatest axis of the ellipsoid
ax® + by® + c2® + 2dwy + 2exz 4 2fyz =1
is given by the greatest real root of the equation
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Appendix to Chapter III
1. Surricient CONDITIONS FOR EXTREME VALUES

In the theory of maxima and minima in the preceding chapter
we have contented ourselves with finding mecessary conditions
for the occurrence of an extreme value. In many cases occurring
in actual practice the nature of the “ stationary ” point thus
found can be determined from the special nature of the problem,
and we can thus decide whether it is a maXimum or a minimum.
Yet it is important to have general syfficient conditions for the
occurrence of an extreme value. Such criteria will be developed
here for the typical case of two independent variables.

If we consider a point (z, y,) at which the function is
stationary, that is, a point at which both first partial derivatives
of the function vanish, the occurrence of an extreme value
is connected with the question whether the expression

S(@o 4+ b, yo + &) — f(o, Yo)

has or has not the same sign for all sufficiently small values of
h and k. If we expand this expression by Taylor’s theorem
(Chap. II, p. 80), with the remainder of the third order, in virtue
of the equations f,(zy, ¥o)= 0 and fy(ze, ¥,) = 0 we at once obtain

S@o+ b, Yo+ B) — f (@ y0) = 3 (B¥ee + 2hkfoy + K1) + <p?,

where p? = h? 4 k? and e tends to zero with p.

From this we see that in a sufficiently small neighbourhood
of the point (4, y,) the behaviour of the functional difference
f@o+ k, yo+ k) — f(xy, y,) is essentially determined by the
expression

Q(h, k) = ah?® - 2bhk + ck?,
where for brevity we have put
&= feuel®o: Yo)» b= fas(@o Yo), €= foa(®o, Yo)-

In order to study the problem of extreme values we must
investigate this homogeneous quadratic expression in % and k,
or, as we say, the quadratic form Q. We assume that the
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coefficients @, b, ¢ do not all vanish. In the exceptional case
where they do all vanish, which we shall not consider, we must
begin with a Taylor series extending to terms of higher order.

With regard to the quadratic form @ there are three different
possible cases:

1. The form is definite. That is, when % and % assume all
values, Q assumes values of one sign only, and vanishes only
for h= 0, k= 0. We say that the form is positively definite or
negatively definite according as this sign is positive or negative.
For example, the expression A2 k?, which we obtain when
a=c¢=1, b= 0, is positively definite, while the expression
—h? -+ 2hk — 2k® = —(h — k) — k2 is negatively definite.

2. The form is indefinite. That is, it can assume values of
different sign, e.g. the form @ = 2kk, which has the value 2 for
k=1, k=1 and the value —2 for h=—1, k= 1.

3. Finally, there is still a third possibility, namely that in
which the form vanishes for values of %, % other than A= 0,
k=0, but otherwise assumes values of one sign only, e.g. the
form (% -+ k)2, which vanishes for all sets of values A, % such
that A= —k. Such forms are called semi-definite.

The quadratic form @ = ah?® -+ 2bkk + ck? is definite if, and
only if, the condition w6 — >0
is satisfied; it is then positively definite if @ > O (so that ¢ >0
also), otherwise it is negatively definite.

In order that the form may be indefinite it is necessary and
sufficient that
ac— b < 0,

while the semi-definite case is characterized by the equation *
ac — b* =0,

* These conditions are easily obtained as follows. KEither a =¢ =0, in
which case we must have b 3 0, and the form is, as already remarked, indefinite;
the criterion therefore holds for this case: or else we must have, say, a 5= 0;
we can then write

e —
ah’+2bhk+ck’=a[(h+§k) + @ bgkﬂ].

a?

This form is obviously definite if ca ~ 5% > 0, and it then has the same sign
a8 a. It is semi-definite if ca — b% = 0, for then it vanishes for all values of
k, k that satisfy the equation h/k = —b/a, but for all other values it has the
same sign. It is indefinite if ca — b® < 0, for it then assumes values of different

sign when % vanishes and when % + %k vanishes.
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We shall now prove the following statements. If the quadratic
form Q(h, k) is positively definite, the stationary value assumed
for b = 0, k = 0 is a minsmum. If the form is negatively definite,
the stationary value is a mazimum. If the form is indefinite, we
have neither a maximum nor a minimum; the point is a saddle
point. Thus, definite character of the form @ is a sufficient con-
dition for an extreme value, while indefinite character of @
excludes the possibility of an extreme value. We shall not
consider the semi-definite case, which leads to involved dis-
cussions.

In order to prove the first statement we have only to use
the fact that if  is a positively definite form there is a positive
number m, independent of 4 and k, such that*

Q = 2m(h? + k?) = 2mp2.
Therefore

f(wo + &, Yo+ k) — f(@g, yo) = 3Q(h, k) + €p? = (m + €)p.

If we now choose p so small that the number e is less in absolute
value than {m, we obviously have

f(wo+ h, Yo+ k) — (20 yo) = ng-

Thus for this neighbourhood of the point (z,, ¥,) the value of the
function is everywhere greater than f(x,, y,), except of course at
(g, yo) itself. In the same way, when the form is negatively
definite the point is a maximum,

Finally, if the form is indefinite, there is a pair of values
(k,, k,) for which ¢ is negative and another pair (k,, k,) for which
@ is positive. We can therefore find a positive number m such

that
Qhy, ky) < —2mp,?,
Qhy, ky) > 2mp,2.

If we now put k= thy, k= tk;, p? = k2 - k2 (t == 0), that is, if

Qk, k)
h? + k2
Then 4% + v% = 1, and the form

* To see this we consider the quotient as a function of the two

quantities v = and v =

h k
becomes & continuous function of « and », which must have a least value 2m on
the circle u® + »? = 1. This value m obviously satisfies our conditions; it is
not zero, for on the circle « and v never vanish simultaneously.
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we consider a point (z,+ A, ¥ + k) on the line joining (xg, ¥o)
to (Tg + %y, yo -+ %), then from Q(%, k) = 2Q(%,, k,) and p* = 3p,?
we have

Q(h, k) < —2mp?.

Thus by choice of a sufficiently small ¢ (and corresponding p)
we can make the expression f(z, -+ &, ¥ -+ k) — (2o, o) negative.
We need only choose ¢ so small that for k= thy, k= tk, the
absolute value of the quantity e is less than 3m. For such a set
of values we have f(z,-+ &, yo+ .02 —f(Zg yo) << —mp?/2, so that
the value f(xo+ &, yo,+ %) is less than the stationary value
f(xo, ¥o). In the same way, on carrying out the corresponding
process for the system h = thy, k = tk,, we find that in an arbi-
trarily small neighbourhood of (zy, y,) there are points at which
the value of the function is greater than f(z,, ,). Thus we have
neither a maximum nor a minimum, but instead what we may
call a saddle value.

If @ = b= ¢= 0 at the stationary point, so that the quad-
ratic form vanishes identically, and also in the semi-definite case,
this discussion fails to apply. To obtain sufficient conditions for
these cases would lead to involved calculations.

Thus we have the following rule for distinguishing maxima,
and minima:

If at a point (x4, y,) the equations

Jol@g, Y0) = 0, fl@o, Yo) = 0
hold, and also the inequality
fa:sz _fa:v2 > 0’

then at that point the function has an extreme value. This is a
mazimum if £, <0 (and consequently £, < 0), and a mintmum
if £, > 0.

1f, on the other hand,

fa:xfw —fmuz < 0’

the stationary value is neither a mazimum nor a minimum. The

case
fmfw _'f:cu2 =0
remains undecided.
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These conditions permit of a simple geometrical interpretation.
The necessary conditions f, = f,= 0 state that the tangent
plane to the surface z = f(x, y) is horizontal. If we really have an
extreme value, then in the neighbourhood of the point in question
the tangent plane does not intersect the surface. In the case
of a saddle point, on the contrary, the plane cuts the surface in
a curve which has several branches at the point. This matter
will be clearer after the discussion of singular points in the next
section.

As an example we seek to find the extreme values of the function
@ y) =2+ 2y + y* + az + by.
If we equate the first derivatives to zero, we obtain the equations
2+y+a=0 2+2y+b=0,
which have the solution # = (b — 2a), y = 4(a — 2b). The expression
Jfoufww — [ =

is positive, a8 is f,, = 2. The function therefore has a minimum at the
point in question.
The function
f@y) = (y — 2°)P + 2°

has a stationary point at the origin. There the expression f, fy, — fip?
vanishes, and our criterion fails. We readily see, however, that the function
has not an extreme value there, for in the neighbourhood of the origin
the function assumes both positive and negative values.

On the other hand, the function

f@my)=(—yr+ -1

has a minimum at the point =1, y=1, though the expression
Joufyy — fay® Vanishes there. For

JA+ 81+ k)—f(1,1)=(h—EkF+ &,
and this quantity is positive when p # 0.

ExAMPLE
U d(a)=Fk =+ 0, ¢'(a) + 0, and =, y, 2 satisfy the relation
(=) P(y) p(2) = ¥,

prove that the function

@)+ fy) + f(2)
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has a maximum when = y = 2z = a, provided that

o [$7(@) - $a) ”
f(a) Wa—) W) > f"a).

2. Sin¢uLAR PomnTs OoF PLANE CURVES

In Chap. ITI, section 2 (p. 128) we saw that a curve f(z, y) = 0
in general has a singular point at a point = %o, ¥ = y, such
that the three equations

f (o> Yo) = 0, f «Zo> Yo) = 0, f W(Zo, .'/o) =0

hold. In order to study these singular points systematically, we
assume that in the neighbourhood of the point in question the
function f(x, y) has continuous derivatives up to the second
order, and that at that point the second derivatives do
not all vanish. By expanding in a Taylor series up to terms
of the second order we obtain the equation of the curve in
the form

2 (@, y) = (& — o) ual@o> Yo) + 2(& — Zo) (¥ — Yo) fas(Tos Yo)
+ (y - ?/o)?fw(%, ?Io) + €P2 = 0’

where we have put p?= (z — z,)® + (¥ — y,)? and ¢ tends to
zero with p.

Using a parameter ¢, we can write the equation of the general
straight line through the point (z,, y,) in the form

z—zg=at, y— yo= b,

where a and b are two arbitrary constants, which we may suppose
to be so chosen that a®+ b= 1. To determine the point of
intersection of this line with the curve f(, y) = 0 we substitute
these expressions in the above expansion for f(z, y); for the
point of intersection we thus obtain the equation

Oy + 2abE2S,, -+ BUES,, + et = O,

A first solution is ¢ = 0, i.e. the point (z, ¥,) itself, as is
obvious. It is, however, worthy of notice that the left-hand
side of the equation is divisible by #2, so that ¢ is a * double root ”
of the equation. For this reason the singular points are also
sometimes called ““ double points ” of the curve.
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1f we remove the factor 2, we are left with the equation
a’2fxz + 2abfwv + bsz +e=0.

We now inquire whether it is possible for the line to intersect
the curve in another point which tends to (zy, y,) as the line
tends to some particular limiting position. Such a limiting
position of a secant we of course call a tangent. To discuss this,
we observe that as a point tends to (z,, y,) the quantity ¢
tends to zero, and therefore e also tends to zero. If the equation
above is still to be satisfied, the expression a?f,, + 2abf,, + b%,,
must also tend to zero; that is, for the limiting position of the
line we must have

a2f e 2abf ay + bzf v = 0.

This equation gives us a quadratic condition determining the
ratio a/b which fixes the line.
If the discriminant of the equation is negative, that is, if

fzwfw _'fa:vz < 0:

we obtain fwo distinct real tangents. The curve has a double point or
node, like that exhibited by the lemniscate (22 + y2)2— (22— y?)=0
at the origin or the strophoid (2 4®)(z — 2a) 4 a%x = 0 at
the point zy = a, y, = 0.

If the discriminant vanishes, that is, if

fa:mfw _fm/z: 0,

we obtain two coincident tangents; it is then possible e.g. that
two branches of the curve touch one another, or that the curve
has a cusp.
Finally, if -
y fzaufw_fm2>0’
there is no (real) tangent at all. This occurs e.g. in the case of the
so-called ¢solated points or conjugate points of an algebraic curve.
These are points at which the equation of the curve is satisfied,
but in whose neighbourhood no other point of the curve lies.

The curve (z® — a?)® 4 (y® — b%)* = at - b* exemplifies this. The

values x = 0, y == 0 satisfy the equation, but for all other values in the
region |z | < aVv'2, | y | < bV2 the left-hand side is less than the right.

We have omitted the case in which all the derivatives of the
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second order vanish. This case leads to involved investigations,
and we shall not consider it. Through such a point several
branches of the curve may pass, or singularities of other types
may occur.

Finally, we shall briefly mention the connexion between
these matters and the theory of maxima and minima. Owing to
the vanishing of the first derivatives, the equation of the tangent
plane to the surface z = f(x, y) at a stationary point (zy, y,) is
simply

2 — f(&y, Yo) = 0.

S(@, y) — f(@g, yo) =0

therefore gives us the projection on the zy-plane of the curve of
intersection of the tangent plane with the surface, and we see
that the point (z,, y,) is a singular point of this curve. If this is
an isolated point, in a certain neighbourhood the tangent plane
has no other point in common with the surface, and the function
f(z, y) has a maximum or a minimum at the point (z,, y,) (cf.
p. 208). If, however, the singular point is a multiple point, the
tangent plane cuts the surface in a curve with two branches, and
the point corresponds to a saddle value. These remarks lead us
precisely to the sufficient conditions which we have already
found in section 1 (p. 207).

The equation

3. SiNGULAR POINTS OF SURFACES

In a similar way we can discuss a singular point of a surface
f(z, y, z) = 0, i.e. a point for which

f= 0, fmzfv—:fz: 0.

Without loss of generality we may take the point as the origin O.
If we write

Je=0fu=B fa=vfau=Afu=tfa="v
for the values at this point, we obtain the equation
ax? + By? + y22 + 2xxy + 2pyz + 2vx2 =10

for a point (z, y, z) which lies on a tangent to the surface at O.
This equation represents a quadratic cone touching the
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surface at the singular point—instead of the tangent plane at an
ordinary point of the surface—if we assume that not all of the
quantities a, B, . . . , v vanish and that the above equation has
real solutions other than z =y=12=0.

4. CONNECTION BETWEEN BULER’S AND LAGRANGE’S
REePrESENTATIONS OF THE MoTION OF A FLUID

Let (a, b, ¢) be the co-ordinates of a particle at the time
t= 0 in a moving continuum (liquid or gas). Then the motion
can be represented by three functions

z= 2(a, b, ¢, t),
Y= y(a; b, ¢, t)’
z2=2(a, b, ¢, t),

or in terms of a position vector x = x(a, b, ¢, t). Velocity and
acceleration are given by the derivatives with respect to the
time ¢. Thus the velocity vector is & with components %, g,
and the acceleration veector is & with components &, ¥, 2, all of
which appear as functions of the initial position (a, b, ¢) and the
parameter {. For each value of ¢ we have a transformation of
the co-ordinates (a, b, ¢) belonging to the different points of the
moving continuum into the co-ordinates (z, y, 2) at the time .
This is the so-called Lagrange representation of the motion.
Another representation introduced by Euler is based upon the
knowledge of three functions

wz, y, 2, 8), v(z, ¥, 2, t), w(w, ¥, 2, 1)

representing the components #, ¥, £ of the velocity & of the motion
at the point (z, y, 2) at the time ¢.

In order to pass from the first representation to the second
we have to use the first representation to calculate a, b, ¢ as
functions of z, y, 2, and ¢, and to substitute these expressions in
the expressions for @(a, b, ¢, t), §(a, b, ¢, §), (a, b, ¢, £):

u(z, y, 2, t) = &{a(z, y, % t), b(@, ¥, 2, 1), ¢(@, ¥, %, ), t}, &e.
We then get the components of the acceleration from

da, b, ¢, t) = u{z(a, b, ¢, ¥), y(a, b, ¢, 1), 2(a, b, ¢, 1), t}, &e.
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as follows:
& = u® + g + u2 + up &o.,
or
& = wugu -+ w0 + uw -+ Uy,
§=vu+ o0+ 0,0+
i= wu + ww -+ ww + W

In the mechanics of a continuum the following equation con-
necting Euler’s and Lagrange’s representations is fundamental:

divae = u, -+ v,,-}—w.=]1_—;,

where
oz, y, 2)
o(a, b, ¢}

is the Jacobian characterizing the motion.

The reader may complete the proof of this and the corre-
sponding theorem in two dimensions by using the various rules
for the differentiation of implicit functions.

D(z, y, 2, ) =

5. TANGENTIAL REPRESENTATION OF A CLosED CURVE

A family of straight lines with parameter a may be given by
zcosa+ ysina— pla)=0, . . . . (1)

where p(a) denotes a function which is twice continuously differ-
entiable and periodic of period 27 (a so-called tangential function).
The envelope C of these lines is a closed curve satisfying (1) and
the further equation

—zsma -+ y cosa— p'(a)=0.
Hence
z=pcosa—p' sina‘} @)
y=psinatpoosa) T " 7T

is the parametric representation of C' (a being the parameter).
Formula (1) gives the equation of the tangents of C and is referred
to as the tangential equation of C.
Since
2= —(p+ p')sing, y = (p+ p"”’)cose,
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we at once have the following expressions for the length L and
area 4 of C:

L =f02"(p+p")da =f02"pda,

2x 2r 2
A=%f0 (my'—yw’)da=%f0 (p+p")pda=%f0 (PP—p"?)da,

since p’(a) is also a function of period 27.*
From this we deduce the isoperimetric inequality

L2 = 4n A,
where the equality sign holds for the circle only. This may also
be expressed by the statement: among all closed curves of given
length the circle has the greatest area.

For the proof we make use of the Fourier expansion of p(a)
(Vol. I, Chap. IX, p. 447),

pla) = ‘fzi’ + 020‘. (a, cosva + b, sinva);
. v=1
then

p'(a) = Z ¥(b, cosva — a, sinva),

8o that (using the orthogonality relations of Vol. I, p. 438) we have
L = mzay,
(% _ e 2 p2
a=7 (% -5 02— 1o +52).
Thus

2 .
in particular, 4 = f- only if a,=b,=0 for v=22, ie.
T
pla) = a—2°—|— a; cosa + by sina; the latter equation defines a
circle, as is easily proved from (2).

* Since p(a) + ¢ is obviously the tangential function of the parallel curve at a
distance ¢ from €, the formulz for the area and the length of a parallel curve
{cf. Vol. I, p. 291, Ex. 22, and p. 553) are easily derived from these expressions.



CHAPTER 1V
Multiple Integrals

The idea of differentiation and the operations with derivatives
in the case of functions of several variables are obtained almost
immediately by reduction to their analogues for functions of one
variable. As regards integration and its relation to differentiation,
on the other hand, the case of several variables is more involved,
since the concept of integral can be generalized for functions of
several variables in a variety of ways. In this chapter we shall
study multiple integrals such as we have already met in Vol. I,
Chap. X (p. 486). In addition to these, however, we have also to
consider the so-called line integrals in the plane, and surface
integrals, as well as line integrals, in three dimensions (Chap. V,
p. 343). In the end, however, it is found that all questions of
integration can be reduced to the original concept of the integral
in the case of one independent variable.

1. ORDINARY INTEGRALS AS FUNCTIONS OF A PARAMETER

Before we study the new situations which arise with functions
of more than one variable, we shall discuss some concepts which
are directly related to matters already familiar to us.

1. Examples and Definitions.

If f (z, y) is a continuous function of z and y in the rectangular
regiona <z =< B,a =y <b, we may in the first instance think
of the quantity x as fixed, and we can then integrate the
function f(z, y), which is now a function of y alone, over the
interval @ < y < b. We thus arrive at the expression

J Fe. 9

which still depends on the choice of the quantity z. In a sense,
215
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therefore, we are considering not an integral but the family of
integrals f Jf(z, y)dy which we obtain for different values of .

This quantity, which is kept fixed during the integration and to
which we can assign any value in its interval, we call a parameter.
Our ordinary integral therefore appears as a funciion of the para-
meler x.

Integrals which are functions of a parameter frequently
ocecur in analysis and its applications.

Thus, as the substitution zy = u readily shows,
f ! dy = are sinz.
o V(1 — 2%
Again, in integrating the general power function we may regard the index
as a parameter and write accordingly

1
[
0

where we gssume that x > — 1.

If we represent the region of definition of the function f(x, y)
geometrically, and make

Y3 the parallel to the y-axis
corresponding to the fixed
value of z intersect the
rectangle as in fig. 1, then

we obtain the function of

y which is to be integrated

by considering the values of

the function f(x, y) as a
»z function of y along the line
Fig. 1 of intersection AB. We
may also speak of integrat-
ing the function f(z, y) along the segment AB.

This geometrical point of view suggests a generalization. If
the region of definition R in which the function f(z, y) is con-
sidered is not a rectangle, but instead has the shape shown in
fig. 2 (that is, if any parallel to the y-axis cuts the boundary in
at most two points), then for a fixed value of # we can again

integrate the values of the function f(z, y) along the line 4B in
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which the parallel to the y-axis intersects the region of definition
R. The initial and final points of the interval of integration

L

- Y= %@

T
Fig. 2

will themselves vary as z varies. In other words, we have to
consider an integral of the type

Wa(x)
[ f@ y)dy= F@),
¥ra(x)

that is, an integral with the variable of integration y and the
parameter z, in which the parameter occurs both in the integrand
and in the limits of integration.
If, for example, the region of definition is a circle with unit radius and
centre the origin, we shall have to consider integrals of the type
+V(1—xY)

f J (=, y)dy.
— vV (1—x%)

2. Continuity and Differentiability of an Integral with respect to
the Parameter.

The integral
Fo) = f, )y

1s a continuous function of the parameter x, if £(x, y) is continuous
in the region in question.
For

F(z + h) — F(x)

f,, (f@ + R, y) — f(=, y»dyl
b
= [ |fe+hy—s y)\dy.
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In virtue of the (uniform) continuity of f(z, y), for sufficiently
small values of % the integrand on the right, considered as a
function of y, may be made uniformly as small as we please,
and the statement follows immediately. In particular, therefore,
we can integrate the function F(x) with respect to the parameter
z between the limits « and B, obtaining

[ﬁF(w)dw =/aﬂ(/;bf(m, y)dy ) de.

The integral on the right we also write in the form
B b
[ [ f@ pdyda;

we call it a repeated integral or multiple integral (in this case a
double integral).

We now investigate the possibility of differentiating F(z).
In the first place, we consider the case where the limits are
fixed and assume that the function f(z, y) has a continuous
partial derivative f, throughout the closed rectangle R. It is
natural to try to form the z-derivative of the integral in the
following way: instead of first integrating and then differentiating
we reverse the order of these two processes, that is, we first dif-
ferentiate f with respect to = and then integrate with respect to y.
As a matter of fact, the following theorem is true:

If in the closed rectangle a < x < B, a <y < b the function
{(x, y) has a continuous derivative with respect to X, we may dif-
Jerentiate the integral with respect to the parameter under the integral
sign,* that is, if s < x < B,

‘%F(w)= d—i f Sflx, y)dy = f Sz, y)dy.

* From this we obtain a simple proof of the fact, which we have already
proved (Chap. II, p. 56), that in the formation of the mixed derivative g, of
a function g(z, y) the order of differentiation can be changed, provided that
ey i8 continuous and g, exists. For if we put f(z, y) = 94(%, ¥), we have

Y
9@, 9) = gz, a) + f @, mydn.

Since f(x, y) has a continuous derivative with respect to z in the rectangle
eSS Bas<y=hb,itfollows that

Iz = 9ulz, a) + f;‘z(x, 7)dy,
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Proof. If both & and & 4 % belong to the interval a =z < B,
we can write

Fo+ )~ Fo)= [ fo+ b )iy — [ fe 9y

=fgw+hﬂ—ﬂ%ﬁ@-

Since we have assumed that f(z, y) is differentiable, the mean
value theorem of the differential calculus in its usual form
gives *

fl@+ b y)—flz,y) = hffz+ Ohy), 0<6<1

Moreover, since the derivative f, is assumed to be continuous in
the closed region and therefore uniformly continuous, the absolute
value of the difference

f:c(x + oh: ?/) _fm(m’ ?/)

is less than a positive quantity ¢ which is independent of & and
y and tends to zero with . Thus

Eﬁi%:ﬁ@_fﬂ@w@

[t b )iy — [ e, )y

b
gf edy = e(b— a).

If we now let & tend to zero, e also tends to zero, and the
relation

iy P&+ B) — Fo)

B—>0 k

= [ flo, )iy = Fa)

at once follows; our statement is thus proved.
In a similar way we can establish the continuity of the integral
and the rule for differentiating the integral with respect to a

and therefore
Iyz = Jol® ¥)-
In the same way, g,y = f,(*; ), and therefore gpy = FJyr

* Here the quantity ¢ depends on y, and may even vary discontinu-
ously with y. This does not matter, for by the equation f (x + Ok, y) =
A-f(z + h, y) — f(z, y)) we see at once that f(x + 6k, y) is a continuous
function of z and y, and is therefore integrable.
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parameter when the parameter occurs in the limats. If, for
example, we wish to differentiate

Wa(x)
Fa)=["" f@ y)dy,
(%)
we start with the expression
F)=[ f(z, y)dy = (v, v, ),

where u = {y(x), v = (z). Here we assume that ,(z) and
Y5(z) have continuous derivatives with respect to z fhroughout
the interval and that f(z, y) is continuously differentiable (cf.
P- 62) in a region wholly enclosing the region B. By the chain
rule we now obtain

-~ oD oD d
Fo=204 000, 00,

If we apply the fundamental theorem of the integral calculus
(Vol. 1, p. 111), this gives the formula

(%)
Flo)= [ Fie, )y — @ @ @) + 4 @) 0
Thus if for F(x) we take the function

Fa)= [ " sin (2y) dy,

we obtain
dF(z)

= f y cos(zy)dy + sin(2?),

If we take
a:dy

F(z) —f '\/(1 — 2y = arc sina,
we obtain the relation
_n dy _ 1
‘fo VI —2P /(12
as the reader can verify directly.
Other examples are given by the integra.ls

Fyo = [ E2 rway,

F(=)

Fofz) = fo F@)dy,
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where # is any positive integer and f(y) is a continuous function of y only
in the interval under consideration. Since the expression arising from
differentiation with respect to the upper limit x vanishes, the rule gives
us

Fl(z) = Fuy(2).
Since F'(z) = f(z), this at once gives
F,(2) = f(z).
Therefore F,(x) is the function whose (n + 1)-th derivative is equal to
f(x) and which, together with its first n derivatives, vanishes when z = 0;
it arises from F,_,(x) by integration from 0 to x. Hence F () is the function

which is obtained from f(z) by integrating n- 1 times between the limits 0
and x. This repeated integration can therefore be replaced by & single

integration of the function ™ =~ (@— y " J(y) with respect to g.

The rules for diﬁerentiating an integral with respect to a
parameter often remain valid even when differentiation under
the integral sign gives a function which is not continuous every-
where. In such cases, instead of applying general criteria, it is
more convenient to verify whether such a differentiation is per-
missible in each special case.

As an example we consider the elliptic integral (cf. Vol. I, p. 243)

+1 dz
F&) =f_1 Vicoa—my © <M
The function
1

V(1 — 2%) (1 — ¥z
is discontinuous at = -1 and at = —1, but the integral (as an improper
integral) has a meaning. Formal differentiation with respect to the pa.ra.-
meter k gives
) = f+1 katda
-1 V(1 —22) (1 — 2Py

To investigate whether this equation is correct, we repeat the argument
by which we obtained our differentiation formula. This gives

F(k+ h)— Fk) (k + Ohjatde
h ./ Tl + O, z)dw = fl V(=2 (1= (k. hyizy

The difference between this expression and the integral obtained by formal
differentiation is

.f(ks z) =

+1 k+ Ok k
A = —_—
f_1 V-2 \VI = (k+ 6P V(1 — kzxs)s) .
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We must show that this integral tends to zero with A. For this purpose
we mark off about & an interval k, < k < k, not containing the values
+1, and we choose & 8o small that k¥ 4+ 0% lies in this irterval. The
function

k

is continuous in the closed region —1 <z <1, ky < k < k;, and is there-
fore uniformly continuous. The difference

k+ 6h _ k
VI —(k+ PP V(1 — B

consequently remains below a bound ¢ which is independent of z and k
and which tends to zero with 2. Hence the integral A also remains less
in absolute value than
+1 2 d.
f il g = Ms,
-1

V1— 2

where M is a constant independent of €. That is, the integral A tends to
zero as b does, which is what we wished to show.

Differentiation under the integral sign is therefore permissible in
this case. Similar considerations lead to the required result in other
cases.

Improper integrals with an infinite range of integration are discussed
in the Appendix to this chapter, § 4, p. 307.

ExaMPLES
1. Evaluate

1
F(y) = /(; v 1y log x + 1) du,

2. Let f(x, y) be twice continuously differentiable, and lot u(z, y, 2)
be defined as follows:
2m
u(x, y, 2) = A f(@ + zcosq, y + zsing)de.
Prove that
(g - Ugy — Ugy) — U, = 0.

3*, If f(x) is twice continuously differentiable and
1 p*t p=3
we )= [ fet@— T d @>1),
—t

prove that

—1
uu=£‘— Uy + Uy
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4. The Bessel function Jy(x) may be defined by

cosxt

Jo(z) = / r————-(l )

Prove that
1
Jo" + :‘cJo/ + Jo=0.

5. For any non-negative integral index n the Bessel function J, (v) may
be defined by

b ridd

+1
J = — 2yn—¥
n(®) 1.3.5...(21»—1)77[_1 cosat (1 — #yrdt.
Prove that
o o1 n?

{a) J, +;J,,'+(1—x—2).],,=o (n =0),

®) Juts = Jpq — 27 (n=1)
and Jy=—Jy.

2. Tae INnTEGRAL OF A CoNTINUOUS FUNCTION OVER A
REGION oF THE PLANE OR OF SPACE

1. The Double Integral (Domain Integral) as a Volume.

The first and most important generalization of the ordinary
integral, like the ordinary integral itself, is suggested by geo-
metrical intuition. Let R be a closed region of the wxy-plane,
bounded—as we assume all along—by one or more arcs of curves
with continuously turning tangents, and let z= f(z, y) be a
function which is continuous in E. We assume in the first instance
that f is non-negative, and represent it by a surface in xyz-space
vertically above the region R. We now wish to find (or, more
precisely, to define, since we have not yet done so) the volume ¥
below the surface. This has been done in detail for rectangular
regions in Vol. I, Chap. X (p. 486), and, moreover, the case is so
similar to that of the ordinary integral that we feel justified in
mentioning it somewhat briefly here. The student will see at once
that a natural way of arriving at this volume is to subdivide R
into N sub-regions R,, B,, . . . , R,, each having boundaries that
are sectionally smooth (p. 41), and to find the greatest value M,
and the least value m; of f in each region R;. The areas of the
regions R, we denote by AR;. On each region R, as base we con-
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struet a cylinder of altitude M,. This set of cylinders completely
encloses the volume under the surface. Again, with each region
R, as base we construct a cylinder of altibude m,, and hence
with volume m;AR;; these cylinders lie completely within the
volume under the surface. Then

Sm; AR, <V < SM,AR,
1 1

These sums Xm,AR; and ZM;AR; we call the lower and upper
sums respectively.

If we now make our subdivision finer and finer, so that the
number N increases beyond all bounds, while the greatest dia-
meter of the regions B, (that is, the greatest distance between
two points of R,) at the same time tends to zero, we see intuitively
(and shall later prove rigorously) that the upper and lower sums
must approach one another more and more closely, so that the
volume V can be regarded as the common limit of the wpper and
lower sums as N tends to .

We can obviously obtain the same limiting value if instead
of m; or M, we take any number between m,; and M,, e.g. f(z;, v,),
the value of the function at a point (z;, ;) in the region R,.

2. The General Analytical Concept of the Integral.

These concepts suggested by geometry must now be studied
analytically and made more precise without direct reference to
intuition. We accordingly proceed as follows. We consider a
closed region R with area AR, and a function f(z, y) which is
defined and continuous everywhere in R, including the boundary.
As before, we subdivide the region by sectionally smooth arcs *
into N sub-regions R;, R,, ..., R, with areas AR, ..., AR,.
In R, we choose an arbitrary point (&;, »;) where the function
has the value f; = f(&;, 1) and we form the sum

¥
Va= ?fi AR,.

The fundamental theorem is then as follows:
If the number N increases beyond all bounds and at the same

#Lo. arcs which are given in a suitable co-ordinate system by an equation
y == ¢(x), where ¢ is a continuous function whose derivative is continuous except
for a finite number of jump discontinuities (cf. p. 41).
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time the greatest of the diameters of the sub-regions tends o zero,
then YV, tends to a limit V. This limit is independent of the par-
ticular nature of the subdivision of the regions R and of the choice
of the point (£, m;) in R, The limit V we call the (double) integral
of the function f(x, y) over the region R: in symbols,

f L f(z, y)dSs.

Corollary. We obtain the same limit if we take the sum
only over those sub-regions R; which lie entirely in the interior
of R, that is, which have no points in common with the boundary
of R. '

This existence theorem for the integral * of a continuous
function must be proved in a purely analytical way. The proof,
which is very similar to the corresponding proof for one variable,
is given in the appendix to this chapter (p. 293).

We shall now illustrate this concept of an integral by consider-
ing some special subdivisions. The simplest case is that in which
R is a rectangle a L2 < b, ¢ <y < d and the sub-regions R,
are also rectangles, formed by subdividing the z-interval into
n equal parts and the y-interval into m equal parts, of lengths

h=b_—a and I:;=d—_c
n

The points of subdivision we call z,= @, z;, %, ..+ » Tn = b and

* We can refine this theorem further in a way which is useful for many
purposes. In the subdivision into N sub-regions it is not necessary to choose a
value which is actually assumed by the function f(z, y) at a definite point
(£;, m;) of the corresponding sub-region; it is sufficient to choose values which
differ from the values of the function f(£,, 4,) by quantities which tend uniformly
to zero as the subdivision is made finer. In other words, instead of the values
of the function f(§;, ;) we can consider the quantities

Jo=flépm) + & 5
where | ¢ »| < €y, lim €y = 0. (The number ¢, 5 is therefore the difference
N0

between the value of the function at a point of the i-th sub-region of the sub-
division into N sub-regions and the quantity f; with which we form the sum.)
This theorem is almost trivial; for, since the numbers e, » tend uniformly to
zero, the absolute value of the difference between the two sums

N
£1,AR, and E(f,+ 4,008,

is less than ey X AR; and can be made as small as we please if we take the
number N sufficiently large. E.g. if we bave f(z, y) = P(#, y)Q(z, y) we may
take f; = P; Q;, where P; and Q; are the maxima of P and Q in R, which are
in general not assumed at the same point.

9 (8912)
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Yo=0 Y1, Ys - -+ > Ym=d respectively, and through these
points we draw parallels to the y-axis and the z-axis respectively.
We then have N = nm. All the sub-regions are rectangles with
area AR, = hk = AzAy, if we put b= Az, k= Ay. TFor the
point (£;, m;) we can take any point in the corresponding rect-
angle, and we then form the sum

Zf(&n n)AxAy

for all the rectangles of the subdivision.

If we now let n and m simultaneously increase beyond all
bounds, the sum will tend to the integral of the function f over
the rectangle R.

These rectangles can also be characterized by two suffixes
p and v, corresponding to the co-ordinates %= a -+ vh and
y=c+ pk of the lower left-hand corner of the rectangle in
question. Here v assumes integral values from 0 to (» — 1) and
g from 0 to (m — 1). With this identification of the rectangles
by the suffixes v and p we may appropriately write the sum as

a double sum *
n—1 m—

1
Z 2 f(é, n)AzAy.
ve=0 p=0
Even when R is not a rectangle, it is often convenient to
subdivide the region into rectangular sub-regions R;. To do this
we superpose on the plane the rectangular net formed by the
lines
x=vh (v=0,+1,4+2,..)
y=pk (p=20,41,+2,...),

where & and k are numbers chosen arbitrarily. We now consider
all those rectangles of the division which lie entirely within RB.
These rectangles we call B;. Of course they do not completely
fill the region; on the contrary, in addition to these rectangles B
also contains certain regions E; adjacent to the boundary which
are bounded partly by lines of the net and partly by portions of
the boundary of R. But by the corollary on p. 225 we can cal-
culate the integral of the function f over the region E by summing
over the interior rectangles only and then passing to the limit.

* If we are to write the sum in this way, we must suppose that the points
(£, m;) are chosen so as to lie in vertical or horizontal straight lines.
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Another type of subdivision which is frequently applied is
the subdivision by a polar co-ordinate net (fig. 8). Let the origin
O of the polar co-ordinate system lie in the interior of our region.
We subdivide the entire angle 27 into n parts of magnitude

Fig. 3.—Subdivision by polar co-ordinate nets

Af = 27[n =k, and we also choose a second quantity k= Ar,
We now draw the lines § = vA(r==0, 1, 2, ..., n — 1) through
the origin and also the concentric circles r,=pk(p=1,2,...).
Those which lie entirely in the interior of B we denote by R;
and their areas by AR;, We can then regard the integral of the
function f(x, y) over the region R as the limit of the sum

Zf(€s, ) AR,

where (&;, %;) is a point chosen arbitrarily in R,. The sum is
taken over all the sub-regions R, in the interior of R, and the
passage to the limit consists in letting 4 and % tend simultaneously
to zero.

By elementary geometry the area AR, is given by the equation

AR, = 3%, 1 — 1,90 = 32 + D%

if we assume that R, lies in the ring bounded by the circles
with radii pk and (u + 1)%.

3. Examples.

The simplest example is the function f(z, y) = 1. Here the. limit of
the sum is obviously independent of the mode of subdivision and is a.lwa'.ys
equal to the area of the region R. Consequently, the integral of the function
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f(x, y) = 1 over the region is also equal to this area. This might bave been
expected, for the integral is the volume of the cylinder of unit altitude
with the region R as base.

As a further example we consider the integral of the function f(x, y) = z
over the square 0 S 2 <1, 0 <y < 1. The intuitive interpretation of
the integral as a volume shows that the value of our integral must be }.
We can verify this by means of the analytical definition of the integral.
We subdivide the rectangle into squares of side 4= 1/n, and for the
point (£, n,) we choose the lower left-hand corner of the small square.
Then each one of the squares in the vertical column whose left-hand
side has the abscissa vk contributes the amount vh® to the sum. This
expression occurs n times. Thus the contribution of the whole column of
squares amounts to nvh® = vh®. If we now form the sum from v=0
to v = n — 1, we obtain

The limit of this expression as & — 0 is §, as we stated.

In a similar way we can integrate the product zy, or more generally
any function f(z, y) which can be represented as a product.of a function of
2 and a function of y in the form f(x, y) = o(x)y(y), provided that the
region of integration is a rectangle with sides parallel to the axes, say

asx=<h,
cSy=d

We use the same division of the rectangle as on p. 225, and for the value
of the function in each sub-rectangle we take the value of the function
at the lower left-hand corner. The integral is then the limit of the sum

n—1 m—1
ke 3 X @(vh)d(uk),
=0 u=0
which may also be written as the product of two sums in the form
n—1 m—1
{"Ereom} { T rbtuh}.
v=0 u=0

But in accordance with the definition of the ordinary integral, as b — 0
and k — 0 each of these factors tends to the integral of the corresponding
function over the interval from @ to b or from ¢ to d respectively. We
thus obtain the general rule: if a function f(x, y) can be represented as a
product of two functions ¢(x) and {(y), its double integral over a rectangle
a=<x=<bh ¢cxXy=d can be resolved into the product of two integrals:

[ fre nasay= [ o@)da. [ “ W) dy.

In virtue of this rule and the summation rule (cf. p. 231) we can, for
example, integrate any polynomial over a rectangle with sides parallel to
the axes.
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As a last example we consider a case in which it is convenient to use
a subdivision by the polar co-ordinate net instead of a subdivision into
rectangles. Let the region R be the circle with unit radius and centre the
origin, given by a® 4+ y2 < 1, and let

f@y)=4/(1—2*— o)

in other words, we wish to find the volume of a hemisphere of unit radius.
We construct the polar co-ordinate net as before. From the sub-
region lying between the circles with radii r,= uk and 7, 41=(p+ 1)k

and between the lines 6 = vk and 6= (v 1)k (h = 2—1‘:) we obtain the
contribution »

1 r,
\/ "+1+ ) (Pus1— rDh = V1 = g 20,kh,

where for the value of the function in the sub-region R; we have taken
the value which the function assumes on an intermediate circle with the
Tut1+ 7w
—
the same contribution, and since there are » = 2x/h such regions the
contribution of the whole ring is

21— p,2p,.k.

The integral is therefore the limit of the sum

radius p, = All sub-regions which lie in the same ring give

m—1
X 2n 1— P,,,’ Puk9

u=0

and, a8 we already know, this sum tends to the single integral

A 1
2nfr'\/1—r2dr ——=vVQ@—-1r =%§;
0

we therefore obtain
ffV1 —a s = T,
& 3

in agreement with the known formula for the volume of a sphere.

4. Notation, Extensions. Fundamental Rules.

The rectangular subdivision of the region R is associated with
the symbol for the double integral which has been in use since
Leibnitz’s time. Starting with the symbol

n—1m—1

z I f(§, n)0zAy

ye=0 u=0
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for the sum over the rectangles, we indicate the passage to the
limit, from the sum to the integral, by replacing the double
summation sign by a double integral sign and writing the symbol
dzdy instead of the product of the quantities Az and Ay. Accord-
ingly, the double integral iz frequently written in the form

[ [ 7@ y)dady

[/ f@ yas

in which the area of AR is replaced by the symbol dS. We again
emphasize that the symbol dxdy does not mean a product, but
merely refers symbolically to the passage to the limit of the
above sums of nm terms as n — oo and m — .

It is clear that in double integrals, just as in ordinary integrals
of a single variable, the notation for the “ variables of integra-
tion ’ is immaterial, so that we could equally well have written

S vduav o [ [ (& mdédn

In introducing the concept of integral we saw that for a
positive function f(z, y) the integral represents the volume under
the surface z = f(z, ). In the analytical definition of integral,
however, it is quite unnecessary that the function f(x, y) should
be positive everywhere; it may be negative, or it may change
sign, in which last case the surface intersects the region B. Thus
in the general case the integral gives the volume in question with
a definite sign, the sign being positive for surfaces or portions of
surfaces which lie above the zy-plane. If the whole of the surface
corresponding to the region R consists of several such portions,
the integral represents the sum of the corresponding volumes
taken with their proper signs. In particular, a double integral
may vanish although the function under the integral sign does
not vanish everywhere.

For double integrals, as for single integrals, the following
fundamental rules hold, the proofs being a simple repetition
of those in Vol. I (p. 81). If ¢ is a constant, then

ffscf(x, y)dS = /Lf(w, y)d8S.

instead of in the form
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Also,
[ [ (f@ ) + ¢ as={ [ f@ a8+ [ [ éa 948,

that is: the integral of the sum of two functions is equal to the sum
of their two integrals. Finally, if the region R consists of two sub-
regions R’ and R” that have at most portions of the boundary
in common, then

[ [ 1@ pas = [ f@ yas+ [ [ f@ yas,

that is: when regions are joined together the corresponding vntegrals
are added.

5. Integral Estimates and the Mean Value Theorem.

As in the case of one independent variable, there are some
very useful estimation theorems for the double integral. Since
the proofs are practically the same as those of Vol. I, Chap. II,
section 7 (p. 126), we shall here be content with a statement of
the facts.

If f(z, y) = 0 in R, then

[[r@ndszo
similarly, if f(z, y) < 0,
f fx flz, y)dS < 0.

This leads to the following result:
If the inequality
[ y) = $@ 9)

holds everywhere in R, then
[[ 1@ is z [ [ 9)ds.

A direct application of this theorem gives the relations

[[r@pas<[[|fev|as
[[fenisz—[[|fe )]s

and
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We can also combine these two inequalities in a single formula:

'fo(w,y)dSlglef(w,y)\ds,

If m is the lower bound and M the upper bound of the values
of the function f(z, y) in R, then

mAR < f f f(z, y)dS < MAR,

where AR is the area of the region R. The integral can then be
expressed in the form

[ [f@ a8 = pAR,

where p is a number intermediate between m and M, the exact
value of which cannot in general be specified more exactly.*
This form of the estimation formula we again call the mean
value theorem of the integral calculus.
Here again the following generalization holds: if p(z, y) is
an arbitrary positive continuous function in E, then

[ [p@ i@ yas=uf [ pa yds,

where p denotes a number between the greatest and least values
of f, which cannot be further specified.

These integral estimates show as before that the integral
varies continuously with the function. More precisely, if f(z, y)
and ¢(z, y) are two functions which satisfy the inequality

If(x: ?/)—45(70, ?/)|<€,

where € is a fixed positive number in the whole region R with area

AR, then the integrals f f f(z, y)dS and f f #(z, y)dS differ by
R B

less than ¢AR, that is, by less than a number which tends to
zero with e.

In the same way we see that the infegral of a function varies
continuously with the region. For suppose that two regions R’
and R” are obtained from one another by the addition or removal
of portions whose total area is less than e, and suppose that

* Just as in the case of continuous functions of one variable, we can state

that the value p is certainly assumed at some point of the region R by the
continuous function f(z, y).
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Sf(z, y) is a function which is continuous in both regions and such
that | f(z, y) | < M, where M is a fixed number. Then the two

integrals f f Sf(z, y)dS and f f Sf(z, y)dS differ by less than Me,
R R

that is, by less than a number which tends to zero with e.
The proof of this fact follows at once from the last theorem of
the preceding sub-section.

We can therefore calculate the integral over a region R as
accurately as we please by taking it over a sub-region of R whose
total area differs from the area of R by a sufficiently small amount.
For example, in the region R we can construct a polygon whose
total area differs by as little as we please from the area of R.
In particular, we may suppose this polygon to be bounded by
lines parallel to the 2- and y-axes alternately, that is, to be pieced
together out of rectangles with sides paraliel to the axes.

6. Integrals over Regions in Three and More Dimensions.

Every statement we have made for integrals over regions of
the xy-plane can be extended without further complication or
the introduction of new ideas to regions in three or more dimen-
sions. If e.g. we consider the case of the integral over a three-
dimensional region R, we have only to subdivide this region R
by means of a finite number of surfaces with continuously varying
tangent planes into sub-regions which completely fill R and
which we denote by R}, R,, ..., B,. If f(z,y,2) is a function
which is continuous in the closed region R, and if (&, 74 &)
denotes an arbitrary point in the region R,, we again form the sum

gf (€m0 L)AR,,

in which AR, denotes the volume of the region R,. The sum is
taken over all the regions R,, or, if it is more convenient, only
over those sub-regions which do not adjoin the boundary of R.
If we now let the number of sub-regions increase beyond all
bounds in such a way that the diameter of the largest of them
tends to zero, we again find a limit independent of the particular
mode of subdivision and of the choice of the intermediate points.
This limit we call the ¢ntegral of f(x, y, z) over the region R, and
we denote it symbolically by

fffxf(a:, y, 2)dV.

9 (8912)
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If, in particular, we effect a subdivision of the region into
rectangular regions with sides Az, Ay, Az, the volumes of the
inner regions R; will all have the same value AzAyAz. As on
p- 230, we indicate the possibility of this type of subdivision and
the passage to the limit by introducing the symbolic notation

[[[fey iy

in addition to the one above. All the facts which we have men-
tioned for double integrals remain valid for triple integrals apart
from the necessary changes in notation. _
For regions of more than three dimensions the multiple
integral can be defined in exactly the same way, once we have
suitably defined the concept of volume for such regions. If
in the first instance we restrict ourselves to rectangular regions
and subdivide these into similarly oriented rectangular sub-
regions, and if we further define the volume of a rectangle

wEn=a+h, ;S ath,..., ST, Ka,t by,

as the product Ah, ... A, the definition of integral involves
nothing new. We denote an integral over the n-dimensional
region R by

ff ..... j;f(xl, Ty . . ., Tp)dzyday . . . di,

For more general regions and more general subdivisions we must
rely on the abstract definition of volume which we shall give
in section 1 of the appendix (p. 287).

In what follows, apart from section 3 of the appendix, we
can confine ourselves to integrals in at most three dimensions.

7. Space Differentiation. Mass and Density.

In the case of single integrals and functions of one variable,
we obtain the integrand from the integral by a process of dif-
ferentiation, taking the integral over an interval of length A,
dividing by the length %, and then letting % tend to zero. For
functions of one variable this fact represents the fundamental
connexion between the differential calculus and the integral
calculus, and we interpreted it intuitively in terms of the concepts
of total mass and density. For the multiple integrals of functions
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of several variables the same connexion exists; but here it is
not so fundamental in character.
We consider the multiple integral (domain integral)

[[f@nas o [ [[f@y a7

of a continuous function of two or more variables over a region B
which contains a fixed point P with co-ordinates (z,, yo)—or
(%o, Yo 2¢), as the case may be—and which has the content *
AB. If we then divide the value of this integral by the content
AB, it follows from the considerations of sub-section 5 (p. 232)
that the quotient will be an intermediate value of the integrand,
that is, a number between the greatest and the least values
of the integrand in the region. If we now let the diameter of
the region B about the point P tend to zero, so that the content
AB also tends to zero, this intermediate value of the function
f(x, y)—or f(x, y, z—must tend to the value of the function at
the point P. Thus the passage to the limit yields the relations

25 [F@ 938 = (w0 30

AB—>0A

AB—->0AB ffff(z’ Y, 2)8V = f (@, Yo, Z0)-

This limiting process, which corresponds to the differentiation
described above for integrals with one independent variable, we
call the space differentiation of the integral. We see, then, that the
space differentiation of a multiple integral gives the integrand.

and

This connexion enables us to interpret the relation of integrand to
integral in the case of several independent variables, as before, by means
of the physical concepts of density and total mass. We think of a mass of
any substance whatever as distributed over a two- or three-dimensional
region R in such a way that an arbitrarily small mass is contained in each
sufficiently small sub-region. In order to define the specific mass or density
at a point P, we first consider a neighbourhood B of the point P with
content AB, and divide the total mass in this neighbourhood by the content.
The quotient we shall call the mean density or average density in this sub-
region. If we now let the diameter of B tend to zero, from the average
density in the region B we obtain in the limit the density at the point P,

* The word content is used as a general word to include the idea of length
in one dimension, ares in two dimensions, volume in three dimensions, and
80 on.
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provided always that such a limit exists independently of the choice
of the sequence of regions. If we denote this density by u(z, y)—or by
w(x, ¥, 2)—and assume that it is continuous, we see at once that the process
described above is simply the space differentiation of the integral

[ [uiz nas,
ff Ep.(z, y, 2)dV,

taken over the whole region R. This integral taken over the whole region
therefore gives us the total mass of the substance of demsity p in the
region * R,

From the physical point of view such a representation of the mass of
a substance is naturally an idealization. That this idealization is reasonable,
i.e. that it approximates to the actual situation with sufficient accuracy,
is one of the assumptions of physics.

These ideas, moreover, retain their mathematical significance even
when (. is not positive everywhere. Such negative densities and masses
may also have a physical interpretation, e.g. in the study of the distribution
of electric charge.

or

3. Repuction or THE MuLTipLE INTEGRAL TO
REPEATED SINGLE INTEGRALS

The fact that every multiple integral can be reduced to single
integrals is of fundamental importance in the evaluation of
multiple integrals. It enables us to apply all the methods which
we have previously developed for finding indefinite integrals to
the evaluation of multiple integrals.

1. Integrals over a Rectangle.

In the first place we take the region R as a rectanglea < x < b,
a = y < Bin the ay-plane, and we consider a continuous function
f(z,y)in R. In Vol. I, Chap. X (pp. 490-1) we used a process of
cutting the volume under the surface z= f(z, y) into slices in
order to make the following statement appear plausible:

* What we have shown here is that the distribution given by the multiple
integral has the same space-derivative as the mass-distribution originally
given. It remains to be proved that this implies that the two distributions are
actually identical; in other words, that the statement * space differentiation
gives the density u ' can be satisfied by only one distribution of mass. The
proof, which is not difficult, is passed over here. (It closely resembles the proof
of the Heine-Borel covering theorem.)
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To find the double integral of f(x, y) over the region R, we first
regard y as constant and integrate £(x, y) with respect to x between
the limits a and b. This integral

Hy) = fb Sz, y)dz

18 a function of the parameter y, and we have then to integrate it
between the limits o and B. In symbols,

[f s 0as=["swd. $0)=] 1@ 9,
or, more briefly,
[ nas=["a[" fa .

In order to prove this statement analytically, we return to
the definition of the multiple integral on p. 226. Taking

h=b_a and k=2
n m

b4

we have
[ [ £z, y)as = lm 2 fla+ ph, a--vk)hk,

m-—>® y=luml
n~> o

where the limit is to be understood to mean that the sum on the
right-hand side differs from the value of the integral by less than
an arbitrarily small pre-assigned positive quantity e, provided
only that the numbers m and n are both larger than a bound *
N depending only on e. By introducing the expression

@, =3 fla+ ph, a+ vi)h

we=1

we can write this sum in the form

3 O k.
y=1
_ 1 1
fixed value { -8 i OF ———
If we now choose an arbitrary fixed value for ¢, e.g 100 or 10,000

* The root idea of the following proof is simply that of resolving the double
limit as m and » increase simultaneously into the two successive single limiting
processes, first m — « when # is fixed and then n — « (cf. Chap. II, Appendix,
section 2 (p. 103)).
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and for » choose any definite fixed number greater than N, we
know that

I f f(@, y)dS — kél(b, <e

no matter how large the number s is, provided only that it is
greater than N. If we keep » fixed during the limiring process,
the above expression will never exceed e. In accordance with
the definition of the ordinary integral, however, in this limiting
process the expression @, tends to the integral

b
[ f(@ a+ vh)de = $(a + vk),
and we therefore obtain

f f,,f (@, y)dS — ’“équ(a + k)| Ze

For arbitrarily small values of ¢ this inequality holds for all
values of n which are greater than a fixed number N depending
only on e. If we now let n tend to oo (i.e. let k tend to zero),
then by the definition of the single integral and the continuity of

[ @, )= 4) we obiain
tim & 2 §lo+ v8) = [ $(o) s

P—>® y=l
whence

5
|fff(z, »iS—[$y)dy | < e
B a
Since e can be chosen as small as we please and the left-hand
side is a fixed number, this inequality can only hold if the left-
hand side vanishes, i.e. if

[ 10938 =[ 3y 7@, paa

This gives the required transformation.

This result accordingly reduces double integration to the per-
formance of two successive single integrations. The double integral
can be represented as a repeated single integral.

Since the parts played by « and y are interchangeable, no
turther proof ig required to show that the equation
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J[ 7w s =[] F )y

is also true.

2. Results. Change of Order of Integration. Differentiation
under the Integral Sign.

From the last two formule of the preceding sub-section we
obtain the relation

[ty 7@ o= 3z [ e )ay,

or, in words:

In the repeated integration of a continuous function with constant
limats of integration the order of integration can be reversed.

This theorem can also be stated as follows:

If the function 1(x, y) ts continuous in the closed rectangle, then
n this rectangle we can perform the integration of the integral

b
f f(x, y)dx with respect to the parameter y by integrating with
respect to 'y under the integral sign, that is, by integrating first with
respect to y and then with respect to x.

This theorem corresponds exactly to the rule for the differen-
tiation of an integral with respect to a parameter (cf. section 1,
p- 219).

We obtain a further result if we regard one of the above
limits, say b, as a variable parameter. We can then differentiate
the double integral with respect to this parameter; by the funda-

mental theorem of the differential and integral caleulus we obtain
the result

2 8
5 J [f@ awdy=[ 16, 9)dy.
Similarly, if we regard 8 as a variable parameter we obtain
2 b
op ) [/ @ waedy =] fe B
Finally, from the two equations we obtain
62
— dedy = f(b,
svop J J @ pdady =10, B
by repeated differentiation.
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In other words:

Dyfferentiation of the integral with respect to one of the upper
limits leads to an ordinary integral over the corresponding side of
the rectangle; mized differentiation with respect to the two wupper
limits gives the integrand at the corresponding corner of the rectangle.*

The theorem on the change of order in integration has many
applications. In particular, it is frequently used in the explicit
calculation of simple definite integrals for which no indefinite
integral can be found.

As an example—for further examples see the appendix, section 3,
pp. 313-6—we consider the intogral

o0 —
0% — o~ bz
I=f ——— dm,
0 €z

which converges for a > 0, 5> 0. We can express I as a repeated integral
in the form
-] b
I— f de / v dy.
[ a

In this improper repeated integral we cannot at once apply our theorem
on change of order. If, however, we write

T b
1= lim dx f e Vdy,
T—0 J0 a
by changing the order of integration we obtain
b] — e~ 1Y b b - Tv
1—e dy = log 2 lim ¢

I = lim
: r—>wJg ¥

r—xJq
Since in virtue of the relation

be— Ty 75 -9
fe—dy= ¢y
(4 Yy Ta Yy

dy.

the second integral tends to zero as T increases, we have
0 ,—GL __ g—bX b
1= f T dr=log--
0 xz a

In a similar way we can prove the following general theorem: if f(7) is
00
sectionally smooth for ¢ = 0, and if the integral f fL‘t) dt exists, then
1
00
— b
1=f f@2) = 102) 4 _ (0)10g 2 (> 0, b > 0).
¢ x a
* The reader’s attention may be drawn to the connexion between this

formula and the theorem on change of order of differentiation (cf. p. 55); he
should investigate for himself to what extent the two facts are equivalent.
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For here we can again express the single integral as a repeated integral

0 a
1=[ d [ flaydy
(i b
and change the order of integration.

3. Extension of the Result to More General Regions.

By a simple extension of the results already obtained we
can prove that our result holds for regions more general than
rectangles. We begin by considering a convex region R, that is, a
region whose boundary curve is not cut by any straight line
in more than two points unless the whole straight line between

yi
Y=Y
l = Y2(%)
x-},@j"'_'—“"_' = Pa(y)
{
\u
SN Y=o
(0) >
X=Xo X=Zy

Fig. 4.—General convex region of integration

these two points is a part of the boundary (fig. 4). We suppose
that the region lies between the ‘ lines of support > (cf. ex. 1 (b),
p. 100) ==y, 2= =, and y = y,, ¥ = y, respectively. Since
for points of R the 2-co-ordinate lies in the interval o, < o =
and the y-co-ordinate in the interval y, < y = y,, we consider
the integrals
$2(y)
[ S y)de

1!
and
PYalx)

flz, y)dy,
Ya(x)

which are taken along the segments in which the lines y = const.
and z = const. respectively intersect the region. Here ¢,(y) and
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&:(y) denote the abscisse of the points in which the boundary
of the region is intersected by the line y = const., and ()
and iy(x) the ordinates of the points in which the boundary is

$a(y)
intersected by the lines z==const. The integral f Sflz, y)dz is
$1(5)

therefore a function of the parameter y, where the parameter
appears both under the integral sign and in the upper a.nd lower

limits, and a similar statement holds for the integral f f (v, y) dy

a8 a function of x. The resolution into repeated mtegm.ls is then
given by the equations

[ [t nas =[] e s

L2 Wal)

=J dzf @9y

To prove this we first choose a sequence of points on the are
¥ = (), the distance between successive points being less than

4

Yien

Fig. s

a positive number 8. We join successive points by paths each
consisting of a horizontal and a vertical line-segment, lying in R.
The lower boundary y = ys(x) we treat similarly. We thus
obtain a region R in R, consisting of a finite number of rectangles.
The boundary of R above and below is represented by sectionally
continuous functions y= y,(x) and y= y;(x) respectively
(cf. fig. 5). By the known theorem for rectangles we have

[[f@pis=[ ’f:lz [ M ).
R *o Palx)
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Since i,(z) and Y,(x) are uniformly continuous, as 8 — 0 the
functions ¢,(x) and ,(x) tend uniformly to () and Py(z)
respectively, and so

. Ya(x) Yralx)
lim [ fa ydy=[" fz y)dy
§—>0 Plx) Ya(x)

uniformly in %, It follows that
Xy ‘7:(-"5) *1 Wa(x)
Lm | dz z, y)dx = [ dx z, y)dx.
Jm [ daf f@ypde=[dzf fay)

On the other hand, as 8 ~> 0 the region R tends to R. Hence
lim L y)adS = z, y)dS.
lim [ [ @ pas=[ [

Combining the three equations, we have
X1 Ys(X)

z, y)dS = | dx z, y)dy.

J[f@nas=] da| fi sy

The other statement can be established in a similar way.
A similar argument is available if we abandon the hypothesis

Fig. 6.—Non-convex regions of integration

of convexity and consider regions of the form indicated in fig. 6.
We assume merely that the boundary curve of the region is
intersected by every parallel to the z-axis and by every parallel
to the y-axis in a bounded number of points or intervals. By
f Jf{z, y)dy we then mean the sum of the integrals of the function

f(z, y) for a fixed =, taken over all the intervals which the line
= = const. has in common with the closed region. For non-
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convex regions the number of these intervals may exceed unity.
It may change suddenly at a point &= £ (as in fig. 6, right) in
such a way that the expression f [z, y) dy has a jump discontinuity

at this point. Without essential changes in the proof, however,
the resolution of the double integral

[ [ 9as=[ [ fa 9dy

remains valid, the integration with respect to # being taken along
the whole interval z, < z < ®, over which the regicn R lies.
Naturally the corresponding resolution

J[fw nas=[ay[ fa yde

y

also holds.

o

iﬂ
N

Fig. 7.—Circular ring as region of integration

If e.g. the region is the circle (fig. 7) defined by 22 + y? < 1, then the
resolution is as follows:

e pas=[ el " f nay.
B -1 ~vV([1=x%

If the region is a circular ring between the circles 2% + 42 =1 and
a? 4 y? = 4 (fig. 7), then

J 1@ sy = [ as| :ﬁ_{?x iy + [ asf :t-{()x Wiy

+1 —vV(1—x3% +1 +v(4—x?)
+ f d f flz, Py + f dz Flz y)dy.
-1 Yoy@—a) -1 V(-
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As a final example we take as the region R a triangle (fig. 8) bounded
by the lines z =y, y = 0, and z = a(a > 0). If we integrate first with

respect to z,
[[rwnas=[ “dy fy “fz y)da,

and if we integrate first with respect to y,
a x
[t nas = [z [ 1@ y)dy.
p 0 (i}
y{u

0

!
o
|

r=a T
Fig. 8.—Triangle as region of integration

Comparing the two results, we have
a x a a
f dz [ f(= y)dy =f dyf flz, y)dz.
o Yo o Jy
In particular, if f(z, y) depends on y only, our formula gives

[ "t f *fg)dy = fo “f) @ — y)dy.

X
From this we see that if the indefinite integral f f(y)dy of a function f(z)
0
is integrated again, the result can be expressed by asingle integral (cf. p. 221).

4. Extension of the Results to Regions in Several Dimensions.

The corresponding theorems in more than two dimensions
are so closely analogous to those already given that it will be
sufficient to state them without proof. If we first consider the
rectangular region T, S T X Ty, Yo=Y =Y, H=2=7%,and a
function f(z, y, z) which is continuous in this region, we can
reduce the triple integral

V=fffuf(a:, y, 2)dV
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in several ways to single integrals or double integrals. Thus

) f f@ 4, 9dV = f’dz |/ f f(@, 3, 2)dady.

[/ f@ 9 dway

is the double integral of the function taken over the rectangle
Ty =2 =2y, Yy = Y = ¥, 2 being kept constant as a parameter
during this integration, so that the double integral is a function
of the parameter z. Either of the remaining co-ordinates « and y
can be singled out in the same way.

Moreover, the triple integral ¥ can also be represented as a
repeated integral in the form of a succession of three single
integrations. In this representation we first consider the expression

[t 9

Here

z and y being fixed, and then consider
31 z1
d; (x, y, 2)dz,
[ o] sy
z being fixed. We finally obtain
Xy Y1 21
V=] dz| d (z, y, 2)dz.
fx . fy 9y f S99

In this repeated integral we could equally well have integrated
first with respect to z and then with respect to y and finally
with respect to 2z, or we could have made any other change in
the order of integration; this follows at once from the fact that
the repeated integral is always equal to the triple integral. We
therefore have the following theorem:

A repeated integral of a continuous function throughout a
closed rectangular region is independent of the order of integration.

The way in which the resolution is to be performed for non-rectangular
regions in three dimensions scarcely requires special mention. We content

ourselves with writing down the resolution for a spherical region z? + 32 4
21

+1 + vV (1—x2) + VvV (1—-x3—y?)
//ff(z, ¥, 2)dadydz =f dx/ dy [z, y, 2)dz.
£ -1 —V—x) Y—vV(a-x_y
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ExAMPLES

Evaluate the integrals in Ex. 1-8:

1. ffx“y“dxdy over the circle 22 + y% < 1.

_ 2
2. ffza + 4 — 3w+ ¥) dxdy over the circle 22 | y? < 1.

@+ o)

3. f f f (2® + y? + 2?)xyzdaedydz throughout the sphere #® 4 3 |- 22
=

4. f f f zdxdydz throughout the region defined by the inequalities
B+ ypsd Lyt A=1

5. fff(x + y + 2)a?y%*dxdydz throughout the region z+y+2=1,
2=0,y=0,2=0.

dzdydz ; i
6 [[[ syt agp trovghont tho sphero o + 4t 4 2 1.

dxdydz
7. fff throughout the sphere 2% 4 y* + 28 < 1.
N T T phere A2

d
8. ff x y overthesquare|x|él,ly[él.
9. Prove that if _f (») is a continuous function

) +1 p _
lm f_1 [ @de =m0

4. TRANSFORMATION OF MULTIPLE INTEGRALS

In the case of single integrals the introduction of a new
variable of integration is one of the chief methods for trans-
forming and simplifying given integrals. The introduction of
new variables is likewise of great importance in the case of several
variables. In the case of multiple integrals, in spite of their
reduction to single integrals, explicit evaluation is generally
more difficult than in the case of one independent variable, and
the integration in terms of elementary functions is less often
possible. Yet in many cases we can evaluate such integrals by
introducing new variables in place of the original variables under
the integral sign. Quite apart from the question of the explicit
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evaluation of double integrals, the change of variables is of
fundamental importance, since the transformation theory gives
us a more complete mastery of the concept of integral.

The most important special case is the transformation to polar
co-ordinates, which has already been carried out in Vol. I, Chap.
X (p. 494). Here we shall at once proceed to general transforma-
tions. We first consider the case of a double integral

z, y)dS = z, y)dzdy,
[/ 1@ 9is=[ [ fe gy
taken over a region R of the zy-plane. Let the equations

r= ¢(u= v)
y = (u, v)

give a one-to-one mapping of the region R on the closed region
R’ of the uv-plane. We assume that in the region R’ the functions
¢ and ¢ have continuous partial derivatives of the first order
and that their Jacobian

$u bs
¢“ ¢0

never vanishes in the closed region R’; to be specific, we assume
that it is everywhere positive. We then know that with these
assumptions the system of functions == ¢(u, v), ¥ = (u, v)
possesses a unique inverse u= g(z, ¥), v= h(z, y) (p. 152).
Moreover, the two families of curves « = const. and v = const.
form a net over the region R.

Heuristic considerations readily suggest how the integral

D= == ?Su'po - ‘ﬁu?so

f f Sf(®, y)dzdy can be expressed as an integral with respect

to 5 and v. We naturally think of calculating the double integral

f f f(z, y)dS by abandoning the rectangular subdivision of the
R

region R and instead using a subdivision into sub-regicns R, by
means of curves of the net v = const. or v == const. We there-
fore consider the values ¥ = vk and v = uk, where A == Au and
k= Av are given numbers and » and p take all integer values
such that the lines w= vk and v= uk intersect R’ (so that
their images are curves in R). These curves define s number
of meshes, and for the sub-regions R, we choose those meshes
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which lie in the interior of B (figs. 9, 10). We now have to
find the area of such a mesh.
If the mesh, instead of being bounded by curves, were an

Yi v
R ) ,
R N\
R; YT
/ }
7
o] - g
X (73

Figs. 9, 10.—Decomposition of regions in a transformation

ordinary parallelogram, half the parallelogram being formed by
the triangle with the vertices corresponding to the values
(w,, v,), (u,+ h, v,), and (u,, v, + k), then by a formula of ele-
mentary analytical geometry (cf. Chap. I, p. 14) the area of
the parallelogram would be given by the determinant

¢(uv + h’ vﬂ.) - ¢(uv’ 'vp.) ¢(uv’ vp. + k) - ¢(uv’ U}L)
‘l'(uv + h’ vu) - ‘/’(uw v“) ll’(uw v, + k) - ¢(uv’ Uu) ’

which is approximately equal to

Pu(u,, v,)  Bo(w,, v,)
Yulthy, 9,)  Po(w,, v,)

On multiplying this expression by the value of the function f in
the corresponding mesh, summing over all the regions R, lying
entirely within R, and then performing the passage to the limit
h — 0 and k — 0, we obtain the expression

J £ (w0, ptu, o) Diud

for the integral transformed to the new variables.

This discussion is incomplete, however, since we have not
gshown that it is permissible to replace the curvilinear meshes
by parallelograms or to replace the area of such a parallelo-
gram by the expression (¢, — Y,P,)hk; that is, we have not
shown that the error thus caused vanishes in the limit as 2 -0
and k¥ — 0. Instead of completing this method of proof by

hk = hkD.
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making these estimates, we prefer to develop the proof of the
transformation formula in a somewhat different way, which can
subsequently be extended directly to regions of higher dimensions.

Y| vi
R ﬂ\B
4 \
[l IB: /
/

N
0 - o
—> >
Fig. 11 Fig. 12

For this purpose we use the results of Chap. III, section 3
(p. 150) and perform the transformation from the variables z, y
to the new variables 4, v in two steps instead of in one. We
replace the variables , y by new variables #, v by means of the

equations

rT=2

/ —Y -¢/z¢,,+:]r,x) y= (I)(’l), Q).

Here we assume that the expres-
2] sion ®, vanishes nowhere in the
region R, ie. that ®, is every-

/ Y= where greater than zero, say,

- and that the whole region R can
be mapped in a one-to-one way

Z=Zy Z=-y+h on the region B of the av-plane.
Fig. 13 We then map this region B in

a one-to-one way on the region
R’ of the wwv-plane by means of a second transformation

z = V(u, v)

v=0,
where we further assume that the expression W, is positive
throughout -the region B. We now effect the transformation of

the integral f f f(x, y)dxdy in two steps. We start with a sub-
R
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division of the region B into rectangular sub-regions of sides
Az =h and Av=Fk bounded by the lines # = const. = =, and
v = const.== v, in the zv-plane. This subdivision of B corresponds
to a subdivision of the region R into sub-regions R;, each sub-region
being bounded by two parallel lines £ = z, and = = =, + & and
by two arcs of curves y= ®(v,,z) and y= ®(v, - &, ) (figs. 11,12).
By the elementary interpretation of the single integral, the
area of the sub-region (fig. 13) is

Syt h
AR,=[ [0, + k o) — O(v,, 2))dz,

which by the mean value theorem of the integral caleulus can be
written in the form

AR, = H[®(v, + k, 5) — (v, )],
where %, is a number between z, and z, + %. By the mean value
theorem of the differential calculus this finally becomes

ARi = hkq)v(ﬁ,u iv):

in which @, denotes a value between v, and v, + %, so that
(@,, £,) are the co-ordinates of a point of the sub-region in B

under consideration. The integral over B is therefore the limit
of the sum
2 fiAR,; = Zhkf(Z,, ®(5,, £,))P(3,, T,)

(s

as h - 0, k — 0. We see at once that the expression on the right
tends to the integral

[[ @ y®.dadv  (y= O, )
B
taken over the region B. Therefore

fj;f(x, y)dxdy=ff8f($, y)D, dxdv.

To the integral on the right we now apply exactly the same
argument as that just employed for f f [z, y)dzdy, transforming
R

the region B into the region R’ by means of the equations
z= V(u, v), v="0.
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The integral over B then becomes an integral over R’ with
an integrand of the form f®,¥,, and we finally obtain

f L fl@, y)0, ¥, dudv.

Here the quantities  and y are to be expressed in terms of the
independent variables 4 and » by means of the two transforma-

tions above. We have therefore proved the transformation
formula

f fn S, y)dody = f fB S, 9)O ¥, dudb.

By introducing the direct transformation z = ¢(u, v), y = (u, v)

the formula can at once be put in the form stated previously.
o(z, y) oz, v)

F = @, and

Hor oz, v) A o(u, v)

(p. 147) we have

=Y, and so by Chap. I1I, section 3

p=®9_ ¢y
o(u, v)

We have therefore established the transformation formula for all
cases in which the transformation z = ¢(u, v), y = )(u, v) can
be resolved into a succession of two primitive transformations of
the forms * z =2, y = O(v, z) and v = v, z= V(u, v).

In Chap. III, section 3 (p. 151), however, we saw that we can
subdivide a closed region R into a finite number of regions in
each of which such a resolution is possible, except perhaps that
it may also be necessary to replace % by v and v by —u; this
substitution is merely a rotation of the axes, and we see that it
does not affect the value of the integral; in fact, even the simple
heuristic argument at the beginning of this sub-section is perfectly
rigorous for this case. We thus arrive at the following general
result:{

* We have assumed above that the two derivatives @, and ¥, are positive,
la)zl: v;e easily see that this is not a serious restriction. For the inequality
3(11,’, Z)
were both negative, we should merely have to replace by —x and y by —y,

which leaves the integral unchanged. The two primitive transformations then
have positive Jacobians.

T The above proof in the first instance holds only for every closed region
R, lying entirely within B. Since, however, B, can be chosen so as to occupy
all of R except a portion of arbitrarily small area, the transformalion formula
continues to hold for R itself.

> 0 shows that these two derivatives must have the same sign. If they
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If the transformation x= $(u, v), y = (u, V) represenis a
continuous one-to-one mapping of the closed region R of the xy-plane
on a region R’ of the uv-plane, and if the functions ¢ and i have

continuous first derivatives and their J acobian %(E’—X) = by — Pty
1s everywhere positive, then (g, v)

[ [ e v)dady = [ [ 1w, 0, b, ) 2L dud,

o(u, v)

For completeness we add that the transformation formula
remains valid if the determinant g—((%—%; vanishes without, how-
ever, changing its sign, at a finite number of isolated points of
the region. For then we have only to cut these points out of R
by enclosing them in small circles of radius p. The proof is valid
for the residual region. If we then let p tend to zero,* the trans-
formation formula continues to hold for the region R in virtue
of the continuity of all the functions involved.

We make use of this fact whenever we introduce polar co-
ordinates with the origin in the interior of the region; for the
Jacobian, being equal to 7, vanishes at the origin.

In Chap. V, section 4 (p. 377) we shall return to transforma-
tions with negative Jacobians, and we shall see that the argument
remains essentially the same. Nevertheless, we would point out
here that provided the Jacobian D does not vanish the hypothesis
D > 0 in a sense involves no loss of generality, for we can always
change the sign of D by interchanging w and ». A different
method of proving the transformation formula will be given in
Chap. V, § 3, p. 373.

Regions of more than Two Dimensions.

We can of course proceed in the same way with regions of
more than two dimensions, e.g. with regions in three-dimensional
space, and obtain the following general result:

If a closed region R of xyz . . . -space is mapped on a region R’
of uvw . . . -space by a one-to-one transformation whose Jacobian

o, Y 2 ...)
oy, v, w,...)

* For another application of this method, see section 5, p. 262.
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is everywhere positive, then the transformation formula

ff...fxf(x,y,z,...)dxdydz...
=ff...fn,f(w,y,z,...)Mdudvdw...

a(u: v, w,.. ')

holds. In n dimensions the Jacobian is an n-rowed deter-
minant of similar construction to the Jacobian in two
dimensions.

As a special application, we can obtain the transformation formula for
polar co-ordinates in another way. In the case of polar co-ordinates in the
plane we must write r and 0 instead of % and v, and we at once obtain

the expression gﬁ:’ g-)) = r (cf. p. 144). In the case of polar co-ordinates
tn space, defined by the equations
%= rcosesinb
y=rsingsin
2z = rcos0,

in which ¢ ranges from 0 to 2w, 0 from 0 to n, and r from 0 to 4+ o, we

must identify w, v, w with 7, 0, ; as the expression for the Jacobian we

obtain

cospsinG rcosgcos® —rsingsind

sing sin® rsing cosO rcospsin® | = #2sin0.
cos —r8in0 0

oz, ¥, 2) _
or 6, ¢)

(This value 72 sin 0 is obtained by expanding in terms of the elements of
the third column.) The transformation to polar co-ordinates in space is
therefore given by the formula

ff f(z, y, 2)dzedydz =ffo(x, Y, 2)r% sin Odrd@de.
B

As in the corresponding case in the plane, we can also arrive at the trans-
formation formula without using the general theory. We have only to
start with a subdivision of space given by the spheres r = const., the
cones § = const., and the planes ¢ = const. The details of this elementary
method are similar to those of Vol. I, Chap. X, section 2 (p. 494) and can
be left to the reader.

In the case of polar co-ordinates in space our assumptions are not
satisfied when r = 0 or 0 = 0, since the Jacobian then vanishes. The
validity of the transformation formula, however, is not thereby destroyed.
We can easily convince ourselves of this, as we did in the case of the
plane.
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ExXAMPLES
vz
1*. Evaluate the integral f f ev+2dxdy taken over the triangle with
vertices (0, 0), (0, 1), (1, 0).
2. Evaluate the integral

f dzdy
f 1+ 224 y2)?
taken

(a) over one loop of the lemniscate (2 + #2)2 — (2? — y%) = 0,
(b) over the triangle with vertices (0, 0), (2, 0), (1, v 3).

3. Evaluate the integral

, fffz"yzdxdydz

taken throughout the e].hpsmd il + 3;2 + = g 1.
¢

4, Prove that

ffe“"'“"dxd = ae_“’fwﬁl— du
R Y o @+ u?

{where R denotes the half-plane z = a > 0), by applying the transfor-
mation

24+ yp2=u+a? y=ox

| [ [+ whazdy

is invariant on inversion.

5. Prove that

6. Evaluate the integral of Ex. 4, p. 247, by using three-dimensional
polar co-ordinates.

7. Evaluate the integral
I=fffcos(x£ + yn + 2{)dEdndy

taken throughout the sphere £2 4 n? 4 (2 < 1.
8. Prove that
[ [oostat + ymagan =270, 0= Ve + )

where the integral is to be extended over the circle €2 + %* < 1 and J,
denotes the Bessel function defined in Ex. 5, p. 223.
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5. IMPROPER INTEGRALS

In the case of functions of one variable we found it necessary
to extend the concept of integral to functions other than those
which are continuous in a closed region of integration. In fact,
we did consider the integrals of functions with jump discon-
tinuities and of functions with infinite values, and also integrals
over infinite intervals of integration. The corresponding exten-
sions of the concept of integral for functions of several variables
must now be discussed.

1. Functions with Jump Discontinuities,

For functions which have jump discontinuities in the region
of integration R the extension of the concept of integral is
immediate. We assume that the region of integration can be
subdivided by a finite number of smooth arcs of curves * into
a finite number of sub-regions R, R,, . . . , R, in such a way that
the integrand f is continuous in the interior of each sub-region,
and as the boundary of such a sub-region is approached from the
interior the values of the function tend to definite continuous
boundary values; but the limiting values obtained as we
approach & point on a curve separating two sub-regions may
differ according as we approach the point from one sub-region
or the other. The integral of the function f over the region R
we shall then define as the sum of the integrals of the function f
over the sub-regions R,. The integrals of f over the regions R,
are at once given by our original definition if for each sub-region
we suppose that the function is extended by including the boun-
dary values, so that it becomes a continuous function in the
closed region R,.

As an example we consider a function f(z, y) which is defined in the
square 0 Sz < 1,0 <y <1 by

fle,y)y=1 for y<aua,
f@y)=2 for y=a
For this function the line ¥ = # is a line of discontinuity, and by the

process described we find that the improper integral f S (z, y)dady taken
over the square has the value 3.

* By a smooth arc of a curve we mean an arc with a continucusly turning
tangent.
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2. Functions with Isolated Infinite Discontinuities.

If the integrand becomes infinite at a single point P of the
region of integration, we define the integral of the function f over
the region R by a process analogous to that for one independent
variable. We mark off a neighbourhood U, about the point of
discontinuity P, so that the closed residue R,= R— U, no
longer contains the point P. There are many possible sequences
of neighbourhoods U, whose diameters tend to zero as v increases,
e.g. the sequence of circles or spheres about the point P with
radius ¢ = 1/v. If the sequence of the integrals over the residual
region R, tends to a limit I, ie. if
lim ffaf(x y)as=1,

v—>®

and if this limit is independent of the particular choice of the
sequence R, then its value is called the integral or, more
accurately, the smproper integral of the function f over the region

R, and we write
I=[ [ f 9ds.

Such an integral taken over the region R is sometimes called a
convergent integral (or is said to converge). If no limiting value I
exists, the integral is said to be divergent (or to diverge). The
definition of course remains valid if P is an isolated point of
indeterminacy, such as the origin for the function sin (wTﬁl——yz>

If in the neighbourhood of P the absolute value of the
function remains below a fixed bound, the integral is always
convergent,

The general conditions for the convergence of an integral can
therefore be stated as follows. To every positive € there corre-
sponds a bound 8 = 8(¢) for which the following condition is
satisfied: if U and U’ are any two (open) sub-regions of B which
contain the point of discontinuity P and whose diameter is
smaller than 3, then the integrals of the function f over the
closed residual regions G — U and G — U’ differ in absolute
value by less than e. We shall illustrate these ideas by means of
a few examples.

The function

f(z, y) = logV/2® + ¢
10 (B912)
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becomes infinite at the origin of the xy-plane. Therefore in order to calculate
the integral over a region R containing the origin, e.g. over the circle
2% + y? < 1, we must cut out the origin by surrounding it with a region
Us whose diameter is less than §, and we must then investigate the con-
vergence of the integral taken over the residual region By = R — Uj
as 8 - 0. The neighbourhood Uj certainly lies within a circle of radius 8
about the origin. In accordance with section 4 (p. 254) we transform
the integral to polar co-ordinates and obtain

f logV/ 22 + y2dxdy =ff r logrdrdd,
Zs £y

where the integral on the right is taken over the region R;” of the r0-plane
corresponding to the region R;. In our case this is a region which contains
the rectangle 8 =7 =<1, 0 = 6 < 2= but does not include the straight
line r = 0. The function r logr is continuous for r = 0, however, if we

agsign the value 0 to it at that point; for lim r logr = 0. We can therefore
r—>0
let 3 tend to O and regard the transformed integral

ff r logrdrdd = lim ff r logrdrd0
B §—0 Ry

as an ordinary integral in the sense of section 2 (p. 224). The convergence
of the integral is therefore established.

At the same time this example shows that, as in the case ot
one independent variable, a properly chosen transformation of
co-ordinates sometimes changes an improper integral into a proper
integral. This fact clearly shows how inadmissible a restriction
we should lay upon ourselves if we refused to consider improper
integrals.

As a further example we consider the integral

dxdy
[ Lwazvr

taken over the same region. If we first think of the integral as
taken over the region R; obtained from R by cutting out a
circle with radius 8, and then transforming to polar co-

ordinates, we obtain
[/ 1 ara,
E:73 1.41.

or, as a repeated integral,
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B
From Vol. I (p. 246) we know that the integral f r%i_.r_l is convergent
0
if, and only if, a < 2. We therefore conclude that the double

integral f f ( \/$2+ 7 is likewise convergent if, and only if,

a < 2. Asin the preceding example, the convergence is inde-
pendent of the particular choice of the sub-regions U,.

This remark can readily be used to obtain a suﬁc'wm (by no
means a necessary) criterion for the convergence of improper
double integrals, which is applicable in many speclal cases.

If in the closed region R the function f(x, y) is continuous every-
'where except at one point P, which we take as the origin x = 0,

= 0, and f becomes infinite at P, and if there is a fixed bound
M and a positive number a <C 2 such that

M
[f@ 9] = ——
(Vo + g
everywhere in R, then the integral

[ 1@ ndedy

converges.
The proof is obtained from the above by considering the
relation

[ e it < |

where B is a region not containing P and lying within a small
circular neighbourhood of P.
We can deal with the triple integral

dxdydz
ff/‘,(\/xz + 2+ 22)"

in a similar way. If R contains the origin, we introduce polar
co-ordinates and obtain

[f L 171__2 sin 8dr d0dgp.

A discussion similar to the preceding shows us that convergence
occurs when a < 3. As a general criterion we have the following:

dzdy

fop|ddy = [ [ ot
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The integral of a function £(x, y, z) which becomes infinite at the
origin, but is continuous at every other point of a region R containing
the origin, is convergent, if there is a fized bound M and a positive
number a << 3 such that the inequality
M
f@y 2| = —e——rc
b
holds everywhere in the region.

From these criteria we conclude more generally that integrals
of the form

g(z, y)dzdy <2
ff(V(w—a)2+<y iy =7

over a two-dimensional region and integrals of the form

gz, y, )dwdydz 5<3
/1], s(Vie— ap+ @y — b+ e — o))" (2<9)

over a three-dimensional region converge, where (a, ), or (a, b, ¢),
is a fixed point in the interior of the region R and g is a continuous
function in the closed region R. We have only to transfer this
point to the origin by translation of the co-ordinate system and
then to apply our criterion.

3. Functions with Lines of Infinite Discontinuity.

If a function f(, y) becomes infinite not only at a single point
but along whole curves C' in the region R, we can proceed to
define the integral of a function f over the region R in an exactly
analogous way. We cut the curve of discontinuity C out of the
region R by enclosing it in a region U, of area less than e. If
then as ¢ tends to O the integral of the function f over the re-
gion R — U, tends to a limit I independent of the particular
choice of the region U,, we say that the integral of 1 over the region
R s convergent (or converges) and we take this limiting value as
the value of the integral.

The simplest example is the case in which the curve C consists
of a portion of a straight line, say a segment of the y-axis. If
the relation

|f@ <X,
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where M is a fixed bound and « is less than 1, is valid everywhere
in the region R, then the integral over the region R converges.
The proof is similar to the proofs of the preceding sub-section.
For example, we may cut the y-axis out of the region by means
of straight lines parallel to it.

4. Infinite Regions of Integration.

If the region R extends to infinity, we approximate to it by

a sequence of sub-regions By, Ry, ..., E, ..., which are all
bounded and have the property that every arbitrary bounded
sub-region of R is contained in every R, for which n is greater
than a certain m. (If, for example, B is the whole plane, for E,
we can choose the circular region of radius » about the origin.)
If the limit

im [ [ f,y)ds

v—> o By
exists and is independent of the particular choice of the sequence
of sub-regions R,, we call it the integral of the function f over the
region K.

To illustrate this statement by an example, we consider the integral

f f -5 dzdy,
R

where the region of integration is the whole xy-plane. In order to establish
the convergence of this integral we first choose the sub-regions B, as the
circles K, with radius v,

?+ =V

these obviously satisfy the above requirements. We have therefore to
investigate the limit of the integral

f f 5" dudy
Ky

as v » o. But we have already evaluated this integral (Vol. I. p. 496)
and have found it to be equal to n(l — ¢*). Now

lim w(l — ') = =
v—>00
1 we also show that not only the sequence of circles, but also every other
sequence of sub-regions R with the properties mentioned, leads to the
game value w, then according to our definition the number = will be the
value of the improper integral.
Let any sequence of such regions R;, R,, . . . be given. By hypothesis,
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each circle K, is contained in the interior of R, provided v is sufficiently
large; on the other hand, every R, is bounded and is therefore contained
in a circle K, of sufficiently large radius M, Since the integrand ey
is positive everywhere, it follows that

f f TV dzdy < f f TV indy < f f
Em By )’y

As m and M increase, the integrals over K,, and K, have the same limit =,
so that the integral over R, must have the same limit; this proves that
the integral must converge to the limit .

We obtain a particularly interesting result if for the regions R, we choose

the squares | #| = v, y| = v. The integral f f e#~¥'dzdy can then be
By
reduced to two simple integrations (cf. section 2, p. 228):

v v v 2 v 2
/ f e Vdpdy= [ e®da | eV'dy = ( f e‘“"da:) = (2f e“”’dx) .
z, — —v - 0

If we now let v tend to oo, we must again obtain the same limit =. Hence
o 2
(2 f e%dz) ==
(i
00

[ era=ivm

1]

e —Vidxdy.
M

or

in agreement with Vol. I, p. 496.

5. Summary and Extensions.

It is useful to consider the concepts of this section again from
a single unifying point of view. Our extension of the concept of
integral to cases in which the definitions in section 2 (p. 224)
are not immediately applicable consists in regarding the value
of the integral as the limiting value of a sequence of integrals
over regions R, which approximate to the original region of in-
tegration R as v increases. For this purpose we regard the region
R as open instead of closed; we assign all the points of dis-
continuity of the function f to the boundary and consider the
boundary as not belonging to R. We then say that the region
15 approximated to by a sequence of regions Ry, Ry, ..., R, ...
if all the closed regions R, lie in R and every arbitrarily chosen
closed sub-region in the interior of R is also a sub-region of the
region R, provided only that n is syffictently large. If in particular
the sub-regions R, are so chosen that each one contains the
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preceding one in its interior, we say that they converge mono-
tonically to the region R.

For the sub-regions R, we can at once apply the original
definition of the integral given in section 2, p. 224. We now
say that the integral of £ over the region R converges if the integral
over R, has a limiting value independent of the particular choice
of the sequence of regions R. It is useful to state specifically the
following general facts which have been illustrated by the previous
examples.

(1) If the function f is nowhere negative in the region R, it is
sufficient to show that for a single monotonic sequence R, the
sequence of values of the integral converges, in order to ensure
convergence to the same limit for an arbitrary sequence B,'.

Proof. R, being a closed region in the interior of R, is con-
tained in all regions R, from a certain n(v) onward. Conversely,
every region R, is contained in a certain R,,, for the same reason,
Since the function is nowhere negative, it follows that

J[ @ niaty<[] s ydody <[ [ fla, y)ddy.

As v increases the two outer bounds tend to the same limit; the
sequence of integrals f f Jf(z, y)dzdy must therefore converge
B"l

to that limit, and our statement is proved.

In particular, if for R, we choose a monotonic sequence of
regions tending to R, it follows that the function f, which is
nowhere negative, has a convergent integral over the region R,
provided only that the sequence of integrals over R, remains
below a bound M. For these integrals then form a sequence of
numbers which is monotonic non-decreasing and bounded, and
therefore convergent.

The case in which f is nowhere positive in B can at once be
reduced to the preceding if we replace f by —f.

(2) If f changes sign in the region R, we can apply the previous
theorem to | f|. If the integral of this absolute value converges,
it is certain that the integral of the function f itself converges.
This is most easily proved by the following device. We put

f=h—fo
where f; = f if f =0, otherwise f; =0, and fy= —f if f< 0,



264 MULTIPLE INTEGRALS [CHaP.

otherwise f, = 0. The two functions f;, f, are nowhere negative,
are continuous where f is continuous, and in absolute value
never exceed fitself. Hence, if the integral of | f | remains bounded
for a monotonic sequence R, the integrals of f; and f, converge,
and with them the integral of their difference, f; — f5.

6. GEOMETRICAL APPLICATIONS

1. Elementary Calculation of Volumes.

The concept of volume forms the starting-poirt of our
definition of integral. It is immediately obvious, thersfore, how
we can use multiple integrals in order to calculate volumes.

For example, in order to calculate the volume of the ellipsoid of
revolution

?+y 2
a? +I§=1

we write the equation in the form
z= ig\/(az— % — 2).

The volume of the half of the ellipsoid above the zy-plane is therefore
given by the double integral

v_»

3 ff\/(w2 — o — y?)dzdy

a

taken over the circle 22 4 4% < a2, If we transform to polar co-ordinates,
the double integral becomes

f f /(@2 — ) drdo,

or on resolution into single integrals

2
'21= 9/ a0 Oar\/(az — P)dr= 21':3./(::"\/((13— )dr,

aJo
which gives the required value,
v = & b,

To calculate the volume of the general ellipsoid

2t oyt B
atpta=!
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we make the transformation
&= gpcosf, y=bpgind,
oz y) _
a(p, 6)
and for half the volume obtain

cff \/(1-;2 ba)dxdy—abcffp\/(l— o?)dpdo.

Here the region R’ is the rectangle 0 < p < 1,0 < 0 < 2n. Thus

A Y %)dp = 2 mab
5= cfo 0'[)9\/(1—p)dp=én o

or

V= ; nabe.

Finally, we shall calculate the volume of the pyramid enclosed by the
three co-ordinate planes and the plane ax + by + ¢z — 1 = 0, where we
assume that a, b, and ¢ are positive. For the volume we obtain

1
= f (1 — az — by)dwdy,

where the region of integration is the triangle 0 < = S ,0Sy=<- (1 — ax)
in the zy-plane. Therefore

1 plla pL—ax)ib
=fdx/ (1 — az — by)dy.
¢ Jo 0

Integration with respect to y gives
(l—ax)/b (1 —_ m)z
Qa7 ¢

(1= aay — oy | -

and if we integrate again by means of the substitution 1 — ax =, we obtain
1 plla 1 la 1
S —_— 2 = — —_— 3 = —,
v 2bcf0 (1 — azfdz gabe 1 ™% || = Gate
We could of course have obtained the result from the theorem of elementary

geometry that the volume of a pyramid is one-third of the product of base
and altitude.

In order to calculate the volume of a more complicated solid
we can subdivide the solid into pieces whose volumes can be
expressed directly by double integrals. Later, however (in par-
ticular in the next chapter), we shall obtain expressions for the
volume bounded by a closed surface which do not involve this
subdivision.

100 (2912)
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2. General Remarks on the Calculation of Volumes. Solids of
Revolution. Volumes in Polar Co-ordinates.

Just as we can express the area of a plane region R by the

double infegral
ffEdS=/dedy,

we may also express the volume of a three-dimensional region R
by the integral
= dzdyd
14 f f /I; xdydz

over the region R. In fact this point of view exactly corresponds
to our definition of integral (cf. Appendix, p. 291) and expresses
the geometrical fact that we can find the volume of a region
by cutting the space into identical parallelepipeds, finding the
total volume of the parallelepipeds contained entirely in R, and
then letting the diameter of the parallelepipeds tend to zero.

The resolution of this integral for ¥ into an integral f dz f f dedy

expresses Cavaliers’s principle, known to us from elementary
geometry, according to which the volume of a solid is determined
if we know the area of every plane cross-section which is per-
pendicular to a definite line, say the z-axis. The general expression
given above for the volume of a three-dimensional region at once
enables us to find various formule for calculating volumes. For
this purpose we have only to introduce new independent variables
into the integral instead of @, ¥, 2.

The most important examples are given by polar co-ordinates
and by cylindrical co-ordinates; the latter will be defined
below. We shall calculate e.g. the volume of a solid of revolution
obtained by rotating a curve z= ¢(z) about the z-axis. We assume
that the rotating curve does not intersect the z-axis and that the
solid of revolution is bounded above and below by planes z= const.
The solid is therefore defined by inequalities of the forma <z = b
and 0 < /(22 + 4% < ¢(2). Its volume is given by the inte-
gral above. If we now introduce the cylindrical co-ordnates

z, p=+/(2*+ y¥), 6 =arc cos ¥ = arc sin? instead of z, Y %

P P
we at once obtain the expression
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V=f_[fxdxdydz=faf1zf0230fo¢§’dp

for the volume. If we perform the single integrations, we at once
obtain

V= f l:ﬁ(z)zdz

(cf. Vol. I, Chap. V, section 2, p. 285).

We can also obtain this expression intuitively. If we cut
the solid of revolution into small slices 2z, < 2 < 2,44 by planes
perpendicular to the z-axis, and if by m, we denote the minimum
and by M, the maximum of the dxstance ¢(2) from the axis in
this slice, then the volume of the slice lies between the volumes
of two cylinders with altitude Az = 2,4, — 2, and radii m, and
M, vespectively. Hence

Imlirlz £V < EM wAz.
By the definition of the ordinary integral, therefore,

V=nf B

If the region R contains the origin O of a polar co-ordinate
gystem (7, 0, ¢) and if the surface is given in polar co-ordinates

by an equation
r=f(0, $)

where the function f(6, ¢) is single-valued, it is frequently advan-
tageous to use these polar co-ordinates instead of (z, y, 2) in
calculating the volume. If we substitute the value of the Jacobian

g((w’ ;/ ’ ;; = 728in @ (as calculated on p. 254) in the transformation
r’ b

formula, we at once obtain the expression

£ (6, ¢)

2r T
V= r2ginfdrdfdd = | d in a0 2dr
f f /I; sin 6drdfde fo b ](; sin _/(; r
for the volume. Integration with respect to r gives
1 27 T A
V=, fo b ]0 368, ¢) sin 0.

In the special case of the sphere, in which f(6, ¢) = R is constant, we
at once obtain the value $mR? for the volume of the sphere.
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3. Area of a Curved Surface.

We have already expressed the length of arc of a curve by
an ordinary integral (Vol. I, p. 279). We now wish to find an
analogous expression for the area of a curved surface by means of
a double integral. We regard the length of a curve as the limiting
value of the length of an inscribed polygon when the lengths of
the individual sides tend to zero. For the measurement of areas
a direct analogy with this measurement of length would be as
follows: in the curved surface we inscribe a polyhedron formed
of plane triangles, determine the area of the polyhedron, make
the inscribed net of triangles finer by letting the length of the
longest side tend to zero, and seek to find the limiting value of
the area of the polyhedron. This limiting value would then be
called the area of the curved surface. It turns oub, however,
that such a definition of area would have no precise meaning, for
in general this process does not yield a definite limiting value.
This phenomenon may be explained in the following way: a
polygon inscribed in a smooth curve always has the property,
expressed by the mean value theorem of the differential calculus,
that the direction of the individual side of the polygon approaches
the direction of the curve as closely as we please if the subdivision
is fine enough. With curved surfaces the situation is quite
different. The sides of a polyhedron inscribed in & curved surface
may be inclined to the tangent plane to the surface at a neighbour-
ing point as steeply as we please, even if the polyhedral faces
have arbitrarily small diameters. The area of such a polyhedron,
therefore, cannot by any means be regarded as an approximation
to the area of the curved surface. In the appendix we shall
congider an example of this state of affairs in detail (pp. 341-2).

In the definition of the length of a smooth curve, however,
instead of using an inscribed polygon we can equally well use a
circumscribed polygon, that is, a polygon of which every side
touches the curve. This definition of the length of a curve as the
limit of the length of a circumscribed polygon can easily be
extended to curved surfaces. The extension is even easier if we
start from the following remark: we can obtain the length of a
curve y = f(x) which has a continuous derivative f'(z) and lies
between the abscissz a and b by subdividing the interval between
a and b at the points zy, 2y, . . . , %, into n parts of equal or different
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lengths, choosing an arbitrary point £, in the v-th sub-interval,
coustructing the tangent to the curve at this point, and measuring
the length I, of the portion of this tangent lying in the strip

¢, <¢<2,,. Thesum %I, then tends to the length of the

r=1

b
curve, i.e. to the integral f V{1 + f'(@)?} dz, if we let n increase

beyond all bounds and at the same time let the length of the
longest sub-interval tend to zero. This statement follows from
the fact that I, = (z,+; — 2 W{1 + (€)%}

We can now define the area of a curved surface in a similar
way. We begin by considering a surface which lies above the
region R of the zy-plane and is represented by a function
z= f(z, y) with continuous derivatives. We subdivide B into
n sub-regions Ry, R,, ..., R, with the areas ARy, ..., AR,
and in these sub-regions we choose points (&, 71), - - - » (Ens M)
At the point of the surface with the co-ordinates £,, 7, and
L, =f(£,, m,) we construct the tangent plane and find the area
of the portion of this plane lying above the region R,. If a, is
the angle which the tangent plane

2— CV =fi¢(§v’ 7,) (z— §v) +fv(£w "lv) (y— ”lv)

makes with the zy-plane, and if A7, is the area of the portion 7,
of the tangent plane above R,, then the region R, is the projection
of 7, on the zy-plane, so that

AR, = Ar, cosa,.
Again (cf. Chap. IIT, section 2, p. 130),
1
VI fHEs 1)+ FEa )

cosa, =

and therefore
ATv = \/1 +f52( fw TIV) +f1/2(§v’ nv) . ARI"

If we now form the sum of all these areas

3 AT,

v=1
and let n increase beyond all bounds, at the same time letting
the diameter (and consequently the area) of the largest sub-



270 MULTIPLE INTEGRALS [Cuar

division tend to zero, then according to our definition of integral
this sum will have the limit

A= [ [VITfE+FRas.

This integral, which is independent of the mode of subdivision
of the region R, we shall define as the area of the given surface.
If the surface happens to be a plane surface, this definition agrees
with the preceding; for example, if 2 = f(», y) = 0, we have

A:deS.

It is occasionally convenient to call the symbol

do= VI f2+ [ 28 = VI + 2 + fRdwdy

the element of area of the surface z = f(x, y). The area integral
can then be written symbolically in the form

dea'.

We arrive at another form of the expression for the area if
we think of the surface as given by an equation ¢(z, y, 2) = 0
instead of z = f(z, y). If we assume that on the surface ¢, &= 0,
say ¢, > 0, then the equations

02 _$a O2_

w by
at once give the expression
1
ST o+ 92 5 dady
for the area, the region R again being the projection of the
surface on the zy-plane.

As an example of the application of the area formula we consider the
area of a spherical surface. The equation z = v (R? — 2% — y?) represents
a hemisphere of radius . We have

oz AR —) by A(RE— 22— ¥
The area of the hemisphere is therefore given by the integral

4= Rff \/(R’o-ii:(i!/” — )
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where the region of integration R’ is the circle of radius R lying in the
zy-plane and having the origin as its centre. By introducing polar co-
ordinates and resolving the integral into single integrals we further obtain

2r rdr 2 rdr
A=Rfdef ————=2an S —
5 o Jo A/(RE—1?) 0 V(B —1)
The ordinary integral on the right can easily be evaluated by means of
the substitution R? — 72 = u; we have
z

1A= —2zRVE -1 A 2nRe,

in agreement with the fact, known from elementary geometry, that the
area of the surface of a sphere is 4xR%.

In the definition of area we have hitherto singled out the co-
ordinate z. If, however, the surface had been given by an equation
of the form z = x(y, 2) or ¥ = y(x, 2), we could equally well have
represented the area by integrals of the form

[[va+ar+eddyd oo [[vQ+yd+ y2dede,
or, if the surface were given implicitly, we should have

[V @2+ b2t 43 5 o
or

[V 2+ b2+ 4 5 dy

That all these expressions do actually define the same area
is self-evident. The equality of the different expressions can,
however, be verified directly. For example, we apply the trans-
formation

z = (y, 2),
y=y

[V +¢¢:f + 42 dody.

to the integral

Here & = (y, 2) is found by solving the equation ¢(z, y, 2) = 0

for z. The Jacobian is Az, y) = (&, and therefore
a(y’ 2) ¢m
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VA ol ) - [ [V $3+ >+ ¢.7)
ffR Y dxdy _-ffm Y dydz.

The integral on the right is to be taken over the projection R’
of the surface on the yz-plane.

If in expressing the area of a surface we wish to get rid of any
special assumption about the position of the surface relative to
the co-ordinate system, we must represent the surface in the
parametric form

z=d(u, v), y=1(u,v), z= x(u, v).

A definite region R’ of the uv-plane then corresponds to the sur-
face. In order to introduce the parameters u and v in the
above formule we first consider a portion of the surface and
assume that for this portion the Jacobian g—%%; = D is every-
where positive. According to Chap. III, section 3, p. 153, for this
portion we can then solve for % and v as functions of = and y,
obtaining

uw=%’, v.m':_%’

for the partial derivatives.
In virtue of the equations

0z 0z 0z
a?“a_u"”'a—v”" and

we obtain the expression

Ji @)+ G

= % '\/{(95"4'#01* Yubo)®+ (Puxto— Xu'/’v)z'!' (Xubv— ¢uXv)2}~

0z 02 0z
@'—%uu“"a—v”v

If we now introduce % and v as new independent variables and
apply the rules for the transformation of double integrals (p. 253),
we find that the area of the portion of the surface corresponding
to R’ is
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a=f S VG + huxo— Xl -+ (upo—bux)2ydudv.

In this expression there is no longer any distinction between the
co-ordinates , y, and z. Since we arrive at the same integral
expression for the area no matter which one of the special non-
parametric representations we start with, it follows that all
these expressions are equal and represent the area.

So far we have only considered a portion of the surface on
which one particular Jacobian does not vanish. We reach the
same result, however, no matter which of the three Jacobians
does not vanish. If then we suppose that at each point of
the surface one of the Jacobians is not zero, we can subdivide
the whole surface into portions like the above, and thus find that
the preceding integral still gives the area of the whole surface:

A= f L '\/{(ﬂl’u‘/’v_ ‘l’u‘ﬁv)g—l— (llluxv— Xu¢v)2+ ( Xu¢u_ ¢uXu)2}du d,v.

The expression for the area of a surface in parametric re-
presentation can be put in another noteworthy form if we make
use of the coefficients of the line element (cf. Chap. III, section 4,

p- 163) dst = Edu? + 2Fdudv + Gdv?,

that is, of the expressions
E= ¢u2 + ¢u2 + Xuzy
F= ¢u¢v 4 Putby + XuXo
G= ¢v2 + '7[‘1)2 -+ sz'

A simple ealculation shows that

EG— F?= (¢oihp— thuto)>+ (huXo— Xutlo)*+ (XuPo— PuXo)*

Thus for the area we obtain the expression
f f V(EG — F?)dudp,

and for the element of area
do = +/(EG — F?)dudw.

As an example we again consider the area of a sphere with radius R,
which we now represent parametrically by the equations
% = R cosu sinv,
y = Rsinusinvy,
z = Rcosy,
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where u and v range over the region0 S u < 2rand 0 < v < n. Asimple
calculation once more gives us the expression

20 "
sz duf sinvdy = 4nR?
0 0

for the area.

In particular, we can apply our result to the surface of revolu-
tion formed by rotating the curve z = §(z) about the z-axis.
If we refer the surface to polar co-ordinates (, v) in the ay-plane
as parameters, we obtain

T=wucosv, y=usinv, z= GVt y?) = ¢(u).

Then
E=14 ¢'%u), F=0, G=ul

and the area is given in the form
2 °y oy —
f d'vf uV'1 + ¢'2(u)du = 27rf uV'1+ ¢'%(u)du.
0 Uq Uy

If instead of  we introduce the length of arc s of the meridian
curve z = ¢(u) as parameter, we obtain the area of the surface
of revolution in the form

e s f luds,

where w is the distance from the axis of the point on the
rotating curve corresponding to s (Guldin’s rule; of. Vol. I,
p. 285).

As an example we calculate the surface area of the torus or anchor ring (cf.
Chap. ITI, section 4, p. 165) obtained by rotating the circle (y — a)2 -} 22 =r?
about the z-axis. If we introduce the length of arc s of the circle as a

8 .
parameter we have u = a + r cos’, and the area is therefore
r

2wy 2mr 8
21::/ uds = 211:/ (a 4 rcos;) ds = 2na . 2xr.

0 0

The area of an anchor ring is therefore equal to the product of the circum.-
ference of the generating circle and the length of the path described by the
centre of the circle.




IV] GEOMETRICAL APPLICATIONS 275

ExAMPLES
1. Calculate the volume of the solid defined by
{V(+ y*) — 13

a®

+% <1 @<y
- X

2. Find the volume cut off from the paraboloid
PR
ZTHE?
by the plane z = h.
3. Find the volume cut off from the ellipsoid

2 oy B
ATpta=!

by the plane
Iz + my + nz = p.

4. (a) Show that if any closed curve 6 = f(¢) is drawn on the surface
72 = a? cos 20

(r, 9, ¢ being polar co-ordinates in space), the area of the surface so enclosed
is equal to the area enclosed by the projection of the curve on the sphere
r = a, the origin of co-ordinates being the vertex of projection.

() Express the area by a simple integral.

(¢) Find the area of the whole surface.

5. Find the area of the surface of the spheroid formed by rotating an
ellipse about its major axis, and show that if the fourth and higher powers
of the eccentricity e may be neglected, this area is equal to that of the
sphere whose volume is equal to that of the spheroid.

6. Find the volume and surface area of the solid generated by rotating
the triangle A BC about the side AB.

7*. A tube-surface is generated by the spheres of unit radius whose
centres form the closed plane curve L. Prove that the area A of the
surface is 2= times the length of L.

8%, (a) Calculate the volume of the region defined by
2yt =2
2ty—re =0
a4y 4z = 0.

(b) Calculate the area of the spherical part of the boundary of this
region, i.e. the area of the surface

x2+y3+zi p—_—]
2+yr—rx=0
2+ yt+rz=0.
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9. Calculate the area of that part of the screw surface
z
—ztan- =0
y—x 3
for which

<+t SR lz|§gh.

10. Calculate the area of the surface
(2 4 2 2 = 23 — o,

7. PEYSICAL APPLICATIONS

In section 2, No. 7 (p. 235) we have already seen how the
concept of mass is connected with that of a multiple integral.
Here we shall study some of the other concepts of mechanics.
We begin with a more detailed study of moment and of moment
of inertia than was possible in Vol. I, Chap. X (p. 496).

1. Moments and Centre of Mass.

The moment with respect to the xy-plane of a particle with mass
m s defined as the product mz of the mass and the z-co-ordinate.
Similarly, the moment with respect to the yz-plane is ma and that
with respect to the za-plane is my. The moments of several particles
combine additively; that is, the three moments of a system of
particles with masses my, m,, . . . , m, and co-ordinates (z,, ¥, %),
o« o (@ny Yny 24) are given by the expressions

n n n
T,=2%2mpz, T,=2Zmy, T,=Xmgz,.
yv=1 y=1 y=1

If instead of a finite number of particles we are dealing with
a mass distributed continuously with density p= u(z, y, 2)
through a region in space or over a surface or curve, we define
the moment of the mass-distribution by a limiting process, as in
Vol. I, Chap. X, section 6 (p. 497), and thus express the moments
by integrals. For example, with a distribution in space we sub-
divide the region R into n sub-regions, imagine the total mass
of each sub-region concentrated at any one of its points, and
then form the moment of the system of these n particles. We
see at once that as m —> o and at the same time the greatest
diameter of the sub-regions tends to zero the sums tend to the
limits
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T,,=ff‘£;wdwdydz, T, =ff/;pyd:vdydz,
T, =fffyzda;dydz,
R

which we call the moments of the volume-distribution.

Similarly, if the mass is distributed over a surface S given
by the equations z = ¢(u, v), y= (u, v), 2= x(u, v) with
surface density p(w, v), we define the moments of the surface dis-
tribution by the expressions

T,,=f‘/;pxda=ff;w\/EG——F2dudv,
T, =f£pyda=f.éﬂymdudv,
T, = f fs pzdo = f fE eV EG — FPdudv.

Finally, the moments of @ curve x(s), y(s), %(s) ¢n space with mass
density u(s) are defined by the expressions

T, = f ads, T,= f pyds, T,— f weds,

where s denotes the length of arc.
The centroid (centre of mass) of a mass of total amount M
distributed through a region R is defined as the point with co-

ordinates
T, _r,

§=“— n—ﬂ:

T,
o t= M

For a distribution in space the co-ordinates of the centre of mass
are therefore given by the expressions

&= Tlljff‘/‘:pxdmdydz, &c., where M=ff/;pdxdydz.

As an example we first consider the uniform hemispherical region H
with mass density 1:

P2+ +E=

z =0.
The first two moments

T, =fffxdxdydz,
a
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T, =ffLyd:cdydz

are zero, since the integration with respect to  or with respect to y gives
the value zero. For the third,

T, =/szdxdydz,

we introduce cylindrical co-ordinates (r, z, ) by means of the equations

2=z,
x = r cos0,
y=rsin0

and obtain
V(l-2z% 1] — 22 28 z;)!l p
—fzdzfrdr f —21:j; 3 zdz=m e Rty
Since the total mass is 2n/3, the co-ordinates of the centre of mass are
z2=0,y=0,2z=3.
We shall next calculate the centre of mass of a hemispherical surface

of unit radius over which a mass of unit density is uniformly distributed.
For the parametric representation

Z = cosu 8inv, y = sinusiny, 2= cosy

we calculate the surface element from the formula on p. 273 and
find that
V' EG — F*dudv = sinvdu dv

We accordingly obtain

/2
/ sm“'vdvf cosudu = 0,

8

/2
T, fsm’vdvf sinudu = 0,

T

- 2n 2y m/2
=f sinvcosvdvf du—-2nsm l =%
0

for the three moments. Since the total mass is obviously 27, we see that
the centre of mass lies at the point with co-ordinates 2 =0,y =0,z = 3.

2. Moment of Inertia.

The generalization of the concept of moment of inertia is
equally obvious. The moment of inertia of a particle with respect
to the x-axis is the product of its mass and p? = y2 422, that is,
the square of the distance of the point from the z-axis. In the
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same way, we define the moment of inertia about the z-axis of
a mass distributed with density p(z, y, 2) through a region B
by the expression

f f fn w2 -+ 2 dedydz.

The moments of inertia about the other axes are represented by
similar expressions. Occasionally the moment of inertia with
respect to a point, say the origin, is defined by the expression

ff/;p,(wz + y? + 2A)dadydz,

and the moment of inertia with respect to a plane, say the

yz-plane, by
f f f patdadydz.
B

Similarly, the moment of inertia, with respect to the z-axis, of
a surface distribution is given by

f L uy? + #)do,

where u(w, v) is a continuous function of two parameters « and v.

The moment of inertia of a mass distributed with density
w(x, y, z) through a region R, with respect to an axis parallel to
the z-axis and passing through the point (£, 5, {), is given by the
expression

[ [ [ty = wp+ (e — tMdmdyds

If in particular we let (£, 7, {) be the centre of mass (cf. p. 277)
and recall the relations for the co-ordinates of the centre of mass
(given on p. 277), we at once obtain the equation

f f »/1; p(o? + 22)dedydz — f f fB ply — 0)? + (2 — {Pldedydz
+ @+ O f [ [ pdwdyde.

Since any arbitrary axis of rotation of a body can be chosen as
the z-axis, the meaning of this equation can be expressed as
follows:

The moment of inertia of a rigid body with respect to an arbitrary
axis of rotation is equal to the moment of inertia of the body about
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a parallel axis through its centre of mass plus the product of the total
mass and the square of the distance between the centre of mass and
the azis of rotation (Steiner’s theorem).

The physical meaning of the moment of inertia for regions in
several dimensions is exactly the same as that already stated
in Vol. I, Chap. V, section 2 (p. 286):

The Fkinetic energy of a body rotating uniformly about an azss
18 equal to half the product of the square of the angular velocity and
the moment of inertia.

The following examples may serve to illustrate the concept and the
actual caloulation of the moment of inertia in simple cages.

For the sphere V with centre at the origin, unit radius and unit density,
Wwo see by symmetry that the moment of inertia with respect to any axis
through the origin is

I=ff/;(x2+ y?)dadydz =/f‘/‘;(902 + A)dzedydz
=ffj;(y’ + 22)dxdydz.

If we add the three integrals, we obtain
37 =fff2(ac2 + 3?2 + 22)dzdydz,
v

or, if we introduce polar co-ordinates,

2 1 " er 91 8n
_gfoﬂdrfosmudv =32 2m= 1

For a beam with edges a, b, ¢, parallel to the z-axis, the y-axis, and
the z-axis respectively, with unit density and centre of mass at the origin
we find that the moment of inertia with respect to the zy-plane is

a2 b/2 cf/2 3
f dr [ ay [ dz=ab .
—ajz2 J—bi2" J—cp2 12

3. The Compound Pendulum.

The above ideas find an application in the mathematical treatment of
the compound pendulum, that is, of a rigid body which oscillates about a
fixed axis under the influence of gravity.

We consider a plane through @, the centre of mass of the rigid body,
perpendicular to the axis of rotation; let this plane cut the axis in the
point O (fig. 14). Then the motion of the body is obviously given if we
state the angle ¢ = ¢(¢) which OG makes at time ¢ with the downward
vertical line through O. In order to determine this function ¢(¢) and also
the period of oscillation of the pendulum, we require to assume a know-
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ledge of certain physical facts (cf. Chap. VI, section 1, p. 412). We make
use of the law of conservation of energy, which states that during the
motion of the body the sum of its kinetic and potential energies remains
constant. Here V, the potential energy of the body, is the product Mgh,
where M is the total mass, g the gravitational
acceleration, and A the height of the centre of
mass above an arbitrary horizontal line, e.g.
above the horizontal line through the lowest
position reached by the centre of mass during
the motion. If we denote OG, the distance of
the centre of mass from the axis, by s, then
V = Mgs(l — cosg). By p. 280 the kinetic
energy is given by T = 1I¢?, where I is the
moment of inertia of the body with respect to
the axis of rotation and we have written ¢ for
de/dt. The law of conservation of energy there-
fore gives the equation

N,
.

$1¢? — Mgs cos @ = const. Fig. 14.—35):1 uc;mpound
pe

If we introduce the constant I = I/Ms, this is
exactly the same as the equation previously found (Vol. I, Chap. V,
p- 302) for the simple pendulum; 7 is accordingly known as the length of the
equivalent simple pendulum.

We can now directly apply the formule previously obtained (loc. cit.).
The period of oscillation is given by the formula

\/l Pe de
N
g _¢_'\/cos:p—cosq>o

where @, corresponds to the greatest displacement of the centre of mass;
for small angles this is approximately

I \/I
T——2n«\/§—2n I[E;.

The formula for the simple pendulum is of course included in this as a
special case. For if the whole mass M is concentrated at the centre of mass,
then I = Ms?, so that I = s.

Investigating further, we recall that I, the moment of inertia about
the axis of rotation, is connected with I,, the moment of inertia about a
parallel axis through the centre of mass, by the relation (cf. p. 279)

I=1,+ Ms
Hence

or, if we introduce the constant @ = I,/M,

l=a+g.
]
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We see at once that in a compound pendulum ! always exceeds s,
80 that the period of a compound pendulum is always greater than that
of the simple pendulum obtained by concentrating the mass M at the
centre of mass. Moreover, we note that the period is the same for all
parallel axes at the same distance s from the centre of mass. For the
length of the equivalent simple pendulum depends only on the two quan-
tities s and @ = Iy/M, and therefore remains the same provided neither
the direction of the axis of rotation nor its distance from the centre of
mass is altered.

If in the formula ! = s + a/s we replace the quantity s by a/s, that
is, if the axis is moved from the distance s to the distance a/s from the
centre of mass, then I remains unchanged. This means that a compound
pendulum has the same period of oscillation for all parallel axes which
have the distance s or a/s from the centre of mass.

The formula T = 2n J (§+—a/8) shows at once that the period T
g

increases beyond all bounds as s tends to zero or to infinity. It must
therefore have a minimum for some value s;. By differentiating we obtain

- — M
8, =+/a= \/ﬂ'

A pendulum whose axis is at a distance s, =4/I/M from the centre
of mass will be relatively insensitive to small displacements of the axis.
For in this case dT'/ds vanishes, so that first-order changes in s produce
only second-order changes in 7. This fact has been applied by Prof.
Schuler of Géttingen in the construction of very accurate clocks.

4. Potential of Atftracting Masses.

We have seen in Chap. II, section 7 (p. 90) that according to Newton’s
law of gravitation the force which a fixed particle @ with co-ordinates
(&, m, §) and mass m exerts on a second particle P with co-ordinates (z, y, z)
and unit mass is given, apart from the gravitational constant vy, by

1
m grad;,

where r=4/(x — E)2 4+ (y — 1) + (¢ — 0)? is the distance between the
points P and . The direction of the force is along the line joining the
two particles, and its magnitude is inversely proportional to the square
of the distance. If we now consider the force exerted on P by a number
of points @y, @,, . . . , @, with respective masses m,, mq, . . . , m,, We can
express the total force as the gradient of the quantity

e T R L

ry o 1 r,
where 7, denotes the distance of the point @, from the point P. If a force
can be expressed as a gradient of a function, it is customary to call this
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function the potential of the force; we accordingly define the gravitational
potential of the system of particles @y, @, . - . » @, ab the point P as the
expression

7 ml’

p) .
1V — P+ — 0P+ (- 0P

We now suppose that instead of being concentrated at a finite number
of points the gravitating masses are distributed with continuous density @
over a portion R of space or a surface § or a curve C. Then the potential
of this mass-distribution at a point with co-ordinates (z, y, z) outside the
system of masses is defined as

ff Bu(isrm C)dédndt.
J[%
_/:“;‘da.

In the first case the integration is taken throughout the region R with
rectangular co-ordinates (£, 3, §), in the second case over the surface S
with the element of surface do, and in the third case along the curve with
length of arc s. In all three formule r denotes the distance of the point
P from the point (£, 9, {) of the region of integration and u the mass
density at the point (§, 7, ).

Thus e.g. the potential at a point P with co-ordinates (z, ¥, 2), due to
a sphere K of constant density equal to unity, with unit radius and centre
the origin, is given by the integral

dEdndl
'/f/1;'\/(x— EP + (yi @ — O

+1 +V (1) A+ VA—E—9Y)]
- f p f d f St
-1 —Va- J-vVa-g-) T

or

or

In all these expressions the co-ordinates (z, y, 2) of the point P appear,
not as variables of integration, but as parameters, and the potentials are
functions of these parameters.

To obtain the components of the force from the potential we have tc
differentiate the integral with respect to the parameters. The rules for
differentiation with respect to a parameter extend directly to multiple
integrals, and by section 1 (p. 218) the differentiation can be performed
under the integral sign, provided that the point P does not belong to the
region of integration, that is, provided that we are certain that there is
no point of the closed region of integration for which the distance r has
the value zero. Thus, for example, we find that the components of the
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gravilational force on unit mass due to a mass distributed with unit
density through a region R in space are given by the expressions

I"1=—fff8z;gdidnd§, B [ [[ 457 aganat,
F,=—fsz;cdidnd§.

Finally, we point out that the expressions for the potential and its
first derivatives continue to have a meaning if the point P lies in the
interior of the region of integration. The integrals are then improper
integrals, and, as is easily shown, their convergence follows from the
criteria of section 5 (p. 257).

As an example we shall caloulate the potential at an internal point
and at an external point, due to a spherical surface § with radius a and
unit surface density. If we take the centre of the sphere as origin and
make the z-axis pass through the point P (inside or outside the sphere),
the point P will have the co-ordinates (z, 0, 0), and the potential will be

do
U=./f\/(x— Bt t e

If we introduce polar co-ordinates on the sphere by means of the equations

g = a cosb,
7= asinb cosg,
{ = asinfsing,

2 gi 2
U=f" a?sin 6 def gq’
o 4/(# — a cos0)? + a?sin?0 0

then

9 f" a?sin6 8
= 2r
o V% + a? — 2ax cos§

If we put 2® + a? — 2a2 cos § = 12, so that gz sin 640 = rdr, then (provided
that z # 0) the integral becomes

2na plxtal ydy 2na
=— —=—(|z+a]|—|z—a])
x je—al| r x

For | | > a we therefore have

v- 2,
| =

and for | 2| < a
U = 4ma.

Hence the potential at an external point is the same as if the whole
mass 4ma® were concentrated at the centre of the sphere. On the other
band, throughout the interior the potential is constant. At the surface




V] PHYSICAL APPLICATIONS 285

of the sphere the potential is continuous; the expression for U is still
defined (as an improper integral) and has the value 4ra. The component
of force F,, in the z-direction, however, has a jump of amount —4x at the
surface of the sphere, for if | | > a, we have

4ma?
i d

®= = zg
while F,=0if | 2| < a.

The potential of a solid sphere of unit density is found from the
above by multiplying by da and then integrating with respect to @. This
gives the value

4ma®

| =l

for the potential at an external point, which is again the same as if the
total mass §na® were concentrated at the centre.

w

ExaMPLES

1. Find the position of the centre of mass of the curved surface of a
right cone.

2. Find the co-ordinates of the centre of mass of the portion of the
paraboloid

24yt =px
cut off by the plane 2 = ;.

3*, A tube-surface is generated by a family of spheres of unit radius
with their centres in the ay-plane. Let S be a portion of the surface
lying above the zy-plane and II the area of the projection of S on the xy-
plane. Prove that the z-co-ordinate of the centre of mass of § is equal
to II/8.

4. Calculate the moment of inertia of the solid enclosed between the
two cylinders

BA+y2=PR and 2*+y?=R (B> R)

and the two planes z = h and z = —h, with respect to (a) the 2-axis, (b) the
z-axis.

6. If A, B, C denote the moments of inertia of an arbitrary solid of
positive density with respect to the z-, y-, z-axes, then the ‘ triangle in-
equalities

A+B>C, A+C>B, B+0>4
are satisfied.
6. Find the moment of inertia of the ellipsoid
B A
— v T =1
a? + b + c?
with respect to

(a) the z-axis,
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(b) an arbitrary axis through the origin, given by
zry:z=a:Pf:y (24 B2+ y2=1).
7*. Find the envelopes of the planes with respect to which the ellipsoid

bas the same moment of inertia A.

8. Let O be an arbitrary point and S an arbitrary body. On every ray
from O we take the point at the distance 1/v/'I from O, where I denotes
the moment of inertia of S with respect to the straight line coinciding with
the ray. Prove that the points so constructed form an ellipsoid (the so-
called momental ellipsoid).

9. Find the momental ellipsoid of the ellipsoid
x? | oyt 2?
atEta=!
at the point (&, », §).

10. Find the co-ordinates of the centre of mass of the surface of the
sphere a* + y? + 2% = 1, the density being given by

1
e Ve—Drgre

11. Find the z-co-ordinate of the centre of mass of the octant of the
ellipsoid

oy R
;1_2+b_3+c—2=1, 2=20,y=20,2=0.

12. A system of masses § consists of two parts §; and Sy I, I,, I are
the respective moments of inertia of 8;, S,, § about three parallel axes
passing through the respective centres of mass. Prove that

mymy

a3,
my + m,

I=1441,+

where m, and m, are the masses of §; and §, and d the distance between
the axes passing through their centres of mass.

13. Calculate the potential of the ellipsoid of revolution
2?4 42

a?

22
at its centre (b > a).
14. Calculate the potential of a solid of revolution

r=vV@+ ) <f@), a=z<b,
at the origin.
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Appendix to Chapter IV
1, TeE ExisTENCE OoF THE MULTIPLE INTEGRAL

1. The Content of Plane Regions and Regions of Higher
Dimensions.

In order to obtain the analytical proof of the existence of the
multiple integral of a continuous function, we must begin with
a study of the idea of content.

In Vol. 1, Chap. V (p. 269) we saw how the content of a plane
region can in general be expressed by an integral. Without
making use of that fact, and without considering the existence
of the area as guaranteed by intuition, we shall now proceed to
give a general definition of the idea of *“ content ”” and investigate
under what conditions this concept has a meaning.

We begin with a rectangle with sides parallel to the z- and
y-axes, and define the area of such a rectangle as the product of
the base and the altitude. If the given rectangle is subdivided
into smaller rectangles by a number of parallels to the sides, it
is clear from this definition that the area of the rectangle is equal
to the sum of the areas of all the sub-rectangles. The area of a
region which is composed of a finite number of rectangles * can
now be defined as the sum of the areas of these rectangles.

The area thus defined is independent of the way in which the
region is subdivided (or resolved) into rectangles. For if we are
given two different resolutions, we can find a third resolution
which is a finer subdivision of the two original ones. We do
this by prolonging throughout the region all the lines which
occur in either of the resolutions. These lines subdivide the two
subdivisions into still smaller rectangles. The sum of the areas
of these small rectangles is equal to the sum of the areas of the
rectangles both of the first resolution and of the second resolution.

Now in order to define the area of an arbitrary bounded region
B we form an inner approximation and an outer approximation
to the region, that is, we find two regions B; and B,, each con-
sisting of rectangles, the region B; being entirely within B and

* Throughout this section the word rectangle will always be understood
to mean a rectangle with sides parallel to the axes.
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the exterior region B, containing B. For this purpose we first
enclose the region B in a large square. Then we divide this
square into small rectangles by drawing parallels to the axes.
Those rectangles having points in common with B together form
a region B, which encloses B; those rectangles which lie wholly
within B form a region B, which is contained in B.

We now wish to define the area C(B) of B in such a way that
for every choice of B; and B, the area of B lies between that of
B, and that of B,:

C(B) = C(B) < C(B,).

If we make the subdivisions finer, so that the diameters of the
rectangles tend to zero, then the areas C(B;) form a mono-
tonic increasing sequence and the areas C(B,) form a mono-
tonic decreasing sequence. For to the regions B, rectangles can
only be added, and from B, rectangles can only be removed.
Therefore C(B;) has a limit and so has C(B,). If these two limits
are equal, we call this common limit the area of the region B.

Under what conditions are the two limits, C(B;) and C(B,),
equal? Of course the answer is, when the difference C(B,)— C(B,)
tends to zero as the fineness of the subdivisions increases. The
region B, — B, consists of those rectangles which have points in
common with the boundary of B. Therefore if the area of this
region B, — B; tends to zero, it follows that the boundary of B
can be enclosed in a region composed of rectangles and having
as small an area as we please, namely in B, — B,. Conversely, if
the boundary of B can be enclosed in the interior of a region S
consisting of rectangles with a total area as small as we please, and
if the subdivision is sufficiently fine, the rectangles B, — B; will
all lie in 8; the area of B, — B, will then be less than that of S,
so that it tends to zero.

The result is as follows: the limits of C(B;) and C(B,) are equal
of, and only if, the boundary of B can be enclosed in a region consist-
ing of rectangles of total area as small as we please. In this case
our definition actually does assign a content * to B.

* From the geometrical point of view it is somewhat unsatisfactory that
in defining the content we have singled out a particular co-ordinate system.
As a matter of fact, however, there is no difficulty in showing that the content
is independent of the co-ordinate system, not only for two dimensions but also
for » dimensions. We shall, however, omit this discussion here. For, on
the ome hand, it is not necessary for our particular purpose, which is the
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In the next sub-section (p. 291) we shall prove the intuitively
plausible fact that every sectionally smooth continuous curve (that
is, every continuous curve which has a continuously turning
tangent except at a finite number of points) can be enclosed in a
region formed from rectangles, whose area is as small as we please.
The condition is therefore satisfied whenever the region B con-
sists of a finite number of parts, each bounded by a finite number
of sectionally smooth curves. Such regions have a unique area;
others do not arise in practical applications.

We shall show on p. 292 that if a region B is subdivided by
sectionally smooth curves the sum of the contents of the sub-
regions is equal to the content of the whole region B. Here we
shall merely show that the present definition of area agrees with
the integral formule obtained previously.

Yyi . /y=f(x)

XL
Fig. 15.—Approximation to a region by sets of rectangles

We begin by considering a region B bounded by the z-axis,
the lines = a, z = b, and a curve y = f(z). For the regions B,
and B,, respectively contained in and containing B, we can take
the regions composed of rectangles shown in fig. 15 (the one by
dotited lines and the other by continuous lines). According to
the definition of a simple integral in Vol. I, Chap. II, section 1
(p. 78), the areas B; and B, are respectively an upper sum F,

b

and a lower sum F, for the integral f ydz. In addition o our
formula _ a
C(B) < O(B) < C(B.)

proof of the existence of the double integral; and, on the other hand, the
fact that the content is independent of the co-ordinate system follows imme-
diately when we represent the content by a multiple integral and recall that
the transformation formula shows that the value of this integral is unchanged
when new rectangular co-ordinates are introduced.

11 (8912)
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we accordingly have the further inequality

b
O(B) < [ f(e)dz < C(B,),
by the definition of integral. Since lim C(B;) = lim C(B,), it

b
follows that C(B) = f f(z)dz, in agreement with what we have
said already. a

In the case of an arbitrary region B, subdivision of the
region by lines parallel to the axes shows that our definition
of content agrees with the expression for the area:

f f dady.

The present definition of the area can immediately be extended
to three-dimensional regions, and in fact to regions in #» dimensions.
The content of a parallelepiped with sides parallel to the axes is
defined as the product of the lengths of the three sides. We then
extend the definition to regions composed of a finite number of
such parallelepipeds. For an arbitrary region B we then find
regions B, composed of parallelepipeds and lying in B and similar
regions B, containing B. The definition of the content of the region
B ag the common limit of the content of B, and that of B; again
has a meaning, provided that the boundary of the region B can
be enclosed in a set of parallelepipeds of arbitrarily small total
content. In the next sub-section (p. 292) we shall show that this
can always be done for regions bounded by surfaces having
sectionally continuous tangent planes. As before, we shall hence-
forth restrict ourselves to such regions. The word region is always
to mean a bounded closed region whose boundary consists of a
finite number of surfaces with sectionally continuous derivatives.

The volume of a cylinder with its axis in the direction of the
z-axis and its base in the zy-plane is the product of the area of the
base and the altitude. This is at once clear when the base is
composed of rectangles with sides parallel to the axes. In the
general case the cylinder can be enclosed between two cylinders
whose bases are regions composed of rectangles and whose
volumes differ from that of the given cylinder by arbitrarily
small amounts. The theorem therefore holds for cylinders with
any base. From this it follows as before that the double integral

[/ @ pdzdy
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gives the volume of a portion of space bounded above by the
surface z = f(z, y), below by the plane region B, and at the sides
by the vertical lines by which the edge of the surface is projected
into the boundary of B. Further, we see that the definition of
volume for a general region in space R agrees with the integral

expression
f / f, dzdyde.

2. A Theorem on Smooth Arcs.

In discussing areas we used the theorem that a continuous
curve with a continuously turning tangent at all but a finite
number of points can always be enclosed in a region composed
of rectangles with sides parallel to the axes and having an arbi-
trarily small total content. It is obviously sufficient to prove the
theorem for the individual arcs with continuous tangents. Let
such an arc be given by the equations

s=$6) ,—,<p
y=i) "=

where the parameter s is the length of arc and ¢(s) and y(s) are
continuously differentiable functions. Then

@ =1,
[#() ] =1.

By the mean value theorem of the differential calculus, for any
two values s and s, of s in the interval ¢ =< s < b we have

|z —2[=|ds) —Bls) | = s — 8],
ly—wn|= ,'/’(3)_‘#(31)’5,3‘31'-
If, therefore, we subdivide the curve into # arcs of length

€= (b — a)/n and denote the initial point of the v-th arc by
(z,, y,) and an arbitrary point of that arc by (z, ¥), we have

[z—2,|<e or 2, —ez<= +¢
ly—y|=e or y—esy=y +e

The points of the »-th arc therefore all lie in a square with side
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2¢ and area 4¢2. The whole curve is included in % such squares,
whose total area is at most

4e?n = 4¢(b — a).
This quantity can be made as small as we please by taking e
sufficiently small.

There is no difficulty in proving the corresponding theorem
for surfaces in space defined by the equations

o= ¢(u, v)
Y =y, v)
z= x(u, v),

where the functions ¢, i, y have sectionally continuous deri-
vatives. It is found that every such surface can be enclosed in a
region of arbitrarily small volume, consisting of a number of
parallelepipeds.

A consequence of this theorem is that if a plane region R
bounded by a sectionally smooth curve is subdivided into two sub-
regions R’, R which are separated by sectionally smooth arcs,
the area of R is equal to the sum of the areas of R’ and R”. For
we can subdivide the plane by straight lines parallel to the co-
ordinate axes and so close together that all the rectangles which
have points in common with the boundary of R or with the
arcs separating B’ and R"” have an arbitrarily small total area.
As before, we define R, as the region consisting of all rectangles
having points in common with R, and R, as the region consisting
of all rectangles entirely within R; the regions B,’, R/, R,”, R;"
are similarly defined. The regions R,” and R,” together cover
R,, some rectangles being counted twice; hence C(R,’) + O(R,”)
= C(R,) = C(R). Again, R/ and R, are contained in R,, and
are completely separate; hence C(R) = C(R,) = C(R,) + C(R,”).
Since C(R,’) and C(R,”) can be made to approximate as closely
as we desire to C(R') and C(R") by making the subdivigion fine
enough, the first of these inequalities gives C(R')+ C(R") = C(R);
the second similarly gives C(R’) + C(R”) < C(R). Taken to-
gether, these inequalities prove our statement.

It is clear that this addition theorem still holds when the
region R is subdivided into any finite number of regions RV, R®,
..., R®  The extension to more than two dimensions follows the
same lines and offers no difficulty at all.

e {8
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3. The Existence of the Multiple Integral of a Continuous Function.

Let the function f(z, y) be continuous in the interior and on
the boundary of a region R. We wish to show that as the diameters
of the sub-regions R, tend to zero the upper and lower sums
Zm, AR, M, AR, (defined in Chap. IV, section 2, p. 224) tend
to a common limit which is independent of the mode of sub-
divigion. The proof is essentially the same as the corresponding
proof in Vol. I, Chap. II, Appendix (p. 131), and can therefore
be given quite briefly here.

We first suppose that the subdivision of R into sub-regions R,
is effected by polygonal paths. We choose the maximum diameter
8 of the sub-regions R, so small that for every two points whose
distance apart is less than § the values of the function differ by
less than e. Then in each of these regions we have

M, —m <e

Thus for the difference between the upper sum and the lower sum
we have

IM,AR,— Em, AR, < ZeAR, = C(R).

Every subdivision obtained by subdividing the given subdivision
further obviously has a lower sum which is between the upper
and lower sums of the original subdivision.

The proof is complete once we show that for every two sub-
divisions of R into sub-regions with diameters less than 8 the
corresponding upper and lower sums of the two subdivisions
differ from one another by as little as we please, provided only
that J is chosen sufficiently small.

If we are given a second subdivision into sub-regions R,’
which have diameters less than 8, then in this subdivision also
the upper and lower sums will differ by less than ¢C(R):

IM,/AR, — Sm, AR, < C(R).

The two subdivisions together define a new subdivision which is a
further subdivision of each of the two and which is obtained by
collecting the common points of each pair of regions R, and R/
(if such points exist) into a region R,,””. By the previous remark,
the lower sum of this third subdivision is not smaller than the
lower sum of the two original subdivisions, and differs from
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each of them by less than ¢C(R). Therefore the lower sums
Xm, AR, and Zm AR, differ by less than 2¢C(R). If we now
let € tend to zero, it follows from Cauchy’s test that the lower
sums have a limit independent of the mode of subdivision.
- Since we have already seen that the upper sums differ from the
lower sums by as little as we please, the upper sums have the
same limit. This proves the existence of the double integral

f / Jf(z, y)dS for polygonal subdivisions of R.
B

‘We made this assumption in order to be sure that a common
subdivision into a finite number of regions R, really exists.
If, for example, the boundaries of the sub-regions are curves, and
a portion of a boundary curve in one subdivision consists of
the line # = 0 and a portion of a boundary in the other consists

of the curve z? sin} =y, then the common subdivision will
x

have an infinite number of cells in the neighbourhood of z = 0.
We can, however, easily get rid of this assumption of polygonal
subdivision. For by p. 291 we can replace every curvilinear sub-
division by a polygonal subdivision such that the total difference
of the areas, and hence the difference of the corresponding lower
sums, is arbitrarily small. This obviously reduces the case of
sub-regions of arbitrary boundary to the special case already
discussed.

The proof is clearly independent of the number of dimensions.

The corollaries on the existence of the double integral stated
in Chap. IV, section 2 (p. 225) follow immediately from the
approximation formula developed there and require no further
proof here.

2. GENERAL FORMULA FOR THE AREA (OR VOLUME) OF A
REGION BOUNDED BY SEGMENTS OF STRAIGHT LINES
Or PLaNE AREAS (GULDIN’S FormuLa). THE Porar
PLANIMETER.

The transformations on pp. 299-300 enable us to give a
simple proof of the following theorems:

If a straight-line segment S of constant or variable length [
is in motion in a plane, and if ¢ represents time, then the area
swept out by the moving segment is
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2y d,n
A=/; ey 2 de

where #, and ¢, correspond to the initial and final positions of
the segment S, and dn/d¢ is the component of the velocity of the
mean centre of S in the direction perpendicular to 8.
Again, the volume V swept out by a moving plane area P
of area 4 is
v=[ 40

where dn/dt is the component velocity of the mean centre of the
area A perpendicular to the plane of P.

Both in these formul® and in the proofs, we assume to begin
with that the moving segment S or plane area 4 passes once and

Fig. 16

once only through each point of the region swept out (see ﬁg. 16).

We first give the proof in the case of a segment moving in a
plane. The generating segment must be represented by an
equation of the form

al)e+ By + y)=0, o+ F2=1, (@)

or else in the form obtained by solving this equation for the
variable &
t= $(=, y).

We first carry out the transformation of 4 = f f dz dy
by means of the formula on p. 299 for the special case

f(:l), y)= 1

Denoting by ds the line element taken along the segment 8,
we obtain the expression

2 ds
A=]af s
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for the area. It is easy to see, by substituting ¢t = ¢(x, y) in
formula (@) and differentiating with respect to  and y, that

1
Tt | = T@IEFY+Y).

Hence the area is given by

+4 =fttldt/;(a’w+ By -+ y)ds

Here o, B, ¥’ denote the derivatives of a, B, y with respect to ¢.
The integration with respect to s is to be taken along the seg-
ment S.

The single integral with respect to s is equal to

) (X + Y +9),

where (X, Y) are the co-ordinates of the mean centre of 8. But
X and Y satisfy the equation aX + BY + y= 0. On differen-
tiating this equation with respect to ¢, we obtain

X+ BY 4y +aX + Y =0.
—('X + BY + y) = oX' + BY".

Here a, B are the components of the unit vector perpendicular

g to the segment 8, and X, Y’ are

i the velocity components of the

mean centre at the time £. The

Q expression a’'X + B'Y + 4’ is thus
equal to the velocity of the mean
centre perpendicular to 8. This
proves our formula.

This result can be shown to be
intuitively plausible by the follow-
ing argument. We consider two

neighbouring positions of the segment S, PQ and P'¢’,say (fig. 17).
These two segments determine an area which is given approxi-
mately by the product of the length PQ of S and the distance
M'M of the mean centre of one segment from that of the other.
The error in this approximation is of higher order than that of
the increment of time 8¢ corresponding to the displacement. I%

Thus

F
|
P

Fig. 17
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would be an instructive example for the reader to try to fill
in the details of this geometrical argument and provide a strict
proof.

The corresponding theorem in three dimensions can be proved
in the same way by the use of the transformation formule for
volume integrals given on p. 300. There is no need to go through
the proof here.

In the special case of a plane region which is rotated about
an axis while retaining its original size and shape, we have the
problem already considered in Vol. I (Chap. V, p. 285), where
Guldin’s rule for the volume of a solid of revolution was given.

Our formulse associate a definite sign with the area of the
region swept out. In the two-dimensional case the sign depends
on which of the two directions normal to S is regarded as posi-
tive. (The same is true in three dimensions.) The area obtained
is positive if the segment S, as it passes through any point, moves
in the direction of the positive normal; otherwise it is negative.

These observations allow us to extend our results to cases in
which the segment or plane area does not always move in the
same sense, or covers part of the
plane (or space) more than once.
The integrals given above will then
express the algebraic sum of the
areas (or volumes) of the parts of the
region described, each taken with the
appropriate sign. We leave it to the
reader to work out how this may be
taken account of in practice.

As an example, let a segment Fig. 18
of constant length move so as
to have its end-points always on two fixed curves C and C' in
a plane, as in fig. 18. From the arrows showing the positive direc-
tion of the normal we can determine the sign with which each
area appears in the integral, and we find that the integral gives
the difference between the areas enclosed by C and (. If
C’ contains zero area, as when it degenerates into a single seg-
ment of a curve, multiply-described, the integral gives the area
enclosed by C.

This principle is used in the construction of the well-known

polar planimeter (Amsler’s planimeter). This is a mechanical
11 (£912)
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apparatus for measuring plane areas. It consists of a rigid rod at
the centre of which is & measuring-wheel which can roll on the
drawing-paper. The plane of the wheel is perpendicular to the rod.
‘When the instrument is to be used to measure the area enclosed by
a curve C drawn on the paper, one end of the rod is moved round
the curve, while the other is connected to a fixed point O, the pole,
by means of a rigid member jointed to it. This end of the rod
therefore describes (multiply) an arc of a circle: that is, a closed
curve containing zero area. It follows that the normal motion
of the mean centre of the rod gives the area enclosed by C, apart
from the constant multiplier I. But this normal component is
proportional to the angle through which the measuring-wheel
turns, provided that the circumference of the wheel moves on
the paper as the rod moves, in which case the position of the
wheel is only affected by the motion normal to the rod.

In the instrument as usually constructed the wheel is not
exactly at the centre of the rod, but this only alters the factor of
proportionality in the result, and the factor can be determined
directly by a calibration of the instrument.

ExaMPLE

Let 8 be a tube-surface (cf. p. 182) generated by & family of unit
spheres whose centres lie on a closed curve C in the xy-plane. Prove that
the volume enclosed by § is = times the length of C.

3. VOLUMES AND AREAS IN SPACE OF ANY NUMBER
oF DIMENSIONS

1. Resolution of Multiple Integrals.

If the region R of the zy-plane is covered by a family of curves
é(x, y) = const. in such a way that through each point of R there
passes one, and only one, curve of the family, we can take the
quantity ¢(z, y) = £ as a new independent variable, that is, we
can take the curves represented by ¢(x, y) = const. as a family
of parametric curves.

For the second independent variable we can take the quantity
7 =y, provided that we restrict ourselves to a region R in which
the curves ¢(z, y) = const. and y = const. determine the points
uniquely.



—

IV] AREAS IN SPACE OF HIGHER DIMENSIONS 299

If we introduce these new variables, a double integral
f f [f(z, y)dzdy is transformed as follows:
R

[t vy = [ [1CDagan,

If we keep £ constant and integrate the right-hand side with
respect to 7, the integral with respect to n can be written in the

form
f flz, y) Vi(ds + 6,2 d
'\/(‘ﬁz _I_ ¢1l ¢3

ds _ b2+ 4
d") ?Sm

this integral may be regarded as an integral along the curve
d(z, y) = &, the length of arc s being the variable of integration.
Thus we obtain the resolution

[ s 93wy = o[ gzt

for our double integral. The intuitive meaning of this resolution
is very easily recognized if we suppose that corresponding to the
curves ¢(x, y) = const. there is a family of orthogonal curves
which intersect each separate curve ¢ = const. at right angles,
in the direction of the vector grad ¢. If the orthogonal curves are
represented by the functions #(c) and y(o), where o is the length
of arc on them, then

o be Ay by
do (¢ + 95112)’ do '\/(?sz + ¢v2)

Since

Since
5 = q5¢ + ¢v

we obtain
U V82 + b= VA I

We now consider the quadrilateral mesh bounded by two curves
bz, y) = &, bz, y) = £+ A, and two orthogonal curves which
cut off a portion of length As from ¢(zx, y) = §. The area of this
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mesh is given approximately by the product AsAc, and this
in turn is approximately equal to

AsAé
V(g2 + 6,7
The transformation of the double integral,

[/t pdeiy=[ [ 19 o

simply means this: instead of calculating the double integral by
subdividing the region into small squares, we may use a subdivision
determined by the curves $(x, y)= const. and their orthogonal
curves.

A similar resolution can be effected in three-dimensional
space. If the region R is covered by a family of surfaces ¢(z, ¥, 2)
== const. in such a way that through every point there passes
one, and only one, surface, then we can take the quantity
£ = ¢(, y, 2) as a variable of integration. In this way we resolve
a triple integral

[[[ 7@y, 2)dwdye

: — f(w’ y’ z) ¢U + ¢!I + ¢12)
=/#[] V@2 T+ ¢7F 89 $s dyde

into an integration

[,y 2 -
e ety

over the surface ¢ = £ and a subsequent integration with respect
to &

I it [

2. Areas of Surfaces and Integration over Surfaces in more
than Three Dimensions.

In n-dimensional space, that is, in the region of sets of values
with n co-ordinates, an (n — 1)-dimensional surface is defined by
an equation

$(wy, T, . . . , T,) = const.
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We suppose that a portion of this surface corresponds to a certain
region B of the variables #,, @, ... , Tn—y, Where @, is to be
calculated from the equation ¢z, 2y, . . . , T,) = const.

We now define the area of this portion of surface as the
absolute value of the integral

a=[[. [Vt bat et 2D g, . doy

In the first instance this definition is only a formal generalization
of the formul® for the area obtained by intuition in the case of
three dimensions. Nevertheless, it has a certain justification in
the fact that the quantity A4 is independent of the choice of
the co-ordinate z,. This may be proved in the same way as for
the three-dimensional case (cf. Chap. IV, section 6, p. 271).

The integral of a function f(xy, @y, . . . , &,) over this (n — 1)-
dimensional surface we define as

ff...ff(xl,zz,...,x,,)da

=ff . .Af(%, Tgy ouvs L) \/(%'2_:5' - bu’) da, dz, . . . do,_4,

@n

where, as before, we suppose that z, is expressed in terms of
Ty, ..., Ty by means of the equation ¢(xy, . .., x,) = const.
We again find that the expression is independent of the choice
of the variable x,,.

As in the case of two or three dimensions, a multiple integral
over an n-dimensional region R,

ff...Lf(zl,...,w,,)dxl...dm,,

can be resolved as on p. 300. We assume that the region R is
covered by a family of surfaces

d(zy, Ty, - . .+ 5 Ty) = const.

in such a way that through each point (z;, ... , 2,) of B there
passes one, and only one, surface. If instead of z,..., 4y, Tn,
we introduce

Tar v e e s Tngy €= $@ys -+ » Tu),

as independent variables, the multiple integral becomes
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f(wa"" n) \/( wlz‘{"---"‘ %2)
fdff“'f«/<¢xfl...j-¢m ’ - N

-— f(xl’ "',xﬂ)
=Jé]-f Veit ot 8D

3. Area and Volume of the 7z-Dimensional Unit Sphere.

As an example we shall calculate the area and volume of
the sphere in #-dimensional space, that is, the area of the
(n — 1)-dimensional surface determined by the equation

2+ ...+ o 2=Re

and the volume interior to the (n — 1)-dimensional surface,
which is the volume given by the inequality

24+ ...+ z,2< R2
Let a continuous function f () of r = 4/(2,%+. . .+x,2) be given
inside the sphere. We shall first find the multiple integral
f. . .fff(r)doz;1 ...dz, over the sphere z24 ...+ x2=< R2
We introduce the new variable

=@y, . .., Ty) =22+ .. F 2%
and in virtue of the relations

'\/(‘ﬁz,z + ... + ¢ac,‘2) = 2""
d(r?) = 2rdr

we obtain the resolution

[/ .ff(r)dxl...dw,.=f01}(r)drf...[dazfo‘}(,)gﬂ(,)dn

where Q,(r) is the area of the sphere z,2 ...+ x,2 =12
According to our general definition, the area of a hemisphere

of radius r is given by the integral
_Q (r) = rf f dz; . d””"-l

where the integration is extended th_roughout the interior of the
(n — 1)-dimensional sphere

T2 ...t Ty PSP
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If instead of the variables z, we introduce the quantities
£="; Zgr=1,
r 1

we obtain

Q) = 21 f f di—gi_l e,

where we denote the area of the unit sphere &,%+...+ £.2=1by

_ 2ff fdfl dfn—l

Then it follows that

[[-- [fnraa ... dz,=w, j flrym2dr.

We can now calculate w,, conveniently from this formula; we
extend the integration on the left throughout the whole 2;z,...z,-
space (i.e. we let R increase beyond all bounds) and for f(r)
we choose a function for which both the n-tuple integral on the
left and the single integral on the right can be explicitly evaluated.
Such a function is

f(,,.) — e-—(x,'+x,'+...+x,,’)= e

With this function the equation takes the form
) -—w’d n: i w—f'rﬂ—lds.
(feasy=oe
[ P etdn = /7
® 1. /n
—r?pm—1 Jg — _ -
fo e ldr = 3 I‘<2)

o 2/
"7 TRy

Since

(p- 262) and

(p. 324), we obtain

Here T’ (%) means the elementary expression <n_;__2)' if n
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4= —1)...1
9n—1)2

definition of the gamma function, see Vol. I, p. 250, and pp.
3235 of the present volume. In order to find the volume of the
n-dimensional unit sphere we now put f(r) = 1 and obtain

v,,—_—f...ffdmldxz...dw,,:w,, olr"-ldr={%;

hence

is even an 4/ if nis odd. For the general

op= Y
" D+ 2)/2)

4. Generalizations. Parametric Representations.

In n-dimensional space we can consider an #-dimensional
manifold for any r < n and seek to define its content. For this
purpose a parametric representation is advantageous. Let the
r-dimensional manifold be given by the equations

Ty = ity « o 5 Uy)
Ty = Pu(tty, - - ., %),
where the functions ¢, possess continuous derivatives in a region
B of the variables (%, ..., %,). As the variables u, ..., %,
range over this region, the point (zy, ..., ,) describes an r-dimen-
sional surface.

From the rectangular array

[0z O, az,,w

duy duy T Oy
o0z, O, oz,

ouy Ou, B,
Ozy Omy O,
| 9u, Ou, ' Ou,

we now form all possible r-rowed determinants

D, <v= L ..., (;))
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the first of which, for example, is the determinant

O, Omy Oz
R R
by o o
Quy Ouy " Ouy
ou, ou,  Ou,

The content of the r-dimensional surface is then given by the
integral

f...f\/D12+D22+...+D(¢)2 duy . . . du,.

By means of the theorem on the transformation of multiple
integrals (Chap. IV, section 4, p. 254), and simple calculations
with determinants which we shall omit here, we can prove that
this expression for the content remains unchanged if we replace
the parameters u,, ..., %, by other parameters. We likewise
see that in the case r = 1 this reduces to the usual formula for
the length of arc, and in the case r = 2 in a space of three dimen-
sions it becomes the formula for the area.

We shall give a proof for the case r = n — 1, where n is arbi-
trary; i.e. we shall prove the following theorem: If §(z,,...,2,)=0
is an arbitrary (n — 1)-dimensional portion of surface in =-
dimensional space, and if this portion can also be represented
parametrically by the equations

z{=‘/’i(u1v~"9un—1): (1':1:--"”),

then its area is given by

A=f...f\/D12+...-|—D,,2du1...du,,_1,

where D, is a Jacobian of (n — 1) rows:

D — 8(131, oo @y, $i+1’ LICIES 33,,) — ]./ a(ub > e ey u’n—l)
' ) (1,

voey Lim1s Bipyy o ¢ o Z,,‘)

O(tyy « v o5 Upy

Here, as always, we assume the existence and continuity of all
the derivatives involved.
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Without loss of generality we may assume that ¢,, == 0.
Then, since by p. 301 4 is given by

A=f...f|—gri(iﬁs—|dzl...dxﬂ_l,

we have only to show that

¢i | grad | day . . . ooy = VEDRduy . . . dutyy,
Tn 1
or

oty . vy Uy o
| grad¢ |2 = ¢%2(§D,-2) (a——ﬁ(;? T Zn_3> %ﬂi z': D2

Now from the properties of Jacobians we have

D, 0=y, ..., By, Btgs - - o Tn) 0@y - - ., Tpy)

VvV =

D, O(tys + vy Up_q) Oty o oo s Upy)

— a(xb ce o3 ®y 3, L 45 0 0 e (Dn).
O(%ys « ooy Tp_y)

This last Jacobian corresponds to the introduction of (...,
Ty_g, Typiys -+ -5 T,) instead of (%y,...,%,,) as independent

variables. But as the partial derivatives ? are obtained from
the equations i

¢x,,a”"+¢x,._o G=1,...,n—1),

D} _ 4s2
D”Z ¢xn2’
which proves the formula for 4.

It may be mentioned here that the expression £ D2 may be
represented as a determinant of (» — 1) rows, :

x,,,2 Xy, Xy, o Xy Xy, _,
ZDz—lxu‘xukl—— . B
=1 x,,”_lx“,... e X2
so that



IV] AREAS IN SPACE OF HIGHER DIMENSIONS 307
A———f...f\/@dul...clu,,_l.

Here the elements of the determinant are the inner products of
ox, oz oz, 8:::,,)
=(2...,2 daxy={(—"5...,—)
the vectors x,, (iiu" e and x,, ( S
i.e. the expressions
5% %

i a;i ouy

ExXAMPLES

1. Calculate the volume of the n-dimensional ellipsoid
AR
ait .

L=
L2

2. Express the integral I of a function of z;, depending on z; alone,
over the unit sphere #,* + ...+ x,2 =1 in n-dimensional space, as a
single integral.

4, IMPROPER INTEGRALS AS FUNCTIONS OF A PARAMETER

1. Uniform Convergence. Continuous Dependence on the Para-
meter.

Improper integrals frequently appear as functions of a para-
meter; thus e.g. the integral of the general power

1 d 1
L=
in the interval —1 << z < 0 is an improper integral.
We have seen that an integral over a finite interval is con-
tinuous when regarded as a function of a parameter, provided
that the integrand is continuous. In the case of an infinite

interval, however, the situation is not so simple. Let us consider
e.g. the integral

F(z) = * sinazy dy.
= =y
According as > 0 or x < 0, this is transformed by the substi-

tution xy = 2 into

o - o o -
smz sz smz
f —dz orf —dz=—f —Tqz.
) 2z

0 2 0 2



308 MULTIPLE INTEGRALS [Craer.

The integral f sl;z dz converges, as we have seen in Vol. I (pp.
0

252, 418), and in fact it has the value #/2 (Vol. I, p. 450, and
p- 316 below). Thus in spite of the fact that the function
(sinzy)/y, regarded as a function of z and y, is continuous
everywhere and its integral converges for every value of z,
the function F(x) is discontinuous; it is equal to /2 for positive
values of , to —/2 for negative values of z, and to zero for
z=0.

In itgelf this fact is not at all surprising, for it is analogous
to the situation which we have already met with in the case of
infinite series (Vol. I, Chap. VIII, p. 394), and we must
remember that the process of integration is a generalized sum-
mation. In the case of an infinite series of continuous functions
we required, if we were to be sure that the series represented a
continuous function, that the convergence should be uniform.
Here, in the case of convergent integrals depending on a para-
meter, we shall again have to introduce the concept of uniform
convergence.

We say that the convergent integral

Fie)=[ 1. )y

converges uniformly (in x) in the interval o < x < B, provided
that the * remainder  of the integral can be made arbitrariy small,
simultaneously for all values of x in the interval under consideration;
more precisely: provided that for a given positive number e
there is a positive number 4 = A(e), which does not depend on z
and is such that whenever B = 4

fB °;”(w, y)dy ‘ <e

As a useful test we mention the fact that the integral
f f(x, y)dy converges uniformly (and absolutely) if from a point
]

y = ¥ onward the relation
M
[fl 9| < 7

holds, where M 1is a positive constant and a > 1. TFor in this case
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1 1
<M H
(@— DB1= " (a— 141

|f;}(m y)dy

<Mf:dy_{(=M

the right-hand side can be made as small as we please by choosing
A sufficiently large, and it is independent of z. This is a straight-
forward analogue of the test for the uniform convergence of
series given in Vol. I, p. 392.

We readily see that a uniformly convergent integral of a con-
tinuous function is uself a continuous function. For if we choose
a number 4 such that

[Feni|<e
for all values of # in the interval under consideration, we have

< | [ @+h ) —fa vy | + 2

F@+ k) — F(z)

In virtue of the continuity of the function f(z, y) we can choose
h so small that the finite integral on the right is less than e,
which proves the continuity of the integral.

A similar result holds when the region of integration is finite,
but the integrand has a point of infinite discontinuity. Suppose
e.g. that the function f(z, y) tends to infinity as y » a. We then
say that the convergent integral

Fo)=[ f(@ )dy

converges uniformly i a < x < B if for every positive number e
we can find @ number k such that

a+h
_/; [z, y)dy ‘ <e¢
provided h <k, where k is independent of x. Uniform convergence

tn this sense occurs if in the neighbourhood of the point y = a the
relation

M
@ 9| < —x

|1 | (y—ay

holds, where as before M is a positive constant and v << 1. Just

as above, we show that in the case of uniform convergence ¥(x)

is a continuous function.
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If the convergence is uniform, the improper integrals F(x)
are continuous in a certain interval, say in a <z < B. We can
then integrate them over this interval and thus form the corre-
sponding improper repeated integral

f,, 't f0 ?(w, y)dy

or R
[taf 7t 9y,

Instead of the finite interval a < z < 8 we can of course also
consider an infinite interval of integration.

2. Integration and Differentiation of Improper Integrals with
respect fo a Parameter.

It is not true in general that improper integrals may be
differentiated or integrated under the sign of integration with
respect to a parameter. In other words, these operations are not
interchangeable in order with the original integration (cf. the
example on p. 316).

In order to determine whether the order of integration in
improper repeated integrals is reversible, we can often use the
following test, or else make a special investigation on the lines
of the following proof.

If the improper integral

@)= [ f@ 9)dy
converges uniformly in the interval o < x < B, then
fa £ f0 F, g)dy = fo Oy f @, y)de.
To prove this we put
[ 7@ niy = [ Fw )y -+ B0
Then by hypothesis | R, (x) | < €(4), where €(4) is a number
depending only on 4 and not on z and tending to zero as 4 — oo,

In virtue of the elementary theorem for ordinary integrals we
have
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[ta[ e, ay="ta[ 0. iy + [ R0}
— fo &y f e, y)do+ f "R, (z) da,
whence by the mean value theorem of the integral calculus
| [taf o iy — [0y e 