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Abstract. This paper presents a project which focuses on the imple-
mentation of a framework for mobile agents support within a grid envi-
ronment project, namely InteGrade. Our goal is to present a framework
where time consuming sequential tasks can be executed on a network of
personal workstations. The mobile agents may be used to encapsulate
long processing applications (tasks). These agents can migrate whenever
the local machine is requested by its user, since they are provided with
automatic migration capabilities. Qur framework also provides to the
user a manager that keeps track of the agents submitted by him.

1 Motivation: Mobile Agents on Computational Grids

In the past, high-performance computation was done only on supercomputers.
These computers were parallel computers, composed of many processors with
shared or distributed RAM, interconnected by a high-speed bus. Nevertheless,
this kind of computer has a very expensive price and when it is not being used,
there is a huge waste of resources, since plenty of computation time is lost.

Facing this problem, researchers looked for a new paradigm in order to build
non-expensive high-performance computers: the clusters. A cluster is a set of
many ordinary computers - usually PCs - interconnected by a high-speed net-
work. Even though the price problem was faced by this solution, the waste
problem still remains: when a cluster is not being used, plenty of resources are
still being wasted.

So, a new paradigm was created: the grid. The computational grid idea was
clearly inspired by clusters, in the sense that we have many computers intercon-
nected by a network in order to provide together greater computational power.
However, a grid does not rely on high speed networks and is more available;
they can be composed of computers spread around the world, interconnected by
Internet, for example. The idea is to provide computational resources similarly
to the way we get power supply [1]: when you want power supply, you may
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connect your device to the power grid; when you want computational resources,
you may connect your device to the computational grid. The waste problem is
addressed in a way that whenever a computer is idle, its computational power
can be supplied to the grid.

On this context, the idea of mobile agents can be interesting. They can be
used to encapsulate opportunistic applications, which can use small slices of
the available computational time of personal workstations, migrating to another
machine whenever the local user request his machine, always preserving the
processing already done. On this way, mobile agents can be considered as a
complementary tool to decrease even more the idle time of a grid.

This text proposes our solution to provide a mobile agents environment in
a grid and is organized in the following way: Section 1 explains the motivations
to provide mobile agents support in a grid, specifically InteGrade; Section 2
introduces the InteGrade project; Section 3 describes our project objectives;
Section 4 introduces some mobile agents environments; Section 5 gives a general
overview of the framework; Section 6 shows the class structure of our framework;
Section 7 shows some tests we made for measuring the overhead; Section 8
provides ideas for future work and concludes this paper.

2 InteGrade

InteGrade project [2] is building a middleware infrastructure which enables idle
time utilization of machines already owned by public or private institutions. One
of InteGrade’s goals is to use this idle time to solve many kinds of parallelizable
problems, including strongly coupled applications.

InteGrade is being built using the most modern technologies of distributed
objects systems, industry standards, and high-performance distributed comput-
ing protocols.

The main requirements that are considered in the InteGrade development
are:

1. the system must know itself: this means the necessity of maintaining a
database refreshed dynamically which contains information on the system,
on hardware and software platform of each machine, on the links intercon-
necting the machines, besides the grid dynamic state, which means the use
of resources like disk, processor, memory and bandwidth;

2. almost no overhead for the clients: the middleware must be able to use the
available idle resources of the client machines with the least possible impact
on the overall performance perceived by their users;

3. security guarantee: since it will be possible to dynamically load executable
code at the clients machines, it is important to guarantee that this code will
not harm the correct functioning of other applications being executed at
the client machine. It is also important to guarantee that this code will not
modify or gain access to personal information, possibly confidential, stored
at the client machines.



2.1 InteGrade Differentials, Compared to Other Grid Projects

1. reutilization of the installed computer base with low overhead to machine
users: it is one of the major points on the InteGrade project. Reutilization
can be observed in other projects, being not a very important concern in
Globus [3] and Legion [4], and a major concern in Condor [5]. The InteGrade
differential is in the fact that this concern was considered in the development
of its architecture;

2. utilization of modern distributed objects technologies: exclusive feature of
InteGrade, that will use mostly CORBA [6] on its implementation. With
these characteristics we get two main advantages: we can reuse a lot of
services already available in CORBA architecture; the integration of other
services and applications on the Grid will be easier and faster. Even though
our framework is not directly based on CORBA, it can easily be connected
to InteGrade via CORBA.

3 Objectives

This project consists in the implementation of a mobile agents infrastructure
for InteGrade. The idea of using mobile agents for grid computing is not new
[7], but in our framework the main idea is to allow an efficient utilization of
computational resources for large sequential or for embarrassing parallelizable
applications.

Mobile agents migration ability meets two major InteGrade goals: the system
must be transparent to the machine user, in other words, the machine user
must have the highest priority compared with InteGrade applications; the idle
resources must be used in the best possible way.

In the case where there is the necessity to free the machine resources for
the local user, for example, if this is a machine running mobile code, this code
can migrate to another machine without losing the partial results already com-
puted. On this process, the InteGrade architecture provides information about
the network and the other machines, allowing the mobile agent to choose a ma-
chine with more adequate available computational resources. In order to do that,
utilization patterns of other machines resources can also be used.

It would also be very interesting to allow the migration of mobile agents to
more powerful machines that may become available. But this migration would
bring benefits only if this machine utilization pattern shows that it will be on
this state for some time, since the migration process is costly.

On this way, mobile agents can be used in a complementary way to Inte-
Grade applications, allowing a even better utilization of computational resources.
Among the applications that could be executed using mobile agents, there are
loosely coupled parallel applications like SETI@home [8] and BOINC [9], or
sequential applications that demand long processing time.



4 Mobile Agents Environments

In an IBM’s pioneer report Mobile Agents: Are They a Good Idea? [10], Chess et.
al analyze the potential of mobile agents and introduce, among other ideas, the
possibility of using mobile agents in order to use idle computational resources.
That could be done by using mobile agents to encapsulate processes that would
migrate through a network always looking for the resources they need. On this
process, they take with them their execution state, creating a new paradigm that
takes the programs to data instead of taking data to the program. Yet in this
report, it is stated that the mobile agent support should be done over a inter-
preted language. This strategy faces the problem of saving the execution state
besides the platform heterogeneity. Another report, e-Gap Analysis [11], which
makes a study about the way scientists do science nowadays with technology
support - what is named e-Science - points, among other gaps, the absence of
mobile agents support in the existent grid infrastructures.

These articles lead us to the idea of creating a Java framework for mobile
agents support on grids. The choice for Java was motivated by two reasons:
the main reason is due to the fact that Java is a robust, popular and modern
language; the second reason is due to the results of a comparison made among
many mobile agents environments [12]. In this comparison, where lower grades
represent better performance, the environments Grasshopper [13] and Aglets
[14], both in Java, are placed among the best, with grades 9.25 and 10.15, re-
spectively.

Grasshopper has excellent documentation and respects the OMG MASIF
standard [6]. However, Grasshopper producer, IKV++ Technologies, restricts
its utilization inside other projects without royalties payment, as well as to do
comparisons with it. These factors were crucial and did not allow us to use this
environment, leading us to choose Aglets.

Aglets is a Java environment for mobile agents development and implementa-
tion. Aglets Software Development Kit, ASDK, was prototyped and created by
IBM [15]. It has become a open source initiative, ruled by IBM license for open
source, which allows the code utilization and modification, as well as compar-
isons. The product documentation, although incomplete, is relatively organized,
and the environment provides all the basic resources for the creation of our
framework, besides more advanced resources. Resources for mobile agents cre-
ation, migration, clonation are provided in addition to advanced resources of
security, synchronization and message exchange. Aglets provides a class struc-
ture whose main elements are [16]:

1. Aglet: it is the class that represents the mobile agent. It provides methods
for migration, clonation, suspension among other features. An object of this
class is named aglet;

2. AgletProxy: represents the aglet proxy. It serves as a interface between the
aglet and the object that references it;

3. AgletContext: represents the aglets host. There can be many aglets in a
contert and many contezts in a server;



4. AgletID: corresponds to an unique global identifier of the aglet.

5 Framework Overview

The main idea of our framework is to provide the programmer with a program-
ming environment for long running applications, which we call tasks. We will
mention all the components of our framework at a high level:

1. task: long running applications, encapsulated in a mobile agent. On the im-
plementation of these tasks, the programmer must take care of the task state,
since the standard Java environments for mobile agents provide weak migra-
tion, in other words, only the objects states and variables are preserved, not
the state of execution stacks. This comes from the fact that Java Virtual
Machine (JVM) forbids threads inspection by the user application, for se-
curity reasons. There are a several implementations of mobile agents which
allow strong migration [17]. Nevertheless, these environments use modified
versions of JVM, what is not desirable, since such JVMs usually become ob-
solete compared to new versions of Java 2, not following Sun Microsystems
standardization;

2. manager: it is the component responsible for registering tasks. The user who
submits tasks must have the manager active at his machine. The two most
important functions of the manager are:

(a) migration: when a task is submitted, the manager queries the InteGrade
infrastructure searching for an idle machine which has a chance of re-
maining on this state for a given time. With such information, the man-
ager dispatches the task to such a machine. A similar procedure is used
when the tasks need to migrate;

(b) liveness: the manager also creates a clone of the task and dispatches
it to another machine. In the context of our work, a task that is being
executed in more than one machine has liveness. When one of the clones
dies - which can occur for many reasons, for example, a energy supply
interruption at the machine where it is running - the manager makes a
copy of the clone still alive and dispatches it to another machine. We
call twins the two clones of a task. The choice for two clones is arbitrary,
because we could choose a greater number. However, a greater number of
clones would imply more waste, since we would be using many resources
for running the same task;

3. light server: this is the server installed on each machine that provides re-
sources to the framework. It provides a execution environment for the tasks.
When the machine is requested by the local user, the server asks the evacu-
ation of the tasks that are being hosted by it. These tasks query their man-
agers, which communicate with InteGrade looking for idle machines. When
the managers get such information, they take actions in order to evacuate
the tasks to new machines. At this point, there is another important dis-
cussion: how to build servers light enough to not interfere with the local



user? We choose two solutions: the first is to implement a minimal server
that does not use advanced resources of Aglets which are not necessary to
our framework; the other solution is to use a small daemon written in C;

4. daemon: it verifies whether the machine is idle or not. When the machine is
idle, it communicates that to InteGrade and turns on the light server. When
the machine is requested by its local user, the daemon informs the server,
which evacuates the tasks and terminates. This daemon can be inserted on
InteGrade’s LRM (Local Resource Manager) [2], which is responsible for
monitoring the local resources. LRMs send this information periodically to
the GRM, which uses it for scheduling within the grid. So, the daemon is
responsible for informing InteGrade that the machine is ready to receive
tasks;

5. client: component that provides the user with tools to submit tasks to the
framework. Also provides a host environment for the manager.

In Figure 1, we have an overview of our framework. Each one of the clients
hosts a manager, which communicates with InteGrade. Client 1’s manager man-
ages Task 1 and its clone. Client 2’s manager manages Task 2 and its clone.
Observe also that the daemons communicate with InteGrade in order to inform
it when a local machine is idle, turning on the server then.

Fig. 1. General architecture of the framework

In the architecture creation, there were two main problems that should be
addressed: (1) How to prevent the tasks from terminating suddenly? (2) How to
use Java on the clients without making the local machine slow for its user?

Two immediate solutions were studied for the first problem: check-pointing
and redundance. Check-pointing would demand state saving on disk from time to
time and redundance could be considered as having two or more copies of a task
running on different machines. However, check-pointing cannot be considered
a good solution by itself, since a machine could suddenly be turned off and



remain on this state for a long time. From this point of view, check-pointing
could not work without redundance, since a task would need a clone to prevent
this undesirable situation. So, we choose to address first this problem by using
only redundance. We always have two copies of a task running independently, in
case of a sudden termination, we could clone the remaining task. This solution
would fail on the improbable situation of a sudden death of both tasks before
the manager realizes it, but this probability can be reduced by putting them to
run on different networks. By using only the redundace solution, we prompt the
user for a new submission in case of sudden termination of both tasks.
As said before, we addressed the second problem using a daemon.

6 Class Structure of the Framework

We will now give a more detailed view of the framework, specifying it by classes:

1. AgletTask: this class represents the tasks already cited. To define a task, the
programmer must extend this class and redefine the defineState () method,
which must return an AgletState, that encapsulates the task implementa-
tion, as well as its state. This class is associated with the AgletState class.

2. AgletState: class that represents the task state, as well as its implementa-
tion. The programmer must extend it and implement the following methods:
(a) run(): method that defines literally the task implementation, in other

words, it defines the long running application that the user wants to
submit to the framework. The programmer must have in mind the fact
that he is responsible for saving the present state of the application. For
this purpose, a feature is being implemented: the method checkPoint ().
Any Java object implementing java.io.Serializable which is refer-
enced inside AgletState object will be automatically preserved when
the task migrates. This checkPoint () method will be used to inform
the framework that the thread has reached a consistent state. The pro-
grammer must test the value returned by it: if it returns true the thread
must be stopped in a logical way; if it returns false, nothing is done.
The reason for that is to prevent the thread from entering a inconsistent
state. With this feature, the programmer would just take care of call-
ing this method whenever the application reaches a consistent point (a
point where the invariants are preserved). The programmer must know
also that, at the end of the task execution, a call to the finish() method
must be made.

(b) printResults(): prints the results of the task processing. It is called by
the framework when the task finishes to be executed and returns to the
client.

3. Server: the class that represents the light server already cited. This Server
hosts the AgletTasks. The server is provided with Aglets environment for
hosting aglets. Also it receives communication of the daemon in order to
know when it is time to evacuate the AgletTasks. We have a simple light
server already implemented.



4. AgletManager: Represents the manager. We have implemented the register
and evacuation of the AgletTasks, as well as the control of their liveness.
AgletManager is nothing more but a special kind of Aglet which never mi-
grates. We implemented it this way in order to use the Aglets tools for mes-
sage exchanging among aglets. The communication between AgletManager
and InteGrade is not implemented yet, since it is easier to test it alone.

5. Client: Represents the client, which means that this class is responsible
for AgletTasks submission to the framework. It is also used to host the
AgletManager. For now, we are testing our code by using Tahiti - Aglets visu-
alization tool, which provides an environment for hosting the AgletManager
and tools to submit tasks to our framework.

6. AgletProxy: Component of the Aglets environment. It is the class that me-
diates the communication between two aglets.

7. AgletListener: Class that executes pre-migration ant post-arriving opera-
tions: respectively, onDispatching() and onArriving(). This class is trans-
parent to the user.

AgletTasklmpl Server AgletListener
1.1
[
AgletTask AgletState
1.1 1.1 AgletStatelmpl
> 4
1.1
D
1.1
1.1
AgletManager Client
AgletProxy 0. 1.1
0’; h 1.1 N

Fig. 2. General UML of the framework

In Figure 2, AgletStateImpl and AgletTaskImpl are user implementations
for, respectively, AgletState and AgletTask. Notice that each AgletTask has
one reference to the AgletState and AgletListener. The Server has a list of
AgletProxies which represents the AgletTasks which it hosts. The AgletTask
has one reference to the AgletProxy that represents its AgletManager. The
AgletManager has a list of AgletProxies which represents the AgletTasks
that it manages.



6.1 An Example

Next, we show, as an example, the implementations of a Hello World task. This
implementation is merely an example of how to use our framework, since it does
not have any practical utility. Notice that, whenever the task migrates, when it
arrives at its new host, the run() method is executed. The task know how many
times it has already said “hello” on other machines, preserving already done
processing. When it migrates, all the instance variables of AgletStateImpl are
preserved: howMany and canSay.

public class AgletTaskImpl extends AgletTask {
public AgletState defineState () {
return new AgletStateImpl ();
}
X
public class AgletStateImpl extends AgletState {
int howMany = 0;
public void run () { /* go saying hello until migration_time */
System.out.println (‘‘I have said hello ’’ + howMany +
‘‘times’’);
for (;howMany < 1000000; ++howManyl} {
System.out.println (‘‘Hello’’);
¥
if (howMany >= 1000000) finish ();
}
public void printResults () { /* processing results */
System.out.println (‘‘I am back! I have said hello ‘¢ +
¢¢1000000 times’’);

7 Tests

We have made some tests in order to determine the migration and state saving
overhead. The migration overhead is mostly related to the network speed, while
the state saving overhead is related to the serialization of the objects associated
with the AgletTask, which is a costly process. We submitted tasks that solve
a makespan problem: To determine a distribution of n independent tasks' with
execution times of t1,%,...,t, € ZT in m machines minimizing the time the
last task ends. This is a NP-hard problem and we implemented a exponential
solution which tests all the possible combinations. Two kinds of implementations
were made: a simple implementation that does not take care of state saving nor
migration; an AgletTask implementation which saves, for each iteration, the last
combination analyzed.

! Note that here the word task has its usual meaning, not denoting the meaning we
attributed to it.



Table 1. Tests for a makespan problem

n,m Simple, host 1 Simple, host 2 AgletTask AgletTask, 2 AgletTask, 4

2, 26 22s 13s 50s 30s 25s
2, 28 1min 30s 50s 3min 17s 3min 08s 3min 04s
2, 30 6min 36s 3min 28s 15min 45s 15min 09s  14min 55s

In this table, we show tests for applications with parameters n, m in a simple
application running on host I and host 2, in a AgletTask that does not migrate
running on host 1 and in a AgletTask migrating 2 and 4 times, between host
1 and host 2. Host 1 is a Athlon XP 2500, 512 Mb of RAM and host 2 is a
Pentium IV 2.8 GHz HT, 1 Gb of RAM.

We can see that the state saving overhead is significative, what has motivated
our study on this area leading to the checkPoint () method. Also, we verify that
the migrating overhead may not be very significative, being absorbed when the
task migrates to a faster machine. That happens because when the task migrates
to a faster machine, its execution speed is increased, compensating the migration
time loss. Even though the AgletTasks stayed most of the time on host 1, it
was worth to migrate to host 2, which is a faster machine.

8 Future Work and Conclusion

For now, we have implemented a working part of the framework. We have
AgletTask and AgletState classes implemented, so the user can implement
tasks which will be submitted to the framework. We also have a AgletManager
that takes care of tasks migration and liveness, as well as a Server, which already
implements the evacuation function.

Even though the present code is functional, there are many details to be
implemented, as well as features which deserve close attention like: daemon
implementation; client implementation; better support to present state saving
(already being implemented); communication between the AgletManager and
InteGrade.

The idea of mobile agents in InteGrade is very instigating and interesting. Our
framework, in the future, can be used to implement many kinds of applications
from embarrassing parallel applications, like SETI@home, to applications that
needs many kind of resources not available in a single InteGrade node. Given
the opportunistic characteristic of mobile agents, InteGrade can reach near zero
idleness on its nodes, what is impossible nowadays. Another interesting point is
our concern on building a framework that is transparent for the machine user,
so he will not face a performance loss. A strong feature of our framework is its
portability, since it is written almost all in Java.

In the future, our framework can be extended to serve a grid infrastructure
that manages different kinds of resources available on several machines. This



would be a generalization for resources utilization, since for now our framework
is focused only in computational resources.
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