
Open Source and Agile:
Two worlds that should have a closer interaction

Hugo Corbucci1 and Alfredo Goldman1

1Instituto de Matemática e Estatística (IME)
Universidade de São Paulo (USP) - Brazil

{corbucci,gold}@ime.usp.br

1. Introduction
Open source projects usually receive the collaboration of many geographically

distant people that don’t share any organizational structure. At first, these arguments could
indicate that such projects are not candidates to the use of agile methods since some basic
values seem to be damaged. For example, the distance and diversity separating developers
surely deteriorate communication, one of the most important values within agile methods.
However, most open source projects share principles with the Agile Manifesto [1]. To be
ready for changes, to work with continuous feedback, to deliver real features, to respect
collaborators and users and to face challenges are expected attitudes of an agile developers
naturally found in Free and Open Source Software (FOSS) communities.

During OOPSLA 2007, a workshop [4] about “No Silver Bullets” [2] mentioned
Agile methods and Open Source Software Development as two failed silver bullets having
both brought great benefit to the software community. The same workshop asked if the
use of several failed silver bullets simultaneously could not, in fact, raise production levels
in an order of magnitude. This paper is an attempt to start this sort of merging to stun the
werewolf, that is, stop problems from appearing out of nowhere.

Section 2 will present some aspects of major open source communities that could
be improved with agile practices and principles. The next one (Section 3) will focus
on the problems agile methods face when dealing with distributed teams and scaling to
big teams which are somehow already addressed in open source development. Finally,
Section 4 will present the work planned and being done.

2. Is Open source Agile?
Open source communities could almost be considered agile and they indeed were

by Martin Fowler in his first version of “The New Methodology” [3]. The methods that
Eric Raymond describes in “The Cathedral and the Bazaar” [5] lack of a more precise
definition but several ideas could be related to the Agile Manifesto. The next four subsec-
tions will discuss the relations of open source to the four points principles of the manifesto
and the fifth one will summarize points where open source could improve towards agility.

2.1. Individuals and interactions over processes and tools

Projects usually have their processes including feature freezing, version branches,
commit reviews and several other good practices or rules. Most of the time,tools are used
to enable those practices and others are present and widely used. Several of the tools used
on open software process are also used on agile software development, such as version



control programs. The processes and tools are, however, just ways to achieve a goal:
ensuring a stable and welcoming environment to create software collaboratively.

Although open source businesses are growing stronger, the very essence of a com-
munity is to have individuals that interact in order to produce what interests them. In
those communities, the interaction is usually related to source code collaboration and doc-
umentation elaboration. Those activities are responsible for driving the whole process and
modifying the tools to better fit their needs.

2.2. Working software over comprehensive documentation
A lot of open source projects are heavily criticized about their documentations or

the lack of it. This comes from the fact that most developers are not committed on writing
documentation. More likely, they prefer to have a neat software that is intuitive for users.
The result is that new projects hardly have any sort of documentation except the minimum
required for the own developer team to be able to work.

Comprehensive documentation grows with the community that builds around
the working software, as users encounter problems to complete a specific action. It is
frequent to have documentation written by volunteer users to help their colleagues. This
work generates documents in a language that users understand but that only deal with
common problems. Specific problems and solutions are much harder to find.

2.3. Customer collaboration over contract negotiation
Contract negotiation is still only a problem to very few open source projects

since a huge number of them do not involve contracts. On the other hand, those involving
contracts are usually based on a service concept in which the customer hires a programmer
or company to develop a certain feature for a small amount of time. Although this business
model does not ensure that the customer will collaborate, it may shorten time between
conversations, therefore improving feedback and reducing the strength of long and rigid
contracts.

The key point here is that collaboration is the basis of open source projects. The
customer is involved as much as he desires to be. Customers can collaborate but they
are not especially encouraged or forced to do so. This might be related to the small
amount of experience this communities has with customer relationships. However, several
successful projects rely on fast answers to demanded features from users. In this case
customer collaboration allied with responsiveness are specially powerful.

2.4. Responding to change over following a plan
Open source projects tend to have a plan of milestones or releases but, in most

cases, those plans are always short term plans. Even when long term plans exist, they
are not the main guidelines followed by the developer team. They are only goals sought
without any pressure to be met.

Being too demanding about following a plan can drag a whole project down in
the open source world. The main reason is the highly competitive environment of this
universe where only the best projects survive. The ability of each project to adapt and
respond to changes is crucial to determine those who survive. No marketing campaign or
business deal can save a project from abandonment if it cannot compete with a newcomer
that adapts more quickly to user needs.



2.5. What is missing on open source?

Although several points of the Agile Manifesto are followed within open source
communities, nothing is certain because there is no such thing as an open source method.
Raymond’s description is a great example of how the process can work but it does not
discriminate guidelines and practices to be followed. If a full open source agile method
description was written with the use of compatible tools merging the ideas presented by
Raymond, it would follow the same selection rules as the projects. If successful, its
adoption would then spread around the community improving and correcting it over time.

Communities created around FOSS projects involve users, developers, and some-
times even clients working together to craft the best software possible. The absence of
such community around a program usually denounces a recent project or one that is dying.
This means that the development team must be very attentive to this community since it
shows how well the project is going. Nowadays, concerns related to this aspect of FOSS
development are not specifically considered by the most known agile methods.

3. Agile going Open source

Not only, as previously shown, agile methodologies lack some special solutions
related to open source development, but they could also benefit from solving some of
the issues FOSS project suffer from. Section 3.1 will describe with more details some
specific points of FOSS development that would need a specific approach. The next one
(Section 3.2) will shortly present some benefits that agile would receive from attempts to
solve those problems.

3.1. Agile helping FOSS

Agile development so far has been described as a way to develop software
within companies with contracts and employees. Forming and maintaining a commu-
nity bounded to the system is the responsibility of the marketing and sales people. As
long as the contract exists, there is no danger regarding the adoption of the project and
its user base. In a FOSS project, none of those factors are ensured at any moment. Even
if there is a contractor and there are employees, the community must be kept active and
welcoming. Addressing a community, responding to its requirements and providing feed-
back to its members is not an easy task. What, when and how to provide feedback must
be wisely chosen and is a time consuming activity that cannot be undertaken.

• How to balance between customer requirement and community requirement?
• How should providing feedback be handled within an iteration?
• Should plans be made counting on external help or not?
• If so, how to estimate expectations about outside contributions?
• What tools or measures should be used to make it easier for people to contribute?
• How should commits be approved or denied?

Those are only a few questions that are unanswered when dealing with open source
communities using an agile method. This work intends to provide a wider analysis of
those issues to gather a more complete and precise list of issues related to open source
development that agile methods do not provide answers for.



3.2. Agile contributions improving itself
Most of the problems pointed out before are related to communication issues trig-

gered by the amount of people involved in the project and their various knowledges and
cultures. Although in open source those matters are taken to a limit, distributed agile
teams face some of the same problems. Evolving a software that will be used by many
people around the world with slightly different processes and laws may require distributed
agile teams working geographically distant with specific local clients.

As the current situation of Internet makes evident, users are becoming more and
more important to the success or failure of a system. In such perspective, providing
feedback and absorbing suggestions and critics will become essential to survival of a
project. Just like the ability to adapt placed agile methods to a very important position,
the ability to receive, select and incorporate suggestions from communities will probably
make the difference in the near future. According to its own principles, agile methods
should respond to those changes and adapt to this growing matter. The best place to start
such work is within an extreme community such as open source.

4. Conclusion
In this preliminary work we have shown several evidences that a synergy with ag-

ile methods can improve software development on FOSS projects. Several already adopt
some agile techniques to be more responsive to users but a complete description of a
method that considers all FOSS factors would surely increase adoption in those commu-
nities. On the other hand, solving the problem is a challenge that would consolidate agile
methods to a distributed environment relying on a large user community.

As part of this work, two surveys are planned. One to be conducted at FISL (In-
ternational Free Software Forum) 2008 to understand how much open source developers
and enthusiasts know about agile methods and what keeps them from using them. The
other one to be conducted at Agile 2008 will try to discover how involved is the agile
community with open source development. Both surveys will be used to provide a deeper
understanding of the interaction between both communities and how to improve it. Also,
interviews with leaders of both communities could help address more specific topics and
gather suggestions and support for the results of this work.

References
[1] Kent Beck, Alistair Cockburn, Ward Cunningham, Martin Fowler, Ken Schwaber, and al.

Manifesto for agile software development. http://agilemanifesto.org/,
02 2001. The agile manifesto official web site.

[2] Frederick P. Brooks, Jr. No silver bullet: Essence and accidents of software engineering.
IEEE Computer, 20(4):10–19, April 1987.

[3] Martin Fowler. The new methodology. http://martinfowler.com/articles/
newMethodologyOriginal.html. Original version on Fowler’s website.

[4] Dennis Mancl, Steven Fraser, and William Opdyke. No silver bullet: a retrospective on
the essence and accidents of software engineering. In OOPSLA Companion, 2007.

[5] Eric. S. Raymond. The cathedral and the bazaar. http://www.catb.org/~esr/
writings/cathedral-bazaar/cathedral-bazaar/, 08 1998.

http://agilemanifesto.org/
http://martinfowler.com/articles/newMethodologyOriginal.html
http://martinfowler.com/articles/newMethodologyOriginal.html
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/

	Introduction
	Is Open source Agile?
	Individuals and interactions over processes and tools
	Working software over comprehensive documentation
	Customer collaboration over contract negotiation
	Responding to change over following a plan
	What is missing on open source?

	Agile going Open source
	Agile helping FOSS
	Agile contributions improving itself

	Conclusion

