Scheduling in Grid Computing using Master-Slave Scheduling Model

Peter N. Nyumu
Professor: Alfredo Goldman

Mac0461

December 15, 2009
Introduction
 Brief Description and Applications
 Scheduling

Single-Master Master-Slave Systems
 No-Wait in Process

Final
Motivation

- Research in my undergraduate work
Master-Slave scheduling model, involves two sets of processors
Master process and Slave processor
Brief Description

- Master-Slave scheduling model, involves two sets of processors
- Master process and Slave processor
- The master processors are responsible of preprocessing and postprocessing of work orders
- The slave processors are responsible for the actual execution of the orders
Master-Slave Model

![Diagram of Master-Slave Model]
Two different schedule

1. No-wait-in schedule
Two different schedule

1. No-wait-in schedule
 - Each slave task must be scheduled immediately after the corresponding preprocessing task finishes
 - Each postprocessing task must be scheduled immediately after the corresponding slave task finishes.
Two different schedules

2. Canonical schedule

- No preemptions
- Slave tasks begin as soon as their corresponding preprocessing tasks complete.
- Postprocessing tasks are done in the same order as the slave tasks complete and as soon as possible.
Two different schedules

2. Canonical schedule

- Satisfies the following properties:
 - No preemptions
 - The preprocessing tasks begin on the master machine at time 0 and complete at time $\sum a_i$
 - Slave tasks begin as soon as their corresponding preprocessing tasks complete.
 - Postprocessing tasks are done in the same order as the slave tasks complete and as soon as possible.
Application of Master-Slave model

- parallel computing
- semiconductor testing
- industrial applications
Unconstrained Minimum Finish Time Problem (UMFT)

- UMFT problem is NP-hard.
- Apply the canonical schedule.
- Can rearrange the master tasks so that all preprocessing tasks complete before any postprocessing task starts.
- For any canonical schedule S, $\frac{C^S}{C^*} \leq 2$ and the bound is tight.
A better bound is achieved by applying the following heuristic:

- Let $S_1 = \{ i : a_i \leq c_i \}$ and $S_2 = \{ i : a_i > c_i \}$
- Reorder the jobs in S_1 according to nondecreasing order of b_i.
- Reorder the jobs in S_2 according to nonincreasing order of b_i.
- Generate the canonical schedule in which the a tasks of S_1 precede those of S_2.
A better bound is achieved by applying the following heuristic:

- Let $S_1 = \{i: a_i \leq c_i\}$ and $S_2 = \{i: a_i > c_i\}$
- Reorder the jobs in S_1 according to nondecreasing order of b_i.
- Reorder the jobs in S_2 according to nonincreasing order of b_i.
- Generate the canonical schedule in which the a tasks of S_1 precede those of S_2.
- $\frac{C_H}{C^*} \leq \frac{3}{2}$ and bound is tight.
Order Preserving Minimum Finish Time (OPMFT)

- We have same order of preprocessing and postprocessing
- Apply canonical schedule
Order Preserving Minimum Finish Time (OPMFT)

- We have same order of preprocessing and postprocessing
- Apply canonical schedule
- It's possible to construct an $O(n \log n)$ algorithm, by defining a canonical order preserving schedule (COPS)
- There is an OPMFT schedule which is a COPS in which the preprocessing order satisfies that, jobs with $c_j > a_j$ come first, jobs with $c_j = a_j$ come next, and the jobs with $c_j < a_j$ come last.
Canonical Reverse Order Schedules (CROS)

▶ construction of reverse order processing
Canonical Reverse Order Schedules (CROS)

- construction of reverse order processing
- *It works as follows:*

1. The master preprocesses the n jobs in the order σ.
2. The slave i begins the slave processing of job i as soon as the master completes its preprocessing.
3. The master begins the postprocessing of the last job in σ as soon as its slave task is complete.
4. The master begins the postprocessing of job $j \neq k$ at the later of the two times (a) when it has finished the postprocessing of the successor of j in σ, and (b) when slave j has finished b_j.
Canonical Reverse Order Schedules (CROS)

- construction of reverse order processing
- *It works as follows:*
 - the master preprocesses the *n* jobs in the order *σ*
 - slave *i* begins the slave processing of job *i* as soon as the master completes its preprocessing.
 - the master begins the postprocessing of the last job in *σ* as soon as its slave task is complete
 - the master begins the postprocessing of job *j* ≠ *k* at the later of the two times (*a*) when it has finished the postprocessing of the successor of *j* in *σ*, and (*b*) when slave *j* has finished *b* *j*.
The Minimize Finish Time (MFTNW), subject to the no-wait-in-process constraint.
The Minimize Finish Time (MFTNW), subject to the no-wait-in-process constraint.

The Order-Preserving version of MFTNW.
No-Wait in Process

- The Minimize Finish Time (MFTNW), subject to the no-wait-in-process constraint.
- The Order-Preserving version of MFTNW.
- The Reverse-Order version of MFTNW.
Questions