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Weak derivatives, Sobolev and BV functions

Weak derivatives

Definition (weak derivatives and gradients; 5.3)

Let Ω be an open subset of Rn and u ∈ L1
loc(Ln|Ω). We say that:

1 For 1 ≤ i ≤ n, u has weak i-th partial derivative vi ∈ L1
loc(Ln|Ω) if

∀ϕ ∈ C∞c (Ω), ˆ
Ω

viϕ dLn = −
ˆ

Ω
u
∂ϕ

∂xi
dLn.

2 u has weak gradient v ∈ L1
loc(Ln|Ω,Rn) if ∀ϕ ∈ C∞c (Ω,Rn),

ˆ
Ω
〈v , ϕ〉 dLn = −

ˆ
Ω

u div ϕ dLn. (1)

Gláucio Terra (IME - USP) GMT November 25, 2019 2 / 63



Weak derivatives, Sobolev and BV functions

Weak derivatives

Definition (weak derivatives and gradients; 5.3)

Let Ω be an open subset of Rn and u ∈ L1
loc(Ln|Ω). We say that:

1 For 1 ≤ i ≤ n, u has weak i-th partial derivative vi ∈ L1
loc(Ln|Ω) if

∀ϕ ∈ C∞c (Ω), ˆ
Ω

viϕ dLn = −
ˆ

Ω
u
∂ϕ

∂xi
dLn.

2 u has weak gradient v ∈ L1
loc(Ln|Ω,Rn) if ∀ϕ ∈ C∞c (Ω,Rn),

ˆ
Ω
〈v , ϕ〉 dLn = −

ˆ
Ω

u div ϕ dLn. (1)

Gláucio Terra (IME - USP) GMT November 25, 2019 2 / 63



Weak derivatives, Sobolev and BV functions

Sobolev spaces and functions

Definition (5.8)

Let Ω be an open subset of Rn, u : Ω→ R and 1 ≤ p ≤ ∞. We say that

1 u is a (1,p)-Sobolev function if u ∈ Lp(Ln|Ω) and, ∀1 ≤ i ≤ n, u
has weak partial derivatives ∂u

∂xi
∈ Lp(Ln|Ω). Notation: W1,p(Ω).

2 u is a local (1,p)-Sobolev function if u ∈ Lp
loc(Ln|Ω) and,

∀1 ≤ i ≤ n, u has weak partial derivatives ∂u
∂xi
∈ Lp

loc(Ln|Ω).

Notation: W1,p
loc (Ω).
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Weak derivatives, Sobolev and BV functions

Weak derivatives, bis

Definition (weak derivatives and gradients, bis; 7.1)

Let Ω be an open subset of Rn and u ∈ L1
loc(Ln|Ω). We say that:

1 For 1 ≤ i ≤ n, u has weak i-th partial derivative
µi ∈Mloc(Ω,R) ≡ Cc(Ω,R)∗ if ∀ϕ ∈ C∞c (Ω),

ˆ
Ω

u
∂ϕ

∂xi
dLn = −

ˆ
Ω
ϕ dµi .

2 u has weak gradient µ ∈Mloc(Ω,Rn) ≡ Cc(Ω,Rn)∗ if
∀ϕ ∈ C∞c (Ω,Rn),

ˆ
Ω

u div ϕ dLn = −
ˆ

Ω
ϕ · dµ. (2)
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Weak derivatives, Sobolev and BV functions

Weak derivatives, bis

Remark (7.2)

1 For 1 ≤ i ≤ n, u ∈ L1
loc(Ln|Ω) admits weak i-th partial derivative if,

for each compact K ⊂ Ω, there exists CK <∞ such that

sup{
ˆ

Ω
u
∂ϕ

∂xi
dLn | ϕ ∈ C∞c (Ω), spt ϕ ⊂ K , ‖ϕ‖u ≤ 1} ≤ CK .

2 u ∈ L1
loc(Ln|Ω) admits weak gradient if, for each compact K ⊂ Ω,

there exists CK <∞ such that

sup{
ˆ

Ω
u div ϕ dLn | φ ∈ C∞c (Ω,Rn), spt ϕ ⊂ K , ‖ϕ‖u ≤ 1} ≤ CK .

3 Weak partial derivatives or weak gradients, if exist, are unique.
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Weak derivatives, Sobolev and BV functions

Weak derivatives, bis

Remark
4 u ∈ L1

loc(Ln|Ω) has weak gradient µ = (µ1, . . . , µn) ∈Mloc(Ω,Rn)
iff it has weak partial derivatives of first order µi ∈Mloc(Ω,R) for
1 ≤ i ≤ n.

5 If u ∈ L1
loc(Ln|Ω) has weak i-th partial derivative vi ∈ L1

loc(Ln|Ω) in
the sense of definition 1, then it has weak i-th partial derivative
Ln xvi ∈Mloc(Ω,R) in the sense of definition 3. Thus,
considering the injection L1

loc(Ln|Ω) ⊂Mloc(Ω,R) given by
v 7→ Ln xv , we see that definition 1 may be considered a
particular case of definition 3.
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Weak derivatives, Sobolev and BV functions

Weak derivatives, bis

Exercise (7.3)

Weak gradients may be also characterized by means of Gauss-Green
identity in gradient form. That is, let Ω be an open subset of Rn and
u ∈ L1

loc(Ln|Ω); then u admits weak gradient µ ∈Mloc(Ω,Rn)
iff ∀ϕ ∈ C∞c (Ω), ˆ

Ω
u∇ϕ dLn = −

ˆ
Ω
ϕ dµ. (3)

Exercise (7.4)

Let Ω be an open subset of Rn, u ∈ L1
loc(Ln|Ω) and 1 ≤ i ≤ n. If there

exists µi = ∂wu
∂xi
∈Mloc(Ω,R), then ∀ϕ ∈ C1

c(Ω),

ˆ
Ω

u
∂ϕ

∂xi
dLn = −

ˆ
Ω
ϕ dµi
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Weak derivatives, Sobolev and BV functions

BV functions

Definition (7.5)

Let Ω be an open subset of Rn.
i) We denote by BVloc(Ω) the set of functions u ∈ L1

loc(Ln|Ω) which
admit weak partial gradient ∇w u ∈Mloc(Ω,Rn).

ii) We say that u ∈ BV(Ω) if u ∈ L1(Ln|Ω) and u admits weak gradient
∇w u ∈M(Ω,Rn).

iii) We say that E ⊂ Ω is a set of locally finite perimeter in Ω if
χE ∈ BVloc(Ω). We say that E is a Caccioppoli set or a set of finite
perimeter in Ω if χE ∈ BVloc(Ω) and ∇w χE ∈M(Ω,Rn).
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Weak derivatives, Sobolev and BV functions

W1,1 ⊂ BV

Example (7.6)

Let Ω ⊂ Rn open and f ∈W1,1
loc (Ω). Then f ∈ BVloc(Ω) and its

measure-weak gradient is given by Ln x∇w f ∈Mloc(Ω,Rn).
The inclusion W1,1

loc (Ω) ⊂ BVloc(Ω) is strict; for instance, if u = χ(0,∞) on
Ω = R, ∇w u coincides with the Dirac measure δ0 ∈M(R,R), so that
∇w u ⊥ Ln, hence u ∈ BV(R) \W1,1

loc (R).
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Weak derivatives, Sobolev and BV functions

Locality of the weak derivative

Theorem (7.7)

Let Ω ⊂ Rn, f ∈ L1
loc(Ln|Ω) and F ⊂ 2Ω an open cover of Ω. Then f

admits weak partial derivatives of first order on Ω iff ∀U ∈ F, f |U admits
weak partial derivatives of first order on U. Moreover, weak derivatives
commute with restrictions (for a Radon measure, “restriction” here
means “trace”).

Corollary (6.15)

Let Ω ⊂ Rn open, 1 ≤ p ≤ ∞ and f : Ω→ R Lebesgue measurable.
Then f ∈W1,p

loc (Ω) iff for all open V b Ω, f |V ∈W1,p(V ).

Corollary (7.9)

Let Ω ⊂ Rn open and f : Ω→ R Lebesgue measurable. Then
f ∈ BVloc(Ω) iff for all open V b Ω, f |V ∈ BV(V ).
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Weak derivatives, Sobolev and BV functions

W1,p norm

Definition (6.1)

Let Ω ⊂ Rn open and f ∈W1,1
loc (Ω), i.e. f ∈ L1

loc(Ln|Ω) admits weak
partial derivatives of first order. We define

for 1 ≤ p <∞, ‖f‖W1,p(Ω) := (
´

Ω|f |
p + ‖∇f‖p dLn)1/p ∈ [0,∞];

for p =∞, ‖f‖W1,∞(Ω) :=
∥∥|f |+ ‖∇f‖

∥∥
L∞(Ω)

∈ [0,∞].

Proposition (6.2)

Let Ω ⊂ Rn open. For 1 ≤ p ≤ ∞, W1,p(Ω) is a Banach space (for
p = 2, it is a Hilbert space). It is reflexive for 1 < p <∞ and it is
separable for 1 ≤ p <∞.
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Weak derivatives, Sobolev and BV functions

BV norm

Proposition (7.10)

Let Ω be an open subset of Rn. Then BV(Ω) is a Banach space with
the norm

‖f‖BV(Ω) := ‖f‖L1(Ω) + |∇w f |(Ω). (4)
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Generalized Divergence Theorem

Gauss-Green measure, exterior normal and perimeter
measure

Definition (7.12)

Let Ω be an open subset of Rn and E ⊂ Ω such that χE ∈ BVloc(Ω).
µE := −∇w χE ∈Mloc(Ω,Rn) (attention to the minus sign) is
called the Gauss-Green measure of E .
Let (νE , |µE |) be the polar decomposition of µE . We call the
positive Radon measure P(E , ·) := |µE | on Ω the perimeter
measure of E and νE the exterior normal to E .
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Generalized Divergence Theorem

Remark (7.13)

Let E ⊂ Ω such that χE ∈ BVloc(Ω) and ∂ΩE = Ω ∩ ∂E be the
topological boundary of E in Ω. Then
1) spt µE ⊂ ∂ΩE . Since νE is determined up to |µE |-null sets, we may

and do assume henceforth that νE = 0 on Ω \ ∂ΩE and we identify
νE with a Borelian map ∂ΩE → Rn;

2) for all ϕ ∈ C1
c(Ω,Rn),

ˆ
E

div ϕ dLn =

ˆ
∂ΩE

ϕ · νE d|µE |. (5)

We call the above equality the generalized Gauss-Green theorem.
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Generalized Divergence Theorem

Lipschitz epigraphs have locally finite perimeter

Proposition (7.14)

Let n ≥ 2, f : Rn−1 → R Lipschitz and Ω := epiS f . Then Ω is a set of
locally finite perimeter in Rn, |µΩ| = Hn−1 x∂Ω and νΩ coincides with
the unit outer normal to ∂Ω, i.e.

ν(x) =

(
∇f (x ′),−1

)√
1 + ‖∇f (x ′)‖2

on each point point x =
(
x ′, f (x ′)

)
in ∂Ω = gr f whose abscissa x ′ is a

differentiability point of f .
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Generalized Divergence Theorem

Lipschitz domains

Notation for cylinders

Let Rn ≡ Rk × Rn−k , x ∈ Rn, 0 < r ,h ≤ ∞, p : Rk × Rn−k → Rk and
q : Rk × Rn−k → Rn−k be the projections on the first and second
factors, respectively.

C(x , r ,h) := U(p · x , r)× U(q · x ,h) ⊂ Rk × Rn−k .
C(x , r ,h) := B(p · x , r)× B(q · x ,h) = C(x , r ,h).
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Generalized Divergence Theorem

Lipschitz domains

Definition (6.33)

Let n ≥ 2, U ⊂ Rn ≡ Rn−1 × R open and Ω ⊂ U an open subset of U.
We say that Ω is a Lipschitz domain if for all x ∈ ∂UΩ = ∂Ω ∩ U, there
exist:

1 a rigid motion Φ ∈ SE(n) with Φ(0) = x ;
2 f : Rn−1 → R Lipschitz with f (0) = 0;
3 C(0, r ,h) ⊂ Rn−1 × R open cylinder

satisfying the following conditions:
C := Φ

(
C(0, r ,h)

)
⊂ U;

Φ
(
gr f ∩ C(0, r ,h)

)
= C ∩ ∂Ω

Φ
(
epiS f ∩ C(0, r ,h)

)
= C ∩ Ω,

where epiS f = {(x , y) ∈ Rn−1 × R | y > f (x)}.
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Generalized Divergence Theorem

Lipschitz domains

Figure: Lipschitz Domain
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Generalized Divergence Theorem

Smooth partitions of unity on open sets of Rn

Definition (6.6)

Let Ω ⊂ Rn open. A smooth partition of unity of Ω is a family (ξα)α∈A
such that:
PU1) ∀α ∈ A, ξα ∈ C∞(Ω, [0,1]) and (spt ξα)α∈A is a locally finite

family of subsets of Ω;
PU2) ∀x ∈ Ω,

∑
α∈A ξα(x) = 1.

If F is an open cover of Ω, we say that a smooth partition of unity
(ξα)α∈A of Ω is subordinate to F if ∀α ∈ A, there exists U ∈ F such that
spt ξα ⊂ U.
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Generalized Divergence Theorem

Existence of partitions of unity on open sets of Rn

Theorem (6.8)

Let Ω ⊂ Rn open and (Uα)α∈A a locally finite open cover of Ω with
∀α ∈ A, Uα b Ω. Then there exists a smooth partition of unity (ξα)α∈A
of Ω such that, ∀α ∈ A, spt ξα b Uα.

Corollary

Let Ω ⊂ Rn be open and F an open cover of Ω. Then there exists a
partition of unity (ξV )V∈F of Ω strictly subordinate to F, i.e. such that for
all V ∈ F, spt ξV ⊂ V.
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Generalized Divergence Theorem

Gaus-Green theorem for Lipschitz domains

Theorem (7.16)

Let n ≥ 2 and Ω ⊂ Rn be a Lipschitz domain. Then Ω is a set of locally
finite perimeter in Rn and |µΩ| = Hn−1 x∂Ω.
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Generalized Divergence Theorem

Gaus-Green theorem for Lipschitz domains

Lemma (7.15)

Let n ≥ 2, f : Rn−1 → R Lipschitz, U ′ an open subset of Rn,
E ′ := U ′ ∩ epiS f and ν ′ : ∂ epiS f → Rn the unit outer normal to
∂ epiS f . Let Φ ∈ SE(n) be a rigid motion, U := Φ(U ′), E := Φ(E ′) and
ν := Φ∗ν

′, i.e. ν : ∂Φ(epiS f )→ Rn is given by
x 7→ DΦ

(
Φ−1(x)

)
· ν ′
(
Φ−1(x)

)
. Then:

1 Φ#

(
Hn−1 x∂ epiS f

)
= Hn−1 x∂Φ(epiS f ).

2 E is a set of locally finite perimeter in U, |µE | = Hn−1 x∂UE and
its exterior normal is given by νE = ν|∂UE .
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Generalized Divergence Theorem

Gaus-Green theorem for Lipschitz domains

Figure: Gauss-Green measure of a Lipschitz Domain
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Generalized Divergence Theorem

Gaus-Green theorem for Lipschitz domains

Corollary

Let n ≥ 2 and Ω ⊂ Rn be a Lipschitz domain. Then Hn−1 x∂Ω is a
Radon measure.

Remark (outer normal to a Lipschitz domain)

With the notation from the proof of the previous theorem, for each
i ≥ 1, the exterior normal to Ω coincides Hn−1 x∂Ω-a.e. with νi on
∂Ω ∩ Ui = ∂Ui Ω. In particular, if ∂Ω is a C1 hypersurface on a
neighborhood of p ∈ ∂Ω, we may choose νΩ on this neighborhood as
the usual outer unit normal from Differential Geometry.
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Generalized Divergence Theorem

Exercises

Exercise (Complements of sets of locally finite perimeter)

Let Ω be an open subset of Rn and E ⊂ Ω be a set of locally finite
perimeter in Ω. Then Ω \ E has locally finite perimeter in Ω and

µΩ\E = −µE .

Exercise (Sets of finite perimeter under scaling and translation)

Let E be a set of locally finite perimeter in Rn, x ∈ Rn and λ > 0. Then
x + λE is a set of locally finite perimeter in Rn and

µx+λE = Φ#µE ,

where Φ : Rn → Rn is given by y 7→ x + λy. In particular, if E has finite
perimeter, so does x + λE and P(x + λE ,Rn) = λn−1P(E ,Rn).
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Approximation by smooth functions

Standard mollifier in Rn

Definition (1.112)

Let φ : Rn → R be the smooth function given by

φ(x) :=

{
c exp

( 1
‖x‖2−1

)
if ‖x‖ < 1

0 if ‖x‖ ≥ 1,

where c is chosen so that
´
Rn φ(x) dx = 1. The family (φt )>0 in C∞c (Rn)

defined by we define φt : Rn → C by

φt (x) := t−nφ(t−1x). (6)

is called standard mollifier in Rn.
Note that spt φ = B(0,1), so that ∀t > 0, spt φt = B(0, t).
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Approximation by smooth functions

Approximation by mollifiers on Rn

Theorem (1.111)

Let φ ∈ L1(Ln) with
´
φ dLn = a and f : Rn → C.

i) If 1 ≤ p <∞ and f ∈ Lp(Ln), then φt ∗ f t→0→ af in Lp(Ln).
ii) If f is uniformly continuous and either (1) f is bounded or (2) spt φ

is compact, then φt ∗ f t→0→ af uniformly in Rn.
iii) If f is continuous on an open set U ⊂ Rn and either (1) f ∈ L∞(Ln)

or (2) f ∈ L∞loc(Ln) and spt φ is compact, then φt ∗ f t→0→ af uniformly
on compact subsets of U.
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Approximation by smooth functions

Approximation by mollifiers on open subsets of Rn

Definition (6.17)

For each t > 0, let

Ωt := {x ∈ Rn | B(x , t) ⊂ Ω} = {x ∈ Rn | d(x ,Ωc) > t},

so that (Ωt )t>0 is a family of open subsets of Ω which increases to Ω as
t ↓ 0.
Let (φt )t>0 be the standard mollifier in Rn. For each t > 0 and
f ∈ L1

loc(Ln|Ω), we define ft : Ωt → R by, ∀x ∈ Ωt ,

ft (x) := (φt ∗ f )(x) =

ˆ
B(x ,t)

f (y)φt (x − y) dLn(y).

We call ft the t-approximation or t-regularization of f .
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Approximation by smooth functions

Remark
1 ft (x) is well-defined since, for x ∈ Ωt , B(x , t) ⊂ Ω;
2 if Ω = Rn, then Ωt = Rn for all t > 0.

Gláucio Terra (IME - USP) GMT November 25, 2019 29 / 63



Approximation by smooth functions

Approximation by mollifiers on open subsets of Rn

Definition (convergence in the sense of Lp
loc and W1,p

loc ; 6.18)

Let 1 ≤ p ≤ ∞, f : Ω→ R Ln-measurable and, for each k ∈ N, let
fk : dom fk ⊂ Ω→ R be Ln-measurable.

We say that (fk )k∈N converges to f in the sense of Lp
loc(Ln|Ω)

(notation: “fk → f in Lp
loc(Ln|Ω)”) if, for all open V b Ω, there exists

k0 ∈ N (possibly depending on V ) such that ∀k ≥ k0, V ⊂ dom fk
and ‖fk − f‖Lp(Ln|V ) → 0.

If ∀k ∈ N, dom fk is open, f and fk belong to L1
loc on their domains

and admit weak partial derivatives of first order, we say that
(fk )k∈N converges to f in the sense of W1,p

loc (Ω) (notation: “fk → f in
W1,p

loc (Ω)”) if, for all open V b Ω, there exists k0 ∈ N (possibly
depending on V ) such that ∀k ≥ k0, V ⊂ dom fk and
‖fk − f‖W1,p(V ) → 0.
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Approximation by smooth functions

Approximation by mollifiers on open subsets of Rn

Remark (6.19)

1 We make similar definitions of convergence in the sense of Lp
loc or

in the sense of W1,p
loc for a family (fε)ε>0 in place of (fk )k∈N.

2 What we have in mind is the family (ft )t>0 of the regularized
functions of some f ∈ L1

loc(Ln|Ω), cf. definition 26.
3 For a sequence (fk )k∈N in Lp

loc(Ln|Ω) and f ∈ Lp
loc(Ln|Ω), the

convergence defined above coincides with the convergence in the
natural topology of Lp

loc(Ln|Ω), which is a Fréchet space topology
induced by the family of seminorms {‖·‖Lp(Ln|V ) | V b Ω open}.

4 Similarly, for a sequence (fk )k∈N in W1,p
loc (Ω) and f ∈W1,p

loc (Ω), the
convergence defined above coincides with the convergence in the
natural topology of W1,p

loc (Ω), which is a Fréchet space topology
induced by the family of seminorms {‖·‖W1,p(V ) | V b Ω open}.
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Approximation by smooth functions
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Approximation by smooth functions

Approximation by mollifiers on open subsets of Rn

Theorem (mollifiers, part II)

Let f ∈ L1
loc(Ln|Ω), (φε)ε>0 the standard mollifier and

fε = φε ∗ f : Ωε → R the ε-approximation of f , cf. definition 24.
i) ∀ε > 0, fε ∈ C∞(Ωε).
ii) ∀ε > 0, ∀ϕ ∈ C0

c(Ωε),
´

fεϕ dLn =
´

fϕε dLn.
iii) limε→0 fε(x) = f (x) if x ∈ Ω is a Lebesgue point of f ; in particular,

fε → f Ln-a.e. on Ω.
iv) If f ∈ C(Ω), fε → f uniformly on compact subsets of Ω.
v) If f ∈ Lp

loc(Ln|Ω) for some 1 ≤ p <∞, then fε → f in the sense of
Lp

loc(Ln|Ω).

vi) If f ∈W1,p
loc (Ω) for some 1 ≤ p ≤ ∞, then ∀ε > 0,∀1 ≤ i ≤ n,

∂fε
∂xi

= φε ∗
∂wf
∂xi

=
(∂wf
∂xi

)
ε

on Ωε.
vii) In particular, if f ∈W1,p

loc (Ω) for some 1 ≤ p <∞, then fε → f in the
sense of W1,p

loc (Ω).
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Approximation by smooth functions

Approximation by mollifiers on open subsets of Rn

Corollary (6.21)

Let 1 ≤ p <∞, (φt )t>0 the standard mollifier and f ∈W1,p(Rn). Then:
i) ∀ε > 0, fε = φε ∗ f ∈ C∞(Rn) ∩W1,p(Rn) and fε → f in W1,p(Rn) as
ε→ 0.

ii) There exists a sequence (fk )k∈N in C∞c (Rn) such that fk → f in
W1,p(Rn).

Gláucio Terra (IME - USP) GMT November 25, 2019 33 / 63



Approximation by smooth functions

Regularization of Radon measures and BV functions

Proposition (7.19)

Let (φt )t>0 be the standard mollifier on Rm. Then, for each ε > 0, the
convolution with φε defines a continuous linear map
φε ∗ : Cc(Rm,Rn)→ Cc(Rm,Rn).

Remark
Similarly, given an open subset Ω ⊂ Rm, the convolution with φε
defines a continuous linear map φε ∗ : Cc(Ωε,Rn)→ Cc(Ω,Rn). It then
follows that (φε ∗)t : Mloc(Ω,Rn)→Mloc(Ωε,Rn) is a well defined linear
map. We shall omit the “t” in the notation of this transpose, i.e. we
denote it with the same notation “φε ∗”.
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Approximation by smooth functions

Regularization of Radon measures and BV functions

Definition (7.20)

Let Ω be an open subset of Rm, µ ∈Mloc(Ω,Rn) and (φt )t>0 the
standard mollifier on Rm. We define the t-approximation or
t-regularization of µ by µt := φt ∗µ ∈Mloc(Ωt ,Rn).

Remark (7.21)

The definition above extends definition 24 for L1
loc(Ln|Ω,Rn). That is,

considering the embedding L1
loc(Ln|Ω,Rn) ⊂Mloc(Ω,Rn) given by

f 7→ Ln|Ω xf , we have

(Ln|Ω xf )ε = Ln|Ω x(fε) ∈Mloc(Ωε,R).
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Approximation by smooth functions

Regularization of Radon measures and BV functions

Proposition (7.22)

With the notation from the previous definition, let Ω ⊂ Rm open and
µ ∈Mloc(Ω,Rn). Define µε : Ωε → Rn by

µε(x) :=

ˆ
Ω
φε(x − y) dµ(y).

Then µε ∈ C∞(Ωε,Rn) and

µε = Ln|Ωε xµε.
In particular, µε � Ln|Ωε and |µε| ≤ |µ|ε.
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Approximation by smooth functions

Regularization of Radon measures and BV functions

Theorem (Weak-star convergence of regularized Radon measures;
7.23)

Let Ω be an open subset of Rm and µ ∈Mloc(Ω,Rn). Then, as ε ↓ 0,

µε
∗
⇀µ and |µε|

∗
⇀|µ|,

in the sense that, for all ϕ ∈ Cc(Ω,Rn), µε · ϕ→ µ · ϕ and similarly for
the total variations. Moreover, for all ε > 0 and E ∈ BΩε ,

|µε|(E) ≤ |µ|(Eε),

where Eε := E + U(0, ε) is the ε-neighborhood of E.
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Approximation by smooth functions

Regularization of Radon measures and BV functions

Proposition (regularization of BV functions; 7.24)

Let Ω be an open subset of Rn, f ∈ BVloc(Ω), (φε)ε>0 the standard
mollifier on Rn, fε := φε ∗ f ∈ C∞(Ωε) and
(∇w f )ε := φε ∗∇w f ∈Mloc(Ωε,Rn). Then:

i) (∇w f )ε = Ln|Ωε x∇(fε).
ii) fε → f in the sense of L1

loc(Ω).
iii) For each open V b Ω,(

Ln|Ωε x∇(fε)
)
|V
∗ f
⇀(∇w f )|V and

(
Ln|Ωε x‖∇(fε)‖

)
|V
∗ f
⇀|∇w f |

∣∣
V

as ε ↓ 0.
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First properties of BV functions

Proposition (7.25)

Let Ω be an open subset of Rn and (fk )k∈N a sequence in BVloc(Ω).

i) If f ∈ BVloc(Ω) and fk → f in L1
loc(Ln|Ω), then ∇w fk

∗
⇀∇w f .

ii) If f ∈ L1
loc(Ln|Ω), fk → f in L1

loc(Ln|Ω) and there exists
µ ∈Mloc(Ω,Rn) such that ∇w fk

∗
⇀µ, then f ∈ BVloc(Ω) and

∇w f = µ.

Proposition (Product rule for BV; 7.27)

Let Ω be an open subset of Rn, f ∈ BVloc(Ω) and g : Ω→ R locally
Lipschitz. Then fg ∈ BVloc(Ω) and ∇w(fg) = ∇w f xg + Ln xf ∇w g.
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First properties of BV functions

Variation of a function in L1
loc

Definition (7.28)

Let Ω ⊂ Rn open and f ∈ L1
loc(Ω). We define, for each open V ⊂ Ω,

Var(f ,V ) := sup{
ˆ

f div ϕ dLn | ϕ ∈ C∞c (V ,Rn), ‖ϕ‖u ≤ 1}.

Exercise (variation of a function in L1
loc; 7.29)

Let Ω ⊂ Rn open and f ∈ L1
loc(Ω). Define, for each B ⊂ Ω,

Varf (B) := inf{Var(f ,U) | U open,B ⊂ U}.

Then Varf is a Borel regular measure on U which extends the variation
Var(f , ·). Moreover, f ∈ BVloc(Ω) if, and only if, Varf is a positive Radon
measure on Ω, in which case it coincides with |∇w f |.
We call Varf the variation measure of f .
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First properties of BV functions

Lower semicontinuity of the variation

Proposition (7.30)

Let Ω ⊂ Rn open, (fi)i∈N a sequence in L1
loc(Ln|Ω) and f ∈ L1

loc(Ln|Ω)
such that fi → f in L1

loc(Ln|Ω). Then, for all V ⊂ Ω open,

Var(f ,V ) ≤ lim inf Var(fi ,V ).

In particular, if fi ∈ BVloc(Ω) for all i ∈ N and the second member of the
equality above is finite for each open V b Ω, then f ∈ BVloc(Ω).
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Global approximation by smooth functions

Approximation of Sobolev functions by smooth
functions

Theorem (Meyers-Serrin’s theorem;6.24)

Let 1 ≤ p <∞, Ω ⊂ Rn open and u ∈W1,p(Ω). There exists a
sequence (uk )k∈N in C∞(Ω) ∩W1,p(Ω) such that uk → u in W1,p(Ω).
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Global approximation by smooth functions

Approximation of Sobolev functions by smooth
functions

Theorem (6.34)

Let Ω ⊂ Rn be a Lipschitz domain. If 1 ≤ p <∞ and f ∈W1,p(Ω), there
exists (fk )k∈N in W1,p(Ω) ∩ C∞(Ω) such that fk → f in W1,p(Ω).
Moreover, if f ∈W1,p(Ω) ∩ C(Ω), the sequence (fk )k∈N may be chosen
so that it also converges to f uniformly on Ω.

Corollary (6.43)

Let Ω ⊂ Rn be a Lipschitz domain. If 1 ≤ p <∞ and f ∈W1,p(Ω), there
exists (fk )k∈N in C∞c (Rn) such that fk |Ω → f in W1,p(Ω). Moreover, if
f ∈W1,p(Ω) ∩ C(Ω), the sequence (fk )k∈N may be chosen so that it
also converges to f uniformly on compact subsets of Ω.
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Global approximation by smooth functions

Approximation of BV functions by smooth functions

Theorem (7.33; Almgren)

Let Ω be an open subset of Rn and f ∈ BV(Ω). There exists a
sequence (fi)i∈N ∈ BV(Ω) ∩ C∞(Ω) such that fi → f in L1(Ln|Ω) and
|∇w fi |(Ω)→ |∇w f |(Ω).

Corollary (7.35)

Let Ω = Rn or Ω be a Lipschitz domain in Rn, and f ∈ BV(Ω). There
exists a sequence (fi)i∈N ∈ C∞c (Rn) such that fi |Ω → f in L1(Ln|Ω) and
|∇w fi |(Ω)→ |∇w f |(Ω).
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Global approximation by smooth functions

Approximation of BV functions by smooth functions

Remark (7.34)

With the same hypothesis from theorem 38, if f ∈ BV(Ω) ∩ L∞(Ln|Ω),
there exists a sequence (fi)i∈N ∈ BV(Ω) ∩ C∞(Ω) such that fi → f in
L1(Ln|Ω), |∇w fi |(Ω)→ |∇w f |(Ω) and, for all i ∈ N,
‖fi‖L∞(Ln|Ω) ≤ 3‖f‖L∞(Ln|Ω).
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Global approximation by smooth functions

Product rule for BV, part II

Proposition (Product rule for BV, part II; 7.36)

Let Ω be an open subset of Rn. If f ,g ∈ BV(Ω) ∩ L∞(Ln|Ω), then
fg ∈ BV(Ω).
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Trace and Extension Theorems

Trace theorem for Sobolev functions on Lipschitz
domains

Theorem (6.48, 6.51)

Let n ≥ 2, Ω ⊂ Rn a Lipschitz epigraph or a Lipschitz domain with ∂Ω
bounded, and 1 ≤ p <∞. Then there exists a unique bounded linear
operator T : W1,p(Ω)→ Lp(Hn−1|∂Ω) such that, for all f ∈ C1

c(Rn),
T · (f |Ω) = f |∂Ω.
Moreover, the Gauss-Green formula holds for all f ∈W1,1(Ω), i.e.
denoting by ν the unit outer normal to ∂Ω,

ˆ
Ω
∇w f dLn =

ˆ
∂Ω

T · f ν dHn−1,

with a similar equality in divergence form.

Gláucio Terra (IME - USP) GMT November 25, 2019 47 / 63



Trace and Extension Theorems

Trace theorem for Sobolev functions on Lipschitz
domains

Theorem (6.48, 6.51)

Let n ≥ 2, Ω ⊂ Rn a Lipschitz epigraph or a Lipschitz domain with ∂Ω
bounded, and 1 ≤ p <∞. Then there exists a unique bounded linear
operator T : W1,p(Ω)→ Lp(Hn−1|∂Ω) such that, for all f ∈ C1

c(Rn),
T · (f |Ω) = f |∂Ω.
Moreover, the Gauss-Green formula holds for all f ∈W1,1(Ω), i.e.
denoting by ν the unit outer normal to ∂Ω,

ˆ
Ω
∇w f dLn =

ˆ
∂Ω

T · f ν dHn−1,

with a similar equality in divergence form.

Gláucio Terra (IME - USP) GMT November 25, 2019 47 / 63



Trace and Extension Theorems

Trace theorem for BV functions on Lipschitz domains

Theorem (7.36, 7.40)

Let n ≥ 2 and Ω ⊂ Rn a Lipschitz epigraph or a Lipschitz domain with
∂Ω bounded. Then there exists a unique bounded linear operator
T : BV(Ω)→ L1(Hn−1|∂Ω) such that, for all f ∈ BV(Ω) and all
ϕ ∈ C1

c(Rn,Rn),
ˆ

Ω
f div ϕ dLn = −

ˆ
Ω
ϕ · d∇w f +

ˆ
∂Ω

Tf ϕ · ν dHn−1, (7)

where ν the unit outer normal to ∂Ω.
Moreover, for all f ∈ BV(Ω) and for Hn−1-a.e. x ∈ ∂Ω,

lim
r→0

 
B(x ,r)∩Ω

∣∣f (y)− Tf (x)
∣∣ dLn(y) = 0. (8)
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Trace and Extension Theorems

Trace theorem for BV functions on Lipschitz domains

Corollary (7.41)

With the same hypothesis of the previous theorem, if
f ∈ BV(Ω) ∩ C(Ω), then Tf = f |∂Ω.
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Trace and Extension Theorems

Extension of BV functions on Lipschitz domains

Theorem (7.43)

Let n ≥ 2 and Ω an open subset of Rn which is a Lipschitz epigraph or
a Lipschitz domain with ∂Ω bounded. Given f ∈ BV(Ω) and
g ∈ BV(Rn \ Ω), let F be Ln-measurable function defined by F |Ω = f
and F |

Ω
c = g.

Then F ∈ BV(Rn) and

∇w F = i#∇w f + i#∇w g −Hn−1 x∂Ω x(Tf − Tg)ν, (9)

where i#∇w f and i#∇w g are the pushforwards of ∇w f ∈M(Ω,Rn)

and ∇w g ∈M(Ω
c
,Rn) by the respective inclusions, ν is the unit outer

normal of Ω and T denotes both trace operators
BV(Ω),BV(Ω

c
)→ L1(Hn−1|∂Ω).
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Trace and Extension Theorems

Extension of BV functions on Lipschitz domains

Corollary (7.44)

Let n ≥ 2 and Ω an open subset of Rn which is a Lipschitz epigraph or
a Lipschitz domain with ∂Ω bounded. The extension by 0 defines a
bounded linear operator BV(Ω)→ BV(Rn).
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Compactness

Rellich-Kondrachov

Theorem (6.77)

Let Ω be a bounded Lipschitz domain in Rn, 1 ≤ p < n and 1 ≤ q < p∗,
where p∗ is the Sobolev conjugate of p. Then

W1,p(Ω) b Lq(Ln|Ω),

i.e. W1,p(Ω) ⊂ Lq(Ln|Ω) with compact inclusion.
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Compactness

Compactness theorem for BV

Theorem (7.46)

Let Ω ⊂ Rn be a bounded Lipschitz domain and (fi)i∈N a sequence in
BV(Ω) such that

sup{‖fi‖BV(Ω) | i ∈ N} <∞.

Then there exists f ∈ BV(Ω) and a subsequence (fij )j∈N of (fi)i such
that fij → f in L1(Ln|Ω).

Gláucio Terra (IME - USP) GMT November 25, 2019 53 / 63



Sets of Finite Perimeter and Existence of Minimal Surfaces

Support of the Gauss-Green measure

Proposition (7.50)

If E ⊂ Ω is a set of locally finite perimeter in the open subset Ω of Rn,
then

spt µE = {x ∈ Ω | ∀r > 0,0 < |E ∩ U(x , r)| < α(n)rn} ⊂ ∂ΩE .

Moreover, there exists a Borel set F ⊂ Ω in the same L1
loc class of E

such that µF = ∂ΩF.
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Sets of Finite Perimeter and Existence of Minimal Surfaces

Operations with Sets of Finite Perimeter, part I

Proposition (7.51)

Let Ω be an open subset of Rn. If E ,F are sets of (locally) finite
perimeter in Ω, then so are E ∪ F and E ∩ F. Moreover,

|µE∪F |+ |µE∩F | ≤ |µE |+ |µF |.
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Sets of Finite Perimeter and Existence of Minimal Surfaces

Compactness from perimeter bounds

Definition (7.52)

Let (Ei)i∈N be a sequence of Lebesgue measurable sets in Rn and E a
Lebesgue measurable set in Rn. We say that

Ei ⇀E

if ‖χEi − χE‖L1(Ln) = |Ei 4E | → 0.

We say that Ei
loc
⇀E if χEi → χE in L1

loc(Ln).
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Sets of Finite Perimeter and Existence of Minimal Surfaces

Compactness from perimeter bounds

Theorem (7.53)

Let R > 0 and (Ei)i∈N be a sequence of sets of finite perimeter in Rn

such that

sup
i∈N

P(Ei) <∞,

Ei ⊂ U(0,R) ∀i ∈ N.

Then there exists a set E ⊂ U(0,R) of finite perimeter in Rn and a
subsequence (Eij )j∈N of (Ei)i∈N such that

Eij ⇀E and µEij

∗
⇀µE .
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Sets of Finite Perimeter and Existence of Minimal Surfaces

Compactness from perimeter bounds

Corollary (7.55)

Let (Ei)i∈N be a sequence of sets of locally finite perimeter in Rn such
that, for all R > 0,

sup
i∈N

P
(
Ei ,U(0,R)

)
<∞.

Then there exists a set E of locally finite perimeter in Rn and a
subsequence (Eij )j∈N of (Ei)i∈N such that

Eij
loc
⇀E and µEij

∗
⇀µE .
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Sets of Finite Perimeter and Existence of Minimal Surfaces

Compactness from perimeter bounds

Lemma (7.54)

Let Ω ⊂ Rn be a bounded Lipschitz domain and E ⊂ Rn be a set of
locally finite perimeter. Then E ∩Ω is a set of finite perimeter in Rn and

P(E ∩ Ω) ≤ P(E ,Ω) + P(Ω).
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Sets of Finite Perimeter and Existence of Minimal Surfaces

Plateau problem in K with boundary data M

Figure: Plateau problem in K with boundary data M
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Sets of Finite Perimeter and Existence of Minimal Surfaces

Plateau problem in K with boundary data M

Proposition (Minimizers for the Plateau problem in K with boundary
data M)

Let K ⊂ Rn be a compact set and M be a set of locally finite perimeter
in Rn. Then there exists E0 ⊂ Rn of locally finite perimeter which
minimizes the functional

E 7→ P(E ,K )

in the class E := {E ⊂ Rn | χE ∈ BVloc(Rn) and E \ K = M \ K}.
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Sets of Finite Perimeter and Existence of Minimal Surfaces

Relative isoperimetric problem in Ω

Definition
Let Ω ⊂ Rn open, m ∈ (0, |Ω|) and

α(m,Ω) := inf{P(E ,Ω) | E ⊂ Ω, χE ∈ BV(Ω), |E | = m}.

We say that a set E ⊂ Ω of finite perimeter in Ω is a relative
isoperimetric set in Ω if spt µE = ∂ΩE and P(E ,Ω) = α(|E |,Ω).

Figure: Relative isoperimetric problem in Ω
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Sets of Finite Perimeter and Existence of Minimal Surfaces

Existence of relative isoperimetric sets on bounded
Lipschitz domains

Proposition (Existence of relative isoperimetric sets on bounded
Lipschitz domains)

Let Ω be a bounded Lipschitz domain and m ∈ (0, |Ω|]. Then there
exists a set E ⊂ Ω such that χE ∈ BV(Ω), |E | = m and
P(E ,Ω) = α(m,Ω).
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