Geometric Measure Theory

Gláucio Terra

Departamento de Matemática IME - USP

November 25, 2019

November 25, 2019

Weak derivatives

Definition (weak derivatives and gradients; 5.3)

Let Ω be an open subset of \mathbb{R}^n and $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$. We say that:

• For $1 \le i \le n$, *u* has weak *i*-th partial derivative $v_i \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ if $\forall \varphi \in C^{\infty}_{c}(\Omega)$,

$$\int_{\Omega} \mathbf{v}_i \varphi \, \mathrm{d} \mathcal{L}^n = - \int_{\Omega} u \frac{\partial \varphi}{\partial \mathbf{x}_i} \, \mathrm{d} \mathcal{L}^n.$$

) u has weak gradient $v \in L^1_{\mathsf{loc}}(\mathcal{L}^n|_\Omega, \mathbb{R}^n)$ if $\forall \varphi \in \mathsf{C}^\infty_{\mathsf{c}}(\Omega, \mathbb{R}^n)$,

$$\int_{\Omega} \langle \mathbf{v}, \varphi \rangle \, \mathrm{d}\mathcal{L}^n = -\int_{\Omega} u \, \mathrm{div} \, \varphi \, \mathrm{d}\mathcal{L}^n. \tag{1}$$

< ロ > < 同 > < 回 > < 回 >

Weak derivatives

Definition (weak derivatives and gradients; 5.3)

Let Ω be an open subset of \mathbb{R}^n and $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$. We say that:

• For $1 \le i \le n$, *u* has weak *i*-th partial derivative $v_i \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ if $\forall \varphi \in C^{\infty}_{c}(\Omega)$,

$$\int_{\Omega} \mathbf{v}_i \varphi \, \mathrm{d} \mathcal{L}^n = - \int_{\Omega} u \frac{\partial \varphi}{\partial \mathbf{x}_i} \, \mathrm{d} \mathcal{L}^n.$$

2 *u* has weak gradient $v \in L^1_{loc}(\mathcal{L}^n|_{\Omega}, \mathbb{R}^n)$ if $\forall \varphi \in C^{\infty}_{c}(\Omega, \mathbb{R}^n)$,

$$\int_{\Omega} \langle \mathbf{v}, \varphi \rangle \, \mathrm{d}\mathcal{L}^n = - \int_{\Omega} u \, \mathrm{div} \, \varphi \, \mathrm{d}\mathcal{L}^n. \tag{1}$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sobolev spaces and functions

Definition (5.8)

Let Ω be an open subset of \mathbb{R}^n , $u : \Omega \to \mathbb{R}$ and $1 \le p \le \infty$. We say that

• *u* is a (1, p)-Sobolev function if $u \in L^p(\mathcal{L}^n|_{\Omega})$ and, $\forall 1 \le i \le n, u$ has weak partial derivatives $\frac{\partial u}{\partial x_i} \in L^p(\mathcal{L}^n|_{\Omega})$. Notation: $W^{1,p}(\Omega)$.

2 *u* is a *local* (1, p)-*Sobolev function* if $u \in L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$ and, $\forall 1 \leq i \leq n, u$ has weak partial derivatives $\frac{\partial u}{\partial x_{i}} \in L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$ Notation: $W^{1,p}_{loc}(\Omega)$.

< ロ > < 同 > < 回 > < 回 >

November 25, 2019

Sobolev spaces and functions

Definition (5.8)

Let Ω be an open subset of \mathbb{R}^n , $u : \Omega \to \mathbb{R}$ and $1 \le p \le \infty$. We say that

- *u* is a (1, p)-*Sobolev function* if $u \in L^p(\mathcal{L}^n|_{\Omega})$ and, $\forall 1 \le i \le n, u$ has weak partial derivatives $\frac{\partial u}{\partial x_i} \in L^p(\mathcal{L}^n|_{\Omega})$. Notation: $W^{1,p}(\Omega)$.
- ② *u* is a *local* (1, *p*)-*Sobolev function* if $u \in L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$ and, $\forall 1 \leq i \leq n, u$ has weak partial derivatives $\frac{\partial u}{\partial x_{i}} \in L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$. Notation: $W^{1,p}_{loc}(\Omega)$.

< ロ > < 同 > < 回 > < 回 >

November 25, 2019

Definition (weak derivatives and gradients, bis; 7.1)

Let Ω be an open subset of \mathbb{R}^n and $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$. We say that:

• For $1 \le i \le n$, *u* has weak *i*-th partial derivative $\mu_i \in \mathcal{M}_{\mathsf{loc}}(\Omega, \mathbb{R}) \equiv \mathsf{C}_{\mathsf{c}}(\Omega, \mathbb{R})^*$ if $\forall \varphi \in \mathsf{C}^{\infty}_{\mathsf{c}}(\Omega)$,

$$\int_{\Omega} u \frac{\partial \varphi}{\partial x_i} \, \mathrm{d} \mathcal{L}^n = - \int_{\Omega} \varphi \, \mathrm{d} \mu_i.$$

• *u* has weak gradient $\mu \in \mathcal{M}_{\mathsf{loc}}(\Omega, \mathbb{R}^n) \equiv \mathsf{C}_{\mathsf{c}}(\Omega, \mathbb{R}^n)^*$ if $\forall \varphi \in \mathsf{C}^{\infty}_{\mathsf{c}}(\Omega, \mathbb{R}^n)$,

$$\int_{\Omega} u \operatorname{div} \varphi \, \mathrm{d}\mathcal{L}^n = - \int_{\Omega} \varphi \cdot \, \mathrm{d}\mu$$

3

Definition (weak derivatives and gradients, bis; 7.1)

Let Ω be an open subset of \mathbb{R}^n and $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$. We say that:

• For $1 \le i \le n$, *u* has weak *i*-th partial derivative $\mu_i \in \mathcal{M}_{\mathsf{loc}}(\Omega, \mathbb{R}) \equiv \mathsf{C}_{\mathsf{c}}(\Omega, \mathbb{R})^*$ if $\forall \varphi \in \mathsf{C}^{\infty}_{\mathsf{c}}(\Omega)$,

$$\int_{\Omega} u \frac{\partial \varphi}{\partial x_i} \, \mathrm{d} \mathcal{L}^n = - \int_{\Omega} \varphi \, \mathrm{d} \mu_i.$$

2 *u* has weak gradient $\mu \in \mathcal{M}_{\mathsf{loc}}(\Omega, \mathbb{R}^n) \equiv \mathsf{C}_{\mathsf{c}}(\Omega, \mathbb{R}^n)^*$ if $\forall \varphi \in \mathsf{C}^{\infty}_{\mathsf{c}}(\Omega, \mathbb{R}^n),$

$$\int_{\Omega} u \operatorname{div} \, \varphi \, \mathrm{d} \mathcal{L}^n = - \int_{\Omega} \varphi \cdot \, \mathrm{d} \mu.$$

3

< 日 > < 同 > < 回 > < 回 > < □ > <

(2)

Remark (7.2)

• For $1 \le i \le n$, $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ admits weak *i*-th partial derivative if, for each compact $K \subset \Omega$, there exists $C_K < \infty$ such that

$$\sup\{\int_{\Omega} u \frac{\partial \varphi}{\partial x_i} \ \mathrm{d}\mathcal{L}^n \mid \varphi \in \mathsf{C}^\infty_\mathsf{c}(\Omega), \mathsf{spt} \ \varphi \subset K, \|\varphi\|_u \leq 1\} \leq C_{\mathsf{K}}.$$

2 $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ admits weak gradient if, for each compact $K \subset \Omega$, there exists $C_K < \infty$ such that

$$\sup\{\int_{\Omega} u \operatorname{div} \, \varphi \, \mathrm{d}\mathcal{L}^n \mid \phi \in \mathsf{C}^\infty_\mathsf{c}(\Omega, \mathbb{R}^n), \operatorname{spt} \, \varphi \subset K, \|\varphi\|_u \leq 1\} \leq C_K.$$

Weak partial derivatives or weak gradients, if exist, are unique.

Remark (7.2)

• For $1 \le i \le n$, $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ admits weak *i*-th partial derivative if, for each compact $K \subset \Omega$, there exists $C_K < \infty$ such that

$$\sup\{\int_{\Omega} u \frac{\partial \varphi}{\partial x_i} \ \mathrm{d}\mathcal{L}^n \mid \varphi \in \mathsf{C}^\infty_\mathsf{c}(\Omega), \mathsf{spt} \ \varphi \subset K, \|\varphi\|_u \leq 1\} \leq C_{\mathsf{K}}.$$

2 $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ admits weak gradient if, for each compact $K \subset \Omega$, there exists $C_K < \infty$ such that

$$\sup\{\int_{\Omega} u \operatorname{div} \, \varphi \, \mathrm{d}\mathcal{L}^n \, | \, \phi \in \mathsf{C}^\infty_\mathsf{c}(\Omega, \mathbb{R}^n), \mathsf{spt} \, \varphi \subset \mathcal{K}, \|\varphi\|_u \leq \mathsf{1}\} \leq \mathcal{C}_\mathcal{K}.$$

Weak partial derivatives or weak gradients, if exist, are unique

Remark (7.2)

• For $1 \le i \le n$, $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ admits weak *i*-th partial derivative if, for each compact $K \subset \Omega$, there exists $C_K < \infty$ such that

$$\sup\{\int_{\Omega} u \frac{\partial \varphi}{\partial x_i} \ \mathrm{d}\mathcal{L}^n \mid \varphi \in \mathsf{C}^\infty_\mathsf{c}(\Omega), \mathsf{spt} \ \varphi \subset K, \|\varphi\|_u \leq 1\} \leq C_{\mathsf{K}}.$$

2 $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ admits weak gradient if, for each compact $K \subset \Omega$, there exists $C_K < \infty$ such that

$$\sup\{\int_{\Omega} u \operatorname{div} \, \varphi \, \mathrm{d}\mathcal{L}^n \, | \, \phi \in \mathsf{C}^\infty_\mathsf{c}(\Omega, \mathbb{R}^n), \mathsf{spt} \, \varphi \subset \mathcal{K}, \|\varphi\|_u \leq \mathsf{1}\} \leq \mathcal{C}_\mathcal{K}.$$

Weak partial derivatives or weak gradients, if exist, are unique.

Remark

- $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ has weak gradient $\mu = (\mu_1, \dots, \mu_n) \in \mathcal{M}_{loc}(\Omega, \mathbb{R}^n)$ iff it has weak partial derivatives of first order $\mu_i \in \mathcal{M}_{loc}(\Omega, \mathbb{R})$ for $1 \leq i \leq n$.
- If $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ has weak *i*-th partial derivative $v_i \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ in the sense of definition 1, then it has weak *i*-th partial derivative $\mathcal{L}^n \sqsubseteq v_i \in \mathcal{M}_{loc}(\Omega, \mathbb{R})$ in the sense of definition 3. Thus, considering the injection $L^1_{loc}(\mathcal{L}^n|_{\Omega}) \subset \mathcal{M}_{loc}(\Omega, \mathbb{R})$ given by $v \mapsto \mathcal{L}^n \sqsubseteq v$, we see that definition 1 may be considered a particular case of definition 3.

Remark

- $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ has weak gradient $\mu = (\mu_1, \dots, \mu_n) \in \mathcal{M}_{loc}(\Omega, \mathbb{R}^n)$ iff it has weak partial derivatives of first order $\mu_i \in \mathcal{M}_{loc}(\Omega, \mathbb{R})$ for $1 \leq i \leq n$.
- If $u \in L^{1}_{loc}(\mathcal{L}^{n}|_{\Omega})$ has weak *i*-th partial derivative $v_{i} \in L^{1}_{loc}(\mathcal{L}^{n}|_{\Omega})$ in the sense of definition 1, then it has weak *i*-th partial derivative $\mathcal{L}^{n} \sqsubseteq v_{i} \in \mathcal{M}_{loc}(\Omega, \mathbb{R})$ in the sense of definition 3. Thus, considering the injection $L^{1}_{loc}(\mathcal{L}^{n}|_{\Omega}) \subset \mathcal{M}_{loc}(\Omega, \mathbb{R})$ given by $v \mapsto \mathcal{L}^{n} \sqsubseteq v$, we see that definition 1 may be considered a particular case of definition 3.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

November 25, 2019

Exercise (7.3)

Weak gradients may be also characterized by means of Gauss-Green identity in gradient form. That is, let Ω be an open subset of \mathbb{R}^n and $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$; then u admits weak gradient $\mu \in \mathcal{M}_{loc}(\Omega, \mathbb{R}^n)$ iff $\forall \varphi \in C^{\infty}_{c}(\Omega)$,

$$\int_{\Omega} u \nabla \varphi \, \mathrm{d}\mathcal{L}^n = - \int_{\Omega} \varphi \, \mathrm{d}\mu. \tag{3}$$

Exercise (7.4)

Let Ω be an open subset of \mathbb{R}^n , $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ and $1 \leq i \leq n$. If there exists $\mu_i = \frac{\partial^w u}{\partial x_i} \in \mathcal{M}_{loc}(\Omega, \mathbb{R})$, then $\forall \varphi \in C^1_{c}(\Omega)$,

$$\int_{\Omega} u \frac{\partial \varphi}{\partial x_i} \, \mathrm{d} \mathcal{L}^n = - \int_{\Omega} \varphi \, \mathrm{d} \mu_i$$

BV functions

Definition (7.5)

Let Ω be an open subset of \mathbb{R}^n .

- i) We denote by $\mathsf{BV}_{\mathsf{loc}}(\Omega)$ the set of functions $u \in \mathsf{L}^1_{\mathsf{loc}}(\mathcal{L}^n|_{\Omega})$ which admit weak partial gradient $\nabla^w u \in \mathcal{M}_{\mathsf{loc}}(\Omega, \mathbb{R}^n)$.
- ii) We say that $u \in BV(\Omega)$ if $u \in L^1(\mathcal{L}^n|_{\Omega})$ and u admits weak gradient $\nabla^w u \in \mathcal{M}(\Omega, \mathbb{R}^n)$.
- iii) We say that $E \subset \Omega$ is a set of locally finite perimeter in Ω if $\chi_E \in \mathsf{BV}_{\mathsf{loc}}(\Omega)$. We say that E is a Caccioppoli set or a set of finite perimeter in Ω if $\chi_E \in \mathsf{BV}_{\mathsf{loc}}(\Omega)$ and $\nabla^w \chi_E \in \mathcal{M}(\Omega, \mathbb{R}^n)$.

イロト 不得 トイヨト イヨト

BV functions

Definition (7.5)

Let Ω be an open subset of \mathbb{R}^n .

- i) We denote by $\mathsf{BV}_{\mathsf{loc}}(\Omega)$ the set of functions $u \in \mathsf{L}^1_{\mathsf{loc}}(\mathcal{L}^n|_{\Omega})$ which admit weak partial gradient $\nabla^w u \in \mathcal{M}_{\mathsf{loc}}(\Omega, \mathbb{R}^n)$.
- ii) We say that $u \in BV(\Omega)$ if $u \in L^1(\mathcal{L}^n|_{\Omega})$ and u admits weak gradient $\nabla^w u \in \mathcal{M}(\Omega, \mathbb{R}^n)$.

iii) We say that $E \subset \Omega$ is a set of locally finite perimeter in Ω if $\chi_E \in \mathsf{BV}_{\mathsf{loc}}(\Omega)$. We say that *E* is a *Caccioppoli set* or a set of finite perimeter in Ω if $\chi_E \in \mathsf{BV}_{\mathsf{loc}}(\Omega)$ and $\nabla^w \chi_E \in \mathcal{M}(\Omega, \mathbb{R}^n)$.

BV functions

Definition (7.5)

Let Ω be an open subset of \mathbb{R}^n .

- i) We denote by $\mathsf{BV}_{\mathsf{loc}}(\Omega)$ the set of functions $u \in \mathsf{L}^1_{\mathsf{loc}}(\mathcal{L}^n|_{\Omega})$ which admit weak partial gradient $\nabla^w u \in \mathcal{M}_{\mathsf{loc}}(\Omega, \mathbb{R}^n)$.
- ii) We say that $u \in BV(\Omega)$ if $u \in L^1(\mathcal{L}^n|_{\Omega})$ and u admits weak gradient $\nabla^w u \in \mathcal{M}(\Omega, \mathbb{R}^n)$.
- iii) We say that $E \subset \Omega$ is a set of locally finite perimeter in Ω if $\chi_E \in \mathsf{BV}_{\mathsf{loc}}(\Omega)$. We say that E is a Caccioppoli set or a set of finite perimeter in Ω if $\chi_E \in \mathsf{BV}_{\mathsf{loc}}(\Omega)$ and $\nabla^w \chi_E \in \mathcal{M}(\Omega, \mathbb{R}^n)$.

$W^{1,1} \subset BV$

Example (7.6)

Let $\Omega \subset \mathbb{R}^n$ open and $f \in W^{1,1}_{loc}(\Omega)$. Then $f \in BV_{loc}(\Omega)$ and its measure-weak gradient is given by $\mathcal{L}^n \sqcup \nabla^w f \in \mathcal{M}_{loc}(\Omega, \mathbb{R}^n)$. The inclusion $W^{1,1}_{loc}(\Omega) \subset BV_{loc}(\Omega)$ is strict; for instance, if $u = \chi_{(0,\infty)}$ on $\Omega = \mathbb{R}, \nabla^w u$ coincides with the Dirac measure $\delta_0 \in \mathcal{M}(\mathbb{R}, \mathbb{R})$, so that $\nabla^w u \perp \mathcal{L}^n$, hence $u \in BV(\mathbb{R}) \setminus W^{1,1}_{loc}(\mathbb{R})$.

Locality of the weak derivative

Theorem (7.7)

Let $\Omega \subset \mathbb{R}^n$, $f \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ and $\mathfrak{F} \subset 2^{\Omega}$ an open cover of Ω . Then f admits weak partial derivatives of first order on Ω iff $\forall U \in \mathfrak{F}$, $f|_U$ admits weak partial derivatives of first order on U. Moreover, weak derivatives commute with restrictions (for a Radon measure, "restriction" here means "trace").

Corollary (6.15)

Let $\Omega \subset \mathbb{R}^n$ open, $1 \leq p \leq \infty$ and $f : \Omega \to \mathbb{R}$ Lebesgue measurable. Then $f \in W^{1,p}_{loc}(\Omega)$ iff for all open $V \Subset \Omega$, $f|_V \in W^{1,p}(V)$.

Corollary (7.9)

Let $\Omega \subset \mathbb{R}^n$ open and $f : \Omega \to \mathbb{R}$ Lebesgue measurable. Then $f \in \mathsf{BV}_{\mathsf{loc}}(\Omega)$ iff for all open $V \Subset \Omega$, $f|_V \in \mathsf{BV}(V)$.

Gláucio Terra (IME - USP)

W^{1,p} norm

Definition (6.1)

Let $\Omega \subset \mathbb{R}^n$ open and $f \in W^{1,1}_{loc}(\Omega)$, i.e. $f \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ admits weak partial derivatives of first order. We define

• for $1 \leq \rho < \infty$, $\|f\|_{\mathsf{W}^{1,p}(\Omega)} := (\int_{\Omega} |f|^{\rho} + \|\nabla f\|^{\rho} \, \mathrm{d}\mathcal{L}^n)^{1/\rho} \in [0,\infty];$

• for $\rho = \infty$, $\|f\|_{W^{1,\infty}(\Omega)} := \||f| + \|\nabla f\|\|_{L^{\infty}(\Omega)} \in [0,\infty].$

Proposition (6.2)

Let $\Omega \subset \mathbb{R}^n$ open. For $1 \le p \le \infty$, $W^{1,p}(\Omega)$ is a Banach space (for p = 2, it is a Hilbert space). It is reflexive for $1 and it is separable for <math>1 \le p < \infty$.

W^{1,p} norm

Definition (6.1)

Let $\Omega \subset \mathbb{R}^n$ open and $f \in W^{1,1}_{loc}(\Omega)$, i.e. $f \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ admits weak partial derivatives of first order. We define

• for
$$1 \le p < \infty$$
, $\|f\|_{\mathsf{W}^{1,p}(\Omega)} := (\int_{\Omega} |f|^p + \|\nabla f\|^p \, \mathrm{d}\mathcal{L}^n)^{1/p} \in [0,\infty];$

• for
$$p = \infty$$
, $\|f\|_{\mathsf{W}^{1,\infty}(\Omega)} := \||f| + \|\nabla f\|\|_{\mathsf{L}^{\infty}(\Omega)} \in [0,\infty].$

Proposition (6.2)

Let $\Omega \subset \mathbb{R}^n$ open. For $1 \le p \le \infty$, $W^{1,p}(\Omega)$ is a Banach space (for p = 2, it is a Hilbert space). It is reflexive for $1 and it is separable for <math>1 \le p < \infty$.

W^{1,p} norm

Definition (6.1)

Let $\Omega \subset \mathbb{R}^n$ open and $f \in W^{1,1}_{loc}(\Omega)$, i.e. $f \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ admits weak partial derivatives of first order. We define

• for
$$1 \le \rho < \infty$$
, $\|f\|_{W^{1,p}(\Omega)} := (\int_{\Omega} |f|^{\rho} + \|\nabla f\|^{\rho} \, \mathrm{d}\mathcal{L}^n)^{1/\rho} \in [0,\infty];$

• for
$$p = \infty$$
, $\|f\|_{\mathsf{W}^{1,\infty}(\Omega)} := \||f| + \|\nabla f\|\|_{\mathsf{L}^{\infty}(\Omega)} \in [0,\infty].$

Proposition (6.2)

Let $\Omega \subset \mathbb{R}^n$ open. For $1 \le p \le \infty$, $W^{1,p}(\Omega)$ is a Banach space (for p = 2, it is a Hilbert space). It is reflexive for $1 and it is separable for <math>1 \le p < \infty$.

BV norm

Proposition (7.10)

Let Ω be an open subset of \mathbb{R}^n . Then $BV(\Omega)$ is a Banach space with the norm

$$\|f\|_{\mathsf{BV}(\Omega)} := \|f\|_{\mathsf{L}^{1}(\Omega)} + |\nabla^{\mathsf{w}} f|(\Omega).$$
(4)

November 25, 2019

3

Gauss-Green measure, exterior normal and perimeter measure

Definition (7.12)

Let Ω be an open subset of \mathbb{R}^n and $E \subset \Omega$ such that $\chi_E \in \mathsf{BV}_{\mathsf{loc}}(\Omega)$.

- µ_E := −∇^w χ_E ∈ M_{loc}(Ω, ℝⁿ) (attention to the minus sign) is called the Gauss-Green measure of E.
- Let (ν_E, |μ_E|) be the polar decomposition of μ_E. We call the positive Radon measure P(E, ·) := |μ_E| on Ω the perimeter measure of E and ν_E the exterior normal to E.

November 25, 2019

Gauss-Green measure, exterior normal and perimeter measure

Definition (7.12)

Let Ω be an open subset of \mathbb{R}^n and $E \subset \Omega$ such that $\chi_E \in \mathsf{BV}_{\mathsf{loc}}(\Omega)$.

- μ_E := -∇^w χ_E ∈ M_{loc}(Ω, ℝⁿ) (attention to the minus sign) is called the *Gauss-Green measure* of *E*.
- Let (ν_E, |μ_E|) be the polar decomposition of μ_E. We call the positive Radon measure P(E, ·) := |μ_E| on Ω the *perimeter* measure of E and ν_E the *exterior normal* to E.

November 25, 2019

Remark (7.13)

Let $E \subset \Omega$ such that $\chi_E \in \mathsf{BV}_{\mathsf{loc}}(\Omega)$ and $\partial^{\Omega} E = \Omega \cap \partial E$ be the topological boundary of E in Ω . Then

 spt μ_E ⊂ ∂^ΩE. Since ν_E is determined up to |μ_E|-null sets, we may and do assume henceforth that ν_E = 0 on Ω \ ∂^ΩE and we identify ν_E with a Borelian map ∂^ΩE → ℝⁿ;

2) for all $\varphi \in C^1_c(\Omega, \mathbb{R}^n)$,

$$\int_{E} \operatorname{div} \varphi \, \mathrm{d}\mathcal{L}^{n} = \int_{\partial^{\Omega} E} \varphi \cdot \nu_{E} \, \mathrm{d}|\mu_{E}|. \tag{5}$$

< ロ > < 同 > < 回 > < 回 >

November 25, 2019

14/63

We call the above equality the generalized Gauss-Green theorem.

Remark (7.13)

Let $E \subset \Omega$ such that $\chi_E \in \mathsf{BV}_{\mathsf{loc}}(\Omega)$ and $\partial^{\Omega} E = \Omega \cap \partial E$ be the topological boundary of E in Ω . Then

- spt μ_E ⊂ ∂^ΩE. Since ν_E is determined up to |μ_E|-null sets, we may and do assume henceforth that ν_E = 0 on Ω \ ∂^ΩE and we identify ν_E with a Borelian map ∂^ΩE → ℝⁿ;
- 2) for all $\varphi \in C^1_c(\Omega, \mathbb{R}^n)$,

$$\int_{E} \operatorname{div} \varphi \, \mathrm{d}\mathcal{L}^{n} = \int_{\partial^{\Omega} E} \varphi \cdot \nu_{E} \, \mathrm{d}|\mu_{E}|.$$
(5)

November 25. 2019

14/63

We call the above equality the generalized Gauss-Green theorem.

Lipschitz epigraphs have locally finite perimeter

Proposition (7.14)

Let $n \ge 2$, $f : \mathbb{R}^{n-1} \to \mathbb{R}$ Lipschitz and $\Omega := epi_S f$. Then Ω is a set of locally finite perimeter in \mathbb{R}^n , $|\mu_{\Omega}| = \mathcal{H}^{n-1} \sqcup \partial \Omega$ and ν_{Ω} coincides with the unit outer normal to $\partial \Omega$, i.e.

$$u(x) = \frac{(\nabla f(x'), -1)}{\sqrt{1 + \|\nabla f(x')\|^2}}$$

on each point point x = (x', f(x')) in $\partial \Omega = \text{gr } f$ whose abscissa x' is a differentiability point of f.

November 25, 2019

Notation for cylinders

Let $\mathbb{R}^n \equiv \mathbb{R}^k \times \mathbb{R}^{n-k}$, $x \in \mathbb{R}^n$, $0 < r, h \le \infty$, $p : \mathbb{R}^k \times \mathbb{R}^{n-k} \to \mathbb{R}^k$ and $q : \mathbb{R}^k \times \mathbb{R}^{n-k} \to \mathbb{R}^{n-k}$ be the projections on the first and second factors, respectively.

• $\mathbb{C}(x, r, h) := \mathbb{U}(p \cdot x, r) \times \mathbb{U}(q \cdot x, h) \subset \mathbb{R}^k \times \mathbb{R}^{n-k}.$ • $\overline{\mathbb{C}}(x, r, h) := \mathbb{B}(p \cdot x, r) \times \mathbb{B}(q \cdot x, h) = \overline{\mathbb{C}(x, r, h)}.$

November 25, 2019

Notation for cylinders

Let $\mathbb{R}^n \equiv \mathbb{R}^k \times \mathbb{R}^{n-k}$, $x \in \mathbb{R}^n$, $0 < r, h \le \infty$, $p : \mathbb{R}^k \times \mathbb{R}^{n-k} \to \mathbb{R}^k$ and $q : \mathbb{R}^k \times \mathbb{R}^{n-k} \to \mathbb{R}^{n-k}$ be the projections on the first and second factors, respectively.

•
$$\mathbb{C}(x,r,h) := \mathbb{U}(p \cdot x,r) \times \mathbb{U}(q \cdot x,h) \subset \mathbb{R}^k \times \mathbb{R}^{n-k}.$$

• $\overline{\mathbb{C}}(x,r,h) := \mathbb{B}(p \cdot x,r) \times \mathbb{B}(q \cdot x,h) = \mathbb{C}(x,r,h).$

November 25, 2019

Notation for cylinders

Let $\mathbb{R}^n \equiv \mathbb{R}^k \times \mathbb{R}^{n-k}$, $x \in \mathbb{R}^n$, $0 < r, h \le \infty$, $p : \mathbb{R}^k \times \mathbb{R}^{n-k} \to \mathbb{R}^k$ and $q : \mathbb{R}^k \times \mathbb{R}^{n-k} \to \mathbb{R}^{n-k}$ be the projections on the first and second factors, respectively.

•
$$\mathbb{C}(x,r,h) := \mathbb{U}(p \cdot x,r) \times \mathbb{U}(q \cdot x,h) \subset \mathbb{R}^k \times \mathbb{R}^{n-k}.$$

•
$$\overline{\mathbb{C}}(x,r,h) := \mathbb{B}(p \cdot x,r) \times \mathbb{B}(q \cdot x,h) = \overline{\mathbb{C}(x,r,h)}.$$

November 25, 2019

Definition (6.33)

Let $n \ge 2$, $U \subset \mathbb{R}^n \equiv \mathbb{R}^{n-1} \times \mathbb{R}$ open and $\Omega \subset U$ an open subset of U. We say that Ω is a *Lipschitz domain* if for all $x \in \partial^U \Omega = \partial \Omega \cap U$, there exist:

- **1** a rigid motion $\Phi \in SE(n)$ with $\Phi(0) = x$;
- 3 $f : \mathbb{R}^{n-1} \to \mathbb{R}$ Lipschitz with f(0) = 0;
- $\mathbb{C}(0, r, h) \subset \mathbb{R}^{n-1} \times \mathbb{R}$ open cylinder

satisfying the following conditions:

•
$$C := \Phi(\mathbb{C}(0, r, h)) \subset U;$$

•
$$\Phi(\operatorname{gr} f \cap \mathbb{C}(0, r, h)) = C \cap \partial \Omega$$

•
$$\Phi(\operatorname{epi}_{\mathsf{S}} f \cap \mathbb{C}(0, r, h)) = C \cap \Omega$$
,

where $epi_S f = \{(x, y) \in \mathbb{R}^{n-1} \times \mathbb{R} \mid y > f(x)\}.$

Figure: Lipschitz Domain

Gláucio Terra	(IME - I	USP)
---------------	----------	------

イロト イヨト イヨト イヨト

November 25, 2019

æ

Smooth partitions of unity on open sets of \mathbb{R}^n

Definition (6.6)

Let $\Omega \subset \mathbb{R}^n$ open. A *smooth partition of unity* of Ω is a family $(\xi_\alpha)_{\alpha \in A}$ such that:

PU1) $\forall \alpha \in A, \xi_{\alpha} \in C^{\infty}(\Omega, [0, 1])$ and (spt $\xi_{\alpha})_{\alpha \in A}$ is a locally finite family of subsets of Ω ;

PU2) $\forall x \in \Omega, \sum_{\alpha \in A} \xi_{\alpha}(x) = 1.$

If \mathcal{F} is an open cover of Ω , we say that a smooth partition of unity $(\xi_{\alpha})_{\alpha \in \mathcal{A}}$ of Ω is *subordinate* to \mathcal{F} if $\forall \alpha \in \mathcal{A}$, there exists $U \in \mathcal{F}$ such that spt $\xi_{\alpha} \subset U$.

3

Existence of partitions of unity on open sets of \mathbb{R}^n

Theorem (6.8)

Let $\Omega \subset \mathbb{R}^n$ open and $(U_{\alpha})_{\alpha \in A}$ a locally finite open cover of Ω with $\forall \alpha \in A, U_{\alpha} \Subset \Omega$. Then there exists a smooth partition of unity $(\xi_{\alpha})_{\alpha \in A}$ of Ω such that, $\forall \alpha \in A$, spt $\xi_{\alpha} \Subset U_{\alpha}$.

Corollary

Let $\Omega \subset \mathbb{R}^n$ be open and \mathcal{F} an open cover of Ω . Then there exists a partition of unity $(\xi_V)_{V \in \mathcal{F}}$ of Ω strictly subordinate to \mathcal{F} , i.e. such that for all $V \in \mathcal{F}$, spt $\xi_V \subset V$.

November 25, 2019

Existence of partitions of unity on open sets of \mathbb{R}^n

Theorem (6.8)

Let $\Omega \subset \mathbb{R}^n$ open and $(U_{\alpha})_{\alpha \in A}$ a locally finite open cover of Ω with $\forall \alpha \in A, U_{\alpha} \Subset \Omega$. Then there exists a smooth partition of unity $(\xi_{\alpha})_{\alpha \in A}$ of Ω such that, $\forall \alpha \in A$, spt $\xi_{\alpha} \Subset U_{\alpha}$.

Corollary

Let $\Omega \subset \mathbb{R}^n$ be open and \mathfrak{F} an open cover of Ω . Then there exists a partition of unity $(\xi_V)_{V \in \mathfrak{F}}$ of Ω strictly subordinate to \mathfrak{F} , i.e. such that for all $V \in \mathfrak{F}$, spt $\xi_V \subset V$.

November 25, 2019

3

Gaus-Green theorem for Lipschitz domains

Theorem (7.16)

Let $n \ge 2$ and $\Omega \subset \mathbb{R}^n$ be a Lipschitz domain. Then Ω is a set of locally finite perimeter in \mathbb{R}^n and $|\mu_{\Omega}| = \mathcal{H}^{n-1} \sqcup \partial \Omega$.

< 口 > < 同 > < 回 > < 回 > < 回 > <

November 25, 2019
Gaus-Green theorem for Lipschitz domains

Lemma (7.15)

Let $n \ge 2$, $f : \mathbb{R}^{n-1} \to \mathbb{R}$ Lipschitz, U' an open subset of \mathbb{R}^n , $E' := U' \cap epi_S f$ and $\nu' : \partial epi_S f \to \mathbb{R}^n$ the unit outer normal to $\partial epi_S f$. Let $\Phi \in SE(n)$ be a rigid motion, $U := \Phi(U')$, $E := \Phi(E')$ and $\nu := \Phi_*\nu'$, i.e. $\nu : \partial \Phi(epi_S f) \to \mathbb{R}^n$ is given by $x \mapsto D\Phi(\Phi^{-1}(x)) \cdot \nu'(\Phi^{-1}(x))$. Then:

- ② *E* is a set of locally finite perimeter in U, $|\mu_E| = \mathcal{H}^{n-1} \sqcup \partial^U E$ and its exterior normal is given by $\nu_E = \nu|_{\partial^U E}$.

November 25, 2019

Gaus-Green theorem for Lipschitz domains

Figure: Gauss-Green measure of a Lipschitz Domain

Gaus-Green theorem for Lipschitz domains

Corollary

Let $n \ge 2$ and $\Omega \subset \mathbb{R}^n$ be a Lipschitz domain. Then $\mathfrak{H}^{n-1} \sqcup \partial \Omega$ is a Radon measure.

Remark (outer normal to a Lipschitz domain)

With the notation from the proof of the previous theorem, for each $i \ge 1$, the exterior normal to Ω coincides $\mathcal{H}^{n-1} \sqcup \partial \Omega$ -a.e. with ν_i on $\partial \Omega \cap U_i = \partial^{U_i} \Omega$. In particular, if $\partial \Omega$ is a C¹ hypersurface on a neighborhood of $p \in \partial \Omega$, we may choose ν_{Ω} on this neighborhood as the usual outer unit normal from Differential Geometry.

イロト 不得 トイヨト イヨト

November 25, 2019

Exercises

Exercise (Complements of sets of locally finite perimeter)

Let Ω be an open subset of \mathbb{R}^n and $E \subset \Omega$ be a set of locally finite perimeter in Ω . Then $\Omega \setminus E$ has locally finite perimeter in Ω and

 $\mu_{\Omega \setminus E} = -\mu_E.$

Exercise (Sets of finite perimeter under scaling and translation)

Let *E* be a set of locally finite perimeter in \mathbb{R}^n , $x \in \mathbb{R}^n$ and $\lambda > 0$. Then $x + \lambda E$ is a set of locally finite perimeter in \mathbb{R}^n and

$$\mu_{\mathbf{x}+\lambda \mathbf{E}} = \Phi_{\#} \mu_{\mathbf{E}},$$

where $\Phi : \mathbb{R}^n \to \mathbb{R}^n$ is given by $y \mapsto x + \lambda y$. In particular, if E has finite perimeter, so does $x + \lambda E$ and $P(x + \lambda E, \mathbb{R}^n) = \lambda^{n-1} P(E, \mathbb{R}^n)$.

Standard mollifier in \mathbb{R}^n

Definition (1.112)

Let $\phi : \mathbb{R}^n \to \mathbb{R}$ be the smooth function given by

$$\phi(x) := \begin{cases} c \exp(\frac{1}{\|x\|^2 - 1}) & \text{if } \|x\| < 1\\ 0 & \text{if } \|x\| \ge 1, \end{cases}$$

where *c* is chosen so that $\int_{\mathbb{R}^n} \phi(x) dx = 1$. The family $(\phi_t)_{>0}$ in $C_c^{\infty}(\mathbb{R}^n)$ defined by we define $\phi_t : \mathbb{R}^n \to \mathbb{C}$ by

$$\phi_t(x) := t^{-n} \phi(t^{-1}x).$$
 (6)

is called *standard mollifier* in \mathbb{R}^n .

Note that spt $\phi = \mathbb{B}(0, 1)$, so that $\forall t > 0$, spt $\phi_t = \mathbb{B}(0, t)$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Approximation by mollifiers on \mathbb{R}^n

Theorem (1.111)

- Let $\phi \in L^1(\mathcal{L}^n)$ with $\int \phi \, d\mathcal{L}^n = a$ and $f : \mathbb{R}^n \to \mathbb{C}$.
 - i) If $1 \le p < \infty$ and $f \in L^p(\mathcal{L}^n)$, then $\phi_t * f \stackrel{t \to 0}{\rightarrow}$ af in $L^p(\mathcal{L}^n)$.
 - ii) If f is uniformly continuous and either (1) f is bounded or (2) spt φ is compact, then φ_t ∗ f ^{t→0}→ af uniformly in ℝⁿ.
- iii) If f is continuous on an open set $U \subset \mathbb{R}^n$ and either (1) $f \in L^{\infty}(\mathcal{L}^n)$ or (2) $f \in L^{\infty}_{loc}(\mathcal{L}^n)$ and spt ϕ is compact, then $\phi_t * f \xrightarrow{t \to 0} af$ uniformly on compact subsets of U.

Definition (6.17)

For each t > 0, let

 $\Omega_t := \{ x \in \mathbb{R}^n \mid \mathbb{B}(x,t) \subset \Omega \} = \{ x \in \mathbb{R}^n \mid d(x,\Omega^c) > t \},\$

so that $(\Omega_t)_{t>0}$ is a family of open subsets of Ω which increases to Ω as $t \downarrow 0$.

Let $(\phi_t)_{t>0}$ be the standard mollifier in \mathbb{R}^n . For each t > 0 and $f \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$, we define $f_t : \Omega_t \to \mathbb{R}$ by, $\forall x \in \Omega_t$,

$$f_t(x) := (\phi_t * f)(x) = \int_{\mathbb{B}(x,t)} f(y) \phi_t(x-y) \, \mathrm{d}\mathcal{L}^n(y).$$

We call f_t the *t*-approximation or *t*-regularization of *f*.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Definition (6.17)

For each t > 0, let

$$\Omega_t := \{ x \in \mathbb{R}^n \mid \mathbb{B}(x,t) \subset \Omega \} = \{ x \in \mathbb{R}^n \mid d(x,\Omega^c) > t \},\$$

so that $(\Omega_t)_{t>0}$ is a family of open subsets of Ω which increases to Ω as $t \downarrow 0$.

Let $(\phi_t)_{t>0}$ be the standard mollifier in \mathbb{R}^n . For each t > 0 and $f \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$, we define $f_t : \Omega_t \to \mathbb{R}$ by, $\forall x \in \Omega_t$,

$$f_t(x) := (\phi_t * f)(x) = \int_{\mathbb{B}(x,t)} f(y) \phi_t(x-y) \, \mathrm{d}\mathcal{L}^n(y).$$

We call f_t the *t*-approximation or *t*-regularization of *f*.

Gláucio Terra (IME - USP)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

November 25, 2019

3

Remark

- $f_t(x)$ is well-defined since, for $x \in \Omega_t$, $\mathbb{B}(x, t) \subset \Omega$;
- **2** if $\Omega = \mathbb{R}^n$, then $\Omega_t = \mathbb{R}^n$ for all t > 0.

November 25, 2019

3

Definition (convergence in the sense of L_{loc}^{p} and $W_{loc}^{1,p}$; 6.18)

Let $1 \leq p \leq \infty$, $f : \Omega \to \mathbb{R} \mathcal{L}^n$ -measurable and, for each $k \in \mathbb{N}$, let $f_k : \text{dom } f_k \subset \Omega \to \mathbb{R}$ be \mathcal{L}^n -measurable.

- We say that (f_k)_{k∈ℕ} converges to f in the sense of L^p_{loc}(Lⁿ|_Ω) (notation: "f_k → f in L^p_{loc}(Lⁿ|_Ω)") if, for all open V ∈ Ω, there exists k₀ ∈ ℕ (possibly depending on V) such that ∀k ≥ k₀, V ⊂ dom f_k and ||f_k − f||_{L^p(Lⁿ|_V)} → 0.
- If $\forall k \in \mathbb{N}$, dom f_k is open, f and f_k belong to L^1_{loc} on their domains and admit weak partial derivatives of first order, we say that $(f_k)_{k \in \mathbb{N}}$ converges to f in the sense of $W^{1,p}_{loc}(\Omega)$ (notation: " $f_k \to f$ in $W^{1,p}_{loc}(\Omega)$ ") if, for all open $V \Subset \Omega$, there exists $k_0 \in \mathbb{N}$ (possibly depending on V) such that $\forall k \ge k_0$, $V \subset \text{dom } f_k$ and $\|f_k - f\|_{W^{1,p}(V)} \to 0$.

Definition (convergence in the sense of L_{loc}^{p} and $W_{loc}^{1,p}$; 6.18)

Let $1 \leq p \leq \infty$, $f : \Omega \to \mathbb{R} \mathcal{L}^n$ -measurable and, for each $k \in \mathbb{N}$, let $f_k : \text{dom } f_k \subset \Omega \to \mathbb{R}$ be \mathcal{L}^n -measurable.

- We say that (f_k)_{k∈ℕ} converges to f in the sense of L^p_{loc}(Lⁿ|_Ω) (notation: "f_k → f in L^p_{loc}(Lⁿ|_Ω)") if, for all open V ∈ Ω, there exists k₀ ∈ ℕ (possibly depending on V) such that ∀k ≥ k₀, V ⊂ dom f_k and ||f_k − f||_{L^p(Lⁿ|_V)} → 0.
- If ∀k ∈ N, dom f_k is open, f and f_k belong to L¹_{loc} on their domains and admit weak partial derivatives of first order, we say that (f_k)_{k∈N} converges to f in the sense of W^{1,p}_{loc}(Ω) (notation: "f_k → f in W^{1,p}_{loc}(Ω)") if, for all open V ∈ Ω, there exists k₀ ∈ N (possibly depending on V) such that ∀k ≥ k₀, V ⊂ dom f_k and ||f_k − f||_{W^{1,p}(V)} → 0.

- We make similar definitions of convergence in the sense of L^p_{loc} or in the sense of W^{1,p}_{loc} for a family (*f_e*)_{*e*>0} in place of (*f_k*)_{*k*∈ℕ}.
- ② What we have in mind is the family $(f_t)_{t>0}$ of the regularized functions of some *f* ∈ L¹_{loc}($\mathcal{L}^n|_{\Omega}$), cf. definition 26.
- Solution 3 Sequence (*f_k*)_{k∈ℕ} in L^p_{loc}(*Lⁿ*|_Ω) and *f* ∈ L^p_{loc}(*Lⁿ*|_Ω), the convergence defined above coincides with the convergence in the natural topology of L^p_{loc}(*Lⁿ*|_Ω), which is a Fréchet space topology induced by the family of seminorms {||·||_{L^p(Lⁿ|_V)} | *V* ∈ Ω open}.
- Similarly, for a sequence $(f_k)_{k \in \mathbb{N}}$ in W^{1,p}_{loc}(Ω) and $f \in W^{1,p}_{loc}(\Omega)$, the convergence defined above coincides with the convergence in the natural topology of W^{1,p}_{loc}(Ω), which is a Fréchet space topology induced by the family of seminorms { $\|\cdot\|_{W^{1,p}(V)} | V \subseteq \Omega$ open}.

- We make similar definitions of convergence in the sense of L^p_{loc} or in the sense of W^{1,p}_{loc} for a family (*f_e*)_{*e*>0} in place of (*f_k*)_{*k*∈ℕ}.
- ② What we have in mind is the family $(f_t)_{t>0}$ of the regularized functions of some *f* ∈ L¹_{loc}($\mathcal{L}^n|_{\Omega}$), cf. definition 26.
- Solution Sequence (*f_k*)_{k∈ℕ} in L^p_{loc}(*Lⁿ*|_Ω) and *f* ∈ L^p_{loc}(*Lⁿ*|_Ω), the convergence defined above coincides with the convergence in the natural topology of L^p_{loc}(*Lⁿ*|_Ω), which is a Fréchet space topology induced by the family of seminorms {||·||_{L^p(Lⁿ|_V)} | *V* ∈ Ω open}.
- Similarly, for a sequence $(f_k)_{k \in \mathbb{N}}$ in W^{1,p}_{loc}(Ω) and $f \in W^{1,p}_{loc}(\Omega)$, the convergence defined above coincides with the convergence in the natural topology of W^{1,p}_{loc}(Ω), which is a Fréchet space topology induced by the family of seminorms { $\|\cdot\|_{W^{1,p}(V)} | V \Subset \Omega$ open}.

- We make similar definitions of convergence in the sense of L^p_{loc} or in the sense of W^{1,p}_{loc} for a family (*f_e*)_{*e*>0} in place of (*f_k*)_{*k*∈ℕ}.
- ② What we have in mind is the family $(f_t)_{t>0}$ of the regularized functions of some $f \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$, cf. definition 26.
- So For a sequence $(f_k)_{k ∈ ℕ}$ in L^p_{loc}($\mathcal{L}^n|_{\Omega}$) and $f ∈ L^p_{loc}(\mathcal{L}^n|_{\Omega})$, the convergence defined above coincides with the convergence in the natural topology of L^p_{loc}($\mathcal{L}^n|_{\Omega}$), which is a Fréchet space topology induced by the family of seminorms { $||·||_{L^p(\mathcal{L}^n|_V)}| V ∈ Ω$ open}.
- Similarly, for a sequence $(f_k)_{k \in \mathbb{N}}$ in W^{1,p}_{loc}(Ω) and $f \in W^{1,p}_{loc}(\Omega)$, the convergence defined above coincides with the convergence in the natural topology of W^{1,p}_{loc}(Ω), which is a Fréchet space topology induced by the family of seminorms { $\|\cdot\|_{W^{1,p}(V)} | V \Subset \Omega$ open}.

- We make similar definitions of convergence in the sense of L^p_{loc} or in the sense of W^{1,p}_{loc} for a family (*f_e*)_{*e*>0} in place of (*f_k*)_{*k*∈ℕ}.
- ② What we have in mind is the family $(f_t)_{t>0}$ of the regularized functions of some *f* ∈ L¹_{loc}($\mathcal{L}^n|_{\Omega}$), cf. definition 26.
- So For a sequence $(f_k)_{k ∈ ℕ}$ in L^p_{loc}($\mathcal{L}^n|_{\Omega}$) and $f ∈ L^p_{loc}(\mathcal{L}^n|_{\Omega})$, the convergence defined above coincides with the convergence in the natural topology of L^p_{loc}($\mathcal{L}^n|_{\Omega}$), which is a Fréchet space topology induced by the family of seminorms { $||·||_{L^p(\mathcal{L}^n|_V)}| V ∈ Ω$ open}.
- Similarly, for a sequence $(f_k)_{k \in \mathbb{N}}$ in $W^{1,p}_{loc}(\Omega)$ and $f \in W^{1,p}_{loc}(\Omega)$, the convergence defined above coincides with the convergence in the natural topology of $W^{1,p}_{loc}(\Omega)$, which is a Fréchet space topology induced by the family of seminorms $\{ \| \cdot \|_{W^{1,p}(V)} \mid V \Subset \Omega \text{ open} \}$.

Theorem (mollifiers, part II)

Let $f \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$, $(\phi_{\epsilon})_{\epsilon>0}$ the standard mollifier and $f_{\epsilon} = \phi_{\epsilon} * f : \Omega_{\epsilon} \to \mathbb{R}$ the ϵ -approximation of f, cf. definition 24. i) $\forall \epsilon > 0$, $f_{\epsilon} \in \mathbb{C}^{\infty}(\Omega_{\epsilon})$.

- ii) $\forall \epsilon > 0, \forall \varphi \in C^0_c(\Omega_\epsilon), \int f_\epsilon \varphi \, d\mathcal{L}^n = \int f \varphi_\epsilon \, d\mathcal{L}^n.$
- iii) $\lim_{\epsilon \to 0} f_{\epsilon}(x) = f(x)$ if $x \in \Omega$ is a Lebesgue point of f; in particular, $f_{\epsilon} \to f \mathcal{L}^n$ -a.e. on Ω .
- iv) If $f \in C(\Omega)$, $f_{\epsilon} \to f$ uniformly on compact subsets of Ω .
- v) If $f \in L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$ for some $1 \leq p < \infty$, then $f_{\epsilon} \to f$ in the sense of $L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$.
- vi) If $f \in W^{1,p}_{loc}(\Omega)$ for some $1 \le p \le \infty$, then $\forall \epsilon > 0, \forall 1 \le i \le n$,

$$\frac{\partial f_{\epsilon}}{\partial x_{i}} = \phi_{\epsilon} * \frac{\partial^{\mathsf{w}} f}{\partial x_{i}} = \left(\frac{\partial^{\mathsf{w}} f}{\partial x_{i}}\right)$$

Theorem (mollifiers, part II)

Let $f \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$, $(\phi_{\epsilon})_{\epsilon>0}$ the standard mollifier and $f_{\epsilon} = \phi_{\epsilon} * f : \Omega_{\epsilon} \to \mathbb{R}$ the ϵ -approximation of f, cf. definition 24.

- i) $\forall \epsilon > 0, f_{\epsilon} \in C^{\infty}(\Omega_{\epsilon}).$
- ii) $\forall \epsilon > 0, \forall \varphi \in \mathsf{C}^{\mathsf{0}}_{\mathsf{c}}(\Omega_{\epsilon}), \int f_{\epsilon} \varphi \, \mathrm{d}\mathcal{L}^{n} = \int f \varphi_{\epsilon} \, \mathrm{d}\mathcal{L}^{n}.$
- iii) $\lim_{\epsilon \to 0} f_{\epsilon}(x) = f(x)$ if $x \in \Omega$ is a Lebesgue point of f; in particular, $f_{\epsilon} \to f \mathcal{L}^n$ -a.e. on Ω .
- iv) If $f \in C(\Omega)$, $f_{\epsilon} \to f$ uniformly on compact subsets of Ω .
- v) If $f \in L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$ for some $1 \leq p < \infty$, then $f_{\epsilon} \to f$ in the sense of $L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$.
- vi) If $f \in W_{loc}^{1,p}(\Omega)$ for some $1 \le p \le \infty$, then $\forall \epsilon > 0, \forall 1 \le i \le n$,

$$\frac{\partial f_{\epsilon}}{\partial x_{i}} = \phi_{\epsilon} * \frac{\partial^{\mathsf{w}} f}{\partial x_{i}} = \left(\frac{\partial^{\mathsf{w}} f}{\partial x_{i}}\right)$$

Theorem (mollifiers, part II)

Let f ∈ L¹_{loc}(Lⁿ|_Ω), (φ_ε)_{ε>0} the standard mollifier and f_ε = φ_ε * f : Ω_ε → ℝ the ε-approximation of f, cf. definition 24.
i) ∀ε > 0, f_ε ∈ C[∞](Ω_ε).
ii) ∀ε > 0, ∀φ ∈ C⁰_c(Ω_ε), ∫ f_εφ dLⁿ = ∫ fφ_ε dLⁿ.
iii) lim_{ε→0} f_ε(x) = f(x) if x ∈ Ω is a Lebesgue point of f; in particular, f_ε → f Lⁿ-a.e. on Ω.

iv) If $f \in C(\Omega)$, $f_{\epsilon} \to f$ uniformly on compact subsets of Ω .

- v) If $f \in L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$ for some $1 \leq p < \infty$, then $f_{\epsilon} \to f$ in the sense of $L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$.
- vi) If $f \in W_{loc}^{1,p}(\Omega)$ for some $1 \le p \le \infty$, then $\forall \epsilon > 0, \forall 1 \le i \le n$,

$$\frac{\partial f_{\epsilon}}{\partial x_{i}} = \phi_{\epsilon} * \frac{\partial^{\mathsf{w}} f}{\partial x_{i}} = \left(\frac{\partial^{\mathsf{w}} f}{\partial x_{i}}\right)$$

Theorem (mollifiers, part II)

Let $f \in L^{1}_{loc}(\mathcal{L}^{n}|_{\Omega})$, $(\phi_{\epsilon})_{\epsilon>0}$ the standard mollifier and $f_{\epsilon} = \phi_{\epsilon} * f : \Omega_{\epsilon} \to \mathbb{R}$ the ϵ -approximation of f, cf. definition 24. i) $\forall \epsilon > 0$, $f_{\epsilon} \in \mathbb{C}^{\infty}(\Omega_{\epsilon})$. ii) $\forall \epsilon > 0$, $\forall \varphi \in \mathbb{C}^{0}_{c}(\Omega_{\epsilon})$, $\int f_{\epsilon}\varphi \, \mathrm{d}\mathcal{L}^{n} = \int f\varphi_{\epsilon} \, \mathrm{d}\mathcal{L}^{n}$.

- iii) $\lim_{\epsilon \to 0} f_{\epsilon}(x) = f(x)$ if $x \in \Omega$ is a Lebesgue point of f; in particular, $f_{\epsilon} \to f \mathcal{L}^n$ -a.e. on Ω .
- iv) If $f \in C(\Omega)$, $f_{\epsilon} \to f$ uniformly on compact subsets of Ω .
- v) If $f \in L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$ for some $1 \leq p < \infty$, then $f_{\epsilon} \to f$ in the sense of $L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$.
- vi) If $f \in W^{1,p}_{loc}(\Omega)$ for some $1 \le p \le \infty$, then $\forall \epsilon > 0, \forall 1 \le i \le n$,

$$\frac{\partial f_{\epsilon}}{\partial x_{i}} = \phi_{\epsilon} * \frac{\partial^{\mathsf{w}} f}{\partial x_{i}} = \left(\frac{\partial^{\mathsf{w}} f}{\partial x_{i}}\right)$$

Theorem (mollifiers, part II)

Let f ∈ L¹_{loc}(Lⁿ|_Ω), (φ_ε)_{ε>0} the standard mollifier and f_ε = φ_ε * f : Ω_ε → ℝ the ε-approximation of f, cf. definition 24.
i) ∀ε > 0, f_ε ∈ C[∞](Ω_ε).
ii) ∀ε > 0, ∀φ ∈ C⁰_c(Ω_ε), ∫ f_εφ dLⁿ = ∫ fφ_ε dLⁿ.
iii) lim_{ε→0} f_ε(x) = f(x) if x ∈ Ω is a Lebesgue point of f; in particular, f_ε → f Lⁿ-a.e. on Ω.

- iv) If $f \in C(\Omega)$, $f_{\epsilon} \to f$ uniformly on compact subsets of Ω .
- v) If $f \in L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$ for some $1 \leq p < \infty$, then $f_{\epsilon} \to f$ in the sense of $L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$.
- vi) If $f \in W_{loc}^{1,p}(\Omega)$ for some $1 \le p \le \infty$, then $\forall \epsilon > 0, \forall 1 \le i \le n$,

$$\frac{\partial f_{\epsilon}}{\partial x_{i}} = \phi_{\epsilon} * \frac{\partial^{\mathsf{w}} f}{\partial x_{i}} = \left(\frac{\partial^{\mathsf{w}} f}{\partial x_{i}}\right)$$

Theorem (mollifiers, part II)

Let f ∈ L¹_{loc}(Lⁿ|_Ω), (φ_ε)_{ε>0} the standard mollifier and f_ε = φ_ε * f : Ω_ε → ℝ the ε-approximation of f, cf. definition 24.
i) ∀ε > 0, f_ε ∈ C[∞](Ω_ε).
ii) ∀ε > 0, ∀φ ∈ C⁰_c(Ω_ε), ∫ f_εφ dLⁿ = ∫ fφ_ε dLⁿ.
iii) lim_{ε→0} f_ε(x) = f(x) if x ∈ Ω is a Lebesgue point of f; in particular, f_ε → f Lⁿ-a.e. on Ω.

- iv) If $f \in C(\Omega)$, $f_{\epsilon} \to f$ uniformly on compact subsets of Ω .
- v) If $f \in L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$ for some $1 \leq p < \infty$, then $f_{\epsilon} \to f$ in the sense of $L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$.
- vi) If $f \in W^{1,p}_{loc}(\Omega)$ for some $1 \le p \le \infty$, then $\forall \epsilon > 0, \forall 1 \le i \le n$,

$$\frac{\partial f_{\epsilon}}{\partial x_{i}} = \phi_{\epsilon} * \frac{\partial^{\mathsf{w}} f}{\partial x_{i}} = \left(\frac{\partial^{\mathsf{w}} f}{\partial x_{i}}\right)$$

Corollary (6.21)

Let $1 \le p < \infty$, $(\phi_t)_{t>0}$ the standard mollifier and $f \in W^{1,p}(\mathbb{R}^n)$. Then:

- i) $\forall \epsilon > 0$, $f_{\epsilon} = \phi_{\epsilon} * f \in C^{\infty}(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n)$ and $f_{\epsilon} \to f$ in $W^{1,p}(\mathbb{R}^n)$ as $\epsilon \to 0$.
- ii) There exists a sequence $(f_k)_{k \in \mathbb{N}}$ in $C^{\infty}_{c}(\mathbb{R}^n)$ such that $f_k \to f$ in $W^{1,p}(\mathbb{R}^n)$.

November 25, 2019

Proposition (7.19)

Let $(\phi_t)_{t>0}$ be the standard mollifier on \mathbb{R}^m . Then, for each $\epsilon > 0$, the convolution with ϕ_{ϵ} defines a continuous linear map $\phi_{\epsilon} * : C_c(\mathbb{R}^m, \mathbb{R}^n) \to C_c(\mathbb{R}^m, \mathbb{R}^n)$.

Remark

Similarly, given an open subset $\Omega \subset \mathbb{R}^m$, the convolution with ϕ_{ϵ} defines a continuous linear map $\phi_{\epsilon} * : C_c(\Omega_{\epsilon}, \mathbb{R}^n) \to C_c(\Omega, \mathbb{R}^n)$. It then follows that $(\phi_{\epsilon} *)^t : \mathcal{M}_{loc}(\Omega, \mathbb{R}^n) \to \mathcal{M}_{loc}(\Omega_{\epsilon}, \mathbb{R}^n)$ is a well defined linear map. We shall omit the "t" in the notation of this transpose, i.e. we denote it with the same notation " $\phi_{\epsilon} *$ ".

3

イロト 不得 トイヨト イヨト

Definition (7.20)

Let Ω be an open subset of \mathbb{R}^m , $\mu \in \mathcal{M}_{\mathsf{loc}}(\Omega, \mathbb{R}^n)$ and $(\phi_t)_{t>0}$ the standard mollifier on \mathbb{R}^m . We define the *t*-approximation or *t*-regularization of μ by $\mu_t := \phi_t * \mu \in \mathcal{M}_{\mathsf{loc}}(\Omega_t, \mathbb{R}^n)$.

Remark (7.21)

The definition above extends definition 24 for $L^{1}_{loc}(\mathcal{L}^{n}|_{\Omega}, \mathbb{R}^{n})$. That is, considering the embedding $L^{1}_{loc}(\mathcal{L}^{n}|_{\Omega}, \mathbb{R}^{n}) \subset \mathcal{M}_{loc}(\Omega, \mathbb{R}^{n})$ given by $f \mapsto \mathcal{L}^{n}|_{\Omega} \sqcup f$, we have

$$(\mathcal{L}^n|_{\Omega} \sqsubseteq f)_{\epsilon} = \mathcal{L}^n|_{\Omega} \sqsubseteq (f_{\epsilon}) \in \mathcal{M}_{\mathsf{loc}}(\Omega_{\epsilon}, \mathbb{R}).$$

< 日 > < 同 > < 回 > < 回 > < □ > <

Proposition (7.22)

With the notation from the previous definition, let $\Omega \subset \mathbb{R}^m$ open and $\mu \in \mathcal{M}_{\mathsf{loc}}(\Omega, \mathbb{R}^n)$. Define $\mu^{\epsilon} : \Omega_{\epsilon} \to \mathbb{R}^n$ by

$$\mu^{\epsilon}(\mathbf{x}) := \int_{\Omega} \phi_{\epsilon}(\mathbf{x} - \mathbf{y}) \,\mathrm{d}\mu(\mathbf{y}).$$

Then $\mu^{\epsilon} \in \mathsf{C}^{\infty}(\Omega_{\epsilon}, \mathbb{R}^{n})$ and

$$\mu_{\epsilon} = \mathcal{L}^{n}|_{\Omega_{\epsilon}} \ \sqsubseteq \mu^{\epsilon}.$$

In particular, $\mu_{\epsilon} \ll \mathcal{L}^{n}|_{\Omega_{\epsilon}}$ and $|\mu_{\epsilon}| \leq |\mu|_{\epsilon}$.

E N 4 E N

November 25, 2019

Theorem (Weak-star convergence of regularized Radon measures; 7.23)

Let Ω be an open subset of \mathbb{R}^m and $\mu \in \mathcal{M}_{\mathsf{loc}}(\Omega, \mathbb{R}^n)$. Then, as $\epsilon \downarrow 0$,

$$\mu_{\epsilon} \stackrel{*}{\rightharpoonup} \mu \text{ and } |\mu_{\epsilon}| \stackrel{*}{\rightharpoonup} |\mu|,$$

in the sense that, for all $\varphi \in C_c(\Omega, \mathbb{R}^n)$, $\mu_{\epsilon} \cdot \varphi \to \mu \cdot \varphi$ and similarly for the total variations. Moreover, for all $\epsilon > 0$ and $E \in \mathscr{B}_{\Omega_{\epsilon}}$,

$$|\mu_{\epsilon}|(E) \leq |\mu|(E_{\epsilon}),$$

where $E_{\epsilon} := E + \mathbb{U}(0, \epsilon)$ is the ϵ -neighborhood of E.

< 日 > < 同 > < 回 > < 回 > < □ > <

November 25, 2019

Proposition (regularization of BV functions; 7.24)

Let Ω be an open subset of \mathbb{R}^n , $f \in BV_{loc}(\Omega)$, $(\phi_{\epsilon})_{\epsilon>0}$ the standard mollifier on \mathbb{R}^n , $f_{\epsilon} := \phi_{\epsilon} * f \in C^{\infty}(\Omega_{\epsilon})$ and $(\nabla^w f)_{\epsilon} := \phi_{\epsilon} * \nabla^w f \in \mathcal{M}_{loc}(\Omega_{\epsilon}, \mathbb{R}^n)$. Then: i) $(\nabla^w f)_{\epsilon} = \mathcal{L}^n|_{\Omega_{\epsilon}} \sqcup \nabla(f_{\epsilon})$. ii) $f_{\epsilon} \to f$ in the sense of $L^1_{loc}(\Omega)$. iii) For each open $V \Subset \Omega$, $(\mathcal{L}^n|_{\Omega_{\epsilon}} \sqcup \nabla(f_{\epsilon}))|_V \stackrel{*t}{\longrightarrow} (\nabla^w f)|_V$ and $(\mathcal{L}^n|_{\Omega_{\epsilon}} \sqcup ||\nabla(f_{\epsilon})||)|_V \stackrel{*t}{\longrightarrow} ||\nabla^w f||_V$

as ϵ ↓ 0.

November 25, 2019

Proposition (7.25)

Let Ω be an open subset of \mathbb{R}^n and $(f_k)_{k \in \mathbb{N}}$ a sequence in $BV_{loc}(\Omega)$.

- i) If $f \in \mathsf{BV}_{\mathsf{loc}}(\Omega)$ and $f_k \to f$ in $\mathsf{L}^1_{\mathsf{loc}}(\mathcal{L}^n|_{\Omega})$, then $\nabla^{\mathsf{w}} f_k \stackrel{*}{\rightharpoonup} \nabla^{\mathsf{w}} f$.
- ii) If $f \in L^{1}_{loc}(\mathcal{L}^{n}|_{\Omega})$, $f_{k} \to f$ in $L^{1}_{loc}(\mathcal{L}^{n}|_{\Omega})$ and there exists $\mu \in \mathcal{M}_{loc}(\Omega, \mathbb{R}^{n})$ such that $\nabla^{w} f_{k} \stackrel{*}{\rightharpoonup} \mu$, then $f \in \mathsf{BV}_{loc}(\Omega)$ and $\nabla^{w} f = \mu$.

Proposition (Product rule for BV; 7.27)

Let Ω be an open subset of \mathbb{R}^n , $f \in \mathsf{BV}_{\mathsf{loc}}(\Omega)$ and $g : \Omega \to \mathbb{R}$ locally Lipschitz. Then $fg \in \mathsf{BV}_{\mathsf{loc}}(\Omega)$ and $\nabla^{\mathsf{w}}(fg) = \nabla^{\mathsf{w}} f \bigsqcup g + \mathcal{L}^n \bigsqcup f \nabla^{\mathsf{w}} g$.

Variation of a function in L¹_{loc}

Definition (7.28)

Let $\Omega \subset \mathbb{R}^n$ open and $f \in L^1_{loc}(\Omega)$. We define, for each open $V \subset \Omega$,

$$\operatorname{Var}(f,V):=\sup\{\int f\operatorname{div}\, arphi \operatorname{d}\! \mathcal{L}^n\mid arphi\in \operatorname{C}^\infty_\operatorname{c}(V,\mathbb{R}^n), \|arphi\|_u\leq 1\}.$$

Exercise (variation of a function in L_{loc}^1 ; 7.29)

Let $\Omega \subset \mathbb{R}^n$ open and $f \in \mathsf{L}^1_\mathsf{loc}(\Omega)$. Define, for each $\mathsf{B} \subset \Omega$,

 $\operatorname{Var}_{f}(B) := \inf \{ \operatorname{Var}(f, U) \mid U \text{ open}, B \subset U \}.$

Then Var_f is a Borel regular measure on U which extends the variation $\operatorname{Var}(f, \cdot)$. Moreover, $f \in \operatorname{BV}_{\operatorname{loc}}(\Omega)$ if, and only if, Var_f is a positive Radon measure on Ω , in which case it coincides with $|\nabla^w f|$.

Gláucio Terra (IME - USP)

Variation of a function in L_{loc}^1

Definition (7.28)

Let $\Omega \subset \mathbb{R}^n$ open and $f \in L^1_{loc}(\Omega)$. We define, for each open $V \subset \Omega$,

$$\operatorname{Var}(f,V):=\sup\{\int f\operatorname{div}\, arphi\,\mathrm{d}\mathcal{L}^n\mid arphi\in \mathsf{C}^\infty_{\mathsf{c}}(V,\mathbb{R}^n), \|arphi\|_u\leq 1\}.$$

Exercise (variation of a function in L_{loc}^1 ; 7.29)

Let $\Omega \subset \mathbb{R}^n$ open and $f \in L^1_{loc}(\Omega)$. Define, for each $B \subset \Omega$,

 $\operatorname{Var}_{f}(B) := \inf \{ \operatorname{Var}(f, U) \mid U \text{ open}, B \subset U \}.$

Then Var_f is a Borel regular measure on U which extends the variation $\operatorname{Var}(f, \cdot)$. Moreover, $f \in \operatorname{BV}_{\operatorname{loc}}(\Omega)$ if, and only if, Var_f is a positive Radon measure on Ω , in which case it coincides with $|\nabla^{\mathsf{w}} f|$. We call Var_f the variation measure of f.

Gláucio Terra (IME - USP)

Lower semicontinuity of the variation

Proposition (7.30)

Let $\Omega \subset \mathbb{R}^n$ open, $(f_i)_{i \in \mathbb{N}}$ a sequence in $L^1_{loc}(\mathcal{L}^n|_{\Omega})$ and $f \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ such that $f_i \to f$ in $L^1_{loc}(\mathcal{L}^n|_{\Omega})$. Then, for all $V \subset \Omega$ open,

 $\operatorname{Var}(f, V) \leq \liminf \operatorname{Var}(f_i, V).$

In particular, if $f_i \in \mathsf{BV}_{\mathsf{loc}}(\Omega)$ for all $i \in \mathbb{N}$ and the second member of the equality above is finite for each open $V \Subset \Omega$, then $f \in \mathsf{BV}_{\mathsf{loc}}(\Omega)$.

November 25, 2019

Approximation of Sobolev functions by smooth functions

Theorem (Meyers-Serrin's theorem; 6.24)

Let $1 \leq p < \infty$, $\Omega \subset \mathbb{R}^n$ open and $u \in W^{1,p}(\Omega)$. There exists a sequence $(u_k)_{k \in \mathbb{N}}$ in $C^{\infty}(\Omega) \cap W^{1,p}(\Omega)$ such that $u_k \to u$ in $W^{1,p}(\Omega)$.

November 25, 2019

Approximation of Sobolev functions by smooth functions

Theorem (6.34)

Let $\Omega \subset \mathbb{R}^n$ be a Lipschitz domain. If $1 \leq p < \infty$ and $f \in W^{1,p}(\Omega)$, there exists $(f_k)_{k \in \mathbb{N}}$ in $W^{1,p}(\Omega) \cap C^{\infty}(\overline{\Omega})$ such that $f_k \to f$ in $W^{1,p}(\Omega)$. Moreover, if $f \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$, the sequence $(f_k)_{k \in \mathbb{N}}$ may be chosen so that it also converges to f uniformly on $\overline{\Omega}$.

Corollary (6.43)

Let $\Omega \subset \mathbb{R}^n$ be a Lipschitz domain. If $1 \leq p < \infty$ and $f \in W^{1,p}(\Omega)$, there exists $(f_k)_{k \in \mathbb{N}}$ in $C_c^{\infty}(\mathbb{R}^n)$ such that $f_k|_{\Omega} \to f$ in $W^{1,p}(\Omega)$. Moreover, if $f \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$, the sequence $(f_k)_{k \in \mathbb{N}}$ may be chosen so that it also converges to f uniformly on compact subsets of $\overline{\Omega}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

Approximation of BV functions by smooth functions

Theorem (7.33; Almgren)

Let Ω be an open subset of \mathbb{R}^n and $f \in BV(\Omega)$. There exists a sequence $(f_i)_{i \in \mathbb{N}} \in BV(\Omega) \cap C^{\infty}(\Omega)$ such that $f_i \to f$ in $L^1(\mathcal{L}^n|_{\Omega})$ and $|\nabla^w f_i|(\Omega) \to |\nabla^w f|(\Omega)$.

Corollary (7.35)

Let $\Omega = \mathbb{R}^n$ or Ω be a Lipschitz domain in \mathbb{R}^n , and $f \in BV(\Omega)$. There exists a sequence $(f_i)_{i \in \mathbb{N}} \in C^{\infty}_{c}(\mathbb{R}^n)$ such that $f_i|_{\Omega} \to f$ in $L^1(\mathcal{L}^n|_{\Omega})$ and $|\nabla^w f_i|(\Omega) \to |\nabla^w f|(\Omega)$.

November 25, 2019

Approximation of BV functions by smooth functions

Remark (7.34)

With the same hypothesis from theorem 38, if $f \in BV(\Omega) \cap L^{\infty}(\mathcal{L}^{n}|_{\Omega})$, there exists a sequence $(f_{i})_{i \in \mathbb{N}} \in BV(\Omega) \cap C^{\infty}(\Omega)$ such that $f_{i} \to f$ in $L^{1}(\mathcal{L}^{n}|_{\Omega}), |\nabla^{w} f_{i}|(\Omega) \to |\nabla^{w} f|(\Omega)$ and, for all $i \in \mathbb{N}$, $\|f_{i}\|_{L^{\infty}(\mathcal{L}^{n}|_{\Omega})} \leq 3\|f\|_{L^{\infty}(\mathcal{L}^{n}|_{\Omega})}$.

< 口 > < 同 > < 回 > < 回 > < 回 > <

November 25, 2019

Product rule for BV, part II

Proposition (Product rule for BV, part II; 7.36)

Let Ω be an open subset of \mathbb{R}^n . If $f, g \in \mathsf{BV}(\Omega) \cap \mathsf{L}^{\infty}(\mathcal{L}^n|_{\Omega})$, then $fg \in \mathsf{BV}(\Omega)$.
Trace theorem for Sobolev functions on Lipschitz domains

Theorem (6.48, 6.51)

Let $n \geq 2$, $\Omega \subset \mathbb{R}^n$ a Lipschitz epigraph or a Lipschitz domain with $\partial \Omega$ bounded, and $1 \leq p < \infty$. Then there exists a unique bounded linear operator $T : W^{1,p}(\Omega) \to L^p(\mathcal{H}^{n-1}|_{\partial\Omega})$ such that, for all $f \in C^1_c(\mathbb{R}^n)$, $T \cdot (f|_{\Omega}) = f|_{\partial\Omega}$.

Moreover, the Gauss-Green formula holds for all $f \in W^{1,1}(\Omega)$, i.e denoting by ν the unit outer normal to $\partial\Omega$,

$$\int_{\Omega} \nabla^{\mathsf{w}} f \, \mathrm{d}\mathcal{L}^n = \int_{\partial\Omega} T \cdot f \, \nu \, \mathrm{d}\mathcal{H}^{n-1},$$

with a similar equality in divergence form.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Trace theorem for Sobolev functions on Lipschitz domains

Theorem (6.48, 6.51)

Let $n \geq 2$, $\Omega \subset \mathbb{R}^n$ a Lipschitz epigraph or a Lipschitz domain with $\partial\Omega$ bounded, and $1 \leq p < \infty$. Then there exists a unique bounded linear operator $T : W^{1,p}(\Omega) \to L^p(\mathcal{H}^{n-1}|_{\partial\Omega})$ such that, for all $f \in C^1_c(\mathbb{R}^n)$, $T \cdot (f|_{\Omega}) = f|_{\partial\Omega}$. Moreover, the Gauss-Green formula holds for all $f \in W^{1,1}(\Omega)$, *i.e.* denoting by ν the unit outer normal to $\partial\Omega$.

$$\int_{\Omega} \nabla^{\mathsf{w}} f \, \mathrm{d}\mathcal{L}^n = \int_{\partial \Omega} T \cdot f \, \nu \, \mathrm{d}\mathcal{H}^{n-1},$$

with a similar equality in divergence form.

< ロ > < 同 > < 回 > < 回 >

Trace theorem for BV functions on Lipschitz domains

Theorem (7.36, 7.40)

Let $n \geq 2$ and $\Omega \subset \mathbb{R}^n$ a Lipschitz epigraph or a Lipschitz domain with $\partial\Omega$ bounded. Then there exists a unique bounded linear operator $T : \mathsf{BV}(\Omega) \to \mathsf{L}^1(\mathfrak{H}^{n-1}|_{\partial\Omega})$ such that, for all $f \in \mathsf{BV}(\Omega)$ and all $\varphi \in \mathsf{C}^1_{\mathsf{c}}(\mathbb{R}^n, \mathbb{R}^n)$,

$$\int_{\Omega} f \operatorname{div} \varphi \, \mathrm{d}\mathcal{L}^{n} = -\int_{\Omega} \varphi \cdot \, \mathrm{d} \, \nabla^{\mathsf{w}} f + \int_{\partial \Omega} T f \, \varphi \cdot \nu \, \mathrm{d}\mathcal{H}^{n-1}, \qquad (7)$$

where ν the unit outer normal to $\partial\Omega$. Moreover, for all $f \in BV(\Omega)$ and for \mathcal{H}^{n-1} -a.e. $x \in \partial\Omega$,

$$\lim_{r\to 0} \oint_{\mathbb{B}(x,r)\cap\Omega} \left| f(y) - Tf(x) \right| d\mathcal{L}^n(y) = 0.$$

< ロ > < 同 > < 回 > < 回 >

Trace theorem for BV functions on Lipschitz domains

Theorem (7.36, 7.40)

Let $n \geq 2$ and $\Omega \subset \mathbb{R}^n$ a Lipschitz epigraph or a Lipschitz domain with $\partial\Omega$ bounded. Then there exists a unique bounded linear operator $T : \mathsf{BV}(\Omega) \to \mathsf{L}^1(\mathcal{H}^{n-1}|_{\partial\Omega})$ such that, for all $f \in \mathsf{BV}(\Omega)$ and all $\varphi \in \mathsf{C}^1_{\mathsf{c}}(\mathbb{R}^n, \mathbb{R}^n)$,

$$\int_{\Omega} f \operatorname{div} \varphi \, \mathrm{d}\mathcal{L}^{n} = -\int_{\Omega} \varphi \cdot \mathrm{d} \nabla^{\mathsf{w}} f + \int_{\partial \Omega} Tf \, \varphi \cdot \nu \, \mathrm{d}\mathcal{H}^{n-1}, \qquad (7)$$

where ν the unit outer normal to $\partial\Omega$. Moreover, for all $f \in BV(\Omega)$ and for \mathcal{H}^{n-1} -a.e. $x \in \partial\Omega$,

$$\lim_{r\to 0} \oint_{\mathbb{B}(x,r)\cap\Omega} |f(y) - Tf(x)| \, \mathrm{d}\mathcal{L}^n(y) = 0.$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(8)

Trace theorem for BV functions on Lipschitz domains

Corollary (7.41)

With the same hypothesis of the previous theorem, if $f \in BV(\Omega) \cap C(\overline{\Omega})$, then $Tf = f|_{\partial\Omega}$.

- A TE N - A TE N

Extension of BV functions on Lipschitz domains

Theorem (7.43)

Let $n \geq 2$ and Ω an open subset of \mathbb{R}^n which is a Lipschitz epigraph or a Lipschitz domain with $\partial\Omega$ bounded. Given $f \in BV(\Omega)$ and $g \in BV(\mathbb{R}^n \setminus \overline{\Omega})$, let F be \mathcal{L}^n -measurable function defined by $F|_{\Omega} = f$ and $F|_{\overline{\Omega}^c} = g$. Then $F \in BV(\mathbb{R}^n)$ and

$$\nabla^{\mathsf{w}} F = i_{\#} \nabla^{\mathsf{w}} f + i_{\#} \nabla^{\mathsf{w}} g - \mathcal{H}^{n-1} \sqcup \partial \Omega \sqcup (Tf - Tg)\nu, \qquad (9)$$

where $i_{\#}\nabla^{w} f$ and $i_{\#}\nabla^{w} g$ are the pushforwards of $\nabla^{w} f \in \mathcal{M}(\Omega, \mathbb{R}^{n})$ and $\nabla^{w} g \in \mathcal{M}(\overline{\Omega}^{c}, \mathbb{R}^{n})$ by the respective inclusions, ν is the unit outer normal of Ω and T denotes both trace operators $\mathsf{BV}(\Omega), \mathsf{BV}(\overline{\Omega}^{c}) \to \mathsf{L}^{1}(\mathcal{H}^{n-1}|_{\partial\Omega}).$

3

Extension of BV functions on Lipschitz domains

Corollary (7.44)

Let $n \ge 2$ and Ω an open subset of \mathbb{R}^n which is a Lipschitz epigraph or a Lipschitz domain with $\partial \Omega$ bounded. The extension by 0 defines a bounded linear operator $\mathsf{BV}(\Omega) \to \mathsf{BV}(\mathbb{R}^n)$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

November 25, 2019

Rellich-Kondrachov

Theorem (6.77)

Let Ω be a bounded Lipschitz domain in \mathbb{R}^n , $1 \le p < n$ and $1 \le q < p^*$, where p^* is the Sobolev conjugate of p. Then

 $W^{1,p}(\Omega) \Subset L^q(\mathcal{L}^n|_{\Omega}),$

i.e. $W^{1,p}(\Omega) \subset L^q(\mathcal{L}^n|_{\Omega})$ with compact inclusion.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

November 25, 2019

Compactness theorem for BV

Theorem (7.46)

Let $\Omega \subset \mathbb{R}^n$ be a bounded Lipschitz domain and $(f_i)_{i \in \mathbb{N}}$ a sequence in BV(Ω) such that

 $\sup\{\|f_i\|_{\mathsf{BV}(\Omega)} \mid i \in \mathbb{N}\} < \infty.$

Then there exists $f \in BV(\Omega)$ and a subsequence $(f_{i_j})_{j \in \mathbb{N}}$ of $(f_i)_i$ such that $f_{i_j} \to f$ in $L^1(\mathcal{L}^n | \Omega)$.

A B F A B F

November 25, 2019

53 / 63

A D M A A A M M

Support of the Gauss-Green measure

Proposition (7.50)

If $E \subset \Omega$ is a set of locally finite perimeter in the open subset Ω of \mathbb{R}^n , then

spt
$$\mu_E = \{x \in \Omega \mid \forall r > 0, 0 < |E \cap \mathbb{U}(x, r)| < \alpha(n)r^n\} \subset \partial^{\Omega}E.$$

Moreover, there exists a Borel set $F \subset \Omega$ in the same L^1_{loc} class of E such that $\mu_F = \partial^{\Omega} F$.

November 25, 2019

Operations with Sets of Finite Perimeter, part I

Proposition (7.51)

Let Ω be an open subset of \mathbb{R}^n . If E, F are sets of (locally) finite perimeter in Ω , then so are $E \cup F$ and $E \cap F$. Moreover,

$|\mu_{E\cup F}| + |\mu_{E\cap F}| \le |\mu_E| + |\mu_F|.$

イロト イポト イラト イラト

November 25, 2019

Definition (7.52)

Let $(E_i)_{i \in \mathbb{N}}$ be a sequence of Lebesgue measurable sets in \mathbb{R}^n and E a Lebesgue measurable set in \mathbb{R}^n . We say that

$$E_i
ightarrow E$$

$$\begin{split} &\text{if } \|\chi_{E_i} - \chi_E\|_{\mathsf{L}^1(\mathcal{L}^n)} = |E_i \bigtriangleup E| \to 0. \\ &\text{We say that } E_i \stackrel{\mathsf{loc}}{\longrightarrow} E \text{ if } \chi_{E_i} \to \chi_E \text{ in } \mathsf{L}^1_{\mathsf{loc}}(\mathcal{L}^n). \end{split}$$

4 3 5 4 3 5 5

November 25, 2019

Theorem (7.53)

Let R > 0 and $(E_i)_{i \in \mathbb{N}}$ be a sequence of sets of finite perimeter in \mathbb{R}^n such that

$$\sup_{i\in\mathbb{N}} \mathsf{P}(E_i) < \infty,$$

 $E_i \subset \mathbb{U}(\mathbf{0}, R) \quad \forall i \in \mathbb{N}.$

Then there exists a set $E \subset \mathbb{U}(0, R)$ of finite perimeter in \mathbb{R}^n and a subsequence $(E_{i_i})_{i \in \mathbb{N}}$ of $(E_i)_{i \in \mathbb{N}}$ such that

$$\mathsf{E}_{i_j}
ightarrow \mathsf{E}$$
 and $\mu_{\mathsf{E}_{i_j}} \stackrel{*}{
ightarrow} \mu_{\mathsf{E}}.$

A B F A B F

Corollary (7.55)

Let $(E_i)_{i \in \mathbb{N}}$ be a sequence of sets of locally finite perimeter in \mathbb{R}^n such that, for all R > 0,

 $\sup_{i\in\mathbb{N}}\mathsf{P}\bigl(E_i,\mathbb{U}(0,R)\bigr)<\infty.$

Then there exists a set *E* of locally finite perimeter in \mathbb{R}^n and a subsequence $(E_{i_i})_{i \in \mathbb{N}}$ of $(E_i)_{i \in \mathbb{N}}$ such that

$$E_{i_j} \stackrel{\textit{loc}}{\rightharpoonup} E$$
 and $\mu_{E_{i_j}} \stackrel{*}{\rightharpoonup} \mu_E$.

November 25, 2019

Lemma (7.54)

Let $\Omega \subset \mathbb{R}^n$ be a bounded Lipschitz domain and $E \subset \mathbb{R}^n$ be a set of locally finite perimeter. Then $E \cap \Omega$ is a set of finite perimeter in \mathbb{R}^n and

$\mathsf{P}(E \cap \Omega) \leq \mathsf{P}(E, \Omega) + \mathsf{P}(\Omega).$

イロト イポト イラト イラト

November 25, 2019

Plateau problem in K with boundary data M

Figure: Plateau problem in K with boundary data M

November 25, 2019

60 / 63

Gláucio Terra (IME - USP)

Plateau problem in K with boundary data M

Proposition (Minimizers for the Plateau problem in K with boundary data M)

Let $K \subset \mathbb{R}^n$ be a compact set and M be a set of locally finite perimeter in \mathbb{R}^n . Then there exists $E_0 \subset \mathbb{R}^n$ of locally finite perimeter which minimizes the functional

 $E \mapsto \mathsf{P}(E, K)$

in the class $\mathcal{E} := \{ E \subset \mathbb{R}^n \mid \chi_E \in \mathsf{BV}_{\mathsf{loc}}(\mathbb{R}^n) \text{ and } E \setminus K = M \setminus K \}.$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

November 25, 2019

Relative isoperimetric problem in Ω

Definition

Let $\Omega \subset \mathbb{R}^n$ open, $m \in (0, |\Omega|)$ and

 $\alpha(m,\Omega) := \inf\{\mathsf{P}(\mathsf{E},\Omega) \mid \mathsf{E} \subset \Omega, \chi_{\mathsf{E}} \in \mathsf{BV}(\Omega), |\mathsf{E}| = m\}.$

We say that a set $E \subset \Omega$ of finite perimeter in Ω is a *relative* isoperimetric set in Ω if spt $\mu_E = \partial^{\Omega} E$ and $P(E, \Omega) = \alpha(|E|, \Omega)$.

Figure: Relative isoperimetric problem in Ω

Gláucio Terra (IME - USP)

November 25, 2019 62 / 63

- 4

Existence of relative isoperimetric sets on bounded Lipschitz domains

Proposition (Existence of relative isoperimetric sets on bounded Lipschitz domains)

Let Ω be a bounded Lipschitz domain and $m \in (0, |\Omega|]$. Then there exists a set $E \subset \Omega$ such that $\chi_E \in BV(\Omega)$, |E| = m and $P(E, \Omega) = \alpha(m, \Omega)$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

November 25, 2019