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Weak derivatives, Sobolev and BV functions

Weak derivatives

Definition (weak derivatives and gradients; 5.3)

Let Q be an open subset of R” and u € L} (£"]q). We say that:
@ For 1 <i < n, uhas weak i-th partial derivative v; € L} ,(£"|q) if

Vo € CF(RQ), 5
/V,godL” /u LRV
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Weak derivatives, Sobolev and BV functions

Weak derivatives

Definition (weak derivatives and gradients; 5.3)

Let Q be an open subset of R” and u € L} (£"]q). We say that:
@ For 1 <i < n, uhas weak i-th partial derivative v; € L} ,(£"|q) if

Vo € CF(RQ), 5
/V,godL” /u LV

@ u has weak gradient v € L} (£"|q,R") if Vo € CZ(Q,R"),

/<V,<p>dL”:—/ udiv pdL". (1)
Q Q
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Weak derivatives, Sobolev and BV functions

Sobolev spaces and functions

Definition (5.8)

Let Q be an open subset of R”, u: Q — Rand 1 < p < co. We say that

@ vuisa (1,p)-Sobolev function if u € LP(L"q) and, V1 < i< n,u

has weak partial derivatives 5% € LP(L"|q). Notation: W' ().
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Sobolev spaces and functions

Definition (5.8)
Let Q be an open subset of R”, u: Q — Rand 1 < p < co. We say that

@ vuisa (1,p)-Sobolev function if u € LP(L"q) and, V1 < i< n,u
has weak partial derivatives g“ € LP(£"q). Notation: WW(Q).

|0C(L”\Q) and,
g)l;l < Lloc(Ln|Q)'

@ vuis alocal (1, p)-Sobolev functionif u € L
V1 < i< n, uhas weak partial derivatives

Notation: W'(Q).

loc
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Weak derivatives, Sobolev and BV functions

Weak derivatives, bis

Definition (weak derivatives and gradients, bis; 7.1)

Let Q2 be an open subset of R" and u € L} (£"]q). We say that:

@ For 1 <i < n, uhas weak i-th partial derivative
JURS MlOC(Q7R) = CC(Q7]R)* if Vo € CgO(Q),

90 n_
dL du;.
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Weak derivatives, Sobolev and BV functions

Weak derivatives, bis

Definition (weak derivatives and gradients, bis; 7.1)

Let Q2 be an open subset of R" and u € L} (£"]q). We say that:

@ For 1 <i < n, uhas weak i-th partial derivative
JURS MlOC(Q7R) = CC(Q7]R)* if Vo € CgO(Q),

90 n_
dL du;.

@ u has weak gradient ;1 € Mioc(Q2, R") = C,(Q,R")" if

Vo € CE(Q2,R"),
/ udiv dL" = —/ @ - du.
Q Q

()

v
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Weak derivatives, Sobolev and BV functions

Weak derivatives, bis

Remark (7.2)

@ For1 <i<n, uell (£"q)admits weak i-th partial derivative if,
for each compact K C €, there exists Cx < oo such that

sup{/ 92 46| € C2(Q).spt o C K, [lollu < 1} < Ci.

v
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Weak derivatives, Sobolev and BV functions

Weak derivatives, bis

Remark (7.2)

@ For1 <i<n, uell (£"q)admits weak i-th partial derivative if,
for each compact K C €, there exists Cx < oo such that

sup{/ 92 46| € C2(Q).spt o C K, [lollu < 1} < Ci.

Q ue Ll (L"q) admits weak gradient if, for each compact K C ©,
there exists Ck < oo such that

sup( [ wdiv pdz” | 6 € CF(RR).spt o € K. [llu < 1} < O
Q

v
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Weak derivatives, Sobolev and BV functions

Weak derivatives, bis

Remark (7.2)

@ For1 <i<n, uell (£"q)admits weak i-th partial derivative if,
for each compact K C €, there exists Cx < oo such that

sup{/ 92 46| € C2(Q).spt o C K, [lollu < 1} < Ci.

Q ue Ll (L"q) admits weak gradient if, for each compact K C ©,
there exists Ck < oo such that

sup( [ wdiv pdz” | 6 € CF(RR).spt o € K. [llu < 1} < O
Q

© Weak partial derivatives or weak gradients, if exist, are unique.

v
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Weak derivatives, Sobolev and BV functions

Weak derivatives, bis

Remark
Q u e Ll (L"q) has weak gradient pu = (1, ..., ftn) € Mioe(Q2, R")
iff it has weak partial derivatives of first order p; € Mo (2, R) for
1<i<n.
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Weak derivatives, Sobolev and BV functions

Weak derivatives, bis

Remark
Q uclL] (L£"gq) has weak gradient u = (1, - - -, itn) € Mioc(Q, R")

loc
iff it has weak partial derivatives of first order p; € Mo (2, R) for

1<i<n

@ If ue Ll (L") has weak i-th partial derivative v; € L} (£"]|q) in
the sense of definition 1, then it has weak i-th partial derivative
LM Lv; € Mipe(Q2,R) in the sense of definition 3. Thus,
considering the injection L} (£"|q) C Mioc(€2, R) given by
v — L™ v, we see that definition 1 may be considered a
particular case of definition 3.
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Weak derivatives, Sobolev and BV functions

Weak derivatives, bis

Exercise (7.3)

Weak gradients may be also characterized by means of Gauss-Green
identity in gradient form. That is, let Q2 be an open subset of R" and
u e Ll (£"q); then u admits weak gradient 1 € Mioe(2,R")

iff Vo € C°(9),
/ uVepdl" = —/ pdu. (3)
Q Q

Exercise (7.4)

Let Q2 be an open subset of R", u € L} .(L"|q) and 1 < i < n. If there
exists jj = G € Moc(Q, R), then Vo € C{(Q),

90 n_
dL duj
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Weak derivatives, Sobolev and BV functions

BV functions

Definition (7.5)

Let Q be an open subset of R”".
i) We denote by BV|,(Q) the set of functions u € L. (£"|q) which

loc

admit weak partial gradient V¥ u € Mjoc(2, R").
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Weak derivatives, Sobolev and BV functions

BV functions

Definition (7.5)

Let Q be an open subset of R”".
i) We denote by BV|,(Q) the set of functions u € L. (£"|q) which

loc

admit weak partial gradient V¥ u € Mjoc(2, R").

i) We say that u € BV(Q) if u € L'(£"|q) and u admits weak gradient
VWue M(Q,RM).
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Weak derivatives, Sobolev and BV functions

BV functions

Definition (7.5)

Let Q be an open subset of R”".
i) We denote by BV|,(Q) the set of functions u € L. (£"|q) which

loc
admit weak partial gradient V¥ u € Mjoc(2, R").
i) We say that u € BV(Q) if u € L'(£"|q) and u admits weak gradient
VWue M(Q,RM).
i) We say that E C Q is a set of locally finite perimeter in Q if
XE € BVioc(€2). We say that E is a Caccioppoli set or a set of finite
perimeterin Q if xg € BV|oc(Q2) and VW xg € M(Q,R").
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Weak derivatives, Sobolev and BV functions
W't c BV

Example (7.6)

Let Q c R” open and f € W1 (Q). Then f € BVjoo(2) and its
measure-weak gradient is given by £ LLVY f € Moc(22, R").
The inclusion W};1 () C BVioe(R) is strict; for instance, if u = x(9..) ON
Q =R, V¥ u coincides with the Dirac measure 69 € M(RR, R), so that

V¥ u L £", hence u € BV(R) \ W-!(R).

loc
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Locality of the weak derivative

Theorem (7.7)

LetQ C R", f e L} (£"|q) and F C 2% an open cover of Q. Then f
admits weak partial derivatives of first order on Q iff VU € ¥, f|y admits
weak partial derivatives of first order on U. Moreover, weak derivatives
commute with restrictions (for a Radon measure, “restriction” here
means “trace”).

Corollary (6.15)

LetQ Cc R" open,1 < p<ooandf:Q— R Lebesgue measurable.
Then f € W'(Q) iff for all open V € Q, f|y € W'P(V).

loc

Corollary (7.9)

LetQ c R" open and f: Q — R Lebesgue measurable. Then

fe BV|OCEQE iff for all open V € Q, f|, € BV(V).
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Weak derivatives, Sobolev and BV functions

WP norm

Definition (6.1)
Let Q c R"open and f € W1(Q), i.e. f € L1 _(£"]q) admits weak

loc loc
partial derivatives of first order. We define

e for1 < p < oo, [flwie) = (JoIfIP + |VF|PdLm)/P e [0, 00];
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Weak derivatives, Sobolev and BV functions

WP norm

Definition (6.1)
Let Q c R"open and f € W1(Q), i.e. f € L1 _(£"]q) admits weak

loc loc
partial derivatives of first order. We define

o for 1< p < oo, [[flwisay = (JolfIP + V7P dL™) /P € [0, o0];
© for p= 0o, [fllwreay := ||IF] + [ VA| ey < [0.00]
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Weak derivatives, Sobolev and BV functions

WP norm

Definition (6.1)

Let Q c R” openand f € W/

loc
partial derivatives of first order. We define

o for 1< p < oo, [[flwisay = (JolfIP + V7P dL™) /P € [0, o0];
© for p= 0o, [fllwreay := ||IF] + [ VA| ey < [0.00]

(Q),i.e. feL! (L£"q)admits weak

loc

Proposition (6.2)

LetQ c R" open. For1 < p < oo, W'"P(Q) is a Banach space (for
p =2, itis a Hilbert space). It is reflexive for1 < p < oo and itis
separable for1 < p < cc.
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Weak derivatives, Sobolev and BV functions

BV norm

Proposition (7.10)

Let Q be an open subset of R". Then BV(Q2) is a Banach space with
the norm

IfllBv(e) = IfllLi@) + V" FI(K). (4)
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Generalized Divergence Theorem

Gauss-Green measure, exterior normal and perimeter
measure

Definition (7.12)

Let Q be an open subset of R” and E C Q such that xg € BV c(Q2).

@ ug:=—VVxe € Mioc(Q,R") (attention to the minus sign) is
called the Gauss-Green measure of E.
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Generalized Divergence Theorem

Gauss-Green measure, exterior normal and perimeter
measure

Definition (7.12)

Let Q be an open subset of R” and E C Q such that xg € BV c(Q2).

@ ug:=—VVxe € Mioc(Q,R") (attention to the minus sign) is
called the Gauss-Green measure of E.

@ Let (vg, |ue|) be the polar decomposition of ug. We call the
positive Radon measure P(E, ) := |ug| on Q the perimeter
measure of E and vg the exterior normalto E.
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Generalized Divergence Theorem

Remark (7.13)

Let E C Q such that xg € BV|oc(Q) and 62E = QN JE be the

topological boundary of E in Q. Then

1) spt ue C 02E. Since vg is determined up to |ue|-null sets, we may
and do assume henceforth that vz = 0 on Q \ 9% E and we identify
ve with a Borelian map 9%E — R™;
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Generalized Divergence Theorem

Remark (7.13)

Let E C Q such that xg € BV|oc(Q) and 62E = QN JE be the
topological boundary of E in Q. Then

1) spt ue C 02E. Since vg is determined up to |ue|-null sets, we may
and do assume henceforth that vz = 0 on Q \ 9% E and we identify
ve with a Borelian map 9%E — R™;

2) forall ¢ € CL(Q,R"),

Laveac = [ ovedel (5)
E ONE

We call the above equality the generalized Gauss-Green theorem.

v
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Generalized Divergence Theorem

Lipschitz epigraphs have locally finite perimeter

Proposition (7.14)

Letn>2, f:R"!" = R Lipschitz and Q := epig f. Then Q is a set of
locally finite perimeter in R", |uq| = H"~1 LOQ and vq coincides with
the unit outer normal to 09, i.e.

(VF(x"),—1)
VI V)P

on each point point x = (x', f(x")) in 92 = gr f whose abscissa x' is a
differentiability point of f.

v(x) =
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Generalized Divergence Theorem

Lipschitz domains

Notation for cylinders

LetR"=RK x R K xeR", 0 < r,h< oo, p: R x R~k - R¥ and
q : RF x R"~k — R~k be the projections on the first and second
factors, respectively.
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Generalized Divergence Theorem

Lipschitz domains

Notation for cylinders

LetR"=RK x R K xeR", 0 < r,h< oo, p: R x R~k - R¥ and
q : RF x R"~k — R~k be the projections on the first and second
factors, respectively.

@ C(x,r,h):=U(p-x,r) xU(q-x, h) c Rk x R"k,
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Generalized Divergence Theorem

Lipschitz domains

Notation for cylinders

LetR"=RK x R K xeR", 0 < r,h< oo, p: R x R~k - R¥ and
q : RF x R"~k — R~k be the projections on the first and second
factors, respectively.

@ C(x,r,h):=U(p-x,r) xU(q-x, h) c Rk x R"k,

@ C(x,r,h):=B(p-x,r) xB(q-x,h) =C(x,r, h).
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Generalized Divergence Theorem

Lipschitz domains

Definition (6.33)

Letn>2, UcCR"=R"" x R open and Q c U an open subset of U.
We say that Q is a Lipschitz domain if for all x € 9YQ = 9Q N U, there
exist:
@ arigid motion ¢ € SE(n) with ®(0) = x;
@ f:R"™ " — R Lipschitz with f(0) = 0;
© C(0,r,h) c R™" x R open cylinder
satisfying the following conditions:
@ C:=®(C(0,r, h)) c U;
@ ®(gr fNC(0,r,h)) = CNoQ
@ ®(epis fNC(0,r,h)) =CNQ,
where epis f = {(x,y) e R"™ " xR | y > f(x)}.
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Generalized Divergence Theorem

Lipschitz domains

Figure: Lipschitz Domain
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Generalized Divergence Theorem

Smooth partitions of unity on open sets of R”

Definition (6.6)

Let Q ¢ R" open. A smooth partition of unity of Q is a family (£4)acA

such that:

PU1) Va € A, &, € C*(£,[0,1]) and (spt £4)aca is a locally finite
family of subsets of Q;

PU2) Vx € Q, > caba(x) =1.

If ¥ is an open cover of Q, we say that a smooth partition of unity

(€a)aca Of Q is subordinate to T if Vo € A, there exists U € F such that

spt &, C U.
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Existence of partitions of unity on open sets of R”

Theorem (6.8)

LetQ C R" open and (U,).ca a locally finite open cover of Q with
Va € A, U, € Q. Then there exists a smooth partition of unity ({.)aca
of Q such that, Va € A, spt &, € U,.
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Existence of partitions of unity on open sets of R”

Theorem (6.8)

LetQ C R" open and (U,).ca a locally finite open cover of Q with
Va € A, U, € Q. Then there exists a smooth partition of unity ({.)aca
of Q such that, Va € A, spt &, € U,.

Corollary

LetQ C R" be open and F an open cover of Q. Then there exists a
partition of unity (£v)ves of Q strictly subordinate to &, i.e. such that for
allved, sptéy V.

v
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Gaus-Green theorem for Lipschitz domains

Theorem (7.16)

Letn>2 and Q C R" be a Lipschitz domain. Then Q is a set of locally
finite perimeter in R™ and |uq| = 3"~ LoQ.
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Generalized Divergence Theorem

Gaus-Green theorem for Lipschitz domains

Lemma (7.15)

Letn>2,f:R"™" — R Lipschitz, U' an open subset of R”,
E':= U nepig f and ' : 0epis f — R" the unit outer normal to
depig f. Let & € SE(n) be a rigid motion, U := o(U'), E := ®(E’) and
v:=o,/, ie. v:0d(epis f) — R" is given by
x = Do (o 1(x)) - /(7" (x)). Then:

Q ou(H" ' Loepig f) = H"" Lod(epig f).

@ E is a set of locally finite perimeter in U, |ug| = H"~1 LLOYE and

its exterior normal is given by ve = v|jug.
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Generalized Divergence Theorem

Gaus-Green theorem for Lipschitz domains

Figure: Gauss-Green measure of a Lipschitz Domain
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Generalized Divergence Theorem

Gaus-Green theorem for Lipschitz domains

Corollary

Letn > 2 and Q C R" be a Lipschitz domain. Then ("' LoQ is a
Radon measure.

Remark (outer normal to a Lipschitz domain)

With the notation from the proof of the previous theorem, for each

i > 1, the exterior normal to Q coincides H"~' L9Q-a.e. with v; on
9Q N U; = aYQ. In particular, if 9Q is a C! hypersurface on a
neighborhood of p € 992, we may choose vq on this neighborhood as
the usual outer unit normal from Differential Geometry.
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Generalized Divergence Theorem

Exercises

Exercise (Complements of sets of locally finite perimeter)

Let Q2 be an open subset of R" and E C Q2 be a set of locally finite
perimeter in Q2. Then Q\ E has locally finite perimeter in Q and

HQ\E = —HE-

Exercise (Sets of finite perimeter under scaling and translation)

Let E be a set of locally finite perimeter in R", x € R" and X\ > 0. Then
X + AE is a set of locally finite perimeter in R" and

px+rE = PupiE,

where ® : R" — R" is given by y — X + \y. In particular, if E has finite
perimeter, so does x + \E and P(x + AE,R") = \"=1P(E,R").
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Approximation by smooth functions

Standard mollifier in R”

Definition (1.112)

Let ¢ : R” — R be the smooth function given by

$(x) = {Ce"p(wb) if x| < 1

0 if || x]] > 1,
where c is chosen so that [, ¢(x) dx = 1. The family (¢;)-o in C(R")
defined by we define ¢; : R" — (C by
or(x) ==t Pt x). (6)

is called standard mollifierin R".
Note that spt ¢ = B(0, 1), so that vVt > 0, spt ¢; = B(0, t).
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Approximation by mollifiers on R”

Theorem (1.111)
Let¢ € L'(L™) with [ ¢dL" = aand f: R" — C.
i) If1 < p<ooandfelP(LN), then ¢+ f ' af in LP(LN).
i) If f is uniformly continuous and either (1) f is bounded or (2) spt ¢
is compact, then & f =5 af uniformly in R™.
i) If f is continuous on an open set U C R" and either (1) f € L*>(L")

or(2) f € LS (L") and spt ¢ is compact, then ¢;  f 20 af uniformly
on compact subsets of U.

.
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Approximation by smooth functions

Approximation by mollifiers on open subsets of R”

Definition (6.17)
Foreach t > 0, let
Q= {x eR"|B(x,t) c Q} ={x eR" | d(x,Q°) > t},

so that (2¢)s~0 is a family of open subsets of Q which increases to Q as
t10.

v
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Approximation by smooth functions

Approximation by mollifiers on open subsets of R”

Definition (6.17)
Foreach t > 0, let
Q= {x eR"|B(x,t) c Q} ={x eR" | d(x,Q°) > t},

so that (2¢)s~0 is a family of open subsets of Q which increases to Q as
t10.

Let (¢1)r~0 be the standard mollifier in R". For each t > 0 and

fell (L£"q), we define f; : Q; — R by, Vx € Q,

loc

100 = (@ N0) = [ 11)onlx - y)4L"(y),

B(x,t)

We call f; the t-approximation or t-regularization of f.
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Approximation by smooth functions

Remark
Q@ fi(x) is well-defined since, for x € Q;, B(x,t) C Q;
Q ifQ=R"thenQ; =R forall t > 0.
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Approximation by smooth functions

Approximation by mollifiers on open subsets of R”

Definition (convergence in the sense of LP _and W.*; 6.18)

Let1 < p<oo, f:Q— R L"measurable and, for each k € N, let

fi : dom f, C Q — R be £"-measurable.
@ We say that (fx)«en converges to f in the sense of LEC(L”\ Q)

(notation: “fy — fin L (£"]q)") if, for all open V € Q, there exists

ko € N (possibly depending on V) such that Vk > ky, V C dom fi
and ||fk — fHLp(L”\V) — 0.

v
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Approximation by mollifiers on open subsets of R”

Definition (convergence in the sense of LP _and W.*; 6.18)
Let1 < p<oo, f:Q— R L"measurable and, for each k € N, let
fi : dom f, C Q — R be £"-measurable.

@ We say that (fx)«en converges to f in the sense of LEC(L”\ Q)

(notation: “fy — fin L (£"]q)") if, for all open V € Q, there exists

ko € N (possibly depending on V) such that Vk > ky, V C dom fi
and ”fk — fHLp(L”\V) — 0.

@ If Yk € N, dom f, is open, f and f, belong to Lﬂoc on their domains
and admit weak partial derivatives of first order, we say that

(fx)ken converges to f in the sense of WﬂO’E(Q) (notation: “fx — fin

Wﬂo’(‘f(Q)”) if, for all open V € Q, there exists ky € N (possibly
depending on V) such that Yk > ky, V € dom f; and
ka — fuw1,p(v) — 0

v
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Approximation by smooth functions

Approximation by mollifiers on open subsets of R”

Remark (6.19)

@ We make similar definitions of convergence in the sense of LI%C or

in the sense of Wﬂo’f:’ for a family (f.)eso in place of (fx)ken-

v
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Approximation by smooth functions

Approximation by mollifiers on open subsets of R”

Remark (6.19)

@ We make similar definitions of convergence in the sense of LI%C or

in the sense of Wﬂof for a family (f.)eso in place of (fx)ken-

© What we have in mind is the family (f;)sq of the regularized

functions of some f € L ,(£"|q), cf. definition 26.

v
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Approximation by smooth functions

Approximation by mollifiers on open subsets of R”

Remark (6.19)

@ We make similar definitions of convergence in the sense of L _ or

in the sense of Wﬂof for a family (f.)eso in place of (fx)ken-

© What we have in mind is the family (f;)sq of the regularized
functions of some f € L ,(£"|q), cf. definition 26.

© For a sequence (fx)ken in LIOC(L”|Q) and f € Lloc(L”\Q), the
convergence defined above coincides with the convergence in the
natural topology of LIOC(L”|Q), which is a Fréchet space topology
induced by the family of seminorms {||-[|Ls(cn|,) | V € Q open}.

v
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Approximation by smooth functions

Approximation by mollifiers on open subsets of R”

Remark (6.19)

@ We make similar definitions of convergence in the sense of LP _ or

loc
in the sense of Wﬂof for a family (f.)eso in place of (fx)ken-

© What we have in mind is the family (f;)sq of the regularized
functions of some f € L ,(£"|q), cf. definition 26.

© For a sequence (fx)ken in LIOC(L”|Q) and f € Lloc(L”\Q), the
convergence defined above coincides with the convergence in the
natural topology of LIOC(L”|Q), which is a Fréchet space topology
induced by the family of seminorms {||-[|Ls(cn|,) | V € Q open}.

© Similarly, for a sequence (fx)ken in WIOC(Q) and f € Wloc(Q), the
convergence defined above coincides with the convergence in the
natural topology of WIOC(Q), which is a Fréchet space topology
induced by the family of seminorms {||-[|w(v) | V € Q2 open}.

v
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Approximation by smooth functions

Approximation by mollifiers on open subsets of R”

Theorem (mollifiers, part II)
Letf e Ll (£"q), (¢e)e=0 the standard mollifier and

fo = ¢ xf: Q. — R the e-approximation of f, cf. definition 24.
i) Ve >0, f. € C(Q,).
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Approximation by smooth functions

Approximation by mollifiers on open subsets of R”

Theorem (mollifiers, part II)

Letf e Ll (£"q), (¢e)e=0 the standard mollifier and

fo = ¢ xf: Q. — R the e-approximation of f, cf. definition 24.
i) Ve >0, f. € C(Q,).

i) Ve >0, Vo € CUQ), [fpdl" = [ fp.dLn.
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Approximation by smooth functions

Approximation by mollifiers on open subsets of R”

Theorem (mollifiers, part II)

Letf e Ll (£"q), (¢e)e=0 the standard mollifier and

fo = ¢ xf: Q. — R the e-approximation of f, cf. definition 24.
i) Ve >0, f. € C(Q,).

Ve > 0, Vo € CQUQe), [ frpdL" = [ fp.dLm.

lim._,o f.(x) = f(x) if x € Q is a Lebesgue point of f; in particular,
f.— fLMa.e. onq.

i)
ii)
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Approximation by smooth functions

Approximation by mollifiers on open subsets of R”

Theorem (mollifiers, part II)

Letf e Ll (£"q), (¢e)e=0 the standard mollifier and

fo = ¢ xf: Q. — R the e-approximation of f, cf. definition 24.
i) Ve >0, f. € C(Q,).

Ve > 0, Vo € CQUQe), [ frpdL" = [ fp.dLm.

lim._,o f.(x) = f(x) if x € Q is a Lebesgue point of f; in particular,
f.— fLMa.e. onq.

i)
ii)

iv) Iff € C(Q), f. — f uniformly on compact subsets of Q.
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Approximation by mollifiers on open subsets of R”

Theorem (mollifiers, part II)

Letf e Ll (£"q), (¢e)e=0 the standard mollifier and

fo = ¢ xf: Q. — R the e-approximation of f, cf. definition 24.
i) Ve >0, f. € C(Q,).

Ve > 0, Vo € CQUQe), [ frpdL" = [ fp.dLm.

lim._,o f.(x) = f(x) if x € Q is a Lebesgue point of f; in particular,
f.— fLMa.e. onq.

i)
ii)

iv) Iff € C(Q), f. — f uniformly on compact subsets of Q.

v) Iff e LI%C(L”|Q) for some 1 < p < oo, then f. — f in the sense of
LEC(L”]Q).
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Approximation by mollifiers on open subsets of R”

Theorem (mollifiers, part II)

Letf e Ll (£"q), (¢e)e=0 the standard mollifier and
fo = ¢ xf: Q. — R the e-approximation of f, cf. definition 24.
i) Ve >0, f. € C(Q,).
Ve > 0, Vo € CQUQe), [ frpdL" = [ fp.dLm.

ii)
il) lim._o f.(x) = f(x) if x € Q is a Lebesgue point of f; in particular,
f.— fLMa.e. onq.

iv) Iff € C(Q), f. — f uniformly on compact subsets of Q.

v) Iff e LI%C(L”|Q) for some 1 < p < oo, then f. — f in the sense of
LEC(L”]Q).

vi) Iff € WP(Q) for some 1 < p < oo, thenVe > 0,¥1 < i < n,

of. ovf (wa)

—_ = ¢ k ——
€
OXi OXi OXi
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Approximation by smooth functions

Approximation by mollifiers on open subsets of R”

Corollary (6.21)

Let1 < p < oo, (¢t)r=0 the standard mollifier and f € W'P(R"). Then:
) Ve >0, f. = ¢ f € C(R") NW'P(R") and f. — f in W'P(R") as
e — 0.

ii) There exists a sequence (fi)ken in CF(R") such that fx — £ in
WTP(RM).
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Approximation by smooth functions

Regularization of Radon measures and BV functions

Proposition (7.19)

Let (¢¢t)¢>0 be the standard mollifier on R™. Then, for each e > 0, the
convolution with ¢. defines a continuous linear map
de x : Co(R™MR") — C,(R™,R").

Remark

Similarly, given an open subset Q C R, the convolution with ¢,
defines a continuous linear map ¢, * : C,(Q¢, R") — C,(Q2,R"). It then
follows that (¢ *)t : Mioe(2, R") — Mioc(Q26, R") is a well defined linear
map. We shall omit the “t” in the notation of this transpose, i.e. we
denote it with the same notation “¢. *”.
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Approximation by smooth functions

Regularization of Radon measures and BV functions

Definition (7.20)

Let Q be an open subset of R, 11 € Mioc(2, R") and (¢1)¢~0 the
standard mollifier on R. We define the t-approximation or
t-regularization of 11 by pt := ¢ x pu € Mioe(Q¢, R™).

Remark (7.21)

The definition above extends definition 24 for L (£"|q, R"). That is,
considering the embedding L} .(£"|q, R") C Mioc(2, R") given by
f— L"q Lf, we have

(Ln‘Q |_f)E = Ln’Q |_(f5) S M|OC(Q€,R).
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Regularization of Radon measures and BV functions

Proposition (7.22)

With the notation from the previous definition, let 2 C R™ open and
w € Mioc(Q2,R™). Define u : Q. — R" by

p00 = [ o= y)duty).
Then uc € C>=(Q.,R") and

pre = L"q, Lpc

In particular, . < L") q, and |pe| < |ule.
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Regularization of Radon measures and BV functions

Theorem (Weak-star convergence of regularized Radon measures;
7.23)

Let Q be an open subset of R™ and 11 € Moc(Q2,R"). Then, ase | 0,
pre = p and |pe| =|pl,

in the sense that, for all ¢ € C;(Q2,R"), p - ¢ — 1 - ¢ and similarly for
the total variations. Moreover, for all e > 0 and E € %q_,

el (E) < |ul(Ee),

where E. := E + U(0, ¢) is the e-neighborhood of E.
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Approximation by smooth functions

Regularization of Radon measures and BV functions

Proposition (regularization of BV functions; 7.24)

Let Q be an open subset of R", f € BV (), (¢¢)es0 the standard
mollifier on R", f. .= ¢ x f € C>*(Q,) and
(VW )e := e x VYV F € Mioc(Q2e, R™). Then:
) (VY 1)e = £7q, LV(£).
i) f. — f in the sense of L ().
iii) ForeachopenV & Q,

(£a, LV(E)lv (VY Dy and (L la. LIVE))Iv V" fl],

asel 0.
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First properties of BV functions

Proposition (7.25)

Let Q be an open subset of R" and (fx)ken @ sequence in BV oo ().
i) Iff € BVioe(Q) and f, — finL! (L"|q), then VY fy = VW f.

loc

i)y IFfeL} (L"q), fk — finLl (L |q) and there exists

loc loc

1 € Mioc(Q, R") such that V¥ f, = p, then f € BV oo(Q) and
VWY =p.

Proposition (Product rule for BV; 7.27)

Let Q be an open subset of R", f € BV|,c(Q2) and g : Q — R locally
Lipschitz. Then fg € BV|c(Q2) and V¥ (fg) = VWV f Lg+ L" LfVVg.

v
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First properties of BV functions

Variation of a function in L

Definition (7.28)

Let Q c R" open and f € L (Q). We define, for each open V C Q,

loc

Var(f. V) := sup{ [ fdiv 0at” | o € CE(V. R, ol < 1)
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First properties of BV functions

Variation of a function in L

Definition (7.28)

Let Q c R" open and f € L (Q). We define, for each open V C Q,

loc

Var(f. V) := sup{ [ fdiv 0at” | o € CE(V. R, ol < 1)

Exercise (variation of a function in L, .; 7.29)

1 .
loc®

LetQ c R" open and f € L} (Q). Define, for each B C Q,

loc
Var¢(B) := inf{Var(f, U) | U open, B C U}.

Then Var; is a Borel regular measure on U which extends the variation
Var(f,-). Moreover, f € BV|,c(Q) if, and only if, Var; is a positive Radon
measure on X, in which case it coincides with |V f|.

We call Vary the variation measure of f.

Glaucio Terra (IME - USP) GMT November 25, 2019 40/63




First properties of BV functions

Lower semicontinuity of the variation

Proposition (7.30)

LetQ C R" open, (f;)icy @ sequence in L] (£"|q) and f € L} (£"|q)

such that f; — f inL} (£"|q). Then, for all V c Q open,

loc

Var(f, V) < liminfVar(f;, V).

In particular, if f € BV c(2) for all i € N and the second member of the
equality above is finite for each open V < Q, then f € BV,c(Q).
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Global approximation by smooth functions

Approximation of Sobolev functions by smooth
functions

Theorem (Meyers-Serrin’s theorem;6.24)

Let1 < p < 00, Q C R" open and u € W'P(Q). There exists a
sequence (ux)ken in C*(Q) NW'P(Q) such that ux — u in W'P(Q).
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Gilobal approximation by smooth functions

Approximation of Sobolev functions by smooth
functions

Theorem (6.34)

LetQ2 C R™ be a Lipschitz domain. If1 < p < oo andf e W1’p(Q), there
exists (fx)ken in WHP(Q) N C>(Q) such that f, — f in WP(Q).
Moreover, if f € W'P(Q) N C(Q), the sequence (fi)ken Mmay be chosen
so that it also converges to f uniformly on Q.

v

Corollary (6.43)

LetQ c R" be a Lipschitz domain. If 1 < p < oo and f € W'P(Q), there
exists (fi)ken in C°(R™) such that fx|q — f in W''P(Q). Moreover, if

f € WP(Q) N C(Q), the sequence (f)xen may be chosen so that it
also converges to f uniformly on compact subsets of Q.
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Approximation of BV functions by smooth functions

Theorem (7.33; Aimgren)

Let Q be an open subset of R" and f € BV(Q2). There exists a
sequence (f,)icy € BV(Q) N C>(Q) such that f; — f inL1(L"|q) and
VY H1(2) = [V ().

Corollary (7.35)

LetQ =R" orQ be a Lipschitz domain inR", and f € BV(Q2). There
exists a sequence (f;)jcy € CZ(R") such that fi|q — f inL1(L"|q) and
(VP il(2) = [V ().
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Global approximation by smooth functions

Approximation of BV functions by smooth functions

Remark (7.34)

With the same hypothesis from theorem 38, if f € BV(Q2) N L>(£"]q),
there exists a sequence (fj)jen € BV(2) N C>°(R2) such that f; — fin
L'(L"q), VY £(Q) — |VY f|(Q) and, for all j € N,

[fillLoo (2niq) < SIFllLoe(cniq)- )
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Product rule for BV, part Il

Proposition (Product rule for BV, part Il; 7.36)

Let Q be an open subset of R". If f,g € BV(Q2) N L>(£"|q), then
fg € BV(Q).
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Trace and Extension Theorems

Trace theorem for Sobolev functions on Lipschitz
domains

Theorem (6.48, 6.51)

Letn > 2,Q c R" a Lipschitz epigraph or a Lipschitz domain with 09
bounded, and 1 < p < co. Then there exists a unique bounded linear

operator T : WHP(Q) — LP(H"~1|5q) such that, for all f € CL(R"),
T - (fla) = floa-
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Trace and Extension Theorems

Trace theorem for Sobolev functions on Lipschitz
domains

Theorem (6.48, 6.51)

Letn > 2,Q c R" a Lipschitz epigraph or a Lipschitz domain with 09
bounded, and 1 < p < co. Then there exists a unique bounded linear
operator T : WHP(Q) — LP(H"~1|5q) such that, for all f € CL(R"),

T - (fla) = floq-

Moreover, the Gauss-Green formula holds for all f € W1(Q), i.e.
denoting by v the unit outer normal to 012,

/V""de”:/ T-fudH™ ",
Q o0

with a similar equality in divergence form.
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Trace and Extension Theorems

Trace theorem for BV functions on Lipschitz domains
Theorem (7.36, 7.40)
Letn > 2 and Q C R" a Lipschitz epigraph or a Lipschitz domain with

02 bounded. Then there exists a unique bounded linear operator

T :BV(Q) — L' (3""|sq) such that, for all f € BV(Q) and all
¢ € CL(R",R"),

/fdiv godL”:—/gp-dVWf+ Tfo-vdH" 1, (7)
Q Q oQ

where v the unit outer normal to OX2.

v
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Trace theorem for BV functions on Lipschitz domains
Theorem (7.36, 7.40)
Letn> 2 and Q c R" a Lipschitz epigraph or a Lipschitz domain with

02 bounded. Then there exists a unique bounded linear operator

T :BV(Q) — L' (3""|sq) such that, for all f € BV(Q) and all
¢ € CL(R",R"),

/fdiv godL”:—/gp-dVWf+ Tfo-vdH" 1, (7)
Q Q oQ

where v the unit outer normal to 052.
Moreover, for all f € BV(Q) and for K"~'-a.e. x € 0,

im £ o) = T 0270) =0 ®)
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Trace and Extension Theorems

Trace theorem for BV functions on Lipschitz domains

Corollary (7.41)

With the same hypothesis of the previous theorem, if
f e BV(Q2) N C(R), then Tf = f|sq.
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Extension of BV functions on Lipschitz domains

Theorem (7.43)

Letn > 2 and Q an open subset of R" which is a Lipschitz epigraph or
a Lipschitz domain with 0Q2 bounded. Given f € BV(Q2) and

g € BV(R™\ Q), let F be £L"-measurable function defined by F|q = f
and Flge = g.

Then F € BV(R") and

VVF =iy V¥ f+ iy, VW g — K" LOQ L(Tf — Tg)v, 9)

where iy VW f and i, V" g are the pushforwards of V¥ f € M(Q,R")

and V¥ g € M(Q°,R") by the respective inclusions, v is the unit outer
normal of 2 and T denotes both trace operators
BV(Q),BV(Q°) — L'(H"|aq).
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Trace and Extension Theorems

Extension of BV functions on Lipschitz domains

Corollary (7.44)

Let n > 2 and Q2 an open subset of R" which is a Lipschitz epigraph or
a Lipschitz domain with 0Q2 bounded. The extension by 0 defines a
bounded linear operator BV(Q2) — BV(R").
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Rellich-Kondrachov

Theorem (6.77)

Let Q be a bounded Lipschitz domaininR",1 < p<nand1 < q < p*,
where p* is the Sobolev conjugate of p. Then

W'P(Q) € LI(L"|q),

i.e. WHP(Q) c LI(L"|q) with compact inclusion.
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Compactness theorem for BV

Theorem (7.46)
Let Q C R" be a bounded Lipschitz domain and (f;)jcn @ sequence in
BV(Q) such that

sup{||fillev(e) | I € N} < <.

Then there exists f € BV(2) and a subsequence (f;)jen of (;)i such
that f, — f in L1(L"|9Q).
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Sets of Finite Perimeter and Existence of Minimal Surfaces

Support of the Gauss-Green measure

Proposition (7.50)

If E C Q is a set of locally finite perimeter in the open subset Q2 of R",
then

spt ue = {x € Q|vr>0,0<|EnU(x,r)| < a(n)r"} c 9%E.

Moreover, there exists a Borel set F C Q in the same L], class of E

such that ur = 0*F.
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Sets of Finite Perimeter and Existence of Minimal Surfaces

Operations with Sets of Finite Perimeter, part |

Proposition (7.51)

Let Q be an open subset of R". If E, F are sets of (locally) finite
perimeter in 2, then so are E U F and E N F. Moreover,

lneor] + |penr] < [rel + |pFl.
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Sets of Finite Perimeter and Existence of Minimal Surfaces

Compactness from perimeter bounds

Definition (7.52)

Let (E))icn be a sequence of Lebesgue measurable sets in R” and E a
Lebesgue measurable set in R”. We say that

E,‘AE

if [[xg — xEllLreny = |Ei A E[ = 0.
We say that £, E if yg, — xg in L] (£").
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Compactness from perimeter bounds

Theorem (7.53)

Let R > 0 and (Ej)jen be a sequence of sets of finite perimeter in R"
such that

sup P(Ej) < oo,
ieN

E; cU(0,R) VieN.

Then there exists a set E C U(0, R) of finite perimeter in R™ and a
subsequence (E;)jen of (Ei)ien such that

El/ —~E and ME//' A HE.
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Compactness from perimeter bounds

Corollary (7.55)

Let (E))icn be a sequence of sets of locally finite perimeter in R" such
that, for all R > 0,

supP(E;, U(0, R)) < .
ieN

Then there exists a set E of locally finite perimeter in R" and a
subsequence (E;)jen of (Ei)ien such that

El/ log E and ME/,- A MHE.
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Sets of Finite Perimeter and Existence of Minimal Surfaces

Compactness from perimeter bounds

Lemma (7.54)

LetQ C R" be a bounded Lipschitz domain and E C R" be a set of
locally finite perimeter. Then E N is a set of finite perimeter in R" and

P(ENQ) < P(E,Q) + P(Q).
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Plateau problem in K with boundary data M

Figure: Plateau problem in K with boundary data M
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Plateau problem in K with boundary data M

Proposition (Minimizers for the Plateau problem in K with boundary
data M)

Let K C R" be a compact set and M be a set of locally finite perimeter
inRR". Then there exists Ey C R" of locally finite perimeter which

minimizes the functional
E — P(E,K)

inthe class € := {E C R" | xg € BV|oc(R") and E\ K = M\ K}.
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Sets of Finite Perimeter and Existence of Minimal Surfaces

Relative isoperimetric problem in

Definition
Let @ c R" open, m e (0,|€|) and
a(m,Q) = inf{P(E,Q) | E C Q,xg € BV(Q), |E| = m}.

We say that a set E C Q of finite perimeter in Q is a relative
isoperimetric set in Q if spt ug = 0°E and P(E, Q) = a(|E|, Q).

R 34
= WG L Il

z

Figure: Relative isoperimetric problem in Q
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Sets of Finite Perimeter and Existence of Minimal Surfaces

Existence of relative isoperimetric sets on bounded
Lipschitz domains

Proposition (Existence of relative isoperimetric sets on bounded
Lipschitz domains)

Let Q be a bounded Lipschitz domain and m € (0, |2|]. Then there
exists a set E C Q such that xg € BV(Q), |E| = m and
P(E,Q) = a(m,Q).
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