Geometric Measure Theory

Gláucio Terra

Departamento de Matemática IME - USP

October 21, 2019

Gláucio Terra (IME - USP)

< ロ > < 同 > < 回 > < 回 >

October 21, 2019

Extensions of Lipschitz maps

Recall: Lipschitz constant

Given metric spaces X and Y and $f : X \rightarrow Y$ Lipschitz,

$$\operatorname{Lip} f := \sup\{\frac{d_Y(f(x), f(y))}{d_X(x, y)} \mid x \neq y \in X\},\$$

is called Lipschitz constant of f.

Theorem (McShane's lemma; 5.1)

Let $A \subset \mathbb{R}^n$ and $f : A
ightarrow \mathbb{R}$ a Lipschitz map. Define $F : \mathbb{R}^n
ightarrow \mathbb{R}$ by:

$$F(x) := \inf\{f(a) + \operatorname{Lip} f \cdot ||x - a|| \mid a \in A\}.$$

Then F extends f and Lip F = Lip f.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Extensions of Lipschitz maps

Recall: Lipschitz constant

Given metric spaces X and Y and $f : X \rightarrow Y$ Lipschitz,

$$\operatorname{Lip} f := \sup\{\frac{d_Y(f(x), f(y))}{d_X(x, y)} \mid x \neq y \in X\},\$$

is called Lipschitz constant of f.

Theorem (McShane's lemma; 5.1)

Let $A \subset \mathbb{R}^n$ and $f : A \to \mathbb{R}$ a Lipschitz map. Define $F : \mathbb{R}^n \to \mathbb{R}$ by:

$$F(x) := \inf\{f(a) + \operatorname{Lip} f \cdot ||x - a|| \mid a \in A\}.$$

Then F extends f and Lip F = Lip f.

3

< ロ > < 同 > < 回 > < 回 >

(1)

Extensions of Lipschitz maps

Theorem (Kirszbraun's theorem; 5.2)

Let $A \subset \mathbb{R}^n$ and $f : A \to \mathbb{R}^m$ a Lipschitz map. Then there exists a Lipschitz extension $f : \mathbb{R}^n \to \mathbb{R}^m$ of f such that Lip F = Lip f.

< ロ > < 同 > < 回 > < 回 >

October 21, 2019

Motivation

If Ω is an open subset of \mathbb{R}^n and $X \in C^1_c(\Omega, \mathbb{R}^n)$,

.

$$\int_{\Omega} \operatorname{div} X \, \mathrm{d}\mathcal{L}^n = 0.$$

If $u \in C^1(\Omega)$ and $\varphi \in C^1_c(\Omega, \mathbb{R}^n)$, the previous equality applied to $X = u\varphi$ yields the *elementary Gauss-Green's identity in divergence form*:

$$\int_{\Omega} \langle \nabla u, \varphi \rangle \, \mathrm{d} \mathcal{L}^n = - \int_{\Omega} u \, \mathrm{div} \, \varphi \, \mathrm{d} \mathcal{L}^n.$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

October 21, 2019

Motivation

If Ω is an open subset of \mathbb{R}^n and $X \in C^1_c(\Omega, \mathbb{R}^n)$,

.

$$\int_{\Omega} \operatorname{div} \, X \, \mathrm{d} \mathcal{L}^n = 0.$$

If $u \in C^1(\Omega)$ and $\varphi \in C^1_c(\Omega, \mathbb{R}^n)$, the previous equality applied to $X = u\varphi$ yields the *elementary Gauss-Green's identity in divergence form*:

$$\int_{\Omega} \langle \nabla u, \varphi \rangle \, \mathrm{d} \mathcal{L}^n = - \int_{\Omega} u \operatorname{div} \, \varphi \, \mathrm{d} \mathcal{L}^n.$$

< ロ > < 同 > < 回 > < 回 >

October 21, 2019

Definition (weak derivatives and gradients; 5.3)

.

Let Ω be an open subset of \mathbb{R}^n and $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$. We say that:

• For $1 \le i \le n$, *u* has weak *i*-th partial derivative $v_i \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ if $\forall \varphi \in C^{\infty}_{c}(\Omega)$,

$$\int_{\Omega} \mathbf{v}_i \varphi \, \mathrm{d} \mathcal{L}^n = - \int_{\Omega} u \frac{\partial \varphi}{\partial \mathbf{x}_i} \, \mathrm{d} \mathcal{L}^n.$$

) u has weak gradient $v \in L^1_{\mathsf{loc}}(\mathcal{L}^n|_\Omega, \mathbb{R}^n)$ if $\forall \varphi \in \mathsf{C}^\infty_{\mathsf{c}}(\Omega, \mathbb{R}^n)$,

$$\int_{\Omega} \langle v, \varphi \rangle \, \mathrm{d}\mathcal{L}^n = - \int_{\Omega} u \operatorname{div} \varphi \, \mathrm{d}\mathcal{L}^n.$$

< ロ > < 同 > < 回 > < 回 >

October 21, 2019

Definition (weak derivatives and gradients; 5.3)

Let Ω be an open subset of \mathbb{R}^n and $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$. We say that:

• For $1 \leq i \leq n$, *u* has weak *i*-th partial derivative $v_i \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ if $\forall \varphi \in C^{\infty}_{c}(\Omega)$,

$$\int_{\Omega} \mathbf{v}_i \varphi \, \mathrm{d} \mathcal{L}^n = - \int_{\Omega} u \frac{\partial \varphi}{\partial \mathbf{x}_i} \, \mathrm{d} \mathcal{L}^n.$$

2 *u* has weak gradient $v \in L^1_{loc}(\mathcal{L}^n|_{\Omega}, \mathbb{R}^n)$ if $\forall \varphi \in C^{\infty}_{c}(\Omega, \mathbb{R}^n)$,

$$\int_{\Omega} \langle \mathbf{v}, \varphi \rangle \, \mathrm{d}\mathcal{L}^n = - \int_{\Omega} u \, \mathrm{div} \, \varphi \, \mathrm{d}\mathcal{L}^n. \tag{2}$$

< ロ > < 同 > < 回 > < 回 >

October 21, 2019

Exercise (weak gradients, bis; 5.4)

Weak gradients may be also characterized by means of Gauss-Green identity in gradient form. That is, let Ω be an open subset of \mathbb{R}^n and $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$; then u admits weak gradient $v \in L^1_{loc}(\mathcal{L}^n|_{\Omega}, \mathbb{R}^n)$ iff $\forall \varphi \in C^{\infty}_{c}(\Omega)$,

$$\int_{\Omega} \varphi \mathbf{v} \, \mathrm{d}\mathcal{L}^n = -\int_{\Omega} u \nabla \varphi \, \mathrm{d}\mathcal{L}^n. \tag{3}$$

Exercise (5.5)

Let Ω be an open subset of \mathbb{R}^n , $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ and $1 \leq i \leq n$. If there exists $\frac{\partial^w u}{\partial x_i} \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$, then $\forall \varphi \in C^1_c(\Omega)$,

$$\int_{\Omega} \frac{\partial^{\mathsf{w}} u}{\partial x_i} \varphi \, \mathrm{d}\mathcal{L}^n = - \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} \, \mathrm{d}\mathcal{L}^n.$$

Exercise (weak gradients, bis; 5.4)

Weak gradients may be also characterized by means of Gauss-Green identity in gradient form. That is, let Ω be an open subset of \mathbb{R}^n and $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$; then u admits weak gradient $v \in L^1_{loc}(\mathcal{L}^n|_{\Omega}, \mathbb{R}^n)$ iff $\forall \varphi \in C^{\infty}_{c}(\Omega)$,

$$\int_{\Omega} \varphi \mathbf{v} \, \mathrm{d}\mathcal{L}^n = -\int_{\Omega} u \nabla \varphi \, \mathrm{d}\mathcal{L}^n. \tag{3}$$

Exercise (5.5)

Let Ω be an open subset of \mathbb{R}^n , $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ and $1 \leq i \leq n$. If there exists $\frac{\partial^w u}{\partial x_i} \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$, then $\forall \varphi \in C^1_{\mathsf{c}}(\Omega)$,

$$\int_{\Omega} \frac{\partial^{\mathsf{w}} u}{\partial x_i} \varphi \, \mathrm{d}\mathcal{L}^n = - \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} \, \mathrm{d}\mathcal{L}^n.$$

Weak derivatives; 5.7

Proposition (vanishing weak gradient)

Let $\Omega \subset \mathbb{R}^n$ be a connected open set and $u \in L^1_{loc}(\mathcal{L}^n|_{\Omega})$ such that $\forall \varphi \in C^{\infty}_{c}(\Omega), \int_{\Omega} u \nabla \varphi \, d\mathcal{L}^n = 0$. Then u coincides \mathcal{L}^n -a.e. with a constant function.

October 21, 2019

Sobolev spaces and functions

Definition (5.8)

Let Ω be an open subset of \mathbb{R}^n , $u : \Omega \to \mathbb{R}$ and $1 \le p \le \infty$. We say that

- *u* is a (1, p)-*Sobolev function* if $u \in L^{p}(\mathcal{L}^{n}|_{\Omega})$ and, $\forall 1 \leq i \leq n, u$ has weak partial derivatives $\frac{\partial u}{\partial x_{i}} \in L^{p}(\mathcal{L}^{n}|_{\Omega})$. Notation: $W^{1,p}(\Omega)$.
- ② *u* is a *local* (1, *p*)-*Sobolev function* if $u \in L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$ and, $\forall 1 \leq i \leq n, u$ has weak partial derivatives $\frac{\partial u}{\partial x_{i}} \in L^{p}_{loc}(\mathcal{L}^{n}|_{\Omega})$. Notation: $W^{1,p}_{loc}(\Omega)$.

Image: A matrix and a matrix

October 21, 2019

Notation

Let $u : \mathbb{R}^n \to \mathbb{R}$ and $\tau \in \mathbb{S}^{n-1}$. For $h \in \mathbb{R} \setminus \{0\}$, we denote by $\tau_h u : \mathbb{R}^n \to \mathbb{R}$ the incremental ratio of u in the direction τ :

$$\tau_h u(x) := \frac{u(x+h\tau)-u(x)}{h}$$

By the invariance of the Lebesgue measure under translations, if $u \in L^1_{loc}(\mathbb{R}^n)$, $v : \mathbb{R}^n \to \mathbb{R}$ bounded \mathcal{L}^n -measurable with compact support and $h \in \mathbb{R} \setminus \{0\}$:

$$\int u(x+h\tau)v(x)\,\mathrm{d}\mathcal{L}^n(x) = \int u(x)v(x-h\tau)\,\mathrm{d}\mathcal{L}^n(x),$$

hence

$$\int \tau_h u(x) v(x) \, \mathrm{d}\mathcal{L}^n(x) = - \int u(x) \tau_{-h} v(x) \, \mathrm{d}\mathcal{L}^n(x). \tag{4}$$

October 21, 2019

Notation

Let $u : \mathbb{R}^n \to \mathbb{R}$ and $\tau \in \mathbb{S}^{n-1}$. For $h \in \mathbb{R} \setminus \{0\}$, we denote by $\tau_h u : \mathbb{R}^n \to \mathbb{R}$ the incremental ratio of u in the direction τ :

$$\tau_h u(x) := \frac{u(x+h\tau)-u(x)}{h}.$$

By the invariance of the Lebesgue measure under translations, if $u \in L^1_{loc}(\mathbb{R}^n)$, $v : \mathbb{R}^n \to \mathbb{R}$ bounded \mathcal{L}^n -measurable with compact support and $h \in \mathbb{R} \setminus \{0\}$:

$$\int u(x+h\tau)v(x)\,\mathrm{d}\mathcal{L}^n(x)=\int u(x)v(x-h\tau)\,\mathrm{d}\mathcal{L}^n(x),$$

hence

$$\int \tau_h u(x) v(x) \, \mathrm{d}\mathcal{L}^n(x) = -\int u(x) \tau_{-h} v(x) \, \mathrm{d}\mathcal{L}^n(x). \tag{4}$$

Proposition (5.9)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a Lipschitz function. Then $f \in W^{1,\infty}_{loc}(\mathbb{R}^n)$.

Gláucio Terra (IME - USP)

October 21, 2019

3

Fréchet Differentiability

Let $U \subset \mathbb{R}^n$ open and $f : U \to \mathbb{R}$. Recall that f is differentiable at $x_0 \in U$ in the sense of Fréchet if there exists $A \in L(\mathbb{R}^n, \mathbb{R})$ such that

$$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)-A\cdot h}{\|h\|}=0.$$

If that is the case, *f* has first order partial derivatives at x_0 , *A* satisfying the above condition is unique and coincides with $\langle \nabla f(x_0), \cdot \rangle : \mathbb{R}^n \to \mathbb{R}$; *A* is called *Fréchet derivative* of *f* at x_0 and denoted by $Df(x_0)$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

October 21, 2019

Fréchet Differentiability

Let $U \subset \mathbb{R}^n$ open and $f : U \to \mathbb{R}$. Recall that f is differentiable at $x_0 \in U$ in the sense of Fréchet if there exists $A \in L(\mathbb{R}^n, \mathbb{R})$ such that

$$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)-A\cdot h}{\|h\|}=0.$$

If that is the case, *f* has first order partial derivatives at x_0 , *A* satisfying the above condition is unique and coincides with $\langle \nabla f(x_0), \cdot \rangle : \mathbb{R}^n \to \mathbb{R}$; *A* is called *Fréchet derivative* of *f* at x_0 and denoted by $Df(x_0)$.

October 21, 2019

Exercise (characterization of Fréchet differentiability; 5.10)

Let $U \subset \mathbb{R}^n$ open and $f : U \to \mathbb{R}$. Then f is differentiable at $x_0 \in U$ iff there exists $A \in L(\mathbb{R}^n, \mathbb{R})$ such that

$$\lim_{t\to 0^+}\frac{f(x_0+tv)-f(x_0)}{t}=A\cdot v$$

uniformly in $v \in \mathbb{S}^{n-1}$. If so $A = Df(x_0)$.

1

Exercise (weak gradients under scaling and translations; 5.11)

Let $x \in \mathbb{R}^n$, h > 0, $T : \mathbb{R}^n \to \mathbb{R}^n$ given by $\tau \mapsto x + h\tau$ and $u \in W^{1,1}_{loc}(\mathbb{R}^n)$. Then $u \circ T \in W^{1,1}_{loc}(\mathbb{R}^n)$ and $\nabla^w(u \circ T)(\tau) = h \nabla^w u(x + h\tau)$.

Exercise (characterization of Fréchet differentiability; 5.10)

Let $U \subset \mathbb{R}^n$ open and $f : U \to \mathbb{R}$. Then f is differentiable at $x_0 \in U$ iff there exists $A \in L(\mathbb{R}^n, \mathbb{R})$ such that

$$\lim_{t\to 0^+}\frac{f(x_0+tv)-f(x_0)}{t}=A\cdot v$$

uniformly in $v \in \mathbb{S}^{n-1}$. If so $A = Df(x_0)$.

Exercise (weak gradients under scaling and translations; 5.11)

Let $x \in \mathbb{R}^n$, h > 0, $T : \mathbb{R}^n \to \mathbb{R}^n$ given by $\tau \mapsto x + h\tau$ and $u \in W^{1,1}_{loc}(\mathbb{R}^n)$. Then $u \circ T \in W^{1,1}_{loc}(\mathbb{R}^n)$ and $\nabla^w(u \circ T)(\tau) = h \nabla^w u(x + h\tau)$.

Theorem (Rademacher's theorem; 5.12)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be Lipschitz. Then f is differentiable in the sense of Fréchet \mathcal{L}^n -a.e. and $\nabla f = \nabla^w f \mathcal{L}^n$ -a.e.

Exercise (5.13)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be Lipschitz. The set D_f of points where f is differentiable in the sense of Fréchet is Borel measurable and $Df : D_f \to L(\mathbb{R}^n, \mathbb{R})$ is Borelian.

Corollary (5.14)

If $\Omega \subset \mathbb{R}^n$ open and $f : \Omega \to \mathbb{R}$ is locally Lipschitz, then f is $\mathcal{L}^n|_{\Omega}$ -a.e. differentiable in the sense of Fréchet.

Theorem (Rademacher's theorem; 5.12)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be Lipschitz. Then f is differentiable in the sense of Fréchet \mathcal{L}^n -a.e. and $\nabla f = \nabla^w f \mathcal{L}^n$ -a.e.

Exercise (5.13)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be Lipschitz. The set D_f of points where f is differentiable in the sense of Fréchet is Borel measurable and $Df : D_f \to L(\mathbb{R}^n, \mathbb{R})$ is Borelian.

Corollary (5.14)

If $\Omega \subset \mathbb{R}^n$ open and $f : \Omega \to \mathbb{R}$ is locally Lipschitz, then f is $\mathcal{L}^n|_{\Omega}$ -a.e. differentiable in the sense of Fréchet.

Theorem (Rademacher's theorem; 5.12)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be Lipschitz. Then f is differentiable in the sense of Fréchet \mathcal{L}^n -a.e. and $\nabla f = \nabla^w f \mathcal{L}^n$ -a.e.

Exercise (5.13)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be Lipschitz. The set D_f of points where f is differentiable in the sense of Fréchet is Borel measurable and $Df : D_f \to L(\mathbb{R}^n, \mathbb{R})$ is Borelian.

Corollary (5.14)

If $\Omega \subset \mathbb{R}^n$ open and $f : \Omega \to \mathbb{R}$ is locally Lipschitz, then f is $\mathcal{L}^n|_{\Omega}$ -a.e. differentiable in the sense of Fréchet.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

October 21, 2019

Corollary (5.16)

If $\Omega \subset \mathbb{R}^n$ open and $f : \Omega \to \mathbb{R}^m$ is locally Lipschitz, then f is $\mathcal{L}^n|_{\Omega}$ -a.e. differentiable in the sense of Fréchet.

Corollary (5.17)

- Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be locally Lipschitz and $Z_f := \{x \in \mathbb{R}^n \mid f(x) = 0\}$. Then Df(x) = 0 for \mathcal{L}^n -a.e. $x \in Z_f$.
- ② Let $f, g : \mathbb{R}^n \to \mathbb{R}^n$ be locally Lipschitz and $Y := \{x \in \mathbb{R}^n \mid g(f(x)) = x\}$. Then $Dg(f(x)) \circ Df(x) = id_{\mathbb{R}^n}$ for \mathcal{L}^n -a.e. $x \in Y$.

Corollary (5.16)

If $\Omega \subset \mathbb{R}^n$ open and $f : \Omega \to \mathbb{R}^m$ is locally Lipschitz, then f is $\mathcal{L}^n|_{\Omega}$ -a.e. differentiable in the sense of Fréchet.

Corollary (5.17)

- Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be locally Lipschitz and $Z_f := \{x \in \mathbb{R}^n \mid f(x) = 0\}$. Then $\mathsf{D}f(x) = 0$ for \mathcal{L}^n -a.e. $x \in Z_f$.
- 2 Let $f, g : \mathbb{R}^n \to \mathbb{R}^n$ be locally Lipschitz and $Y := \{x \in \mathbb{R}^n \mid g(f(x)) = x\}$. Then $Dg(f(x)) \circ Df(x) = id_{\mathbb{R}^n}$ for \mathcal{L}^n -a.e. $x \in Y$.

October 21, 2019

Definition (5.18)

Let V and W be finite-dimensional Hilbert spaces.

- A linear map $O: V \to W$ is called an *orthogonal injection* if $\forall x, y \in V, \langle O \cdot x, O \cdot y \rangle = \langle x, y \rangle$. Notation: O(V, W).
- ② Let $T : V \to W$ be a linear map. We denote by T^* the *adjoint* of T with respect to the inner products on V and W. If V = W and $T = T^*$, we call *T* self-adjoint or symmetric (notation: Sym(V)).
- ^③ We say that a linear map $T : V \to V$ is *positive* if it is symmetric and $\forall x \in V, \langle T \cdot x, x \rangle \ge 0$.

October 21, 2019

Polar Decomposition

Theorem (5.20)

Let V and W be finite-dimensional Hilbert spaces and L : V \rightarrow W be a linear map.

• If dim V \leq dim W, there exists a positive $S \in Sym(V)$ and $O \in O(V, W)$ such that

$$L = O \circ S.$$

Moreover, in the above decomposition, $S \in Sym(V)$ positive is unique, and so is $O \in O(V, W)$ if L is injective.

2 If dim V ≥ dim W, there exists a positive S ∈ Sym(W) and O ∈ O(W, V) such that

 $L=S\circ O^*.$

Moreover, in the above decomposition, $S \in Sym(W)$ positive is unique, and so is $O \in O(W, V)$ if L is surjective.

Polar Decomposition

Theorem (5.20)

Let V and W be finite-dimensional Hilbert spaces and $L: V \to W$ be a linear map.

• If dim V \leq dim W, there exists a positive $S \in Sym(V)$ and $O \in O(V, W)$ such that

$$L = O \circ S.$$

Moreover, in the above decomposition, $S \in Sym(V)$ positive is unique, and so is $O \in O(V, W)$ if L is injective.

② If dim V ≥ dim W, there exists a positive $S \in Sym(W)$ and $O \in O(W, V)$ such that

$$L = S \circ O^*.$$

Moreover, in the above decomposition, $S \in Sym(W)$ positive is unique, and so is $O \in O(W, V)$ if L is surjective.

Jacobian of a linear map

Definition (Jacobian of a linear map; 5.21)

Let V and W be finite-dimensional Hilbert spaces and $L \in L(V, W)$, with polar decomposition $O \circ S$ if dim V \leq dim W or $S \circ O^*$ if dim V > dim W. We define the *Jacobian* of *L* by:

$$\llbracket L \rrbracket := |\det S|.$$

Remark (5.22)

- Note that [L] is well-defined, by the uniqueness of S in the polar decomposition.
- It is clear that

$$\llbracket L \rrbracket = \llbracket L^* \rrbracket = \begin{cases} \sqrt{\det L^* L} & \text{ if } \dim \mathsf{V} \leq \dim \mathsf{W} \\ \sqrt{\det L L^*} & \text{ if } \dim \mathsf{V} \geq \dim \mathsf{W}. \end{cases}$$

Jacobian of a linear map

Definition (Jacobian of a linear map; 5.21)

Let V and W be finite-dimensional Hilbert spaces and $L \in L(V, W)$, with polar decomposition $O \circ S$ if dim V \leq dim W or $S \circ O^*$ if dim V > dim W. We define the *Jacobian* of *L* by:

$$\llbracket L \rrbracket := |\det S|.$$

Remark (5.22)

- Note that [L] is well-defined, by the uniqueness of S in the polar decomposition.
- It is clear that

$$\llbracket L \rrbracket = \llbracket L^* \rrbracket = \begin{cases} \sqrt{\det L^* L} & \text{ if } \dim \mathsf{V} \leq \dim \mathsf{W} \\ \sqrt{\det L L^*} & \text{ if } \dim \mathsf{V} \geq \dim \mathsf{W}. \end{cases}$$

Binet-Cauchy formula

Theorem (5.23)

Let V and W be finite-dimensional Hilbert spaces with $n = \dim V \le \dim W = m$. If $L \in L(V, W)$, then

$$\llbracket L \rrbracket = \sqrt{\sum_{B \in \mu(m,n)} (\det B)^2},$$

where $\mu(m, n)$ is the set of $n \times n$ minors in some matrix representation of L with respect to orthonormal bases on V and W.

October 21, 2019

Jacobian of Lipschitz maps

Definition (5.25)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be Lipschitz. We define, for each point *x* where *f* is differentiable, the *Jacobian* of *f* at *x*,

$$\mathsf{J}f(x) := \llbracket \mathsf{D}f(x) \rrbracket.$$

Note that J*f* is a Borelian function defined on the complement of a Borel subset of \mathbb{R}^n of \mathcal{L}^n -null measure.

October 21, 2019

Notation

For a Lipschitz map $f : \mathbb{R}^n \to \mathbb{R}^m$, we will use henceforth the following notation:

•
$$D_f := \{x \in \mathbb{R}^n \mid \exists Df(x)\};$$

• $J_f^+ := \{x \in D_f \mid Jf(x) > 0\};$
• $J_f^0 := \{x \in D_f \mid Jf(x) = 0\}.$

< ロ > < 同 > < 回 > < 回 >

October 21, 2019

Lemma (5.27)

If $L : \mathbb{R}^n \to \mathbb{R}^m$ is linear and $n \leq m$, then $\forall A \subset \mathbb{R}^n$,

 $\mathcal{H}^n(L(\mathcal{A})) = \llbracket L \rrbracket \mathcal{L}^n(\mathcal{A}).$

Exercise (5.28)

Let $T \in L(\mathbb{R}^n, \mathbb{R}^m)$, $n \leq m$.

- 1 If $R \in L(\mathbb{R}^n)$, then $\llbracket T \circ R \rrbracket = \llbracket T \rrbracket \llbracket R \rrbracket$.
- **2** $[T] \le ||T||^n$. If T is 1-1, then $||T^{-1}||^{-n} \le [[T]] \le ||T||^n$.
- **③** If $m \le k$ and $R \in L(\mathbb{R}^m, \mathbb{R}^k)$, then $[R \circ T]] \le ||R||^n [[T]]$. If R is 1-1, then $||R^{-1}||^{-n} [[T]] \le [[R \circ T]] \le ||R||^n [[T]]$.

Lemma (5.27)

If $L : \mathbb{R}^n \to \mathbb{R}^m$ is linear and $n \leq m$, then $\forall A \subset \mathbb{R}^n$,

 $\mathcal{H}^{n}(L(A)) = \llbracket L \rrbracket \mathcal{L}^{n}(A).$ (5)

Exercise (5.28)

Let $T \in L(\mathbb{R}^n, \mathbb{R}^m)$, $n \leq m$.

- **1** If $R \in L(\mathbb{R}^n)$, then $[T \circ R] = [T][R]$.
- **2** $[T] \le ||T||^n$. If T is 1-1, then $||T^{-1}||^{-n} \le [|T|] \le ||T||^n$.
- ③ If $m \le k$ and $R \in L(\mathbb{R}^m, \mathbb{R}^k)$, then $[R \circ T] \le ||R||^n [T]$. If R is 1-1, then $||R^{-1}||^{-n} [T] \le [R \circ T] \le ||R||^n [T]$.

Lemma (5.27)

If $L : \mathbb{R}^n \to \mathbb{R}^m$ is linear and $n \leq m$, then $\forall A \subset \mathbb{R}^n$,

$$\mathcal{H}^{n}(L(A)) = \llbracket L \rrbracket \mathcal{L}^{n}(A).$$
(5)

Exercise (5.28)

Let $T \in L(\mathbb{R}^n, \mathbb{R}^m)$, $n \leq m$.

- If $R \in L(\mathbb{R}^n)$, then $\llbracket T \circ R \rrbracket = \llbracket T \rrbracket \llbracket R \rrbracket$.
- **2** $[T] \le ||T||^n$. If T is 1-1, then $||T^{-1}||^{-n} \le [[T]] \le ||T||^n$.
- ③ If $m \le k$ and $R \in L(\mathbb{R}^m, \mathbb{R}^k)$, then $[R \circ T] \le ||R||^n [T]$. If R is 1-1, then $||R^{-1}||^{-n} [T] \le [R \circ T] \le ||R||^n [T]$.

Lemma (5.27)

If $L : \mathbb{R}^n \to \mathbb{R}^m$ is linear and $n \leq m$, then $\forall A \subset \mathbb{R}^n$,

$$\mathcal{H}^{n}(L(A)) = \llbracket L \rrbracket \mathcal{L}^{n}(A).$$
(5)

Exercise (5.28)

Let $T \in L(\mathbb{R}^n, \mathbb{R}^m)$, $n \leq m$.

- **1** If $R \in L(\mathbb{R}^n)$, then $[T \circ R] = [T][R]$.
- **2** $[T] \le ||T||^n$. If T is 1-1, then $||T^{-1}||^{-n} \le [[T]] \le ||T||^n$.
- If $m \le k$ and $R \in L(\mathbb{R}^m, \mathbb{R}^k)$, then $[\![R \circ T]\!] \le \|R\|^n [\![T]\!]$. If R is 1-1, then $\|R^{-1}\|^{-n} [\![T]\!] \le [\![R \circ T]\!] \le \|R\|^n [\![T]\!]$.

Lemma (5.29)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be Lipschitz, with $n \le m$, and $A \subset \mathbb{R}^n \mathcal{L}^n$ -measurable. Then:

- f(A) is \mathcal{H}^n -measurable.
- 2 The function $N(f|_A) : \mathbb{R}^m \to [0,\infty]$ given by $y \mapsto \mathcal{H}^0(A \cap f^{-1}\{y\})$ is \mathcal{H}^n -measurable.

Definition (multiplicity function;5.30)

With the notation from the previous lemma, $N(f|_A) : y \mapsto \mathcal{H}^0(A \cap f^{-1}\{y\})$ is called the *multiplicity function* of $f|_A$.

◆ □ ▶ ↓ ■ ▶ ↓ ■ ▶

Remark (5.31)

If *X* is a complete, separable metric space, *Y* a Hausdorff topological space, μ a Borel measure on *Y* and $f : X \to Y$ continuous, then $\forall A \in \mathscr{B}_X$, f(A) is μ -measurable.

4 3 5 4 3

t-linearization

Definition (5.32)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a Lipschitz map with $n \le m$ and t > 1. We say that (E, S) is a *t*-linearization for f if $E \in \mathscr{B}_{\mathbb{R}^n}$ and $S \in \text{Sym}(n) \cap \text{GL}(\mathbb{R}^n)$ satisfy:

i) $\forall x \in E$, *f* is differentiable at *x* and Jf(x) > 0;

ii)
$$\forall x, y \in E, t^{-1} || S \cdot x - S \cdot y|| \le ||f(x) - f(y)|| \le t || S \cdot x - S \cdot y||;$$

iii) $\forall x \in E, \forall v \in \mathbb{R}^n, t^{-1} || S \cdot v|| \le || Df(x) \cdot v|| \le t || S \cdot v||.$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

October 21, 2019

t-linearization

Proposition (5.33)

Let $E \in \mathscr{B}_{\mathbb{R}^n}$ such that condition *i*) in the previous definition holds and $S \in \text{Sym}(n) \cap \text{GL}(\mathbb{R}^n)$. Then (E, S) is a *t*-linearization for *f* iff $f|_E$ is 1-1 with Lipschitz inverse and satisfies:

ii') Lip
$$f|_E \circ S^{-1} \leq t$$
 and Lip $S \circ (f|_E)^{-1} \leq t$;

iii)
$$\forall x \in E$$
, $\|\mathsf{D}f(x) \circ S^{-1}\| \le t$ and $\|S \circ \mathsf{D}f(x)^{-1}\| \le t$.

Corollary (5.34)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a Lipschitz map with $n \le m$, t > 1 and (E, S) a *t*-linearization for *f*. Then $\forall x \in E$,

$$t^{-n}|\det S| \le \mathsf{J}f(x) \le t^n |\det S|. \tag{6}$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

t-linearization

Proposition (5.33)

Let $E \in \mathscr{B}_{\mathbb{R}^n}$ such that condition *i*) in the previous definition holds and $S \in \text{Sym}(n) \cap \text{GL}(\mathbb{R}^n)$. Then (E, S) is a *t*-linearization for *f* iff $f|_E$ is 1-1 with Lipschitz inverse and satisfies:

ii') Lip
$$f|_E \circ S^{-1} \leq t$$
 and Lip $S \circ (f|_E)^{-1} \leq t$;

iii')
$$\forall x \in E$$
, $\|\mathsf{D}f(x) \circ S^{-1}\| \le t$ and $\|S \circ \mathsf{D}f(x)^{-1}\| \le t$.

Corollary (5.34)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a Lipschitz map with $n \le m$, t > 1 and (E, S) a *t*-linearization for *f*. Then $\forall x \in E$,

$$t^{-n}|\det S| \leq \mathsf{J}f(x) \leq t^{n}|\det S|.$$

-

イロト 不得 トイヨト イヨト

(6)

Federer's Lipschitz Linearization Theorem

Theorem (5.35)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a Lipschitz map with $n \le m, t > 1$ and $J_f^+ = \{x \in \mathbb{R}^n \mid \exists Df(x) \text{ and } Jf(x) > 0\}$. Then there exists a countable disjoint family $(E_k)_{k \in \mathbb{N}}$ in $\mathscr{B}_{\mathbb{R}^n}$ such that $J_f^+ = \bigcup_{k \in \mathbb{N}} E_k$ and, $\forall k \in \mathbb{N}$, there exists $S_k \in \text{Sym}(n) \cap \text{GL}(\mathbb{R}^n)$ such that (E_k, S_k) is a *t*-linearization for *f*.

Area Formula

Theorem (5.36)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be Lipschitz, $n \leq m$. Then, for all $A \in \sigma(\mathcal{L}^n)$,

$$\int_{\mathcal{A}} \mathsf{J} f \, \mathrm{d} \mathcal{L}^n = \int_{\mathbb{R}^m} \mathfrak{H}^0(\mathcal{A} \cap f^{-1}\{y\}) \, \mathrm{d} \mathfrak{H}^n(y).$$

Gláucio Terra (IME - USP)

イロト 不得 トイヨト イヨト 二日

October 21, 2019

Corollary (5.37)

If $f : \mathbb{R}^n \to \mathbb{R}^m$ is Lipschitz, $n \le m$, then for \mathcal{H}^n -a.e. $y \in \mathbb{R}^m$, $f^{-1}\{y\}$ is countable.

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Change of variables formula

Corollary (5.38)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be Lipschitz, $n \le m$. Then for all $g : \mathbb{R}^n \to \mathbb{R}$ \mathcal{L}^n -measurable with $g \ge 0$ or g summable,

$$\int_{\mathbb{R}^n} g \operatorname{Jf} \mathrm{d}\mathcal{L}^n = \int_{\mathbb{R}^m} \left(\sum_{x \in f^{-1}\{y\}} g(x) \right) \mathrm{d}\mathcal{H}^n(y).$$

Gláucio Terra (IME - USP)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

October 21, 2019

3

Change of variables formula

Corollary (5.39)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be Lipschitz 1-1, $n \le m$. • $\forall A \in \sigma(\mathcal{L}^n), \, \mathfrak{H}^n(f(A)) = \int_A Jf \, d\mathcal{L}^n$. In particular, we have

$$f_{\#}(\mathcal{L}^n \sqcup \mathsf{J}f) = \mathfrak{H}^n \sqcup \mathsf{Im}\, f$$

October 21, 2019

3

30/40

(equality as Borel regular outer measures on \mathbb{R}^m).

② If $g : \mathbb{R}^n \to \mathbb{R}$ is \mathcal{L}^n -measurable with $g \ge 0$ or $g \in L^1(\mathcal{L}^n)$, then $\int_{\text{Im } f} g \circ f^{-1} d\mathcal{H}^n = \int_{\mathbb{R}^n} g \operatorname{Jf} d\mathcal{L}^n$. In particular, if $g : \text{Im } f \to [0, \infty]$ is Borelian, then

$$\int_{\operatorname{Im} f} g \, \mathrm{d} \mathcal{H}^n = \int g \circ f \, \mathrm{J} f \, \mathrm{d} \mathcal{L}^n.$$

Change of variables formula

Corollary (5.39)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be Lipschitz 1-1, $n \le m$. • $\forall A \in \sigma(\mathcal{L}^n), \mathcal{H}^n(f(A)) = \int_A Jf \, d\mathcal{L}^n$. In particular, we have

$$f_{\#}(\mathcal{L}^n \sqcup \mathsf{J}f) = \mathcal{H}^n \sqcup \mathsf{Im} f \tag{7}$$

(equality as Borel regular outer measures on \mathbb{R}^m).

② If $g : \mathbb{R}^n \to \mathbb{R}$ is \mathcal{L}^n -measurable with $g \ge 0$ or $g \in L^1(\mathcal{L}^n)$, then $\int_{\text{Im } f} g \circ f^{-1} d\mathcal{H}^n = \int_{\mathbb{R}^n} g Jf d\mathcal{L}^n$. In particular, if $g : \text{Im } f \to [0, \infty]$ is Borelian, then

$$\int_{\operatorname{Im} f} g \, \mathrm{d} \mathcal{H}^n = \int g \circ f \, \mathrm{J} f \, \mathrm{d} \mathcal{L}^n. \tag{8}$$

Applications of the area formula

Example (5.40)

(length of a curve) Let −∞ < a < b < ∞ and γ : [a, b] → ℝ^m be Lipschitz 1-1. We may extend γ to a Lipschitz function on ℝ, which we still denote by γ. Then

$$\int_{a}^{b} \|\gamma'(t)\| \,\mathrm{d}t = \mathcal{H}^{1}\big(\gamma([a,b])\big).$$

(area of a graph) Let g : Rⁿ → R be Lipschitz and f : Rⁿ → Rⁿ⁺¹ be given by f(x) := (x, g(x)).
 For each U ⊂ Rⁿ open, the "surface area" of the graph of g over

 $U, \Gamma = \Gamma(g; U) := \{ (x, g(x)) \mid x \in U \} = f(U), \text{ is given by:}$

$$\mathfrak{H}^n(\Gamma) = \int_U \mathrm{J} f \, \mathrm{d} \mathcal{L}^n = \int_U \sqrt{1 + \|\nabla g(x)\|^2} \, \mathrm{d} x.$$

Applications of the area formula

Example (5.40)

(length of a curve) Let −∞ < a < b < ∞ and γ : [a, b] → ℝ^m be Lipschitz 1-1. We may extend γ to a Lipschitz function on ℝ, which we still denote by γ. Then

$$\int_{a}^{b} \|\gamma'(t)\| \,\mathrm{d}t = \mathcal{H}^{1}\big(\gamma([a,b])\big).$$

(area of a graph) Let $g : \mathbb{R}^n \to \mathbb{R}$ be Lipschitz and $f : \mathbb{R}^n \to \mathbb{R}^{n+1}$ be given by f(x) := (x, g(x)). For each $U \subset \mathbb{R}^n$ open, the "surface area" of the graph of g over $U, \Gamma = \Gamma(g; U) := \{(x, g(x)) \mid x \in U\} = f(U), \text{ is given by:}$

$$\mathcal{H}^n(\Gamma) = \int_U \mathrm{J} f \, \mathrm{d} \mathcal{L}^n = \int_U \sqrt{1 + \|\nabla g(x)\|^2} \, \mathrm{d} x.$$

Area Formula for locally Lipschitz maps

Exercise (5.41)

The area formula and its corollaries remain valid for locally Lipschitz maps defined on open subsets of \mathbb{R}^n .

< ロ > < 同 > < 回 > < 回 >

October 21, 2019

Hausdorff dimension and Lebesgue measure of a k-dimensional Riemannian submanifold of \mathbb{R}^n

Exercise (5.42)

For any smooth embedded k-Riemannian submanifold $M \subset \mathbb{R}^n$, the measure induced by the Riemannian metric on M (i.e. the Lebesgue measure of M) coincides with the trace $\mathcal{H}^k|_M$. Conclude that \mathcal{H} -dim M = k and, if M is closed (i.e. topologically closed), $\mathcal{H}^k \sqcup M$ is a Radon measure on \mathbb{R}^n .

4 E N 4 E N

October 21, 2019

Theorem (5.48)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be Lipschitz, $n \ge m$. Then, for each \mathcal{L}^n -measurable $A \subset \mathbb{R}^n$,

$$\int_{\mathcal{A}} \operatorname{J} f \, \mathrm{d} \mathcal{L}^n = \int_{\mathbb{R}^m} \mathcal{H}^{n-m}(\mathcal{A} \cap f^{-1}\{y\}) \, \mathrm{d} \mathcal{L}^m(y). \tag{9}$$

イロト イポト イヨト イヨト

October 21, 2019

-

Remark (5.49)

- If $f : \mathbb{R}^n \equiv \mathbb{R}^m \times \mathbb{R}^{n-m} \to \mathbb{R}^m$ is the projection on the first factor, we have $Jf \equiv 1$ and the coarea formula reduces to Fubini-Tonelli's theorem.
- ② If n = m, the coarea formula coincides with the area formula 22.
- If we take the Borel set $A := (\mathbb{R}^n \setminus D_f) \cup J_f^0 = \{x \in \mathbb{R}^n \mid \nexists Df(x) \text{ or } Jf(x) = 0\}$ in the coarea formula, we conclude that $\mathcal{H}^{n-m}(A \cap f^{-1}\{y\}) = 0$ for \mathcal{L}^m -a.e. $y \in \mathbb{R}^m$.

That may be interpreted as a measure theoretic version of Morse-Sard's theorem: \mathcal{L}^m -a.e. $y \in \mathbb{R}^m$ is a measure theoretic "regular value" of f, in the sense that, up to \mathcal{H}^{n-m} null sets, $f^{-1}{y}$ lies in the set J_f^+ of points where Df has maximal rank.

Remark (5.49)

- If $f : \mathbb{R}^n \equiv \mathbb{R}^m \times \mathbb{R}^{n-m} \to \mathbb{R}^m$ is the projection on the first factor, we have $Jf \equiv 1$ and the coarea formula reduces to Fubini-Tonelli's theorem.
- 2 If n = m, the coarea formula coincides with the area formula 22.
- If we take the Borel set $A := (\mathbb{R}^n \setminus D_f) \cup J_f^0 = \{x \in \mathbb{R}^n \mid \nexists Df(x) \text{ or } Jf(x) = 0\}$ in the coarea formula, we conclude that $\mathcal{H}^{n-m}(A \cap f^{-1}\{y\}) = 0$ for \mathcal{L}^m -a.e. $y \in \mathbb{R}^m$.

That may be interpreted as a measure theoretic version of Morse-Sard's theorem: \mathcal{L}^m -a.e. $y \in \mathbb{R}^m$ is a measure theoretic "regular value" of f, in the sense that, up to \mathcal{H}^{n-m} null sets, $f^{-1}\{y\}$ lies in the set J_f^+ of points where Df has maximal rank.

Remark (5.49)

- If $f : \mathbb{R}^n \equiv \mathbb{R}^m \times \mathbb{R}^{n-m} \to \mathbb{R}^m$ is the projection on the first factor, we have $Jf \equiv 1$ and the coarea formula reduces to Fubini-Tonelli's theorem.
- If n = m, the coarea formula coincides with the area formula 22.
- ③ If we take the Borel set $A := (\mathbb{R}^n \setminus D_f) \cup J_f^0 = \{x \in \mathbb{R}^n \mid \nexists Df(x) \text{ or } Jf(x) = 0\}$ in the coarea formula, we conclude that $\mathcal{H}^{n-m}(A \cap f^{-1}\{y\}) = 0$ for \mathcal{L}^m -a.e. $y \in \mathbb{R}^m$.

That may be interpreted as a measure theoretic version of Morse-Sard's theorem: \mathcal{L}^m -a.e. $y \in \mathbb{R}^m$ is a measure theoretic "regular value" of f, in the sense that, up to \mathcal{H}^{n-m} null sets, $f^{-1}\{y\}$ lies in the set J_f^+ of points where Df has maximal rank.

-

ヘロア 人間 アメ 回ア 人口 ア

Remark (5.49)

- If $f : \mathbb{R}^n \equiv \mathbb{R}^m \times \mathbb{R}^{n-m} \to \mathbb{R}^m$ is the projection on the first factor, we have $Jf \equiv 1$ and the coarea formula reduces to Fubini-Tonelli's theorem.
- If n = m, the coarea formula coincides with the area formula 22.
- If we take the Borel set
 A := (ℝⁿ \ D_f) ∪ J⁰_f = {x ∈ ℝⁿ | ∄Df(x) or Jf(x) = 0} in the coarea formula, we conclude that ℋ^{n-m}(A ∩ f⁻¹{y}) = 0 for ℒ^m-a.e. y ∈ ℝ^m.
 That may be interpreted as a measure theoretic version of Morse-Sard's theorem: ℒ^m-a.e. y ∈ ℝ^m is a measure theoretic "regular value" of *f*, in the sense that, up to ℋ^{n-m} null sets, f⁻¹{y} lies in the set J⁺_f of points where D*f* has maximal rank.

3

イロト 不得 トイヨト イヨト

Corollary (curvilinear Fubini-Tonelli's theorem; 5.50)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be Lipschitz, $n \ge m$. Then for all $g : \mathbb{R}^n \to \mathbb{R}$ \mathcal{L}^n -measurable with $g \ge 0$ or g summable,

$$\int_{\mathbb{R}^n} g \operatorname{Jf} d\mathcal{L}^n = \int_{\mathbb{R}^m} \left(\int_{f^{-1}\{y\}} g(x) \, d\mathcal{H}^{n-m}(x) \right) d\mathcal{L}^m(y), \qquad (10)$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

October 21, 2019

36/40

meaning that the iterated integrals in second member make sense and the equality holds.

Exercise (Coarea Formula for locally Lipschitz maps; 5.51)

The coarea formula and its corollary remain valid for locally Lipschitz maps defined on open subsets of \mathbb{R}^n .

4 D K 4 B K 4 B K 4 B K

Applications of the Coarea Formula

Proposition (polar coordinates; 5.52)

If $g : \mathbb{R}^n \to \mathbb{R}$ is \mathcal{L}^n -measurable and $g \ge 0$ or $g \in L^1(\mathcal{L}^n)$, then

$$\int_{\mathbb{R}^n} g \, \mathrm{d}\mathcal{L}^n = \int_0^\infty \left(\int_{\partial \mathbb{B}(0,r)} g \, \mathrm{d}\mathcal{H}^{n-1} \right) \mathrm{d}r. \tag{11}$$

Proposition (5.53)

Let $\Omega \subset \mathbb{R}^n$ open and $f : \Omega \to \mathbb{R}$ be locally Lipschitz. Then

$$\int_{\Omega} \|\nabla f\| \, \mathrm{d}\mathcal{L}^n = \int_{-\infty}^{\infty} \mathcal{H}^{n-1}(\{f=t\}) \, \mathrm{d}t.$$

Applications of the Coarea Formula

Proposition (polar coordinates; 5.52)

If $g : \mathbb{R}^n \to \mathbb{R}$ is \mathcal{L}^n -measurable and $g \ge 0$ or $g \in L^1(\mathcal{L}^n)$, then

$$\int_{\mathbb{R}^n} g \, \mathrm{d}\mathcal{L}^n = \int_0^\infty \left(\int_{\partial \mathbb{B}(0,r)} g \, \mathrm{d}\mathcal{H}^{n-1} \right) \mathrm{d}r. \tag{11}$$

October 21, 2019

38/40

Proposition (5.53)

Let $\Omega \subset \mathbb{R}^n$ open and $f : \Omega \to \mathbb{R}$ be locally Lipschitz. Then

$$\int_{\Omega} \|\nabla f\| \, \mathrm{d}\mathcal{L}^n = \int_{-\infty}^{\infty} \mathcal{H}^{n-1}(\{f=t\}) \, \mathrm{d}t.$$

Gauss-Green theorem for Lipschitz epigraphs

Theorem (6.45)

Let $n \ge 2$, $f : \mathbb{R}^{n-1} \to \mathbb{R}$ Lipschitz and $\Omega := epi_S f$ (hence $\partial \Omega = gr f$). Then

- i) $\mathfrak{H}^{n-1} \sqcup \partial \Omega$ is a Radon measure on \mathbb{R}^n ;
- ii) there exists a Borel measurable unit vector field $\nu : \partial \Omega \to \mathbb{R}^n$, unique up to $\mathcal{H}^{n-1} \sqcup \partial \Omega$ -null sets, such that, for all $\varphi \in C^1_c(\mathbb{R}^n)$,

$$\int_{\Omega} \nabla \varphi \, \mathrm{d}\mathcal{L}^n = \int_{\partial \Omega} \varphi \nu \, \mathrm{d}\mathcal{H}^{n-1}, \qquad (12)$$

or, equivalently, such that, for all $\varphi \in C^1_c(\mathbb{R}^n, \mathbb{R}^n)$,

$$\int_{\Omega} \operatorname{div} \, \varphi \, \mathrm{d}\mathcal{L}^n = \int_{\partial \Omega} \varphi \cdot \nu \, \mathrm{d}\mathcal{H}^{n-1}. \tag{13}$$

4 D K 4 B K 4 B K 4 B K

Definition

With the notation from the previous theorem, ν is called *outer unit normal* to $\partial\Omega$.

Remark

Up to $\mathcal{H}^n \sqcup \partial \Omega$ -null sets, on each point point x = (x', f(x')) in $\partial \Omega = \text{gr } f$ whose abscissa x' is a differentiability point of f,

$$\nu(x) = \frac{\left(\nabla f(x'), -1\right)}{\sqrt{1 + \|\nabla f(x')\|^2}}.$$
(14)

October 21, 2019

40/40

In particular, if f is C¹, ν coincides with the usual outer unit normal from Differential Geometry.

Definition

With the notation from the previous theorem, ν is called *outer unit normal* to $\partial\Omega$.

Remark

Up to $\mathcal{H}^n \sqcup \partial \Omega$ -null sets, on each point point x = (x', f(x')) in $\partial \Omega = \text{gr } f$ whose abscissa x' is a differentiability point of f,

$$\nu(x) = \frac{\left(\nabla f(x'), -1\right)}{\sqrt{1 + \|\nabla f(x')\|^2}}.$$
(14)

< ロ > < 同 > < 回 > < 回 >

October 21, 2019

40/40

In particular, if f is C¹, ν coincides with the usual outer unit normal from Differential Geometry.