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Extensions of Lipschitz maps

Extensions of Lipschitz maps

Recall: Lipschitz constant
Given metric spaces X and Y and f : X → Y Lipschitz,

Lip f := sup{
dY
(
f (x), f (y)

)
dX (x , y)

| x 6= y ∈ X},

is called Lipschitz constant of f .

Theorem (McShane’s lemma; 5.1)

Let A ⊂ Rn and f : A→ R a Lipschitz map. Define F : Rn → R by:

F (x) := inf{f (a) + Lip f · ‖x − a‖ | a ∈ A}. (1)

Then F extends f and Lip F = Lip f .
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Extensions of Lipschitz maps

Extensions of Lipschitz maps

Theorem (Kirszbraun’s theorem; 5.2)

Let A ⊂ Rn and f : A→ Rm a Lipschitz map. Then there exists a
Lipschitz extension f : Rn → Rm of f such that Lip F = Lip f .

Gláucio Terra (IME - USP) GMT October 21, 2019 3 / 40



Weak derivaties

Weak derivatives

Motivation

If Ω is an open subset of Rn and X ∈ C1
c(Ω,Rn),∫

Ω
div X dLn = 0.

If u ∈ C1(Ω) and ϕ ∈ C1
c(Ω,Rn), the previous equality applied to

X = uϕ yields the elementary Gauss-Green’s identity in divergence
form: ∫

Ω
〈∇u, ϕ〉 dLn = −

∫
Ω

u div ϕ dLn.
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Weak derivaties

Weak derivatives

Definition (weak derivatives and gradients; 5.3)

Let Ω be an open subset of Rn and u ∈ L1
loc(Ln|Ω). We say that:

1 For 1 ≤ i ≤ n, u has weak i-th partial derivative vi ∈ L1
loc(Ln|Ω) if

∀ϕ ∈ C∞c (Ω), ∫
Ω

viϕ dLn = −
∫

Ω
u
∂ϕ

∂xi
dLn.

2 u has weak gradient v ∈ L1
loc(Ln|Ω,Rn) if ∀ϕ ∈ C∞c (Ω,Rn),∫

Ω
〈v , ϕ〉 dLn = −

∫
Ω

u div ϕ dLn. (2)
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Weak derivaties

Weak derivatives

Exercise (weak gradients, bis; 5.4)

Weak gradients may be also characterized by means of Gauss-Green
identity in gradient form. That is, let Ω be an open subset of Rn and
u ∈ L1

loc(Ln|Ω); then u admits weak gradient v ∈ L1
loc(Ln|Ω,Rn)

iff ∀ϕ ∈ C∞c (Ω), ∫
Ω
ϕv dLn = −

∫
Ω

u∇ϕ dLn. (3)

Exercise (5.5)

Let Ω be an open subset of Rn, u ∈ L1
loc(Ln|Ω) and 1 ≤ i ≤ n. If there

exists ∂wu
∂xi
∈ L1

loc(Ln|Ω), then ∀ϕ ∈ C1
c(Ω),∫

Ω

∂wu
∂xi

ϕ dLn = −
∫

Ω
u
∂ϕ

∂xi
dLn.
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Weak derivaties

Weak derivatives; 5.7

Proposition (vanishing weak gradient)

Let Ω ⊂ Rn be a connected open set and u ∈ L1
loc(Ln|Ω) such that

∀ϕ ∈ C∞c (Ω),
∫

Ω u∇ϕ dLn = 0. Then u coincides Ln-a.e. with a
constant function.
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Rademacher’s Theorem

Sobolev spaces and functions

Definition (5.8)

Let Ω be an open subset of Rn, u : Ω→ R and 1 ≤ p ≤ ∞. We say that

1 u is a (1,p)-Sobolev function if u ∈ Lp(Ln|Ω) and, ∀1 ≤ i ≤ n, u
has weak partial derivatives ∂u

∂xi
∈ Lp(Ln|Ω). Notation: W1,p(Ω).

2 u is a local (1,p)-Sobolev function if u ∈ Lp
loc(Ln|Ω) and,

∀1 ≤ i ≤ n, u has weak partial derivatives ∂u
∂xi
∈ Lp

loc(Ln|Ω).

Notation: W1,p
loc (Ω).
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Rademacher’s Theorem

Rademacher’s Theorem

Notation

Let u : Rn → R and τ ∈ Sn−1. For h ∈ R \ {0}, we denote by
τhu : Rn → R the incremental ratio of u in the direction τ :

τhu(x) :=
u(x + hτ)− u(x)

h
.

By the invariance of the Lebesgue measure under translations, if
u ∈ L1

loc(Rn), v : Rn → R bounded Ln-measurable with compact
support and h ∈ R \ {0}:∫

u(x + hτ)v(x) dLn(x) =

∫
u(x)v(x − hτ) dLn(x),

hence ∫
τhu(x)v(x) dLn(x) = −

∫
u(x)τ−hv(x) dLn(x). (4)
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Rademacher’s Theorem

Rademacher’s Theorem

Proposition (5.9 )

Let f : Rn → R be a Lipschitz function. Then f ∈W1,∞
loc (Rn).
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Rademacher’s Theorem

Rademacher’s Theorem

Fréchet Differentiability

Let U ⊂ Rn open and f : U → R. Recall that f is differentiable at
x0 ∈ U in the sense of Fréchet if there exists A ∈ L(Rn,R) such that

lim
h→0

f (x0 + h)− f (x0)− A · h
‖h‖

= 0.

If that is the case, f has first order partial derivatives at x0, A satisfying
the above condition is unique and coincides with 〈∇f (x0), ·〉 : Rn → R;
A is called Fréchet derivative of f at x0 and denoted by Df (x0).
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Rademacher’s Theorem

Rademacher’s Theorem

Exercise (characterization of Fréchet differentiability; 5.10)

Let U ⊂ Rn open and f : U → R. Then f is differentiable at x0 ∈ U
iff there exists A ∈ L(Rn,R) such that

lim
t→0+

f (x0 + tv)− f (x0)

t
= A · v

uniformly in v ∈ Sn−1. If so A = Df (x0).

Exercise (weak gradients under scaling and translations; 5.11)

Let x ∈ Rn, h > 0, T : Rn → Rn given by τ 7→ x + hτ and u ∈W1,1
loc (Rn).

Then u ◦ T ∈W1,1
loc (Rn) and ∇w(u ◦ T )(τ) = h∇w u(x + hτ).
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Rademacher’s Theorem

Rademacher’s Theorem

Theorem (Rademacher’s theorem; 5.12)

Let f : Rn → R be Lipschitz. Then f is differentiable in the sense of
Fréchet Ln-a.e. and ∇f = ∇w f Ln-a.e.

Exercise (5.13)

Let f : Rn → R be Lipschitz. The set Df of points where f is
differentiable in the sense of Fréchet is Borel measurable and
Df : Df → L(Rn,R) is Borelian.

Corollary (5.14)

If Ω ⊂ Rn open and f : Ω→ R is locally Lipschitz, then f is Ln|Ω-a.e.
differentiable in the sense of Fréchet.
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Rademacher’s Theorem

Rademacher’s Theorem

Corollary (5.16)

If Ω ⊂ Rn open and f : Ω→ Rm is locally Lipschitz, then f is Ln|Ω-a.e.
differentiable in the sense of Fréchet.

Corollary (5.17)

1 Let f : Rn → Rm be locally Lipschitz and Zf := {x ∈ Rn | f (x) = 0}.
Then Df (x) = 0 for Ln-a.e. x ∈ Zf .

2 Let f ,g : Rn → Rn be locally Lipschitz and
Y := {x ∈ Rn | g

(
f (x)

)
= x}. Then Dg

(
f (x)

)
◦ Df (x) = idRn for

Ln-a.e. x ∈ Y.
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Linear maps and Jacobians

Definition (5.18)

Let V and W be finite-dimensional Hilbert spaces.
1 A linear map O : V→W is called an orthogonal injection if
∀x , y ∈ V, 〈O · x ,O · y〉 = 〈x , y〉. Notation: O(V,W).

2 Let T : V→W be a linear map. We denote by T ∗ the adjoint of T
with respect to the inner products on V and W. If V = W and
T = T ∗, we call T self-adjoint or symmetric (notation: Sym(V)).

3 We say that a linear map T : V→ V is positive if it is symmetric
and ∀x ∈ V, 〈T · x , x〉 ≥ 0.
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Linear maps and Jacobians

Polar Decomposition

Theorem (5.20)

Let V and W be finite-dimensional Hilbert spaces and L : V→W be a
linear map.

1 If dim V ≤ dim W, there exists a positive S ∈ Sym(V) and
O ∈ O(V,W) such that

L = O ◦ S.

Moreover, in the above decomposition, S ∈ Sym(V) positive is
unique, and so is O ∈ O(V,W) if L is injective.

2 If dim V ≥ dim W, there exists a positive S ∈ Sym(W) and
O ∈ O(W,V) such that

L = S ◦O∗.

Moreover, in the above decomposition, S ∈ Sym(W) positive is
unique, and so is O ∈ O(W,V) if L is surjective.
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Linear maps and Jacobians

Jacobian of a linear map

Definition (Jacobian of a linear map; 5.21)

Let V and W be finite-dimensional Hilbert spaces and L ∈ L(V,W), with
polar decomposition O ◦S if dim V ≤ dim W or S ◦O∗ if dim V > dim W.
We define the Jacobian of L by:

JLK := |det S|.

Remark (5.22)

1 Note that JLK is well-defined, by the uniqueness of S in the polar
decomposition.

2 It is clear that

JLK = JL∗K =

{√
det L∗L if dim V ≤ dim W√
det LL∗ if dim V ≥ dim W.
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Linear maps and Jacobians

Binet-Cauchy formula

Theorem (5.23)

Let V and W be finite-dimensional Hilbert spaces with
n = dim V ≤ dim W = m. If L ∈ L(V,W), then

JLK =

√ ∑
B∈µ(m,n)

(det B)2,

where µ(m,n) is the set of n × n minors in some matrix representation
of L with respect to orthonormal bases on V and W.
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Linear maps and Jacobians

Jacobian of Lipschitz maps

Definition (5.25)

Let f : Rn → Rm be Lipschitz.
We define, for each point x where f is differentiable, the Jacobian of f
at x ,

Jf (x) := JDf (x)K.

Note that Jf is a Borelian function defined on the complement of a
Borel subset of Rn of Ln-null measure.
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Linear maps and Jacobians

Notation
For a Lipschitz map f : Rn → Rm, we will use henceforth the following
notation:

Df := {x ∈ Rn | ∃Df (x)};
J+

f := {x ∈ Df | Jf (x) > 0};
J0

f := {x ∈ Df | Jf (x) = 0}.
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Area Formula

Area Formula, linear case

Lemma (5.27)

If L : Rn → Rm is linear and n ≤ m, then ∀A ⊂ Rn,

Hn(L(A)
)

= JLKLn(A). (5)

Exercise (5.28)

Let T ∈ L(Rn,Rm), n ≤ m.
1 If R ∈ L(Rn), then JT ◦ RK = JT KJRK.
2 JT K ≤ ‖T‖n. If T is 1-1, then ‖T−1‖−n ≤ JT K ≤ ‖T‖n.
3 If m ≤ k and R ∈ L(Rm,Rk ), then JR ◦ T K ≤ ‖R‖nJT K. If R is 1-1,

then ‖R−1‖−nJT K ≤ JR ◦ T K ≤ ‖R‖nJT K.
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Area Formula

Lemma (5.29)

Let f : Rn → Rm be Lipschitz, with n ≤ m, and A ⊂ Rn Ln-measurable.
Then:

1 f (A) is Hn-measurable.
2 The function N(f |A) : Rm → [0,∞] given by y 7→ H0(A ∩ f−1{y}) is

Hn-measurable.
3
∫
Rm H0(A ∩ f−1{y}) dHn(y) ≤ (Lip f )nLn(A).

Definition (multiplicity function;5.30)
With the notation from the previous lemma,
N(f |A) : y 7→ H0(A ∩ f−1{y}) is called the multiplicity function of f |A.
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Area Formula

Remark (5.31)

If X is a complete, separable metric space, Y a Hausdorff topological
space, µ a Borel measure on Y and f : X → Y continuous, then
∀A ∈ BX , f (A) is µ-measurable.
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Area Formula

t-linearization

Definition (5.32)

Let f : Rn → Rm be a Lipschitz map with n ≤ m and t > 1. We say that
(E ,S) is a t-linearization for f if E ∈ BRn and S ∈ Sym(n) ∩ GL(Rn)
satisfy:

i) ∀x ∈ E , f is differentiable at x and Jf (x) > 0;
ii) ∀x , y ∈ E , t−1‖S · x − S · y‖ ≤ ‖f (x)− f (y)‖ ≤ t‖S · x − S · y‖;
iii) ∀x ∈ E , ∀v ∈ Rn, t−1‖S · v‖ ≤ ‖Df (x) · v‖ ≤ t‖S · v‖.
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Area Formula

t-linearization

Proposition (5.33)

Let E ∈ BRn such that condition i) in the previous definition holds and
S ∈ Sym(n) ∩ GL(Rn). Then (E ,S) is a t-linearization for f iff f |E is 1-1
with Lipschitz inverse and satisfies:

ii’) Lip f |E ◦ S−1 ≤ t and Lip S ◦ (f |E )−1 ≤ t ;
iii’) ∀x ∈ E, ‖Df (x) ◦ S−1‖ ≤ t and ‖S ◦ Df (x)−1‖ ≤ t .

Corollary (5.34)

Let f : Rn → Rm be a Lipschitz map with n ≤ m, t > 1 and (E ,S) a
t-linearization for f . Then ∀x ∈ E,

t−n|det S| ≤ Jf (x) ≤ tn|det S|. (6)
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Federer’s Lipschitz Linearization Theorem

Theorem (5.35)

Let f : Rn → Rm be a Lipschitz map with n ≤ m, t > 1 and
J+

f = {x ∈ Rn | ∃Df (x) and Jf (x) > 0}. Then there exists a countable
disjoint family (Ek )k∈N in BRn such that J+

f = _∪k∈N Ek and, ∀k ∈ N,
there exists Sk ∈ Sym(n) ∩ GL(Rn) such that (Ek ,Sk ) is a
t-linearization for f .
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Area Formula

Theorem (5.36)

Let f : Rn → Rm be Lipschitz, n ≤ m. Then, for all A ∈ σ(Ln),∫
A

Jf dLn =

∫
Rm

H0(A ∩ f−1{y}) dHn(y).
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Area Formula

Corollary (5.37)

If f : Rn → Rm is Lipschitz, n ≤ m, then for Hn-a.e. y ∈ Rm, f−1{y} is
countable.
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Area Formula

Change of variables formula

Corollary (5.38)

Let f : Rn → Rm be Lipschitz, n ≤ m. Then for all g : Rn → R
Ln-measurable with g ≥ 0 or g summable,∫

Rn
g Jf dLn =

∫
Rm

( ∑
x∈f−1{y}

g(x)
)

dHn(y).

Gláucio Terra (IME - USP) GMT October 21, 2019 29 / 40



Area Formula

Change of variables formula

Corollary (5.39)

Let f : Rn → Rm be Lipschitz 1-1, n ≤ m.
1 ∀A ∈ σ(Ln), Hn(f (A)

)
=
∫

A Jf dLn. In particular, we have

f#(Ln xJf ) = Hn xIm f (7)

(equality as Borel regular outer measures on Rm).
2 If g : Rn → R is Ln-measurable with g ≥ 0 or g ∈ L1(Ln), then∫

Im f g ◦ f−1 dHn =
∫
Rn g Jf dLn. In particular, if g : Im f → [0,∞] is

Borelian, then ∫
Im f

g dHn =

∫
g ◦ f Jf dLn. (8)
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Change of variables formula
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Area Formula

Applications of the area formula

Example (5.40)

1 (length of a curve) Let −∞ < a < b <∞ and γ : [a,b]→ Rm be
Lipschitz 1-1. We may extend γ to a Lipschitz function on R, which
we still denote by γ. Then∫ b

a
‖γ′(t)‖ dt = H1(γ([a,b])

)
.

2 (area of a graph) Let g : Rn → R be Lipschitz and f : Rn → Rn+1

be given by f (x) :=
(
x ,g(x)

)
.

For each U ⊂ Rn open, the “surface area” of the graph of g over
U, Γ = Γ(g; U) := {

(
x ,g(x)

)
| x ∈ U} = f (U), is given by:

Hn(Γ) =

∫
U

Jf dLn =

∫
U

√
1 + ‖∇g(x)‖2 dx .
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Area Formula for locally Lipschitz maps

Exercise (5.41)

The area formula and its corollaries remain valid for locally Lipschitz
maps defined on open subsets of Rn.
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Hausdorff dimension and Lebesgue measure of a
k -dimensional Riemannian submanifold of Rn

Exercise (5.42)

For any smooth embedded k-Riemannian submanifold M ⊂ Rn, the
measure induced by the Riemannian metric on M (i.e. the Lebesgue
measure of M) coincides with the trace Hk |M. Conclude that
H-dim M = k and, if M is closed (i.e. topologically closed), Hk xM is
a Radon measure on Rn.
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Coarea Formula

Theorem (5.48)

Let f : Rn → Rm be Lipschitz, n ≥ m. Then, for each Ln-measurable
A ⊂ Rn, ∫

A
Jf dLn =

∫
Rm

Hn−m(A ∩ f−1{y}) dLm(y). (9)
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Coarea Formula

Remark (5.49)

1 If f : Rn ≡ Rm ×Rn−m → Rm is the projection on the first factor, we
have Jf ≡ 1 and the coarea formula reduces to Fubini-Tonelli’s
theorem.

2 If n = m, the coarea formula coincides with the area formula 22.
3 If we take the Borel set

A := (Rn \ Df ) ∪ J0
f = {x ∈ Rn | @Df (x) or Jf (x) = 0} in the

coarea formula, we conclude that Hn−m(A ∩ f−1{y}) = 0 for
Lm-a.e. y ∈ Rm.
That may be interpreted as a measure theoretic version of
Morse-Sard’s theorem: Lm-a.e. y ∈ Rm is a measure theoretic
“regular value” of f , in the sense that, up to Hn−m null sets, f−1{y}
lies in the set J+

f of points where Df has maximal rank.
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Coarea Formula

Corollary (curvilinear Fubini-Tonelli’s theorem; 5.50)

Let f : Rn → Rm be Lipschitz, n ≥ m. Then for all g : Rn → R
Ln-measurable with g ≥ 0 or g summable,∫

Rn
g Jf dLn =

∫
Rm

(∫
f−1{y}

g(x) dHn−m(x)
)

dLm(y), (10)

meaning that the iterated integrals in second member make sense and
the equality holds.
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Exercise (Coarea Formula for locally Lipschitz maps; 5.51)

The coarea formula and its corollary remain valid for locally Lipschitz
maps defined on open subsets of Rn.
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Applications of the Coarea Formula

Proposition (polar coordinates; 5.52)

If g : Rn → R is Ln-measurable and g ≥ 0 or g ∈ L1(Ln), then∫
Rn

g dLn =

∫ ∞
0

(∫
∂B(0,r)

g dHn−1
)

dr . (11)

Proposition (5.53)

Let Ω ⊂ Rn open and f : Ω→ R be locally Lipschitz. Then∫
Ω
‖∇f‖ dLn =

∫ ∞
−∞

Hn−1({f = t}) dt .
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Gauss-Green theorem for Lipschitz epigraphs

Gauss-Green theorem for Lipschitz epigraphs

Theorem (6.45)

Let n ≥ 2, f : Rn−1 → R Lipschitz and Ω := epiS f (hence ∂Ω = gr f ).
Then

i) Hn−1 x∂Ω is a Radon measure on Rn;
ii) there exists a Borel measurable unit vector field ν : ∂Ω→ Rn,

unique up to Hn−1 x∂Ω-null sets, such that, for all ϕ ∈ C1
c(Rn),∫

Ω
∇ϕ dLn =

∫
∂Ω
ϕν dHn−1, (12)

or, equivalently, such that, for all ϕ ∈ C1
c(Rn,Rn),∫

Ω
div ϕ dLn =

∫
∂Ω
ϕ · ν dHn−1. (13)
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Gauss-Green theorem for Lipschitz epigraphs

Definition

With the notation from the previous theorem, ν is called outer unit
normal to ∂Ω.

Remark

Up to Hn x∂Ω-null sets, on each point point x =
(
x ′, f (x ′)

)
in

∂Ω = gr f whose abscissa x ′ is a differentiability point of f ,

ν(x) =

(
∇f (x ′),−1

)√
1 + ‖∇f (x ′)‖2

. (14)

In particular, if f is C1, ν coincides with the usual outer unit normal
from Differential Geometry.
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