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Linear functionals on spaces of continuous functions

General hypothesis
We fix a locally compact Hausdorff space X , which will be assumed
σ-compact, unless otherwise specified.

Notation
We denote by

Cc(X ,Rn) the space of continuous functions f : X → Rn with spt f
compact;
C0(X ,Rn) the space of continuous functions f : X → Rn which
vanish at infinity, i.e. such that ∀ε > 0, ∃K ⊂ X compact such that
‖f‖ < ε on X \ K .
Cb(X ,Rn) the space of bounded continuous functions f : X → Rn.
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Linear functionals on spaces of continuous functions

Rn-valued Radon measures

Definition (4.1)

We say that a linear functional µ : Cc(X ,Rn)→ R is an Rn-valued
Radon measure on X if, for each compact K ⊂ X , the restriction of µ to
CK

c (X ,Rn) := {f ∈ Cc(X ,Rn) | spt f ⊂ K}, endowed with ‖·‖u, is linear
continuous; that is, if ∃CK ≥ 0 such that

sup{µ · f | f ∈ CK
c (X ,Rn), ‖f‖u ≤ 1} ≤ CK . (LF cont)

If the condition above holds with a constant C ≥ 0 which does not
depend on K , i.e. if µ is linear continuous on Cc(X ,Rn) endowed with
‖·‖u, we call µ a finite Rn-valued Radon measure on X .
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Linear functionals on spaces of continuous functions

Rn-valued Radon measures

Remark (4.2)

1 The definition adopted for an Rn-valued Radon measure on X is
equivalent to saying that µ : Cc(X ,Rn)→ R is linear continuous
with respect to the natural topological vector space topology on
Cc(X ,Rn), which is an inductive limit of Fréchet spaces (an LF
space for short).

2 For those fluent in locally convex spaces: if X is an open set in
some Euclidean space, C∞c (X ,R)n has a continuous dense
inclusion in Cc(X ,Rn) ≡ Cc(X ,R)n. That means that the dual of
Cc(X ,R)n may be identified with a linear subspace of the dual of
C∞c (X ,R)n, i.e. every Rn-valued Radon measure on X is an
Rn-valued Schwartz distribution on X .
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Linear functionals on spaces of continuous functions

Rn-valued Radon measures on open sets of Euclidean
spaces

Exercise (4.3)

Let X be an open subset of Rm and (Uk )k∈N be an increasing
sequence of relatively compact open subsets of X such that
∪k∈NUk = X. Let µ : C∞c (X ,Rn)→ R be a linear map such that
∀k ∈ N, µ|(

C∞c (Uk ,Rn),‖·‖u

) is continuous. Then µ may be uniquely

extended to a continuous linear map Cc(X ,Rn)→ R.
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Linear functionals on spaces of continuous functions

Recall

Notation
Let X be a locally compact Hausdorff space, U ⊂ X open and f a
function on X .
f ≺ U means that 0 ≤ f ≤ 1, f ∈ Cc(X ,R) and spt f ⊂ U.

Lemma (Urysohn’s lemma for LCH; 4.5)

If X is a locally compact Hausdorff space, U ⊂ X open and K ⊂ U
compact, then there exists f ∈ Cc(X ,R) such that χK ≤ f ≺ U.

Theorem (Tietze’s extension theorem for LCH; 4.6)

If X is a locally compact space, K ⊂ X compact and f : K → R
continuous, then f admits a continuous extension f̃ : X → R. Moreover,
we may take f̃ with compact support and, if f is bounded, we may also
take f̃ such that ‖f̃‖u = ‖f‖u.
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Linear functionals on spaces of continuous functions

Recall

Theorem (Riesz representation theorem for positive linear functionals;
4.7)

Let X be a locally compact Hausdorff space and L : Cc(X ,R)→ R a
positive linear functional, i.e. L is linear and L · f ≥ 0 whenever f ≥ 0.
Then there exists a unique Radon measure η on X which represents L,
i.e. ∀f ∈ Cc(X ,R), L · f =

∫
f dη. Moreover, on open sets η is given by

η(U) = sup{L · f | f ≺ U}.
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Linear functionals on spaces of continuous functions

Remark (4.8)

Every positive linear functional on Cc(X ,R) is an R-valued Radon
measure on X , i.e. positivity implies continuity on Cc(X ,R).

Proof.
Given K ⊂ X compact, take Φ ∈ Cc(X ,R) given by lemma 3 such that
χK ≤ Φ ≺ X . For all f ∈ CK

c (X ,R) with f 6= 0, we have |f |
‖f‖u
≤ Φ, so that

Φ± f
‖f‖u
≥ 0 and Φ± f

‖f‖u
∈ Cc(X ,R). Hence

0 ≤ L
(
Φ± f

‖f‖u

)
= L(Φ)± L(f )

‖f‖u
, which implies |L(f )| ≤ L(Φ)‖f‖u. The

continuity condition (LF cont) is then satisfied with CK := L(Φ).
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Linear functionals on spaces of continuous functions

Riesz representation theorem for Radon measures

Theorem (4.9)

Let X be a σ-compact locally compact Hausdorff space and
µ : Cc(X ,Rn)→ R an Rn-valued Radon measure on X. Then there
exists a unique Radon measure λ on X and a Borel measurable map
ν : X → Rn unique up to λ-null sets such that ‖ν‖ = 1 λ-a.e. on X and
∀f ∈ Cc(X ,Rn),

µ · f =

∫
〈f , ν〉 dλ, (1)

where 〈·, ·〉 denotes the Euclidean inner product in Rn. Moreover,
i) ∀U ⊂ X open,

λ(U) = sup{µ · f | f ∈ Cc(X ,Rn), ‖f‖ ≺ U}. (2)

ii) µ is a finite Rn-valued Radon measure iff λ is a finite Radon
measure; if that is the case, ‖µ‖C0(X ,Rn)∗ = λ(X ).
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Linear functionals on spaces of continuous functions

Riesz representation theorem for Radon measures

Remark (4.10)

Note that, in (2), sup{µ · f | f ∈ Cc(X ,Rn), ‖f‖ ≺ U} = sup{|µ · f | | f ∈
Cc(X ,Rn), ‖f‖ ≺ U}. Indeed, if f ∈ Cc(X ,Rn) and ‖f‖ ≺ U, so does −f ,
and µ · (−f ) = −µ · f , hence either µ · f or µ · (−f ) coincides with |µ · f |.

Lemma (4.11)

Let X be a locally compact Hausdorff space, f : X → [0,∞) bounded
Borelian and µ a σ-finite Radon measure on BX . Then
λ := fµ : BX → [0,∞] given by A 7→

∫
A f dµ is a Radon measure on

BX .
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Linear functionals on spaces of continuous functions

Total variation and polar decomposition

Definition (4.13)

Let µ be an Rn-valued Radon measure on a σ-compact locally
compact Hausdorff space X . With the same notation of theorem 7, λ is
called the total variation of µ, and the pair (ν, λ) is called the polar
decomposition of µ. Henceforth, we will use the notation |µ| := λ to
denote the total variation of µ, and

µ = ν|µ|

with the meaning that (ν, |µ|) is the polar decomposition of µ.
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Linear functionals on spaces of continuous functions

Total variation and polar decomposition

Example (4.14)

1 Let µ be a locally finite Borel measure on X . Then µ induces a
positive linear functional µ̂ on Cc(X ,R), given by µ̂ · f :=

∫
f dµ. If

µ is a Radon measure, then µ̂ = 1 · µ is the polar decomposition of
µ̂.

2 Similarly, let ν be a signed measure on BX whose total variation
|ν| is locally finite. Then ν induces a continuous linear functional ν̂
on Cc(X ,R) given by ν̂ · f :=

∫
f dν.

3 Let X = R and I be the positive linear functional defined on
Cc(X ,R) by the Riemann integral, i.e. I · f :=

∫ b
a f (x) dx for a < b

such that spt f ⊂ [a,b]. The polar decomposition of I is I = 1 · Ln.
In particular, that could have been taken as the definition of the
Lebesgue measure, i.e. it is the total variation of the positive linear
functional induced by the Riemann integral.
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Linear functionals on spaces of continuous functions

Properties of the total variation, part I

Proposition (4.15)

Let µ and ν be Rn-valued Radon measures on a σ-compact locally
compact Hausdorff space X and c ∈ R. Then:

i) |µ+ ν| ≤ |µ|+ |ν|, with equality if |µ| ⊥ |ν|.
ii) |cµ| = |c||µ|.
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Linear functionals on spaces of continuous functions

Integration with respect to Rn-valued Radon measures

Definition (4.16)

Let µ be an Rn-valued Radon measure on a σ-compact locally
compact Hausdorff space X , with polar decomposition µ = ν|µ|.

1 A vector Borelian map f : X → Rn is called summable with respect
to µ if f ∈ L1(|µ|,Rn) ≡ L1(|µ|)n. For such f , we define∫

f · dµ :=

∫
〈f , ν〉 d|µ| ∈ R.

2 An scalar Borelian map f : X → R is called summable with respect
to µ if f ∈ L1(|µ|). For such f , we define∫

f dµ :=

∫
fν d|µ| =

(∫
fν1 d|µ|, . . . ,

∫
fνn d|µ|

)
∈ Rn.
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Linear functionals on spaces of continuous functions

Integration with respect to Rn-valued Radon measures

Remark (4.17)

1 Note that Cc(X ,Rn) ⊂ L1(|µ|,Rn) and the integral defined above
extends µ : Cc(X ,Rn)→ R, i.e. ∀f ∈ Cc(X ,Rn),∫

f · dµ = µ · f .

2 The integrals defined above satisfy the usual linearity and
convergence properties and the following versions of the triangle
inequality:

|
∫

f · dµ| ≤
∫
‖f‖ d|µ| and ‖

∫
f dµ‖ ≤

∫
|f | d|µ|,

for f ∈ L1(|µ|,Rn) or f ∈ L1(|µ|), respectively.
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Linear functionals on spaces of continuous functions

Rn-valued measure on a σ-algebra

Definition (4.18)

Let X be a set and M a σ-algebra of subsets of X . We say that a map
µ : M→ Rn is an Rn-valued measure on M if
VM1) µ(∅) = 0;
VM2) µ is σ-additive, i.e. for all countable disjoint family (An)n∈N in M,

µ(∪n∈NAn) =
∑
n∈N

µ(An)

Notation
We denote by Bc

X the set of Borel subsets of X which are relatively
compact.
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Linear functionals on spaces of continuous functions

Rn-valued Radon measures as set functions

Definition (4.19)

1 a finite Rn-valued Radon measure set function on X is an
Rn-valued measure on BX .

2 an Rn-valued Radon measure set function on X is a set function
µ : Bc

X → Rn such that, for all K ⊂ X compact, µ|BK : BK → Rn is
an Rn-valued measure on BK .

Notation
M(X )n or M(X ,Rn) for finite Rn-valued Radon measures on X
Mloc(X )n or Mloc(X ,Rn) for Rn-valued Radon measures on X

Gláucio Terra (IME - USP) GMT September 30, 2019 17 / 43



Linear functionals on spaces of continuous functions

Rn-valued Radon measures as set functions

Definition (4.19)

1 a finite Rn-valued Radon measure set function on X is an
Rn-valued measure on BX .

2 an Rn-valued Radon measure set function on X is a set function
µ : Bc

X → Rn such that, for all K ⊂ X compact, µ|BK : BK → Rn is
an Rn-valued measure on BK .

Notation
M(X )n or M(X ,Rn) for finite Rn-valued Radon measures on X
Mloc(X )n or Mloc(X ,Rn) for Rn-valued Radon measures on X

Gláucio Terra (IME - USP) GMT September 30, 2019 17 / 43



Linear functionals on spaces of continuous functions

Rn-valued Radon measures as set functions

Definition (4.19)

1 a finite Rn-valued Radon measure set function on X is an
Rn-valued measure on BX .

2 an Rn-valued Radon measure set function on X is a set function
µ : Bc

X → Rn such that, for all K ⊂ X compact, µ|BK : BK → Rn is
an Rn-valued measure on BK .

Notation
M(X )n or M(X ,Rn) for finite Rn-valued Radon measures on X
Mloc(X )n or Mloc(X ,Rn) for Rn-valued Radon measures on X

Gláucio Terra (IME - USP) GMT September 30, 2019 17 / 43



Linear functionals on spaces of continuous functions

Remark (4.20)

Each µ ∈M(X ,Rn) determines an element of Mloc(X ,Rn) by
restriction of µ : BX → Rn to Bc

X .
Since X is σ-compact, µ is uniquely determined by its restriction to
Bc

X , i.e. the association µ ∈M(X ,Rn) 7→ µ|Bc
X
∈Mloc(X ,Rn) is linear

1-1 and allows us to identify M(X ,Rn) with a linear subspace of
Mloc(X ,Rn).
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Linear functionals on spaces of continuous functions

Induced Rn-valued Radon measure set functions

Definition (4.21)

Let µ be an Rn-valued Radon measure on a σ-compact locally
compact Hausdorff space X . The Rn-valued Radon measure set
function induced by µ is the set function µ̂ : Bc

X → Rn defined, for all
A ∈ Bc

X , by

µ̂(A) :=

∫
χA dµ ∈ Rn.

If µ is finite, we define µ̂ : BX → Rn by the same formula.
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Linear functionals on spaces of continuous functions

Induced Rn-valued Radon measure set functions

Proposition (4.22)

With the notation from the previous definition:
i) µ̂ is a (finite) Rn-valued Radon measure set function on X if µ is a

(finite) Rn-valued Radon measure on X.
ii) The maps I : Cc(X ,Rn)∗ →Mloc(X ,Rn) and

I : C0(X ,Rn)∗ →M(X ,Rn) defined by µ 7→ µ̂ are linear 1-1 and
commute with the inclusions, i.e. the following diagram is
commutative:

Cc(X ,Rn)∗ Mloc(X ,Rn)

C0(X ,Rn)∗ M(X ,Rn)

I

I
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Linear functionals on spaces of continuous functions

Induced Rn-valued Radon measure set functions

Remark
If X is a locally compact separable metric space,
I : Cc(X ,Rn)∗ →Mloc(X ,Rn) and I : C0(X ,Rn)∗ →M(X ,Rn) are
surjective, i.e.

Cc(X ,Rn)
∗ ≡Mloc(X ,Rn)

C0(X ,Rn)
∗ ≡M(X ,Rn)
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Operations with Rn-valued Radon measures

Restrictions of Rn-valued Radon measures

Definition (4.31)

Let X be a locally compact separable metric space, µ ∈ Cc(X ,Rn)∗ an
Rn-valued Radon measure and g ∈ L1

loc(|µ|) (in particular, if g : X → R
a bounded Borelian function on X ). We define the restriction of µ to g,
denoted by µ xg, as the continuous linear functional on Cc(X ,Rn)
given by

µ xg · f :=

∫
〈fg, ν〉 d|µ|

if (ν, |µ|) is the polar decomposition of µ.

Notation
If λ is a positive measure on X and h ∈ L+(λ),

λ xh := hλ
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Operations with Rn-valued Radon measures

Restrictions of Rn-valued Radon measures

Remark (4.32)

1 The polar decomposition of µ xg is (gν
|g| , |g||µ|), where we define

gν
|g| := 0 on the Borel set {g = 0}. In particular,

|µ xg| = |µ| x|g|.
2 If µ is a positive Radon measure on X (which we identify with the

element of Cc(X ,R)∗ whose polar decomposition is (1, µ)) and
A ∈ BX , then µ xχA coincides with the positive Radon measure
µ xA. We extend this notation for an arbitrary µ ∈ Cc(X ,Rn)∗, i.e.
we use the notation µ xA in place of µ xχA. It then follows from
the previous item that

|µ xA| = |µ| xA.
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Operations with Rn-valued Radon measures

Restrictions of Rn-valued Radon measures

Remark (4.32)
3 We may similarly define µ xg ∈ Cc(X ,Rn)∗ for µ ∈ Cc(X ,R)∗ and

g ∈ L1
loc(|µ|,Rn):

µ xg : f ∈ Cc(X ,Rn) 7→
∫
〈f ,g〉ν d|µ|

where (ν, |µ|) is the polar decomposition of µ. Then ( gν
‖g‖ , ‖g‖|µ|)

is the polar decomposition of µ xg. In particular,

|µ xg| = |µ| x‖g‖.
4 As a final generalization of the restriction operation, we may

define µ xT ∈ Cc(X ,Rm)∗ for µ ∈ Cc(X ,Rn)∗ and
T ∈ L1

loc
(
|µ|,L(Rm,Rn)

)
by f ∈ Cc(X ,Rm) 7→

∫
〈T · f , ν〉 d|µ|, where

(ν, |µ|) is the polar decomposition of µ.
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Operations with Rn-valued Radon measures

Restrictions of Rn-valued Radon measures

Remark (4.32)

Note that, defining T ∗ : X → L(Rn,Rm) by x 7→ T (x)∗, we have,
∀f ∈ Cc(X ,Rm):

µ xT · f =

∫
〈T · f , ν〉 d|µ| =

∫ 〈
f ,

T ∗ · ν
‖T ∗ · ν‖

〉
‖T ∗ · ν‖ d|µ|.
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Operations with Rn-valued Radon measures

Fundamental lemma of the Calculus of Variations

Exercise (4.34)

Let X be an open set in Rm. If µ : Cc(X ,Rn)→ R is an Rn-valued
Radon measure on X such that µ · f = 0 for all f ∈ C∞c (X ,Rn), then
µ = 0. In particular, if g ∈ L1

loc(Lm|X ,Rn) and∫
X
〈f ,g〉 dLm = 0

for all f ∈ C∞c (X ,Rn), then g = 0 Lm-a.e. on X.
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Operations with Rn-valued Radon measures

Trace of Rn-valued Radon measures

Definition (4.35)

Let X be a locally compact separable metric space and A ⊂ X a locally
compact subspace of X (i.e the intersection of an open with a closed
subset of X ). If µ is an Rn-valued Radon measure on X with polar
decomposition (ν, |µ|), we define an Rn-valued Radon measure µ|A on
A by

f ∈ Cc(A,Rn) 7→
∫
〈̃f , ν〉 d|µ|,

where f̃ : X → Rn is the extension of f by 0 in the complement of A.
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Operations with Rn-valued Radon measures

Trace of Rn-valued Radon measures

Proposition (4.36)

With the notation above, µ|A is a well-defined Rn-valued Radon
measure on A and it is finite if so is µ. Moreover, the polar
decomposition of µ|A is (ν|A, |µ|

∣∣
A).
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Operations with Rn-valued Radon measures

Continuity of linear maps on Cc(X ,Rn)

Definition (4.37)

Let X and Y be locally compact separable metric spaces.
i) We say that A ⊂ Cc(X ,Rn) is bounded it there exists K ⊂ X

compact such that A ⊂ CK
c (X ,Rn) and A is bounded in the latter

space (i.e. it bounded as a subset of the Banach space
CK

c (X ,Rn)).
ii) We say that a sequence (xn)n∈N in Cc(X ,Rn) converges to

x ∈ Cc(X ,Rn) if there exists K ⊂ X compact such that the image
of the sequence is contained in CK

c (X ,Rn), x ∈ CK
c (X ,Rn) and

xn → x in CK
c (X ,Rn).

iii) We say that a linear map T : Cc(X ,Rn)→ Cc(Y ,Rm) is continuous
if one of the following equivalent conditions hold:

T (A) is bounded whenever A ⊂ Cc(X ,Rn) is bounded.
T (xn)→ 0 whenever (xn)n∈N is a sequence in Cc(X ,Rn) such that
xn → 0.
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Operations with Rn-valued Radon measures
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Operations with Rn-valued Radon measures

Transposition

Proposition (4.39)

Let X and Y be locally compact separable metric spaces and
T : Cc(X ,Rn)→ Cc(Y ,Rm) a linear map.

i) If T is continuous and µ is an Rm-valued Radon measure on Y ,
then µ ◦ T is an Rn-valued Radon measure on X.

ii) If T is continuous with respect to the C0 topology (i.e. the topology
induced by ‖·‖u) on both domain and codomain, and µ is a finite
Rm-valued Radon measure on Y , then µ ◦ T is a finite Rn-valued
Radon measure on X.
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Operations with Rn-valued Radon measures

Transposition

Definition (4.40)

With the notation from the previous proposition, we define the
transpose of T , T t : Cc(Y ,Rm)∗ → Cc(X ,Rn)∗ in case (i) or
T t : C0(Y ,Rm)∗ → C0(X ,Rn)∗ in case (ii), by T t · µ := µ ◦ T .
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Operations with Rn-valued Radon measures

Transposition

Example (4.41)

Let X be a locally compact separable metric space.
1) Let T : X → L(Rm,Rn) be a continuous map. We define

T̂ : Cc(X ,Rm)→ Cc(X ,Rn) by (T̂ · f )(x) := T (x) · f (x). Then T̂ is
linear continuous and its transpose is given by µ 7→ µ xT .

2) Let U ⊂ X open. The inclusion Cc(U,Rn) ⊂ Cc(X ,Rn) (which maps
f ∈ Cc(U,Rn) to its extension by 0 on the complement of U) is
clearly continuous; its transpose coincides with µ 7→ µ|U .
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Operations with Rn-valued Radon measures

Pushforward

Proposition

Let X and Y be locally compact separable metric spaces and
f : X → Y a continuous proper map. Then both
(◦f ) : Cc(Y ,Rn)→ Cc(X ,Rn) and (◦f ) : C0(Y ,Rn)→ C0(X ,Rn) given
by g 7→ g ◦ f are well-defined and linear continuous.

Definition

With the notation from the previous definition, the transposes
(◦f )t : Cc(X ,Rn)∗ → Cc(Y ,Rn)∗ and (◦f )t : C0(X ,Rn)∗ → C0(Y ,Rn)∗

are called pushforward by f and denoted by f# : µ 7→ f#µ.
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Operations with Rn-valued Radon measures

Pushforward

Proposition

Let X and Y be locally compact separable metric spaces, f : X → Y a
continuous proper map and µ ∈ Cc(X ,Rn)∗ with polar decomposition
(νX , |µ|). Suppose that there exists a Borelian map νY : Y → Rn such
that νY ◦ f = νX . Then the polar decomposition of f#µ is (νY , f#|µ|). In
particular, if µ is a positive Radon measure on X, the pushforward of µ
by f in the sense of definition above coincides with the pushforward in
the sense of positive measures.
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Weak-star convergence

Weak-star convergence

Definition (4.47)

Let X be a locally compact separable metric space. We say that
i) a sequence (µk )k∈N in Cc(X ,Rn)∗ is weakly-star convergent to
µ ∈ Cc(X ,Rn)∗ (notation: µk

∗
⇀µ) if, for all f ∈ Cc(X ,Rn),∫

f · dµk →
∫

f · dµ;
ii) a sequence (µk )k∈N in C0(X ,Rn)∗ is weakly-star convergent in the

sense of finite measures to µ ∈ C0(X ,Rn)∗ (notation: µk
∗ f
⇀µ) if, for

all f ∈ C0(X ,Rn),
∫

f · dµk →
∫

f · dµ.
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Weak-star convergence

Weak-star convergence

Remark (4.48)

Both types of convergence above are actually the same notion, i.e.
convergence of sequences with respect to weak star topologies: the
first type in the weak-star dual of Cc(X ,Rn) and the second in the
weak-star dual of C0(X ,Rn).
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Weak-star convergence

Weak-star convergence

Proposition (relation between weak-star convergence and weak-star
convergence in the sense of finite measures; 4.49)

Let X be a locally compact separable metric space, (µk )k∈N a
sequence in Cc(X ,Rn)∗ and µ ∈ Cc(X ,Rn)∗. The following conditions
are equivalent:

i) µk
∗
⇀µ and supk∈N|µk |(X ) <∞.

ii) (µk )k∈N is a sequence in C0(X ,Rn)∗, µ ∈ C0(X ,Rn)∗ and µk
∗ f
⇀µ.
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Weak-star convergence

Weak-star convergence

Proposition (4.50)

Let X and Y be locally compact separable metric spaces and
T : Cc(X ,Rn)→ Cc(Y ,Rm) linear continuous. Then
T t : Cc(Y ,Rm)∗ → Cc(X ,Rn)∗ preserves weak-star convergence of
sequences. The same holds for weak-star convergence in the sense of
finite measures if T is continuous with respect to the C0 topologies.

Gláucio Terra (IME - USP) GMT September 30, 2019 38 / 43



Weak-star convergence

Foliations by Borel sets for positive Radon measures

Proposition (4.53)

Let X be a locally compact separable metric space, µ a positive Radon
measure on X and (Eα)α∈A a disjoint family of Borel sets in X. Then
{α ∈ A | µ(Eα) > 0} is countable.
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Weak-star convergence

Characterization of weak-star convergence for positive
Radon measures

Theorem (4.54)

Let X be a locally compact separable metric space, (µk )k∈N a
sequence of positive Radon measures in X and µ a positive Radon
measure in X. The following conditions are equivalent:

i) µk
∗
⇀µ.

ii) For all K ⊂ X compact and for all U ⊂ X open,

µ(K ) ≥ lim supµk (K ) and µ(U) ≤ lim infµk (U).

iii) For all E ∈ Bc
X such that µ(∂E) = 0, µk (E)→ µ(E).
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Weak-star convergence

Weak convergence and total variation

Proposition (4.57)

Let X be a locally compact separable metric space and (µk )k∈N a
sequence in Cc(X ,Rn)∗ weakly-star convergent to µ ∈ Cc(X ,Rn)∗.
Then, for every A ⊂ X open, |µ|(A) ≤ lim inf|µk |(A).

Proposition (4.58)

Let X be a locally compact separable metric space and (µk )k∈N a
sequence in Cc(X ,Rn)∗ weakly-star convergent to µ ∈ Cc(X ,Rn)∗. If
|µk |(X )→ |µ|(X ) <∞, then |µk |

∗ f
⇀|µ|.
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Weak-star convergence

De La Vallée Poussin Theorem

Theorem (4.61)

Let X be a locally compact separable metric space and (µk )k∈N be a
sequence of finite Rn-valued Radon measures on X such that
sup{|µk |(X ) | k ∈ N} <∞. Then there exists a finite Rn-valued Radon
measure µ on X and a subsequence (µkj )j∈N of (µk )k∈N such that

µkj

∗ f
⇀µ. Moreover, |µ|(X ) ≤ lim inf|µkj |(X ).
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Weak-star convergence

De La Vallée Poussin Theorem

Corollary (4.63)

Let X be a locally compact separable metric space and (µk )k∈N be a
sequence of Rn-valued Radon measures on X such that, for any
K ⊂ X compact, sup{|µk |(K ) | k ∈ N} <∞. Then there exists an
Rn-valued Radon measure µ on X and a subsequence (µkj )j∈N of
(µk )k∈N such that µkj

∗
⇀µ.
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