Geometric Measure Theory

Gláucio Terra

Departamento de Matemática IME - USP

September 30, 2019

Gláucio Terra (IME - USP)

< ロ > < 同 > < 回 > < 回 >

September 30, 2019

General hypothesis

We fix a locally compact Hausdorff space X, which will be assumed σ -compact, unless otherwise specified.

Notation

We denote by

- C_c(X, ℝⁿ) the space of continuous functions f : X → ℝⁿ with spt f compact;
- $C_0(X, \mathbb{R}^n)$ the space of continuous functions $f : X \to \mathbb{R}^n$ which vanish at infinity, i.e. such that $\forall \epsilon > 0$, $\exists K \subset X$ compact such that $\|f\| < \epsilon$ on $X \setminus K$.
- $C_b(X, \mathbb{R}^n)$ the space of bounded continuous functions $f: X \to \mathbb{R}^n$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (4.1)

We say that a linear functional $\mu : C_c(X, \mathbb{R}^n) \to \mathbb{R}$ is an \mathbb{R}^n -valued Radon measure on X if, for each compact $K \subset X$, the restriction of μ to $C_c^K(X, \mathbb{R}^n) := \{f \in C_c(X, \mathbb{R}^n) \mid \text{spt } f \subset K\}$, endowed with $\|\cdot\|_u$, is linear continuous; that is, if $\exists C_K \ge 0$ such that

$$\sup\{\mu \cdot f \mid f \in C_{c}^{K}(X, \mathbb{R}^{n}), \|f\|_{u} \leq 1\} \leq C_{K}.$$
 (LF cont)

If the condition above holds with a constant $C \ge 0$ which does not depend on K, i.e. if μ is linear continuous on $C_c(X, \mathbb{R}^n)$ endowed with $\|\cdot\|_u$, we call μ a *finite* \mathbb{R}^n -valued Radon measure on X.

< 日 > < 同 > < 回 > < 回 > < □ > <

Definition (4.1)

We say that a linear functional $\mu : C_c(X, \mathbb{R}^n) \to \mathbb{R}$ is an \mathbb{R}^n -valued Radon measure on X if, for each compact $K \subset X$, the restriction of μ to $C_c^K(X, \mathbb{R}^n) := \{f \in C_c(X, \mathbb{R}^n) \mid \text{spt } f \subset K\}$, endowed with $\|\cdot\|_u$, is linear continuous; that is, if $\exists C_K \ge 0$ such that

$$\sup\{\mu \cdot f \mid f \in C_{c}^{K}(X, \mathbb{R}^{n}), \|f\|_{u} \leq 1\} \leq C_{K}.$$
 (LF cont)

If the condition above holds with a constant $C \ge 0$ which does not depend on K, i.e. if μ is linear continuous on $C_c(X, \mathbb{R}^n)$ endowed with $\|\cdot\|_u$, we call μ a *finite* \mathbb{R}^n -valued Radon measure on X.

< 日 > < 同 > < 回 > < 回 > < □ > <

Remark (4.2)

- The definition adopted for an ℝⁿ-valued Radon measure on X is equivalent to saying that µ : C_c(X, ℝⁿ) → ℝ is linear continuous with respect to the natural topological vector space topology on C_c(X, ℝⁿ), which is an inductive limit of Fréchet spaces (an LF space for short).
- Por those fluent in locally convex spaces: if X is an open set in some Euclidean space, C[∞]_c(X, ℝ)ⁿ has a continuous dense inclusion in C_c(X, ℝⁿ) ≡ C_c(X, ℝ)ⁿ. That means that the dual of C_c(X, ℝ)ⁿ may be identified with a linear subspace of the dual of C[∞]_c(X, ℝ)ⁿ, i.e. every ℝⁿ-valued Radon measure on X is an ℝⁿ-valued Schwartz distribution on X.

Remark (4.2)

- The definition adopted for an ℝⁿ-valued Radon measure on X is equivalent to saying that µ : C_c(X, ℝⁿ) → ℝ is linear continuous with respect to the natural topological vector space topology on C_c(X, ℝⁿ), which is an inductive limit of Fréchet spaces (an LF space for short).
- Por those fluent in locally convex spaces: if X is an open set in some Euclidean space, C[∞]_c(X, ℝ)ⁿ has a continuous dense inclusion in C_c(X, ℝⁿ) ≡ C_c(X, ℝ)ⁿ. That means that the dual of C_c(X, ℝ)ⁿ may be identified with a linear subspace of the dual of C[∞]_c(X, ℝ)ⁿ, i.e. every ℝⁿ-valued Radon measure on X is an ℝⁿ-valued Schwartz distribution on X.

\mathbb{R}^{n} -valued Radon measures on open sets of Euclidean spaces

Exercise (4.3)

Let X be an open subset of \mathbb{R}^m and $(U_k)_{k\in\mathbb{N}}$ be an increasing sequence of relatively compact open subsets of X such that $\cup_{k\in\mathbb{N}}U_k = X$. Let $\mu : C^{\infty}_{c}(X, \mathbb{R}^n) \to \mathbb{R}$ be a linear map such that $\forall k \in \mathbb{N}, \mu|_{(C^{\infty}_{c}(U_k, \mathbb{R}^n), \|\cdot\|_u)}$ is continuous. Then μ may be uniquely extended to a continuous linear map $C_{c}(X, \mathbb{R}^n) \to \mathbb{R}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Notation

Let X be a locally compact Hausdorff space, $U \subset X$ open and f a function on X.

 $f \prec U$ means that $0 \leq f \leq 1, f \in C_c(X, \mathbb{R})$ and spt $f \subset U$.

Lemma (Urysohn's lemma for LCH; 4.5)

If X is a locally compact Hausdorff space, $U \subset X$ open and $K \subset U$ compact, then there exists $f \in C_c(X, \mathbb{R})$ such that $\chi_K \leq f \prec U$.

Theorem (Tietze's extension theorem for LCH; 4.6)

If X is a locally compact space, $K \subset X$ compact and $f : K \to \mathbb{R}$ continuous, then f admits a continuous extension $\tilde{f} : X \to \mathbb{R}$. Moreover, we may take \tilde{f} with compact support and, if f is bounded, we may also take \tilde{f} such that $\|\tilde{f}\|_{u} = \|f\|_{u}$.

Notation

Let X be a locally compact Hausdorff space, $U \subset X$ open and f a function on X.

 $f \prec U$ means that $0 \leq f \leq 1, f \in C_c(X, \mathbb{R})$ and spt $f \subset U$.

Lemma (Urysohn's lemma for LCH; 4.5)

If X is a locally compact Hausdorff space, $U \subset X$ open and $K \subset U$ compact, then there exists $f \in C_c(X, \mathbb{R})$ such that $\chi_K \leq f \prec U$.

Theorem (Tietze's extension theorem for LCH; 4.6)

If X is a locally compact space, $K \subset X$ compact and $f : K \to \mathbb{R}$ continuous, then f admits a continuous extension $\tilde{f} : X \to \mathbb{R}$. Moreover, we may take \tilde{f} with compact support and, if f is bounded, we may also take \tilde{f} such that $\|\tilde{f}\|_{u} = \|f\|_{u}$.

Notation

Let X be a locally compact Hausdorff space, $U \subset X$ open and f a function on X.

 $f \prec U$ means that $0 \leq f \leq 1, f \in C_c(X, \mathbb{R})$ and spt $f \subset U$.

Lemma (Urysohn's lemma for LCH; 4.5)

If X is a locally compact Hausdorff space, $U \subset X$ open and $K \subset U$ compact, then there exists $f \in C_c(X, \mathbb{R})$ such that $\chi_K \leq f \prec U$.

Theorem (Tietze's extension theorem for LCH; 4.6)

If X is a locally compact space, $K \subset X$ compact and $f : K \to \mathbb{R}$ continuous, then f admits a continuous extension $\tilde{f} : X \to \mathbb{R}$. Moreover, we may take \tilde{f} with compact support and, if f is bounded, we may also take \tilde{f} such that $\|\tilde{f}\|_{u} = \|f\|_{u}$.

Theorem (Riesz representation theorem for positive linear functionals; 4.7)

Let X be a locally compact Hausdorff space and $L: C_c(X, \mathbb{R}) \to \mathbb{R}$ a positive linear functional, i.e. L is linear and $L \cdot f \ge 0$ whenever $f \ge 0$. Then there exists a unique Radon measure η on X which represents L, i.e. $\forall f \in C_c(X, \mathbb{R}), L \cdot f = \int f \, d\eta$. Moreover, on open sets η is given by

$$\eta(U) = \sup\{L \cdot f \mid f \prec U\}.$$

< ロ > < 同 > < 回 > < 回 >

September 30, 2019

Remark (4.8)

Every positive linear functional on $C_c(X, \mathbb{R})$ is an \mathbb{R} -valued Radon measure on X, i.e. positivity implies continuity on $C_c(X, \mathbb{R})$.

Proof.

Given $K \subset X$ compact, take $\Phi \in C_c(X, \mathbb{R})$ given by lemma 3 such that $\chi_K \leq \Phi \prec X$. For all $f \in C_c^K(X, \mathbb{R})$ with $f \neq 0$, we have $\frac{|f|}{\|f\|_u} \leq \Phi$, so that $\Phi \pm \frac{f}{\|f\|_u} \geq 0$ and $\Phi \pm \frac{f}{\|f\|_u} \in C_c(X, \mathbb{R})$. Hence $0 \leq L(\Phi \pm \frac{f}{\|f\|_u}) = L(\Phi) \pm \frac{L(f)}{\|f\|_u}$, which implies $|L(f)| \leq L(\Phi) \|f\|_u$. The continuity condition (LF cont) is then satisfied with $C_K := L(\Phi)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remark (4.8)

Every positive linear functional on $C_c(X, \mathbb{R})$ is an \mathbb{R} -valued Radon measure on X, i.e. positivity implies continuity on $C_c(X, \mathbb{R})$.

Proof.

Given $K \subset X$ compact, take $\Phi \in C_c(X, \mathbb{R})$ given by lemma 3 such that $\chi_K \leq \Phi \prec X$. For all $f \in C_c^K(X, \mathbb{R})$ with $f \neq 0$, we have $\frac{|f|}{\|f\|_u} \leq \Phi$, so that $\Phi \pm \frac{f}{\|f\|_u} \geq 0$ and $\Phi \pm \frac{f}{\|f\|_u} \in C_c(X, \mathbb{R})$. Hence $0 \leq L(\Phi \pm \frac{f}{\|f\|_u}) = L(\Phi) \pm \frac{L(f)}{\|f\|_u}$, which implies $|L(f)| \leq L(\Phi) \|f\|_u$. The continuity condition (LF cont) is then satisfied with $C_K := L(\Phi)$.

September 30, 2019

Riesz representation theorem for Radon measures

Theorem (4.9)

Let X be a σ -compact locally compact Hausdorff space and $\mu : C_c(X, \mathbb{R}^n) \to \mathbb{R}$ an \mathbb{R}^n -valued Radon measure on X. Then there exists a unique Radon measure λ on X and a Borel measurable map $\nu : X \to \mathbb{R}^n$ unique up to λ -null sets such that $\|\nu\| = 1 \lambda$ -a.e. on X and $\forall f \in C_c(X, \mathbb{R}^n)$,

$$u \cdot f = \int \langle f, \nu \rangle \, \mathrm{d}\lambda,$$

where $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product in \mathbb{R}^n . Moreover, i) $\forall U \subset X$ open,

$$\lambda(U) = \sup\{\mu \cdot f \mid f \in C_{c}(X, \mathbb{R}^{n}), \|f\| \prec U\}.$$

ii) μ is a finite \mathbb{R}^n -valued Radon measure iff λ is a finite Radon measure; if that is the case, $\|\mu\|_{C_n(X,\mathbb{R}^n)^*} = \lambda(X)$.

Gláucio Terra (IME - USP)

(1)

Riesz representation theorem for Radon measures

Theorem (4.9)

Let X be a σ -compact locally compact Hausdorff space and $\mu : C_c(X, \mathbb{R}^n) \to \mathbb{R}$ an \mathbb{R}^n -valued Radon measure on X. Then there exists a unique Radon measure λ on X and a Borel measurable map $\nu : X \to \mathbb{R}^n$ unique up to λ -null sets such that $\|\nu\| = 1 \lambda$ -a.e. on X and $\forall f \in C_c(X, \mathbb{R}^n)$,

$$\mu \cdot f = \int \langle f, \nu \rangle \, \mathrm{d}\lambda, \tag{1}$$

where $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product in \mathbb{R}^n . Moreover, i) $\forall U \subset X$ open,

$$\lambda(U) = \sup\{\mu \cdot f \mid f \in C_{c}(X, \mathbb{R}^{n}), \|f\| \prec U\}.$$
(2)

ii) μ is a finite \mathbb{R}^n -valued Radon measure iff λ is a finite Radon measure; if that is the case, $\|\mu\|_{C_n(X,\mathbb{R}^n)^*} = \lambda(X)$.

Gláucio Terra (IME - USP)

Riesz representation theorem for Radon measures

Remark (4.10)

Note that, in (2), $\sup\{\mu \cdot f \mid f \in C_c(X, \mathbb{R}^n), \|f\| \prec U\} = \sup\{|\mu \cdot f| \mid f \in C_c(X, \mathbb{R}^n), \|f\| \prec U\}$. Indeed, if $f \in C_c(X, \mathbb{R}^n)$ and $\|f\| \prec U$, so does -f, and $\mu \cdot (-f) = -\mu \cdot f$, hence either $\mu \cdot f$ or $\mu \cdot (-f)$ coincides with $|\mu \cdot f|$.

Lemma (4.11)

Let X be a locally compact Hausdorff space, $f : X \to [0, \infty)$ bounded Borelian and μ a σ -finite Radon measure on \mathscr{B}_X . Then $\lambda := f\mu : \mathscr{B}_X \to [0, \infty]$ given by $A \mapsto \int_A f d\mu$ is a Radon measure on \mathscr{B}_X .

< 日 > < 同 > < 回 > < 回 > < □ > <

September 30, 2019

Definition (4.13)

Let μ be an \mathbb{R}^n -valued Radon measure on a σ -compact locally compact Hausdorff space X. With the same notation of theorem 7, λ is called the *total variation of* μ , and the pair (ν , λ) is called the *polar decomposition of* μ . Henceforth, we will use the notation $|\mu| := \lambda$ to denote the total variation of μ , and

$$\mu = \nu |\mu|$$

with the meaning that $(\nu, |\mu|)$ is the polar decomposition of μ .

September 30, 2019

Example (4.14)

- Let μ be a locally finite Borel measure on X. Then μ induces a positive linear functional $\hat{\mu}$ on $C_c(X, \mathbb{R})$, given by $\hat{\mu} \cdot f := \int f d\mu$. If μ is a Radon measure, then $\hat{\mu} = 1 \cdot \mu$ is the polar decomposition of $\hat{\mu}$.
- ⁽²⁾ Similarly, let ν be a signed measure on \mathscr{B}_X whose total variation $|\nu|$ is locally finite. Then ν induces a continuous linear functional $\hat{\nu}$ on $C_c(X, \mathbb{R})$ given by $\hat{\nu} \cdot f := \int f \, d\nu$.
- Let $X = \mathbb{R}$ and *I* be the positive linear functional defined on $C_c(X, \mathbb{R})$ by the Riemann integral, i.e. $I \cdot f := \int_a^b f(x) dx$ for a < b such that spt $f \subset [a, b]$. The polar decomposition of *I* is $I = 1 \cdot \mathcal{L}^n$. In particular, that could have been taken as the definition of the Lebesgue measure, i.e. it is the total variation of the positive linear functional induced by the Riemann integral.

Example (4.14)

- Let μ be a locally finite Borel measure on X. Then μ induces a positive linear functional $\hat{\mu}$ on $C_c(X, \mathbb{R})$, given by $\hat{\mu} \cdot f := \int f d\mu$. If μ is a Radon measure, then $\hat{\mu} = 1 \cdot \mu$ is the polar decomposition of $\hat{\mu}$.
- Similarly, let ν be a signed measure on \mathscr{B}_X whose total variation $|\nu|$ is locally finite. Then ν induces a continuous linear functional $\hat{\nu}$ on $C_c(X, \mathbb{R})$ given by $\hat{\nu} \cdot f := \int f \, d\nu$.
- Let $X = \mathbb{R}$ and *I* be the positive linear functional defined on $C_c(X, \mathbb{R})$ by the Riemann integral, i.e. $I \cdot f := \int_a^b f(x) dx$ for a < b such that spt $f \subset [a, b]$. The polar decomposition of *I* is $I = 1 \cdot \mathcal{L}^n$. In particular, that could have been taken as the definition of the Lebesgue measure, i.e. it is the total variation of the positive linear functional induced by the Riemann integral.

Example (4.14)

- Let μ be a locally finite Borel measure on X. Then μ induces a positive linear functional $\hat{\mu}$ on $C_c(X, \mathbb{R})$, given by $\hat{\mu} \cdot f := \int f d\mu$. If μ is a Radon measure, then $\hat{\mu} = 1 \cdot \mu$ is the polar decomposition of $\hat{\mu}$.
- Similarly, let ν be a signed measure on \mathscr{B}_X whose total variation $|\nu|$ is locally finite. Then ν induces a continuous linear functional $\hat{\nu}$ on $C_c(X, \mathbb{R})$ given by $\hat{\nu} \cdot f := \int f \, d\nu$.
- Let $X = \mathbb{R}$ and *I* be the positive linear functional defined on $C_c(X, \mathbb{R})$ by the Riemann integral, i.e. $I \cdot f := \int_a^b f(x) dx$ for a < b such that spt $f \subset [a, b]$. The polar decomposition of *I* is $I = 1 \cdot \mathcal{L}^n$. In particular, that could have been taken as the definition of the Lebesgue measure, i.e. it is the total variation of the positive linear functional induced by the Riemann integral.

Properties of the total variation, part I

Proposition (4.15)

Let μ and ν be \mathbb{R}^n -valued Radon measures on a σ -compact locally compact Hausdorff space X and $c \in \mathbb{R}$. Then: i) $|\mu + \nu| \le |\mu| + |\nu|$, with equality if $|\mu| \perp |\nu|$. ii) $|c\mu| = |c||\mu|$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

September 30, 2019

Definition (4.16)

Let μ be an \mathbb{R}^n -valued Radon measure on a σ -compact locally compact Hausdorff space X, with polar decomposition $\mu = \nu |\mu|$.

• A vector Borelian map $f : X \to \mathbb{R}^n$ is called *summable with respect* to μ if $f \in L^1(|\mu|, \mathbb{R}^n) \equiv L^1(|\mu|)^n$. For such f, we define

$$\int f \cdot \mathrm{d}\mu := \int \langle f, \nu \rangle \, \mathrm{d}|\mu| \in \mathbb{R}.$$

② An scalar Borelian map $f : X \to \mathbb{R}$ is called *summable with respect* to μ if $f \in L^1(|\mu|)$. For such f, we define

$$\int f \,\mathrm{d}\mu := \int f\nu \,\mathrm{d}|\mu| = \left(\int f\nu_1 \,\mathrm{d}|\mu|, \ldots, \int f\nu_n \,\mathrm{d}|\mu|\right) \in \mathbb{R}^n.$$

Definition (4.16)

Let μ be an \mathbb{R}^n -valued Radon measure on a σ -compact locally compact Hausdorff space X, with polar decomposition $\mu = \nu |\mu|$.

• A vector Borelian map $f : X \to \mathbb{R}^n$ is called *summable with respect* to μ if $f \in L^1(|\mu|, \mathbb{R}^n) \equiv L^1(|\mu|)^n$. For such f, we define

$$\int f \cdot \mathrm{d}\mu := \int \langle f, \nu \rangle \, \mathrm{d}|\mu| \in \mathbb{R}.$$

② An scalar Borelian map f : X → ℝ is called summable with respect to µ if f ∈ L¹(|µ|). For such f, we define

$$\int f \,\mathrm{d}\mu := \int f\nu \,\mathrm{d}|\mu| = \left(\int f\nu_1 \,\mathrm{d}|\mu|, \ldots, \int f\nu_n \,\mathrm{d}|\mu|\right) \in \mathbb{R}^n.$$

Definition (4.16)

Let μ be an \mathbb{R}^n -valued Radon measure on a σ -compact locally compact Hausdorff space X, with polar decomposition $\mu = \nu |\mu|$.

• A vector Borelian map $f : X \to \mathbb{R}^n$ is called *summable with respect* to μ if $f \in L^1(|\mu|, \mathbb{R}^n) \equiv L^1(|\mu|)^n$. For such f, we define

$$\int f \cdot \mathrm{d}\mu := \int \langle f, \nu \rangle \, \mathrm{d}|\mu| \in \mathbb{R}.$$

② An scalar Borelian map *f* : *X* → ℝ is called *summable with respect* to µ if *f* ∈ L¹(|µ|). For such *f*, we define

$$\int f \, \mathrm{d}\mu := \int f\nu \, \mathrm{d}|\mu| = \left(\int f\nu_1 \, \mathrm{d}|\mu|, \dots, \int f\nu_n \, \mathrm{d}|\mu|\right) \in \mathbb{R}^n.$$

Remark (4.17)

• Note that $C_c(X, \mathbb{R}^n) \subset L^1(|\mu|, \mathbb{R}^n)$ and the integral defined above extends $\mu : C_c(X, \mathbb{R}^n) \to \mathbb{R}$, i.e. $\forall f \in C_c(X, \mathbb{R}^n)$,

$$\int f\cdot\,\mathrm{d}\mu=\mu\cdot f.$$

The integrals defined above satisfy the usual linearity and convergence properties and the following versions of the triangle inequality:

$$|\int f \cdot d\mu| \le \int ||f|| d|\mu|$$
 and $||\int f d\mu|| \le \int |f| d|\mu|$

for $f \in L^1(|\mu|, \mathbb{R}^n)$ or $f \in L^1(|\mu|)$, respectively.

Remark (4.17)

• Note that $C_c(X, \mathbb{R}^n) \subset L^1(|\mu|, \mathbb{R}^n)$ and the integral defined above extends $\mu : C_c(X, \mathbb{R}^n) \to \mathbb{R}$, i.e. $\forall f \in C_c(X, \mathbb{R}^n)$,

$$\int f\cdot d\mu = \mu\cdot f.$$

The integrals defined above satisfy the usual linearity and convergence properties and the following versions of the triangle inequality:

$$|\int f \cdot d\mu| \leq \int ||f|| d|\mu|$$
 and $||\int f d\mu|| \leq \int |f| d|\mu|,$

for $f \in L^1(|\mu|, \mathbb{R}^n)$ or $f \in L^1(|\mu|)$, respectively.

\mathbb{R}^{n} -valued measure on a σ -algebra

Definition (4.18)

Let X be a set and \mathcal{M} a σ -algebra of subsets of X. We say that a map $\mu : \mathcal{M} \to \mathbb{R}^n$ is an \mathbb{R}^n -valued measure on \mathcal{M} if VM1) $\mu(\emptyset) = 0$;

VM2) μ is σ -additive, i.e. for all countable disjoint family $(A_n)_{n \in \mathbb{N}}$ in \mathcal{M} ,

$$\mu(\cup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}\mu(A_n)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

September 30, 2019

16/43

Notation

We denote by \mathscr{B}_X^c the set of Borel subsets of X which are relatively compact.

\mathbb{R}^{n} -valued measure on a σ -algebra

Definition (4.18)

Let X be a set and \mathcal{M} a σ -algebra of subsets of X. We say that a map $\mu : \mathcal{M} \to \mathbb{R}^n$ is an \mathbb{R}^n -valued measure on \mathcal{M} if VM1) $\mu(\emptyset) = 0$;

VM2) μ is σ -additive, i.e. for all countable disjoint family $(A_n)_{n \in \mathbb{N}}$ in \mathcal{M} ,

$$\mu(\cup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}\mu(A_n)$$

< ロ > < 同 > < 回 > < 回 >

September 30, 2019

16/43

Notation

We denote by \mathscr{B}_X^c the set of Borel subsets of X which are relatively compact.

Gláucio Terra (IM

\mathbb{R}^{n} -valued Radon measures as set functions

Definition (4.19)

- a *finite* \mathbb{R}^n -valued Radon measure set function on X is an \mathbb{R}^n -valued measure on \mathscr{B}_X .
- ② an \mathbb{R}^n -valued Radon measure set function on X is a set function $\mu : \mathscr{B}_X^c \to \mathbb{R}^n$ such that, for all $K \subset X$ compact, $\mu|_{\mathscr{B}_K} : \mathscr{B}_K \to \mathbb{R}^n$ is an \mathbb{R}^n -valued measure on \mathscr{B}_K .

Notation

M(X)ⁿ or M(X, ℝⁿ) for finite ℝⁿ-valued Radon measures on X
 M_{loc}(X)ⁿ or M_{loc}(X, ℝⁿ) for ℝⁿ-valued Radon measures on X

September 30, 2019

\mathbb{R}^{n} -valued Radon measures as set functions

Definition (4.19)

- a *finite* \mathbb{R}^n -valued Radon measure set function on X is an \mathbb{R}^n -valued measure on \mathscr{B}_X .
- 2 an \mathbb{R}^{n} -valued Radon measure set function on X is a set function $\mu : \mathscr{B}_{X}^{c} \to \mathbb{R}^{n}$ such that, for all $K \subset X$ compact, $\mu|_{\mathscr{B}_{K}} : \mathscr{B}_{K} \to \mathbb{R}^{n}$ is an \mathbb{R}^{n} -valued measure on \mathscr{B}_{K} .

Notation

M(X)ⁿ or M(X, ℝⁿ) for finite ℝⁿ-valued Radon measures on X
 M_{loc}(X)ⁿ or M_{loc}(X, ℝⁿ) for ℝⁿ-valued Radon measures on X

\mathbb{R}^{n} -valued Radon measures as set functions

Definition (4.19)

- a *finite* \mathbb{R}^n -valued Radon measure set function on X is an \mathbb{R}^n -valued measure on \mathscr{B}_X .
- 2 an \mathbb{R}^{n} -valued Radon measure set function on X is a set function $\mu : \mathscr{B}_{X}^{c} \to \mathbb{R}^{n}$ such that, for all $K \subset X$ compact, $\mu|_{\mathscr{B}_{K}} : \mathscr{B}_{K} \to \mathbb{R}^{n}$ is an \mathbb{R}^{n} -valued measure on \mathscr{B}_{K} .

Notation

- $\mathcal{M}(X)^n$ or $\mathcal{M}(X, \mathbb{R}^n)$ for finite \mathbb{R}^n -valued Radon measures on X
- $\mathcal{M}_{loc}(X)^n$ or $\mathcal{M}_{loc}(X, \mathbb{R}^n)$ for \mathbb{R}^n -valued Radon measures on X

Remark (4.20)

Each $\mu \in \mathcal{M}(X, \mathbb{R}^n)$ determines an element of $\mathcal{M}_{\text{loc}}(X, \mathbb{R}^n)$ by restriction of $\mu : \mathscr{B}_X \to \mathbb{R}^n$ to \mathscr{B}_X^c .

Since X is σ -compact, μ is uniquely determined by its restriction to \mathscr{B}_X^c , i.e. the association $\mu \in \mathcal{M}(X, \mathbb{R}^n) \mapsto \mu|_{\mathscr{B}_X^c} \in \mathcal{M}_{\mathsf{loc}}(X, \mathbb{R}^n)$ is linear 1-1 and allows us to identify $\mathcal{M}(X, \mathbb{R}^n)$ with a linear subspace of $\mathcal{M}_{\mathsf{loc}}(X, \mathbb{R}^n)$.

< ロ > < 同 > < 回 > < 回 >

Remark (4.20)

Each $\mu \in \mathcal{M}(X, \mathbb{R}^n)$ determines an element of $\mathcal{M}_{\mathsf{loc}}(X, \mathbb{R}^n)$ by restriction of $\mu : \mathscr{B}_X \to \mathbb{R}^n$ to \mathscr{B}_X^c . Since *X* is σ -compact, μ is uniquely determined by its restriction to \mathscr{B}_X^c , i.e. the association $\mu \in \mathcal{M}(X, \mathbb{R}^n) \mapsto \mu|_{\mathscr{B}_X^c} \in \mathcal{M}_{\mathsf{loc}}(X, \mathbb{R}^n)$ is linear 1-1 and allows us to identify $\mathcal{M}(X, \mathbb{R}^n)$ with a linear subspace of $\mathcal{M}_{\mathsf{loc}}(X, \mathbb{R}^n)$.

- A TE N - A TE N

Induced \mathbb{R}^{n} -valued Radon measure set functions

Definition (4.21)

Let μ be an \mathbb{R}^n -valued Radon measure on a σ -compact locally compact Hausdorff space X. The \mathbb{R}^n -valued Radon measure set function induced by μ is the set function $\hat{\mu} : \mathscr{B}^c_X \to \mathbb{R}^n$ defined, for all $A \in \mathscr{B}^c_X$, by

$$\hat{\mu}(\boldsymbol{A}) := \int \chi_{\boldsymbol{A}} \, \mathrm{d} \mu \in \mathbb{R}^n.$$

If μ is finite, we define $\hat{\mu} : \mathscr{B}_X \to \mathbb{R}^n$ by the same formula.

< ロ > < 同 > < 回 > < 回 > < 回 > <

September 30, 2019

Induced \mathbb{R}^{n} -valued Radon measure set functions

Proposition (4.22)

With the notation from the previous definition:

- i) µ̂ is a (finite) ℝⁿ-valued Radon measure set function on X if µ is a (finite) ℝⁿ-valued Radon measure on X.
- ii) The maps *I* : C_c(*X*, ℝⁿ)* → M_{loc}(*X*, ℝⁿ) and
 I : C₀(*X*, ℝⁿ)* → M(*X*, ℝⁿ) defined by μ ↦ μ̂ are linear 1-1 and commute with the inclusions, i.e. the following diagram is commutative:

$$\begin{array}{ccc} \mathsf{C}_{\mathsf{c}}(X,\mathbb{R}^n)^* & \stackrel{l}{\longrightarrow} & \mathfrak{M}_{\mathsf{loc}}(X,\mathbb{R}^n) \\ & & \uparrow & \\ \mathsf{C}_{\mathsf{0}}(X,\mathbb{R}^n)^* & \stackrel{l}{\longrightarrow} & \mathfrak{M}(X,\mathbb{R}^n) \end{array}$$

Induced \mathbb{R}^{n} -valued Radon measure set functions

Remark

If X is a locally compact separable metric space, $I: C_c(X, \mathbb{R}^n)^* \to \mathcal{M}_{loc}(X, \mathbb{R}^n) \text{ and } I: C_0(X, \mathbb{R}^n)^* \to \mathcal{M}(X, \mathbb{R}^n) \text{ are surjective, i.e.}$

$$C_{c}(X, \mathbb{R}^{n})^{*} \equiv \mathcal{M}_{loc}(X, \mathbb{R}^{n})$$
$$C_{0}(X, \mathbb{R}^{n})^{*} \equiv \mathcal{M}(X, \mathbb{R}^{n})$$

- A TE N - A TE N

September 30, 2019

Definition (4.31)

Let *X* be a locally compact separable metric space, $\mu \in C_c(X, \mathbb{R}^n)^*$ an \mathbb{R}^n -valued Radon measure and $g \in L^1_{loc}(|\mu|)$ (in particular, if $g : X \to \mathbb{R}$ a bounded Borelian function on *X*). We define the *restriction of* μ *to* g, denoted by $\mu \sqsubseteq g$, as the continuous linear functional on $C_c(X, \mathbb{R}^n)$ given by

$$\mu \bigsqcup \boldsymbol{g} \cdot \boldsymbol{f} := \int \langle \boldsymbol{f} \boldsymbol{g}, \nu \rangle \, \mathrm{d} |\mu|$$

if $(\nu, |\mu|)$ is the polar decomposition of μ .

Notation

If λ is a positive measure on X and $h \in L^+(\lambda)$,

$$\lambda \sqsubseteq h := h\lambda$$

Definition (4.31)

Let *X* be a locally compact separable metric space, $\mu \in C_c(X, \mathbb{R}^n)^*$ an \mathbb{R}^n -valued Radon measure and $g \in L^1_{loc}(|\mu|)$ (in particular, if $g : X \to \mathbb{R}$ a bounded Borelian function on *X*). We define the *restriction of* μ *to* g, denoted by $\mu \sqsubseteq g$, as the continuous linear functional on $C_c(X, \mathbb{R}^n)$ given by

$$\mu \mathrel{\sqsubseteq} \boldsymbol{g} \cdot \boldsymbol{f} := \int \langle \boldsymbol{f} \boldsymbol{g}, \nu \rangle \operatorname{d} |\mu|$$

if $(\nu, |\mu|)$ is the polar decomposition of μ .

Notation

If λ is a positive measure on X and $h \in L^+(\lambda)$,

$$\lambda \sqsubseteq h := h\lambda$$

Remark (4.32)

• The polar decomposition of $\mu \bigsqcup g$ is $(\frac{g\nu}{|g|}, |g||\mu|)$, where we define $\frac{g\nu}{|g|} := 0$ on the Borel set $\{g = 0\}$. In particular,

$|\mu \, \llcorner g| = |\mu| \, \llcorner |g|.$

If µ is a positive Radon measure on X (which we identify with the element of C_c(X, ℝ)* whose polar decomposition is (1, µ)) and A ∈ ℬ_X, then µ ∟_{XA} coincides with the positive Radon measure µ ∟A. We extend this notation for an arbitrary µ ∈ C_c(X, ℝⁿ)*, i.e. we use the notation µ ∟A in place of µ ∟_{XA}. It then follows from the previous item that

$$|\mu \ \square A| = |\mu| \ \square A.$$

Remark (4.32)

• The polar decomposition of $\mu \bigsqcup g$ is $(\frac{g\nu}{|g|}, |g||\mu|)$, where we define $\frac{g\nu}{|g|} := 0$ on the Borel set $\{g = 0\}$. In particular,

$$|\mu \, \llcorner g| = |\mu| \, \llcorner |g|.$$

If µ is a positive Radon measure on X (which we identify with the element of C_c(X, ℝ)^{*} whose polar decomposition is (1, µ)) and A ∈ ℬ_X, then µ ∟_{XA} coincides with the positive Radon measure µ ∟A. We extend this notation for an arbitrary µ ∈ C_c(X, ℝⁿ)^{*}, i.e. we use the notation µ ∟A in place of µ ∟_{XA}. It then follows from the previous item that

$$\mu \perp \mathbf{A} | = |\mu| \perp \mathbf{A}.$$

Remark (4.32)

• We may similarly define $\mu \bigsqcup g \in C_c(X, \mathbb{R}^n)^*$ for $\mu \in C_c(X, \mathbb{R})^*$ and $g \in L^1_{loc}(|\mu|, \mathbb{R}^n)$:

$$\mu \mathrel{{\sqsubseteq}} g : f \in \mathsf{C}_{\mathsf{c}}(X, \mathbb{R}^n) \mapsto \int \langle f, g \rangle \nu \, \mathrm{d} |\mu|$$

where $(\nu, |\mu|)$ is the polar decomposition of μ . Then $(\frac{g\nu}{\|g\|}, \|g\| |\mu|)$ is the polar decomposition of $\mu \sqsubseteq g$. In particular,

$$|\mu \, \llcorner g| = |\mu| \, \sqcup ||g||.$$

• As a final generalization of the restriction operation, we may define $\mu \vdash T \in C_c(X, \mathbb{R}^m)^*$ for $\mu \in C_c(X, \mathbb{R}^n)^*$ and $T \in L^1_{loc}(|\mu|, L(\mathbb{R}^m, \mathbb{R}^n))$ by $f \in C_c(X, \mathbb{R}^m) \mapsto \int \langle T \cdot f, \nu \rangle d|\mu|$, where $(\nu, |\mu|)$ is the polar decomposition of μ .

Gláucio Terra (IME - USP)

Remark (4.32)

• We may similarly define $\mu \sqsubseteq g \in C_c(X, \mathbb{R}^n)^*$ for $\mu \in C_c(X, \mathbb{R})^*$ and $g \in L^1_{loc}(|\mu|, \mathbb{R}^n)$:

$$\mu \mathrel{{\sqsubseteq}} g : f \in \mathsf{C}_{\mathsf{c}}(X, \mathbb{R}^n) \mapsto \int \langle f, g \rangle \nu \, \mathrm{d} |\mu|$$

where $(\nu, |\mu|)$ is the polar decomposition of μ . Then $(\frac{g\nu}{\|g\|}, \|g\||\mu|)$ is the polar decomposition of $\mu \sqsubseteq g$. In particular,

$$|\mu \, \llcorner \boldsymbol{g}| = |\mu| \, \llcorner \|\boldsymbol{g}\|.$$

3 As a final generalization of the restriction operation, we may define $\mu \sqsubseteq T \in C_c(X, \mathbb{R}^m)^*$ for $\mu \in C_c(X, \mathbb{R}^n)^*$ and $T \in L^1_{loc}(|\mu|, L(\mathbb{R}^m, \mathbb{R}^n))$ by $f \in C_c(X, \mathbb{R}^m) \mapsto \int \langle T \cdot f, \nu \rangle d|\mu|$, where $(\nu, |\mu|)$ is the polar decomposition of μ .

Gláucio Terra (IME - USP)

Remark (4.32)

Note that, defining $T^* : X \to L(\mathbb{R}^n, \mathbb{R}^m)$ by $x \mapsto T(x)^*$, we have, $\forall f \in C_c(X, \mathbb{R}^m)$:

$$\mu \bigsqcup T \cdot f = \int \langle T \cdot f, \nu \rangle \, \mathrm{d} |\mu| = \int \langle f, \frac{T^* \cdot \nu}{\|T^* \cdot \nu\|} \rangle \|T^* \cdot \nu\| \, \mathrm{d} |\mu|.$$

September 30, 2019

Fundamental lemma of the Calculus of Variations

Exercise (4.34)

Let X be an open set in \mathbb{R}^m . If $\mu : C_c(X, \mathbb{R}^n) \to \mathbb{R}$ is an \mathbb{R}^n -valued Radon measure on X such that $\mu \cdot f = 0$ for all $f \in C_c^{\infty}(X, \mathbb{R}^n)$, then $\mu = 0$. In particular, if $g \in L^1_{loc}(\mathcal{L}^m|_X, \mathbb{R}^n)$ and

$$\int_{\boldsymbol{X}} \langle \boldsymbol{f}, \boldsymbol{g} \rangle \, \mathrm{d} \mathcal{L}^{\boldsymbol{m}} = \boldsymbol{0}$$

for all $f \in C^{\infty}_{c}(X, \mathbb{R}^{n})$, then $g = 0 \ \mathcal{L}^{m}$ -a.e. on X.

< 口 > < 同 > < 回 > < 回 > < 回 > <

September 30, 2019

Trace of \mathbb{R}^n -valued Radon measures

Definition (4.35)

Let *X* be a locally compact separable metric space and $A \subset X$ a locally compact subspace of *X* (i.e the intersection of an open with a closed subset of *X*). If μ is an \mathbb{R}^n -valued Radon measure on *X* with polar decomposition (ν , $|\mu|$), we define an \mathbb{R}^n -valued Radon measure $\mu|_A$ on *A* by

$$f \in \mathsf{C}_{\mathsf{c}}(A, \mathbb{R}^n) \mapsto \int \langle \widetilde{f}, \nu \rangle \, \mathrm{d}|\mu|,$$

where $\tilde{f}: X \to \mathbb{R}^n$ is the extension of *f* by 0 in the complement of *A*.

September 30, 2019

Trace of \mathbb{R}^n -valued Radon measures

Proposition (4.36)

With the notation above, $\mu|_A$ is a well-defined \mathbb{R}^n -valued Radon measure on A and it is finite if so is μ . Moreover, the polar decomposition of $\mu|_A$ is $(\nu|_A, |\mu||_A)$.

A B K A B K

A D b 4 A b

Continuity of linear maps on $C_c(X, \mathbb{R}^n)$

Definition (4.37)

Let X and Y be locally compact separable metric spaces.

- i) We say that A ⊂ C_c(X, ℝⁿ) is *bounded* it there exists K ⊂ X compact such that A ⊂ C^K_c(X, ℝⁿ) and A is bounded in the latter space (i.e. it bounded as a subset of the Banach space C^K_c(X, ℝⁿ)).
- ii) We say that a sequence (x_n)_{n∈ℕ} in C_c(X, ℝⁿ) converges to x ∈ C_c(X, ℝⁿ) if there exists K ⊂ X compact such that the image of the sequence is contained in C^K_c(X, ℝⁿ), x ∈ C^K_c(X, ℝⁿ) and x_n → x in C^K_c(X, ℝⁿ).
- iii) We say that a linear map $T : C_c(X, \mathbb{R}^n) \to C_c(Y, \mathbb{R}^m)$ is continuous if one of the following equivalent conditions hold:
 - T(A) is bounded whenever $A \subset C_c(X, \mathbb{R}^n)$ is bounded.
 - $T(x_n) \to 0$ whenever $(x_n)_{n \in \mathbb{N}}$ is a sequence in $C_c(X, \mathbb{R}^n)$ such that $x_n \to 0$.

Gláucio Terra (IME - USP)

Continuity of linear maps on $C_c(X, \mathbb{R}^n)$

Definition (4.37)

Let X and Y be locally compact separable metric spaces.

- i) We say that A ⊂ C_c(X, ℝⁿ) is *bounded* it there exists K ⊂ X compact such that A ⊂ C^K_c(X, ℝⁿ) and A is bounded in the latter space (i.e. it bounded as a subset of the Banach space C^K_c(X, ℝⁿ)).
- ii) We say that a sequence $(x_n)_{n \in \mathbb{N}}$ in $C_c(X, \mathbb{R}^n)$ converges to $x \in C_c(X, \mathbb{R}^n)$ if there exists $K \subset X$ compact such that the image of the sequence is contained in $C_c^{\mathsf{K}}(X, \mathbb{R}^n)$, $x \in C_c^{\mathsf{K}}(X, \mathbb{R}^n)$ and $x_n \to x$ in $C_c^{\mathsf{K}}(X, \mathbb{R}^n)$.
- iii) We say that a linear map $T : C_c(X, \mathbb{R}^n) \to C_c(Y, \mathbb{R}^m)$ is continuous if one of the following equivalent conditions hold:
 - *T*(*A*) is bounded whenever *A* ⊂ C_c(*X*, ℝ^{*n*}) is bounded.
 - $T(x_n) \to 0$ whenever $(x_n)_{n \in \mathbb{N}}$ is a sequence in $C_c(X, \mathbb{R}^n)$ such that $x_n \to 0$.

Gláucio Terra (IME - USP)

Continuity of linear maps on $C_c(X, \mathbb{R}^n)$

Definition (4.37)

Let X and Y be locally compact separable metric spaces.

- i) We say that $A \subset C_c(X, \mathbb{R}^n)$ is *bounded* it there exists $K \subset X$ compact such that $A \subset C_c^K(X, \mathbb{R}^n)$ and A is bounded in the latter space (i.e. it bounded as a subset of the Banach space $C_c^K(X, \mathbb{R}^n)$).
- ii) We say that a sequence $(x_n)_{n \in \mathbb{N}}$ in $C_c(X, \mathbb{R}^n)$ converges to $x \in C_c(X, \mathbb{R}^n)$ if there exists $K \subset X$ compact such that the image of the sequence is contained in $C_c^{\mathsf{K}}(X, \mathbb{R}^n)$, $x \in C_c^{\mathsf{K}}(X, \mathbb{R}^n)$ and $x_n \to x$ in $C_c^{\mathsf{K}}(X, \mathbb{R}^n)$.
- iii) We say that a linear map $T : C_c(X, \mathbb{R}^n) \to C_c(Y, \mathbb{R}^m)$ is continuous if one of the following equivalent conditions hold:
 - T(A) is bounded whenever $A \subset C_c(X, \mathbb{R}^n)$ is bounded.
 - $T(x_n) \to 0$ whenever $(x_n)_{n \in \mathbb{N}}$ is a sequence in $C_c(X, \mathbb{R}^n)$ such that $x_n \to 0$.

Transposition

Proposition (4.39)

Let X and Y be locally compact separable metric spaces and $T : C_c(X, \mathbb{R}^n) \to C_c(Y, \mathbb{R}^m)$ a linear map.

- i) If T is continuous and µ is an ℝ^m-valued Radon measure on Y, then µ ∘ T is an ℝⁿ-valued Radon measure on X.
- ii) If *T* is continuous with respect to the C₀ topology (i.e. the topology induced by ||·||_u) on both domain and codomain, and μ is a finite ℝ^m-valued Radon measure on *Y*, then μ ∘ *T* is a finite ℝⁿ-valued Radon measure on *X*.

September 30, 2019

3

Transposition

Definition (4.40)

With the notation from the previous proposition, we define the *transpose* of T, $T^t : C_c(Y, \mathbb{R}^m)^* \to C_c(X, \mathbb{R}^n)^*$ in case (i) or $T^t : C_0(Y, \mathbb{R}^m)^* \to C_0(X, \mathbb{R}^n)^*$ in case (ii), by $T^t \cdot \mu := \mu \circ T$.

September 30, 2019

Transposition

Example (4.41)

Let X be a locally compact separable metric space.

- 1) Let $T : X \to L(\mathbb{R}^m, \mathbb{R}^n)$ be a continuous map. We define $\hat{T} : C_c(X, \mathbb{R}^m) \to C_c(X, \mathbb{R}^n)$ by $(\hat{T} \cdot f)(x) := T(x) \cdot f(x)$. Then \hat{T} is linear continuous and its transpose is given by $\mu \mapsto \mu \sqcup T$.
- 2) Let $U \subset X$ open. The inclusion $C_c(U, \mathbb{R}^n) \subset C_c(X, \mathbb{R}^n)$ (which maps $f \in C_c(U, \mathbb{R}^n)$ to its extension by 0 on the complement of *U*) is clearly continuous; its transpose coincides with $\mu \mapsto \mu|_U$.

September 30, 2019

Pushforward

Proposition

Let X and Y be locally compact separable metric spaces and $f: X \to Y$ a continuous proper map. Then both $(\circ f): C_c(Y, \mathbb{R}^n) \to C_c(X, \mathbb{R}^n)$ and $(\circ f): C_0(Y, \mathbb{R}^n) \to C_0(X, \mathbb{R}^n)$ given by $g \mapsto g \circ f$ are well-defined and linear continuous.

Definition

With the notation from the previous definition, the transposes $(\circ f)^t : C_c(X, \mathbb{R}^n)^* \to C_c(Y, \mathbb{R}^n)^*$ and $(\circ f)^t : C_0(X, \mathbb{R}^n)^* \to C_0(Y, \mathbb{R}^n)^*$ are called *pushforward by f* and denoted by $f_{\#} : \mu \mapsto f_{\#}\mu$.

Pushforward

Proposition

Let X and Y be locally compact separable metric spaces and $f: X \to Y$ a continuous proper map. Then both $(\circ f): C_c(Y, \mathbb{R}^n) \to C_c(X, \mathbb{R}^n)$ and $(\circ f): C_0(Y, \mathbb{R}^n) \to C_0(X, \mathbb{R}^n)$ given by $g \mapsto g \circ f$ are well-defined and linear continuous.

Definition

With the notation from the previous definition, the transposes $(\circ f)^t : C_c(X, \mathbb{R}^n)^* \to C_c(Y, \mathbb{R}^n)^*$ and $(\circ f)^t : C_0(X, \mathbb{R}^n)^* \to C_0(Y, \mathbb{R}^n)^*$ are called *pushforward by f* and denoted by $f_{\#} : \mu \mapsto f_{\#}\mu$.

Pushforward

Proposition

Let X and Y be locally compact separable metric spaces, $f : X \to Y$ a continuous proper map and $\mu \in C_c(X, \mathbb{R}^n)^*$ with polar decomposition $(\nu_X, |\mu|)$. Suppose that there exists a Borelian map $\nu_Y : Y \to \mathbb{R}^n$ such that $\nu_Y \circ f = \nu_X$. Then the polar decomposition of $f_{\#}\mu$ is $(\nu_Y, f_{\#}|\mu|)$. In particular, if μ is a positive Radon measure on X, the pushforward of μ by f in the sense of definition above coincides with the pushforward in the sense of positive measures.

Definition (4.47)

Let X be a locally compact separable metric space. We say that

- i) a sequence $(\mu_k)_{k \in \mathbb{N}}$ in $C_c(X, \mathbb{R}^n)^*$ is *weakly-star convergent* to $\mu \in C_c(X, \mathbb{R}^n)^*$ (notation: $\mu_k \stackrel{*}{\rightharpoonup} \mu$) if, for all $f \in C_c(X, \mathbb{R}^n)$, $\int f \cdot d\mu_k \to \int f \cdot d\mu$;
- ii) a sequence $(\mu_k)_{k \in \mathbb{N}}$ in $C_0(X, \mathbb{R}^n)^*$ is weakly-star convergent in the sense of finite measures to $\mu \in C_0(X, \mathbb{R}^n)^*$ (notation: $\mu_k \stackrel{*t}{\rightharpoonup} \mu$) if, for all $f \in C_0(X, \mathbb{R}^n)$, $\int f \cdot d\mu_k \to \int f \cdot d\mu$.

3

Definition (4.47)

Let X be a locally compact separable metric space. We say that

- i) a sequence $(\mu_k)_{k \in \mathbb{N}}$ in $C_c(X, \mathbb{R}^n)^*$ is *weakly-star convergent* to $\mu \in C_c(X, \mathbb{R}^n)^*$ (notation: $\mu_k \stackrel{*}{\rightharpoonup} \mu$) if, for all $f \in C_c(X, \mathbb{R}^n)$, $\int f \cdot d\mu_k \to \int f \cdot d\mu$;
- ii) a sequence (μ_k)_{k∈ℕ} in C₀(X, ℝⁿ)* is weakly-star convergent in the sense of finite measures to μ ∈ C₀(X, ℝⁿ)* (notation: μ_k ^{*†}/_→ μ) if, for all f ∈ C₀(X, ℝⁿ), ∫ f ⋅ dμ_k → ∫ f ⋅ dμ.

September 30, 2019

Remark (4.48)

Both types of convergence above are actually the same notion, i.e. convergence of sequences with respect to weak star topologies: the first type in the weak-star dual of $C_c(X, \mathbb{R}^n)$ and the second in the weak-star dual of $C_0(X, \mathbb{R}^n)$.

Proposition (relation between weak-star convergence and weak-star convergence in the sense of finite measures; 4.49)

Let X be a locally compact separable metric space, $(\mu_k)_{k \in \mathbb{N}}$ a sequence in $C_c(X, \mathbb{R}^n)^*$ and $\mu \in C_c(X, \mathbb{R}^n)^*$. The following conditions are equivalent:

i)
$$\mu_k \stackrel{*}{\rightharpoonup} \mu$$
 and $\sup_{k \in \mathbb{N}} |\mu_k|(X) < \infty$.

ii) $(\mu_k)_{k\in\mathbb{N}}$ is a sequence in $C_0(X,\mathbb{R}^n)^*$, $\mu \in C_0(X,\mathbb{R}^n)^*$ and $\mu_k \stackrel{*!}{\rightharpoonup} \mu$.

September 30, 2019

Proposition (4.50)

Let X and Y be locally compact separable metric spaces and $T : C_c(X, \mathbb{R}^n) \to C_c(Y, \mathbb{R}^m)$ linear continuous. Then $T^t : C_c(Y, \mathbb{R}^m)^* \to C_c(X, \mathbb{R}^n)^*$ preserves weak-star convergence of sequences. The same holds for weak-star convergence in the sense of finite measures if T is continuous with respect to the C₀ topologies.

Foliations by Borel sets for positive Radon measures

Proposition (4.53)

Let X be a locally compact separable metric space, μ a positive Radon measure on X and $(E_{\alpha})_{\alpha \in A}$ a disjoint family of Borel sets in X. Then $\{\alpha \in A \mid \mu(E_{\alpha}) > 0\}$ is countable.

A B F A B F

Characterization of weak-star convergence for positive Radon measures

Theorem (4.54)

Let X be a locally compact separable metric space, $(\mu_k)_{k \in \mathbb{N}}$ a sequence of positive Radon measures in X and μ a positive Radon measure in X. The following conditions are equivalent:

i)
$$\mu_k \stackrel{*}{\rightharpoonup} \mu$$
.

ii) For all $K \subset X$ compact and for all $U \subset X$ open,

 $\mu(K) \ge \limsup \mu_k(K)$ and $\mu(U) \le \liminf \mu_k(U)$.

iii) For all $E \in \mathscr{B}_X^c$ such that $\mu(\partial E) = 0$, $\mu_k(E) \to \mu(E)$.

Weak convergence and total variation

Proposition (4.57)

Let X be a locally compact separable metric space and $(\mu_k)_{k \in \mathbb{N}}$ a sequence in $C_c(X, \mathbb{R}^n)^*$ weakly-star convergent to $\mu \in C_c(X, \mathbb{R}^n)^*$. Then, for every $A \subset X$ open, $|\mu|(A) \leq \liminf |\mu_k|(A)$.

Proposition (4.58)

Let X be a locally compact separable metric space and $(\mu_k)_{k \in \mathbb{N}}$ a sequence in $C_c(X, \mathbb{R}^n)^*$ weakly-star convergent to $\mu \in C_c(X, \mathbb{R}^n)^*$. If $|\mu_k|(X) \to |\mu|(X) < \infty$, then $|\mu_k| \stackrel{*!}{=} |\mu|$.

Weak convergence and total variation

Proposition (4.57)

Let X be a locally compact separable metric space and $(\mu_k)_{k \in \mathbb{N}}$ a sequence in $C_c(X, \mathbb{R}^n)^*$ weakly-star convergent to $\mu \in C_c(X, \mathbb{R}^n)^*$. Then, for every $A \subset X$ open, $|\mu|(A) \leq \liminf |\mu_k|(A)$.

Proposition (4.58)

Let X be a locally compact separable metric space and $(\mu_k)_{k \in \mathbb{N}}$ a sequence in $C_c(X, \mathbb{R}^n)^*$ weakly-star convergent to $\mu \in C_c(X, \mathbb{R}^n)^*$. If $|\mu_k|(X) \to |\mu|(X) < \infty$, then $|\mu_k| \stackrel{\text{*t}}{=} |\mu|$.

September 30, 2019

De La Vallée Poussin Theorem

Theorem (4.61)

Let X be a locally compact separable metric space and $(\mu_k)_{k\in\mathbb{N}}$ be a sequence of finite \mathbb{R}^n -valued Radon measures on X such that $\sup\{|\mu_k|(X) \mid k \in \mathbb{N}\} < \infty$. Then there exists a finite \mathbb{R}^n -valued Radon measure μ on X and a subsequence $(\mu_{k_j})_{j\in\mathbb{N}}$ of $(\mu_k)_{k\in\mathbb{N}}$ such that $\mu_{k_j} \stackrel{*t}{\rightharpoonup} \mu$. Moreover, $|\mu|(X) \leq \liminf|\mu_{k_j}|(X)$.

September 30, 2019

De La Vallée Poussin Theorem

Corollary (4.63)

Let X be a locally compact separable metric space and $(\mu_k)_{k\in\mathbb{N}}$ be a sequence of \mathbb{R}^n -valued Radon measures on X such that, for any $K \subset X$ compact, $\sup\{|\mu_k|(K) \mid k \in \mathbb{N}\} < \infty$. Then there exists an \mathbb{R}^n -valued Radon measure μ on X and a subsequence $(\mu_{k_j})_{j\in\mathbb{N}}$ of $(\mu_k)_{k\in\mathbb{N}}$ such that $\mu_{k_j} \stackrel{*}{\rightharpoonup} \mu$.

A B K A B K

September 30, 2019