Geometric Measure Theory

Gláucio Terra

Departamento de Matemática IME - USP

August 18, 2019

Gláucio Terra (IME - USP)

August 18, 2019

Up to the end of this section we fix a metric space (X, d).

2

Definition (3.1)

Let $A \subset X$, $x \in X$, n > 0 real and μ a measure on X. We define: • the *n*-dimensional upper density of A at x with respect to μ :

$$\Theta^{*n}(\mu, \boldsymbol{A}, \boldsymbol{x}) := \limsup_{r \to 0} rac{\mu \left(\boldsymbol{A} \cap \mathbb{B}(\boldsymbol{x}, r)
ight)}{lpha(n)r^n} \in [0, \infty].$$

) the n-dimensional lower density of A at x with respect to μ :

$$\Theta^n_*(\mu, A, x) := \liminf_{r \to 0} \frac{\mu(A \cap \mathbb{B}(x, r))}{\alpha(n)r^n} \in [0, \infty].$$

Definition (3.1)

Let $A \subset X$, $x \in X$, n > 0 real and μ a measure on X. We define:

) the *n*-dimensional upper density of A at x with respect to μ :

$$\Theta^{*n}(\mu, \boldsymbol{A}, \boldsymbol{x}) := \limsup_{r o 0} rac{\muig(\boldsymbol{A} \cap \mathbb{B}(\boldsymbol{x}, r) ig)}{lpha(n)r^n} \in [0,\infty].$$

the n-dimensional lower density of A at x with respect to μ :

$$\Theta^n_*(\mu, A, x) := \liminf_{r \to 0} \frac{\mu(A \cap \mathbb{B}(x, r))}{\alpha(n)r^n} \in [0, \infty].$$

Definition (3.1)

Let $A \subset X$, $x \in X$, n > 0 real and μ a measure on X. We define:

) the *n*-dimensional upper density of A at x with respect to μ :

$$\Theta^{*n}(\mu, \boldsymbol{A}, \boldsymbol{x}) := \limsup_{r o 0} rac{\muig(\boldsymbol{A} \cap \mathbb{B}(\boldsymbol{x}, r) ig)}{lpha(n)r^n} \in [0,\infty].$$

• the *n*-dimensional lower density of A at x with respect to μ :

$$\Theta^n_*(\mu, \boldsymbol{A}, \boldsymbol{x}) := \liminf_{r o 0} rac{\mu ig(\boldsymbol{A} \cap \mathbb{B}(\boldsymbol{x}, r) ig)}{lpha(n) r^n} \in [0, \infty].$$

Definition (3.1)

Let $A \subset X$, $x \in X$, n > 0 real and μ a measure on X. We define:

) the *n*-dimensional upper density of A at x with respect to μ :

$$\Theta^{*n}(\mu, \pmb{A}, \pmb{x}) := \limsup_{r o 0} rac{\muig(\pmb{A} \cap \mathbb{B}(\pmb{x}, r)ig)}{lpha(\pmb{n})r^n} \in [\pmb{0}, \infty].$$

) the n-dimensional lower density of A at x with respect to μ :

$$\Theta^n_*(\mu, A, x) := \liminf_{r \to 0} \frac{\mu(A \cap \mathbb{B}(x, r))}{\alpha(n)r^n} \in [0, \infty].$$

Remark (3.2)

With the notation above:

1 Note that $\Theta^{*n}(\mu, A, x) = \Theta^{*n}(\mu \bigsqcup A, x)$ and $\Theta^{n}_{*}(\mu, A, x) = \Theta^{n}_{*}(\mu \bigsqcup A, x)$.

If $U \subset X$ is an open set and $x \in U$, $\Theta^{*n}(\mu, A, x) = \Theta^{*n}(\mu \sqcup U, A, x)$ and $\Theta^{n}_{*}(\mu, A, x) = \Theta^{n}_{*}(\mu \sqcup U, A, x)$.

Lemma (3.3)

If μ is a locally finite Borel measure on X, $A \subset X$, $x \in X$ and n > 0 real, then, the definitions of $\Theta^{*n}(\mu, A, x)$ or $\Theta^n_*(\mu, A, x)$ do not change if we use open balls instead of closed balls.

Proposition (3.4)

If μ is a locally finite Borel measure on X, $A \subset X$ and n > 0 real, then the functions $X \to [0, \infty]$ given by $x \in X \mapsto \Theta^{*n}(\mu, A, x)$ and $x \in X \mapsto \Theta^n_*(\mu, A, x)$ are Borelian.

Corollary (3.5)

If μ is a locally finite Borel measure on X, $A \subset X$ and n > 0 real, then the set $Y := \{x \in X \mid \Theta^{*n}(\mu, A, x) = \Theta^n_*(\mu, A, x)\}$ is Borel measurable and $\Theta^n(\mu, A, \cdot) : Y \to [0, \infty]$ is Borelian.

3

イロト 不得 トイヨト イヨト

Lemma (3.3)

If μ is a locally finite Borel measure on X, $A \subset X$, $x \in X$ and n > 0 real, then, the definitions of $\Theta^{*n}(\mu, A, x)$ or $\Theta^n_*(\mu, A, x)$ do not change if we use open balls instead of closed balls.

Proposition (3.4)

If μ is a locally finite Borel measure on X, $A \subset X$ and n > 0 real, then the functions $X \to [0, \infty]$ given by $x \in X \mapsto \Theta^{*n}(\mu, A, x)$ and $x \in X \mapsto \Theta^n_*(\mu, A, x)$ are Borelian.

Corollary (3.5)

If μ is a locally finite Borel measure on X, $A \subset X$ and n > 0 real, then the set $Y := \{x \in X \mid \Theta^{*n}(\mu, A, x) = \Theta^n_*(\mu, A, x)\}$ is Borel measurable and $\Theta^n(\mu, A, \cdot) : Y \to [0, \infty]$ is Borelian.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Lemma (3.3)

If μ is a locally finite Borel measure on X, $A \subset X$, $x \in X$ and n > 0 real, then, the definitions of $\Theta^{*n}(\mu, A, x)$ or $\Theta^n_*(\mu, A, x)$ do not change if we use open balls instead of closed balls.

Proposition (3.4)

If μ is a locally finite Borel measure on X, $A \subset X$ and n > 0 real, then the functions $X \to [0, \infty]$ given by $x \in X \mapsto \Theta^{*n}(\mu, A, x)$ and $x \in X \mapsto \Theta^n_*(\mu, A, x)$ are Borelian.

Corollary (3.5)

If μ is a locally finite Borel measure on X, $A \subset X$ and n > 0 real, then the set $Y := \{x \in X \mid \Theta^{*n}(\mu, A, x) = \Theta^n_*(\mu, A, x)\}$ is Borel measurable and $\Theta^n(\mu, A, \cdot) : Y \to [0, \infty]$ is Borelian.

3

Comparison density theorem

Theorem (3.6)

Let μ be a Borel measure on a metric space X, n > 0 real, $t \ge 0$ and $A \subset A_1 \subset X$. If $\forall x \in A$, $\Theta^{*n}(\mu, A_1, x) \ge t$ then $t\mathcal{H}^n(A) \le \mu(A_1)$.

Upper density theorem

Theorem (3.7)

Let μ be a Borel regular measure on a metric space X, n > 0 real and $B \in \sigma(\mu)$ with $\mu(B) < \infty$. Then $\Theta^{*n}(\mu, B, x) = 0$ for \mathfrak{H}^n -a.e. $x \in X \setminus B$.

Exercise (3.8)

If μ is an open σ -finite Borel regular measure on a metric space X, the thesis in the previous theorem holds for all $B \in \sigma(\mu)$, i.e. the hypothesis of $\mu(B)$ being finite may be dropped.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Upper density theorem

Theorem (3.7)

Let μ be a Borel regular measure on a metric space X, n > 0 real and $B \in \sigma(\mu)$ with $\mu(B) < \infty$. Then $\Theta^{*n}(\mu, B, x) = 0$ for \mathfrak{H}^n -a.e. $x \in X \setminus B$.

Exercise (3.8)

If μ is an open σ -finite Borel regular measure on a metric space X, the thesis in the previous theorem holds for all $B \in \sigma(\mu)$, i.e. the hypothesis of $\mu(B)$ being finite may be dropped.

< ロ > < 同 > < 回 > < 回 >

August 18, 2019

Density theorem for the Lebesgue measure

Corollary (3.9)

If $B \subset \mathbb{R}^n$ is \mathcal{L}^n -measurable, then $\Theta^n(\mathcal{L}^n, B, x)$ exists for \mathcal{L}^n -a.e. $x \in \mathbb{R}^n$, $\Theta^n(\mathcal{L}^n, B, x) = 1$ for \mathcal{L}^n -a.e. $x \in B$ and $\Theta^n(\mathcal{L}^n, B, x) = 0$ for \mathcal{L}^n -a.e. $x \in \mathbb{R}^n \setminus B$.

August 18, 2019

Upper and lower densities of a measure relative another

Definition (3.12)

Let X be a metric space, μ and ν measures on X, and $x \in X$. We define the *upper* and *lower density of* μ *relative to* ν *at* x by, respectively:

$$egin{aligned} \Theta^{*
u}(\mu, x) &:= \limsup_{r o 0} rac{\mu \left(\mathbb{B}(x, r)
ight)}{
u \left(\mathbb{B}(x, r)
ight)} \in [0, \infty], \ \Theta^{
u}_{*}(\mu, x) &:= \liminf_{r o 0} rac{\mu \left(\mathbb{B}(x, r)
ight)}{
u \left(\mathbb{B}(x, r)
ight)} \in [0, \infty], \end{aligned}$$

where we adopt the extended arithmetic rules $\frac{0}{0} := 0$, $\frac{\infty}{\infty} := 0$. If $\Theta^{*\nu}(\mu, x) = \Theta^{\nu}_{*}(\mu, x)$, we say that the *density of* μ *relative to* ν *at* x exists and denote it by $\Theta^{\nu}(\mu, x) := \Theta^{*\nu}(\mu, x) = \Theta^{\nu}_{*}(\mu, x)$.

Upper and lower densities of a measure relative another

Definition (3.12)

Let X be a metric space, μ and ν measures on X, and $x \in X$. We define the *upper* and *lower density of* μ *relative to* ν *at* x by, respectively:

$$egin{aligned} \Theta^{*
u}(\mu, x) &:= \limsup_{r o 0} rac{\mu(\mathbb{B}(x, r))}{
u(\mathbb{B}(x, r))} \in [0, \infty], \ \Theta^{
u}_{*}(\mu, x) &:= \liminf_{r o 0} rac{\mu(\mathbb{B}(x, r))}{
u(\mathbb{B}(x, r))} \in [0, \infty], \end{aligned}$$

where we adopt the extended arithmetic rules $\frac{0}{0} := 0$, $\frac{\infty}{\infty} := 0$. If $\Theta^{*\nu}(\mu, x) = \Theta^{\nu}_{*}(\mu, x)$, we say that the *density of* μ *relative to* ν *at* x exists and denote it by $\Theta^{\nu}(\mu, x) := \Theta^{*\nu}(\mu, x) = \Theta^{\nu}_{*}(\mu, x)$.

Remark (3.13)

If $X = \mathbb{R}^n$, $A \subset \mathbb{R}^n$, $x \in \mathbb{R}^n$ and μ a measure on \mathbb{R}^n , the *n*-dimensional upper and lower densities of *A* at *x* with respect to μ , defined in 1, are special cases of the previous definition: $\Theta^{*n}(\mu, A, x) = \Theta^{*\mathcal{L}^n}(\mu \sqcup A, x)$ and $\Theta^n_*(\mu, A, x) = \Theta^{*\mathcal{L}^n}(\mu \sqcup A, x)$.

August 18, 2019

Lemma (3.14)

If μ and ν are locally finite Borel measures on a metric space X, and $x \in X$, then the definitions of $\Theta^{*\nu}(\mu, x)$ or $\Theta^{\nu}_{*}(\mu, x)$ do not change if we use open balls instead of closed balls.

Proposition (3.15 and 3.16)

Let μ and ν be locally finite Borel measures on a metric space X. Suppose that X is separable or that ν is finite on all closed balls of X. Then the functions $X \to [0, \infty]$ given by $x \in X \mapsto \Theta^{*\nu}(\mu, x)$ and $x \in X \mapsto \Theta^{\nu}_{*}(\mu, x)$ are Borelian.

Corollary (3.17)

Let μ and ν be locally finite Borel measures on a metric space X, with X separable or ν finite on all closed balls of X. Then the set $Y := \{x \in X \mid \Theta^{*\nu}(\mu, x) = \Theta^{\nu}_{*}(\mu, x)\}$ is Borel measurable and $\Theta^{\nu}(\mu, \cdot) : Y \to [0, \infty]$ is Borelian.

Lemma (3.14)

If μ and ν are locally finite Borel measures on a metric space X, and $x \in X$, then the definitions of $\Theta^{*\nu}(\mu, x)$ or $\Theta^{\nu}_{*}(\mu, x)$ do not change if we use open balls instead of closed balls.

Proposition (3.15 and 3.16)

Let μ and ν be locally finite Borel measures on a metric space X. Suppose that X is separable or that ν is finite on all closed balls of X. Then the functions $X \to [0, \infty]$ given by $x \in X \mapsto \Theta^{*\nu}(\mu, x)$ and $x \in X \mapsto \Theta^{\nu}_{*}(\mu, x)$ are Borelian.

Corollary (3.17)

Let μ and ν be locally finite Borel measures on a metric space X, with X separable or ν finite on all closed balls of X. Then the set $Y := \{x \in X \mid \Theta^{*\nu}(\mu, x) = \Theta^{\nu}_{*}(\mu, x)\}$ is Borel measurable and $\Theta^{\nu}(\mu, \cdot) : Y \to [0, \infty]$ is Borelian.

Gláucio Terra (IME - USP)

Lemma (3.14)

If μ and ν are locally finite Borel measures on a metric space X, and $x \in X$, then the definitions of $\Theta^{*\nu}(\mu, x)$ or $\Theta^{\nu}_{*}(\mu, x)$ do not change if we use open balls instead of closed balls.

Proposition (3.15 and 3.16)

Let μ and ν be locally finite Borel measures on a metric space X. Suppose that X is separable or that ν is finite on all closed balls of X. Then the functions $X \to [0, \infty]$ given by $x \in X \mapsto \Theta^{*\nu}(\mu, x)$ and $x \in X \mapsto \Theta^{\nu}_{*}(\mu, x)$ are Borelian.

Corollary (3.17)

Let μ and ν be locally finite Borel measures on a metric space X, with X separable or ν finite on all closed balls of X. Then the set $Y := \{x \in X \mid \Theta^{*\nu}(\mu, x) = \Theta^{\nu}_{*}(\mu, x)\}$ is Borel measurable and $\Theta^{\nu}(\mu, \cdot) : Y \to [0, \infty]$ is Borelian.

Gláucio Terra (IME - USP)

Recall

Definition (2.12)

Let *X* be a metric space, \mathcal{F} a collection of balls in *X* and $A \subset X$. We say that \mathcal{F} is a *fine cover A*, or that \mathcal{F} *covers A finely*, if \mathcal{F} is a cover of *A* such that, $\forall x \in A$, $\inf\{\text{diam } B \mid x \in B \in \mathcal{F}\} = 0$.

Corollary (Vitali's covering theorem for the Lebesgue measure;2.14)

Let $A \subset \mathbb{R}^n$ and \mathfrak{F} a collection of nondegenerate closed balls in \mathbb{R}^n which covers A finely. Then, for every $\epsilon > 0$, there exists a disjoint subfamily $\mathfrak{G} \subset \mathfrak{F}$ such that $\mathcal{L}^n(\cup \mathfrak{G}) \leq \mathcal{L}^n(A) + \epsilon$ and $\mathcal{L}^n(A \setminus \cup \mathfrak{G}) = 0$.

イロト 不得 トイヨト イヨト

August 18, 2019

3

Recall

Definition (2.12)

Let *X* be a metric space, \mathcal{F} a collection of balls in *X* and $A \subset X$. We say that \mathcal{F} is a *fine cover A*, or that \mathcal{F} *covers A finely*, if \mathcal{F} is a cover of *A* such that, $\forall x \in A$, $\inf\{\text{diam } B \mid x \in B \in \mathcal{F}\} = 0$.

Corollary (Vitali's covering theorem for the Lebesgue measure;2.14)

Let $A \subset \mathbb{R}^n$ and \mathfrak{F} a collection of nondegenerate closed balls in \mathbb{R}^n which covers A finely. Then, for every $\epsilon > 0$, there exists a disjoint subfamily $\mathfrak{G} \subset \mathfrak{F}$ such that $\mathcal{L}^n(\cup \mathfrak{G}) \leq \mathcal{L}^n(A) + \epsilon$ and $\mathcal{L}^n(A \setminus \cup \mathfrak{G}) = 0$.

イロト 不得 トイヨト イヨト

August 18, 2019

3

Definition (3.18)

Let *X* be a metric space, \mathcal{F} a collection of balls in *X* and $A \subset X$. We say that \mathcal{F} is a *strongly fine cover A*, or that \mathcal{F} *covers A finely in the strong sense*, if \mathcal{F} is a cover of *A* such that, $\forall x \in A$, $\inf\{r > 0 \mid \mathbb{B}(x, r) \in \mathcal{F}\} = 0$.

It is clear that every strongly fine cover of *A* is a fine cover of *A* in the sense of definition 12, but the converse does not hold.

Definition (3.19)

We say that a measure μ on a metric space X satisfies the *symmetric Vitali property (SVP)* if, for all $A \subset X$ with $\mu(A) < \infty$ and for all \mathcal{F} strongly fine cover of A by nondegenerate closed balls, there exists a countable disjoint subfamily $\mathcal{G} \subset \mathcal{F}$ such that $\mu(A \setminus \cup \mathcal{G}) = 0$.

.

Definition (3.18)

Let *X* be a metric space, \mathcal{F} a collection of balls in *X* and $A \subset X$. We say that \mathcal{F} is a *strongly fine cover A*, or that \mathcal{F} *covers A finely in the strong sense*, if \mathcal{F} is a cover of *A* such that, $\forall x \in A$, $\inf\{r > 0 \mid \mathbb{B}(x, r) \in \mathcal{F}\} = 0$.

It is clear that every strongly fine cover of *A* is a fine cover of *A* in the sense of definition 12, but the converse does not hold.

Definition (3.19)

We say that a measure μ on a metric space *X* satisfies the *symmetric Vitali property (SVP)* if, for all $A \subset X$ with $\mu(A) < \infty$ and for all \mathcal{F} strongly fine cover of *A* by nondegenerate closed balls, there exists a countable disjoint subfamily $\mathcal{G} \subset \mathcal{F}$ such that $\mu(A \setminus \cup \mathcal{G}) = 0$.

Definition (3.18)

Let *X* be a metric space, \mathcal{F} a collection of balls in *X* and $A \subset X$. We say that \mathcal{F} is a *strongly fine cover A*, or that \mathcal{F} *covers A finely in the strong sense*, if \mathcal{F} is a cover of *A* such that, $\forall x \in A$, $\inf\{r > 0 \mid \mathbb{B}(x, r) \in \mathcal{F}\} = 0$.

It is clear that every strongly fine cover of *A* is a fine cover of *A* in the sense of definition 12, but the converse does not hold.

Definition (3.19)

We say that a measure μ on a metric space *X* satisfies the *symmetric Vitali property (SVP)* if, for all $A \subset X$ with $\mu(A) < \infty$ and for all \mathcal{F} strongly fine cover of *A* by nondegenerate closed balls, there exists a countable disjoint subfamily $\mathcal{G} \subset \mathcal{F}$ such that $\mu(A \setminus \cup \mathcal{G}) = 0$.

Remark (3.20)

- It is clear that, if a measure μ on a metric space X has SVP, so does any restriction of μ , i.e. $\forall Y \subset X, \mu \sqsubseteq Y$ has SVP.
- If a measure μ on a metric space X is σ-finite and has SVP, then μ is concentrated on its support, i.e. μ(X \ spt μ) = 0. Proof: Let X = ∪_{k∈N}A_k, with ∀k ∈ N, A_k ∈ σ(μ) and μ(A_k) < ∞. For each k ∈ N, the family of nondegenerate closed balls F = {B(x, r) | x ∈ X \ spt μ, r > 0, μ(B(x, r)) = 0} covers A_k \ spt μ finely in the strong sense. Hence, there exists a countable disjoint subfamily S_k ⊂ F such that μ((A_k \ spt μ) \ ∪S_k) = 0; since μ(∪S_k) = 0, we conclude that μ(A_k \ spt μ) = 0. Therefore X \ spt μ = ∪_{k∈N}(A_k \ spt μ) has μ-measure zero.

Remark (3.20)

- It is clear that, if a measure μ on a metric space X has SVP, so does any restriction of μ , i.e. $\forall Y \subset X, \mu \sqsubseteq Y$ has SVP.
- If a measure μ on a metric space X is σ-finite and has SVP, then μ is concentrated on its support, i.e. μ(X \ spt μ) = 0. Proof: Let X = ∪_{k∈N}A_k, with ∀k ∈ N, A_k ∈ σ(μ) and μ(A_k) < ∞. For each k ∈ N, the family of nondegenerate closed balls F = {B(x,r) | x ∈ X \ spt μ, r > 0, μ(B(x,r)) = 0} covers A_k \ spt μ finely in the strong sense. Hence, there exists a countable disjoint subfamily S_k ⊂ F such that μ((A_k \ spt μ) \ ∪S_k) = 0; since μ(∪S_k) = 0, we conclude that μ(A_k \ spt μ) = 0. Therefore X \ spt μ = ∪_{k∈N}(A_k \ spt μ) has μ-measure zero.

Remark (3.20)

- It is clear that, if a measure μ on a metric space X has SVP, so does any restriction of μ , i.e. $\forall Y \subset X, \mu \sqsubseteq Y$ has SVP.
- If a measure µ on a metric space X is σ-finite and has SVP, then µ is concentrated on its support, i.e. $\mu(X \setminus \text{spt } \mu) = 0$. Proof: Let $X = \bigcup_{k \in \mathbb{N}} A_k$, with $\forall k \in \mathbb{N}$, $A_k \in \sigma(\mu)$ and $\mu(A_k) < \infty$. For each $k \in \mathbb{N}$, the family of nondegenerate closed balls $\mathcal{F} = \{\mathbb{B}(x, r) \mid x \in X \setminus \text{spt } \mu, r > 0, \mu(\mathbb{B}(x, r)) = 0\}$ covers $A_k \setminus \text{spt } \mu$ finely in the strong sense. Hence, there exists a countable disjoint subfamily $\mathcal{G}_k \subset \mathcal{F}$ such that $\mu((A_k \setminus \text{spt } \mu) \setminus \bigcup \mathcal{G}_k) = 0$; since $\mu(\bigcup \mathcal{G}_k) = 0$, we conclude that $\mu(A_k \setminus \text{spt } \mu) = 0$. Therefore $X \setminus \text{spt } \mu = \bigcup_{k \in \mathbb{N}} (A_k \setminus \text{spt } \mu)$ has µ-measure zero.

Remark (3.20)

- It is clear that, if a measure µ on a metric space X has SVP, so does any restriction of µ, i.e. ∀Y ⊂ X, µ ∟ Y has SVP.
- If a measure µ on a metric space X is σ-finite and has SVP, then µ is concentrated on its support, i.e. $\mu(X \setminus \text{spt } \mu) = 0$. Proof: Let $X = \bigcup_{k \in \mathbb{N}} A_k$, with $\forall k \in \mathbb{N}$, $A_k \in \sigma(\mu)$ and $\mu(A_k) < \infty$. For each $k \in \mathbb{N}$, the family of nondegenerate closed balls $\mathcal{F} = \{\mathbb{B}(x, r) \mid x \in X \setminus \text{spt } \mu, r > 0, \mu(\mathbb{B}(x, r)) = 0\}$ covers $A_k \setminus \text{spt } \mu$ finely in the strong sense. Hence, there exists a countable disjoint subfamily $\mathcal{G}_k \subset \mathcal{F}$ such that $\mu((A_k \setminus \text{spt } \mu) \setminus \bigcup \mathcal{G}_k) = 0$; since $\mu(\bigcup \mathcal{G}_k) = 0$, we conclude that $\mu(A_k \setminus \text{spt } \mu) = 0$. Therefore $X \setminus \text{spt } \mu = \bigcup_{k \in \mathbb{N}} (A_k \setminus \text{spt } \mu)$ has μ -measure zero.

Doubling property implies SVP

Proposition (3.21)

Let X be a separable metric space and μ a finite Borel regular measure on X. Assume that μ satisfies the doubling property:

 $\exists C > 0, \forall B \subset X \text{ nondegenerate closed ball}, \mu(5B) \leq C\mu(B).$

Then μ has the symmetric Vitali property.

The Sec. 74

August 18, 2019

Besicovitch covering theorem

Theorem (3.24)

For each $n \in \mathbb{N}$, there exists a natural constant N = N(n), depending only on n, which satisfies the following property: if \mathcal{F} is any family of nondegenerate closed balls in \mathbb{R}^n with sup{diam $B \mid B \in \mathcal{F}$ } < ∞ and Ais the set of centers of the balls in \mathcal{F} , then exist $\mathcal{G}_1, \ldots, \mathcal{G}_N$ such that, for $1 \le i \le N$, \mathcal{G}_i is a disjoint subfamily of \mathcal{F} and $\cup_{i=1}^N \mathcal{G}_i$ covers A.

Corollary (3.25)

Let μ be a Borel measure in \mathbb{R}^n , $A \subset \mathbb{R}^n$ with $\mu(A) < \infty$ and \mathfrak{F} a family of nondegenerate closed balls which covers A finely in the strong sense. Then, for any open set $U \supset A$, there exists a countable disjoint subfamily $\mathfrak{G} \subset \mathfrak{F}$ such that $\cup \mathfrak{G} \subset U$ and $\mu(A \setminus \cup \mathfrak{G}) = 0$.

3

イロト 不得 トイヨト イヨト

Besicovitch covering theorem

Theorem (3.24)

For each $n \in \mathbb{N}$, there exists a natural constant N = N(n), depending only on n, which satisfies the following property: if \mathcal{F} is any family of nondegenerate closed balls in \mathbb{R}^n with sup{diam $B \mid B \in \mathcal{F}$ } < ∞ and Ais the set of centers of the balls in \mathcal{F} , then exist $\mathcal{G}_1, \ldots, \mathcal{G}_N$ such that, for $1 \le i \le N$, \mathcal{G}_i is a disjoint subfamily of \mathcal{F} and $\cup_{i=1}^N \mathcal{G}_i$ covers A.

Corollary (3.25)

Let μ be a Borel measure in \mathbb{R}^n , $A \subset \mathbb{R}^n$ with $\mu(A) < \infty$ and \mathfrak{F} a family of nondegenerate closed balls which covers A finely in the strong sense. Then, for any open set $U \supset A$, there exists a countable disjoint subfamily $\mathfrak{G} \subset \mathfrak{F}$ such that $\cup \mathfrak{G} \subset U$ and $\mu(A \setminus \cup \mathfrak{G}) = \mathbf{0}$.

-

イロト 不得 トイヨト イヨト

Proposition (Borel measures on subsets of \mathbb{R}^n satisfy SVP; 3.23)

Let *X* be a metric subspace of \mathbb{R}^n and μ a Borel measure on *X*. Then μ satisfies the symmetric Vitali property.

The Sec. 74

General comparison density theorem

Theorem (3.26)

Let μ and ν be open σ -finite Borel regular measures on a metric space X such that ν has the symmetric Vitali property, $t \ge 0$ and $A \subset X$. If $\forall x \in A, \Theta^{*\nu}(\mu, x) \ge t$ then $t\nu(A) \le \mu(A)$.

Corollary (3.27)

Let μ and ν be open σ -finite Borel regular measures on a metric space X such that ν has the symmetric Vitali property. Then $\Theta^{*\nu}(\mu, x) < \infty$ for ν -a.e. $x \in X$.

August 18, 2019

General comparison density theorem

Theorem (3.26)

Let μ and ν be open σ -finite Borel regular measures on a metric space X such that ν has the symmetric Vitali property, $t \ge 0$ and $A \subset X$. If $\forall x \in A, \Theta^{*\nu}(\mu, x) \ge t$ then $t\nu(A) \le \mu(A)$.

Corollary (3.27)

Let μ and ν be open σ -finite Borel regular measures on a metric space X such that ν has the symmetric Vitali property. Then $\Theta^{*\nu}(\mu, x) < \infty$ for ν -a.e. $x \in X$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

August 18, 2019

General upper density theorem

Theorem (3.28)

Let μ be a Borel regular measure on a metric space X, ν an open σ -finite Borel regular measure on X with the symmetric Vitali property, and $A \in \sigma(\mu)$ with $\mu(A) < \infty$. Then $\Theta^{*\nu}(\mu \bigsqcup A, x) = 0$ for ν -a.e. $x \in X \setminus A$.

Theorem (general density theorem; 3.29)

Let μ be an open σ -finite Borel regular measure on a metric space X with symmetric Vitali property and $A \in \sigma(\mu)$. Then the density $\Theta^{\mu}(\mu \perp A, \cdot)$ coincides μ -a.e. on X with χ_A , i.e.

$$\Theta^{\mu}(\mu \ \bot A, x) = \lim_{r \to 0} \frac{\mu(A \cap \mathbb{B}(x, r))}{\mu(\mathbb{B}(x, r))} = \begin{cases} 1 & \text{for } \mu\text{-a.e. } x \in A, \\ 0 & \text{for } \mu\text{-a.e. } x \in X \setminus A. \end{cases}$$

General upper density theorem

Theorem (3.28)

Let μ be a Borel regular measure on a metric space X, ν an open σ -finite Borel regular measure on X with the symmetric Vitali property, and $A \in \sigma(\mu)$ with $\mu(A) < \infty$. Then $\Theta^{*\nu}(\mu \sqcup A, x) = 0$ for ν -a.e. $x \in X \setminus A$.

Theorem (general density theorem; 3.29)

Let μ be an open σ -finite Borel regular measure on a metric space X with symmetric Vitali property and $A \in \sigma(\mu)$. Then the density $\Theta^{\mu}(\mu \sqcup A, \cdot)$ coincides μ -a.e. on X with χ_A , i.e.

$$\Theta^{\mu}(\mu \ \Box A, x) = \lim_{r \to 0} \frac{\mu(A \cap \mathbb{B}(x, r))}{\mu(\mathbb{B}(x, r))} = \begin{cases} 1 & \text{for } \mu\text{-a.e. } x \in A, \\ 0 & \text{for } \mu\text{-a.e. } x \in X \setminus A. \end{cases}$$

Lusin's theorem

Theorem (1.112)

Let μ be a Borel regular measure on a metric space X (respectively, a Radon measure on a locally compact Hausdorff space X), Y a separable metric space, $f : \text{dom } f \subset X \to Y$ a μ -measurable map. Then, for each $A \in \sigma(\mu)$ with $\mu(A) < \infty$ and for each $\epsilon > 0$, there exists a closed (respectively, compact) set $C \subset A$ such that $\mu(A \setminus C) < \epsilon$ and $f|_C$ is continuous.

August 18, 2019

General Lebesgue differentiation theorem

Corollary (3.30)

Let μ be an open σ -finite Borel regular measure on a metric space X with symmetric Vitali property and $f : X \to \mathbb{C}$ a μ -measurable function satisfying one of the following conditions:

- **(**) $f \in L^{1}(\mu)$ or

Then, for μ -a.e. $x \in X$:

$$\lim_{r\to 0}\frac{1}{\mu(\mathbb{B}(x,r))}\int_{\mathbb{B}(x,r)}f\,\mathrm{d}\mu=f(x).$$

3 + 4 = +

August 18, 2019

Lebesgue Points

Corollary (3.31)

Let X be a separable metric space, μ an open σ -finite Borel regular measure on X with symmetric Vitali property, $1 \le p < \infty$ and $f \in L^p_{loc}(\mu)$, i.e. $\forall x \in X, \exists r > 0, \int_{\mathbb{B}(x,r)} |f|^p d\mu < \infty$. Then, for μ -a.e. $x \in X$,

$$\lim_{r \to 0} \frac{1}{\mu(\mathbb{B}(x,r))} \int_{\mathbb{B}(x,r)} |f(y) - f(x)|^{\rho} d\mu(y) = 0.$$
 (1)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

August 18, 2019

22/29

Definition (Lebesgue Points; 3.32)

With the same notation from the previous corollary, a point $x \in X$ for which (1) holds is called *Lebesgue point of f with respect to* μ .

Lebesgue Points

Corollary (3.31)

Let X be a separable metric space, μ an open σ -finite Borel regular measure on X with symmetric Vitali property, $1 \le p < \infty$ and $f \in L^p_{loc}(\mu)$, i.e. $\forall x \in X, \exists r > 0, \int_{\mathbb{B}(x,r)} |f|^p d\mu < \infty$. Then, for μ -a.e. $x \in X$,

$$\lim_{r \to 0} \frac{1}{\mu(\mathbb{B}(x,r))} \int_{\mathbb{B}(x,r)} |f(y) - f(x)|^p \, \mathrm{d}\mu(y) = 0.$$
 (1)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

22/29

August 18, 2019

Definition (Lebesgue Points; 3.32)

With the same notation from the previous corollary, a point $x \in X$ for which (1) holds is called *Lebesgue point of f with respect to* μ .

Lebesgue points with noncentered balls

Corollary (3.33)

Let $1 \le p < \infty$ and $f \in L^p_{loc}(\mathcal{L}^n)$. Then, for each Lebesgue point x of f with respect to \mathcal{L}^n (in particular, for \mathcal{L}^n -a.e. $x \in \mathbb{R}^n$),

$$\lim_{B \downarrow \{x\}} \frac{1}{\mathcal{L}^n(B)} \int_B |f(y) - f(x)|^p \, \mathrm{d}\mathcal{L}^n(y) = 0,$$

where the limit is taken over all closed balls B containing x with diam $B \rightarrow 0$.

August 18, 2019

Absolute continuity and mutual singularity

Definition (3.34)

Let μ and ν be Borel measures on a topological space *X*. We say that:

- **1** μ is *absolutely continuous* with respect to ν (notation: $\mu \ll \nu$) if $\forall A \subset X, \nu(A) = 0$ implies $\mu(A) = 0$.
- and *ν* are *mutually singular* (notation: µ ⊥ *ν*) if there exists A ∈ ℬ_X such that µ is concentrated on A and ν is concentrated on X \ A.

August 18, 2019

Lebesgue decomposition theorem

Lemma (3.36)

Let μ be a σ -finite Borel measure and ν a Borel regular measure on a metric space X. Then there exists $B \in \mathscr{B}_X$ such that ν is concentrated on B^c and $\mu \sqcup B^c \ll \nu$, so that

$$\mu = \mu \bigsqcup B + \mu \bigsqcup B^{c}, \quad \mu \bigsqcup B \perp \nu, \ \mu \bigsqcup B^{c} \ll \nu.$$
 (LD)

Moreover:

- **()** $B \in \mathscr{B}_X$ satisfying (LD) is unique up to μ -null sets, i.e. if $B' \in \mathscr{B}_X$ also satisfies (LD), then $B \land B'$ is μ -null.
- (a) the decomposition (LD) is unique in the sense that, if $\nu = \mu_s + \mu_a$ with $\mu_s \perp \nu$ and $\mu_a \ll \nu$, then $\mu_s = \mu \sqcup B$ and $\mu_a = \mu \sqcup B^c$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lebesgue decomposition theorem

Lemma (3.36)

Let μ be a σ -finite Borel measure and ν a Borel regular measure on a metric space X. Then there exists $B \in \mathscr{B}_X$ such that ν is concentrated on B^c and $\mu \sqcup B^c \ll \nu$, so that

$$\mu = \mu \bigsqcup B + \mu \bigsqcup B^{c}, \quad \mu \bigsqcup B \perp \nu, \ \mu \bigsqcup B^{c} \ll \nu.$$
 (LD)

Moreover:

- **(**) $B \in \mathscr{B}_X$ satisfying (LD) is unique up to μ -null sets, i.e. if $B' \in \mathscr{B}_X$ also satisfies (LD), then $B \land B'$ is μ -null.
- 2) the decomposition (LD) is unique in the sense that, if $\nu = \mu_s + \mu_a$ with $\mu_s \perp \nu$ and $\mu_a \ll \nu$, then $\mu_s = \mu \sqcup B$ and $\mu_a = \mu \sqcup B^c$.

Comparison theorem for lower densities

Theorem (3.38)

Let μ and ν be open σ -finite Borel regular measures on a metric space $X, t \ge 0$ and $A \subset X$ with $\forall x \in A, \Theta_*^{\nu}(\mu, x) \le t$.

- If μ has SVP, then $\mu(A) \leq t \nu(A)$.
- If ν has SVP and B is given by the previous lemma, so that (LD) holds, then $\mu(A \setminus B) \leq t \nu(A)$.

3 + 4 = +

August 18, 2019

26/29

A D b 4 A b

Differentiation theorem for Borel measures on metric spaces

Theorem (3.39)

Let μ and ν be open σ -finite Borel regular measures on a metric space *X*. Suppose that *X* is separable or that ν is finite on closed balls of *X*.

- The set $Y := \{x \in X \mid \Theta^{*\nu}(\mu, x) = \Theta^{\nu}_{*}(\mu, x)\}$ is Borel measurable and $\Theta^{\nu}(\mu, \cdot) : Y \to [0, \infty]$ is Borelian.
- If ν has SVP, $Y_f := \{x \in Y \mid \Theta^{\nu}(\mu, x) < \infty\}$ is a Borel measurable subset of X whose complement is ν -null.
- If both μ and ν have SVP, $\mu(Y^c) = \nu(Y^c) = 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

August 18, 2019

Lebesgue-Besicovitch-Radon-Nikodym differentiation theorem

Theorem (3.40)

Let μ and ν be open σ -finite Borel regular measures on a metric space X. Suppose that X is separable or that ν is finite on closed balls of X, and that ν has SVP.

• Let $\mu = \mu_s + \mu_a$ be the Lebesgue decomposition of μ with respect to ν , i.e. $\mu_s = \mu \sqcup B$ and $\mu_a = \mu \sqcup B^c$, where $B \in \mathscr{B}_X$ is given by lemma 29. Then, for all $A \in \mathscr{B}_X$,

$$\mu_{a}(\boldsymbol{A}) = \int_{\boldsymbol{A}} \Theta^{\nu}(\mu, \boldsymbol{x}) \, \mathrm{d}\nu(\boldsymbol{x}),$$

so that, for all $A \in \mathscr{B}_X$, $\mu(A) = \int_A \Theta^{\nu}(\mu, x) \, d\nu(x) + \mu_s(A)$.

If μ also has SVP, in lemma 29 we can take $B' = \{x \in X \mid \Theta^{\nu}(\mu, x) = \infty\}$ in place of B.

Corollary (3.41)

With the same hypothesis from the previous theorem, $\Theta^{\nu}(\mu, \cdot)$ coincides ν -a.e. with the Radon-Nikodym derivative $\frac{d(\mu_a|_{\mathscr{B}_{\chi}})}{d(\nu|_{\mathscr{B}_{\chi}})}$.

