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Densities

Up to the end of this section we fix a metric space (X ,d).
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Densities

Upper and lower n-dimensional densities

Definition (3.1)

Let A ⊂ X , x ∈ X , n > 0 real and µ a measure on X . We define:
1) the n-dimensional upper density of A at x with respect to µ:

Θ∗n(µ,A, x) := lim sup
r→0

µ
(
A ∩ B(x , r)

)
α(n)rn ∈ [0,∞].

2) the n-dimensional lower density of A at x with respect to µ:

Θn
∗(µ,A, x) := lim inf

r→0

µ
(
A ∩ B(x , r)

)
α(n)rn ∈ [0,∞].

If Θ∗n(µ,A, x) = Θn
∗(µ,A, x), we denote their common value by

Θn(µ,A, x) and call it density of A at x with respect to µ.
For A = X , we use the notations Θ∗n(µ, x), Θn

∗(µ, x) and Θn(µ, x).
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Densities

Remark (3.2)

With the notation above:
1) Note that Θ∗n(µ,A, x) = Θ∗n(µ xA, x) and

Θn
∗(µ,A, x) = Θn

∗(µ xA, x).
2) If U ⊂ X is an open set and x ∈ U,

Θ∗n(µ,A, x) = Θ∗n(µ xU,A, x) and Θn
∗(µ,A, x) = Θn

∗(µ xU,A, x).
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Densities

Lemma (3.3)

If µ is a locally finite Borel measure on X, A ⊂ X, x ∈ X and n > 0 real,
then, the definitions of Θ∗n(µ,A, x) or Θn

∗(µ,A, x) do not change if we
use open balls instead of closed balls.

Proposition (3.4)

If µ is a locally finite Borel measure on X, A ⊂ X and n > 0 real, then
the functions X → [0,∞] given by x ∈ X 7→ Θ∗n(µ,A, x) and
x ∈ X 7→ Θn

∗(µ,A, x) are Borelian.

Corollary (3.5)

If µ is a locally finite Borel measure on X, A ⊂ X and n > 0 real, then
the set Y := {x ∈ X | Θ∗n(µ,A, x) = Θn

∗(µ,A, x)} is Borel measurable
and Θn(µ,A, ·) : Y → [0,∞] is Borelian.
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Densities

Comparison density theorem

Theorem (3.6)

Let µ be a Borel measure on a metric space X, n > 0 real, t ≥ 0 and
A ⊂ A1 ⊂ X. If ∀x ∈ A, Θ∗n(µ,A1, x) ≥ t then tHn(A) ≤ µ(A1).
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Densities

Upper density theorem

Theorem (3.7)

Let µ be a Borel regular measure on a metric space X, n > 0 real and
B ∈ σ(µ) with µ(B) <∞. Then Θ∗n(µ,B, x) = 0 for Hn-a.e. x ∈ X \ B.

Exercise (3.8)

If µ is an open σ-finite Borel regular measure on a metric space X, the
thesis in the previous theorem holds for all B ∈ σ(µ), i.e. the
hypothesis of µ(B) being finite may be dropped.
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Densities

Density theorem for the Lebesgue measure

Corollary (3.9)

If B ⊂ Rn is Ln-measurable, then Θn(Ln,B, x) exists for Ln-a.e.
x ∈ Rn, Θn(Ln,B, x) = 1 for Ln-a.e. x ∈ B and Θn(Ln,B, x) = 0 for
Ln-a.e. x ∈ Rn \ B.
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Differentiation Theorems

Upper and lower densities of a measure relative
another

Definition (3.12)

Let X be a metric space, µ and ν measures on X , and x ∈ X . We
define the upper and lower density of µ relative to ν at x by,
respectively:

Θ∗ν(µ, x) := lim sup
r→0

µ
(
B(x , r)

)
ν
(
B(x , r)

) ∈ [0,∞],

Θν
∗(µ, x) := lim inf

r→0

µ
(
B(x , r)

)
ν
(
B(x , r)

) ∈ [0,∞],

where we adopt the extended arithmetic rules 0
0 := 0, ∞∞ := 0.

If Θ∗ν(µ, x) = Θν
∗(µ, x), we say that the density of µ relative to ν at x

exists and denote it by Θν(µ, x) := Θ∗ν(µ, x) = Θν
∗(µ, x).
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Differentiation Theorems

Remark (3.13)

If X = Rn, A ⊂ Rn, x ∈ Rn and µ a measure on Rn, the n-dimensional
upper and lower densities of A at x with respect to µ, defined in 1, are
special cases of the previous definition: Θ∗n(µ,A, x) = Θ∗L

n
(µ xA, x)

and Θn
∗(µ,A, x) = ΘLn

∗ (µ xA, x).
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Differentiation Theorems

Lemma (3.14)

If µ and ν are locally finite Borel measures on a metric space X, and
x ∈ X, then the definitions of Θ∗ν(µ, x) or Θν

∗(µ, x) do not change if we
use open balls instead of closed balls.

Proposition (3.15 and 3.16)

Let µ and ν be locally finite Borel measures on a metric space X.
Suppose that X is separable or that ν is finite on all closed balls of X .
Then the functions X → [0,∞] given by x ∈ X 7→ Θ∗ν(µ, x) and
x ∈ X 7→ Θν

∗(µ, x) are Borelian.

Corollary (3.17)

Let µ and ν be locally finite Borel measures on a metric space X, with
X separable or ν finite on all closed balls of X . Then the set
Y := {x ∈ X | Θ∗ν(µ, x) = Θν

∗(µ, x)} is Borel measurable and
Θν(µ, ·) : Y → [0,∞] is Borelian.
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Differentiation Theorems

Recall

Definition (2.12)

Let X be a metric space, F a collection of balls in X and A ⊂ X . We
say that F is a fine cover A, or that F covers A finely, if F is a cover of A
such that, ∀x ∈ A, inf{diam B | x ∈ B ∈ F} = 0.

Corollary (Vitali’s covering theorem for the Lebesgue measure;2.14)

Let A ⊂ Rn and F a collection of nondegenerate closed balls in Rn

which covers A finely. Then, for every ε > 0, there exists a disjoint
subfamily G ⊂ F such that Ln(∪G) ≤ Ln(A) + ε and Ln(A \ ∪G) = 0.
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Differentiation Theorems

Symmetric Vitali property (SVP)

Definition (3.18)

Let X be a metric space, F a collection of balls in X and A ⊂ X . We
say that F is a strongly fine cover A, or that F covers A finely in the
strong sense, if F is a cover of A such that, ∀x ∈ A,
inf{r > 0 | B(x , r) ∈ F} = 0.

It is clear that every strongly fine cover of A is a fine cover of A in the
sense of definition 12, but the converse does not hold.

Definition (3.19)

We say that a measure µ on a metric space X satisfies the symmetric
Vitali property (SVP) if, for all A ⊂ X with µ(A) <∞ and for all F
strongly fine cover of A by nondegenerate closed balls, there exists a
countable disjoint subfamily G ⊂ F such that µ(A \ ∪G) = 0.
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Differentiation Theorems

Symmetric Vitali property (SVP)

Remark (3.20)

1) It is clear that, if a measure µ on a metric space X has SVP, so
does any restriction of µ, i.e. ∀Y ⊂ X , µ xY has SVP.

2) If a measure µ on a metric space X is σ-finite and has SVP, then µ
is concentrated on its support, i.e. µ(X \ spt µ) = 0.
Proof: Let X = ∪k∈NAk , with ∀k ∈ N, Ak ∈ σ(µ) and µ(Ak ) <∞.
For each k ∈ N, the family of nondegenerate closed balls
F = {B(x , r) | x ∈ X \ spt µ, r > 0, µ

(
B(x , r)

)
= 0} covers

Ak \ spt µ finely in the strong sense. Hence, there exists a
countable disjoint subfamily Gk ⊂ F such that
µ
(
(Ak \ spt µ) \ ∪Gk

)
= 0; since µ(∪Gk ) = 0, we conclude that

µ(Ak \ spt µ) = 0. Therefore X \ spt µ = ∪k∈N(Ak \ spt µ) has
µ-measure zero.
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Differentiation Theorems

Doubling property implies SVP

Proposition (3.21)

Let X be a separable metric space and µ a finite Borel regular
measure on X. Assume that µ satisfies the doubling property:

∃C > 0, ∀B ⊂ X nondegenerate closed ball, µ(5B) ≤ Cµ(B).

Then µ has the symmetric Vitali property.
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Differentiation Theorems

Besicovitch covering theorem

Theorem (3.24)

For each n ∈ N, there exists a natural constant N = N(n), depending
only on n, which satisfies the following property: if F is any family of
nondegenerate closed balls in Rn with sup{diam B | B ∈ F} <∞ and A
is the set of centers of the balls in F, then exist G1, . . . ,GN such that, for
1 ≤ i ≤ N, Gi is a disjoint subfamily of F and ∪N

i=1Gi covers A.

Corollary (3.25)

Let µ be a Borel measure in Rn, A ⊂ Rn with µ(A) <∞ and F a family
of nondegenerate closed balls which covers A finely in the strong
sense. Then, for any open set U ⊃ A, there exists a countable disjoint
subfamily G ⊂ F such that ∪G ⊂ U and µ(A \ ∪G) = 0.
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Differentiation Theorems

Proposition (Borel measures on subsets of Rn satisfy SVP; 3.23)

Let X be a metric subspace of Rn and µ a Borel measure on X. Then
µ satisfies the symmetric Vitali property.
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Differentiation Theorems

General comparison density theorem

Theorem (3.26)

Let µ and ν be open σ-finite Borel regular measures on a metric space
X such that ν has the symmetric Vitali property, t ≥ 0 and A ⊂ X. If
∀x ∈ A, Θ∗ν(µ, x) ≥ t then tν(A) ≤ µ(A).

Corollary (3.27)

Let µ and ν be open σ-finite Borel regular measures on a metric space
X such that ν has the symmetric Vitali property. Then Θ∗ν(µ, x) <∞
for ν-a.e. x ∈ X.
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Differentiation Theorems

General upper density theorem

Theorem (3.28)

Let µ be a Borel regular measure on a metric space X, ν an open
σ-finite Borel regular measure on X with the symmetric Vitali property,
and A ∈ σ(µ) with µ(A) <∞. Then Θ∗ν(µ xA, x) = 0 for ν-a.e.
x ∈ X \ A.

Theorem (general density theorem; 3.29)

Let µ be an open σ-finite Borel regular measure on a metric space X
with symmetric Vitali property and A ∈ σ(µ). Then the density
Θµ(µ xA, ·) coincides µ-a.e. on X with χA, i.e.

Θµ(µ xA, x) = lim
r→0

µ
(
A ∩ B(x , r)

)
µ
(
B(x , r)

) =

{
1 for µ-a.e. x ∈ A,
0 for µ-a.e. x ∈ X \ A.
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Differentiation Theorems

Lusin’s theorem

Theorem (1.112)

Let µ be a Borel regular measure on a metric space X (respectively, a
Radon measure on a locally compact Hausdorff space X), Y a
separable metric space, f : dom f ⊂ X → Y a µ-measurable map.
Then, for each A ∈ σ(µ) with µ(A) <∞ and for each ε > 0, there exists
a closed (respectively, compact) set C ⊂ A such that µ(A \ C) < ε and
f |C is continuous.
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Differentiation Theorems

General Lebesgue differentiation theorem

Corollary (3.30)

Let µ be an open σ-finite Borel regular measure on a metric space X
with symmetric Vitali property and f : X → C a µ-measurable function
satisfying one of the following conditions:

i) f ∈ L1(µ) or
ii) X is separable and f ∈ L1

loc(µ), i.e. ∀x ∈ X, ∃r > 0,∫
B(x ,r)|f | dµ <∞.

Then, for µ-a.e. x ∈ X:

lim
r→0

1
µ
(
B(x , r)

) ∫
B(x ,r)

f dµ = f (x).
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Differentiation Theorems

Lebesgue Points

Corollary (3.31)

Let X be a separable metric space, µ an open σ-finite Borel regular
measure on X with symmetric Vitali property, 1 ≤ p <∞ and
f ∈ Lp

loc(µ), i.e. ∀x ∈ X , ∃r > 0,
∫
B(x ,r)|f |

p dµ <∞. Then, for µ-a.e.
x ∈ X,

lim
r→0

1
µ
(
B(x , r)

) ∫
B(x ,r)

|f (y)− f (x)|p dµ(y) = 0. (1)

Definition (Lebesgue Points; 3.32)

With the same notation from the previous corollary, a point x ∈ X for
which (1) holds is called Lebesgue point of f with respect to µ.
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Differentiation Theorems

Lebesgue points with noncentered balls

Corollary (3.33)

Let 1 ≤ p <∞ and f ∈ Lp
loc(Ln). Then, for each Lebesgue point x of f

with respect to Ln (in particular, for Ln-a.e. x ∈ Rn),

lim
B↓{x}

1
Ln(B)

∫
B
|f (y)− f (x)|p dLn(y) = 0,

where the limit is taken over all closed balls B containing x with
diam B → 0.

Gláucio Terra (IME - USP) GMT August 18, 2019 23 / 29



Differentiation Theorems

Absolute continuity and mutual singularity

Definition (3.34)

Let µ and ν be Borel measures on a topological space X . We say that:

1) µ is absolutely continuous with respect to ν (notation: µ� ν) if
∀A ⊂ X , ν(A) = 0 implies µ(A) = 0.

2) µ and ν are mutually singular (notation: µ ⊥ ν) if there exists
A ∈ BX such that µ is concentrated on A and ν is concentrated on
X \ A.
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Differentiation Theorems

Lebesgue decomposition theorem

Lemma (3.36)

Let µ be a σ-finite Borel measure and ν a Borel regular measure on a
metric space X. Then there exists B ∈ BX such that ν is concentrated
on Bc and µ xBc � ν, so that

µ = µ xB + µ xBc , µ xB ⊥ ν, µ xBc � ν. (LD)

Moreover:
1) B ∈ BX satisfying (LD) is unique up to µ-null sets, i.e. if B′ ∈ BX

also satisfies (LD), then B
a

B′ is µ-null.
2) the decomposition (LD) is unique in the sense that, if ν = µs + µa

with µs ⊥ ν and µa � ν, then µs = µ xB and µa = µ xBc .
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Differentiation Theorems

Comparison theorem for lower densities

Theorem (3.38)

Let µ and ν be open σ-finite Borel regular measures on a metric space
X, t ≥ 0 and A ⊂ X with ∀x ∈ A, Θν

∗(µ, x) ≤ t .
i) If µ has SVP, then µ(A) ≤ t ν(A).
ii) If ν has SVP and B is given by the previous lemma, so that (LD)

holds, then µ(A \ B) ≤ t ν(A).
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Differentiation Theorems

Differentiation theorem for Borel measures on metric
spaces

Theorem (3.39)

Let µ and ν be open σ-finite Borel regular measures on a metric space
X. Suppose that X is separable or that ν is finite on closed balls of X .

i) The set Y := {x ∈ X | Θ∗ν(µ, x) = Θν
∗(µ, x)} is Borel measurable

and Θν(µ, ·) : Y → [0,∞] is Borelian.
ii) If ν has SVP, Yf := {x ∈ Y | Θν(µ, x) <∞} is a Borel measurable

subset of X whose complement is ν-null.
iii) If both µ and ν have SVP, µ(Y c) = ν(Y c) = 0.
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Differentiation Theorems

Lebesgue-Besicovitch-Radon-Nikodym differentiation
theorem

Theorem (3.40)

Let µ and ν be open σ-finite Borel regular measures on a metric space
X. Suppose that X is separable or that ν is finite on closed balls of X ,
and that ν has SVP.

i) Let µ = µs + µa be the Lebesgue decomposition of µ with respect
to ν, i.e. µs = µ xB and µa = µ xBc , where B ∈ BX is given by
lemma 29. Then, for all A ∈ BX ,

µa(A) =

∫
A

Θν(µ, x) dν(x),

so that, for all A ∈ BX , µ(A) =
∫

A Θν(µ, x) dν(x) + µs(A).
ii) If µ also has SVP, in lemma 29 we can take

B′ = {x ∈ X | Θν(µ, x) =∞} in place of B.
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Differentiation Theorems

Corollary (3.41)

With the same hypothesis from the previous theorem, Θν(µ, ·)
coincides ν-a.e. with the Radon-Nikodym derivative

d(µa|BX )

d(ν|BX ) .
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